

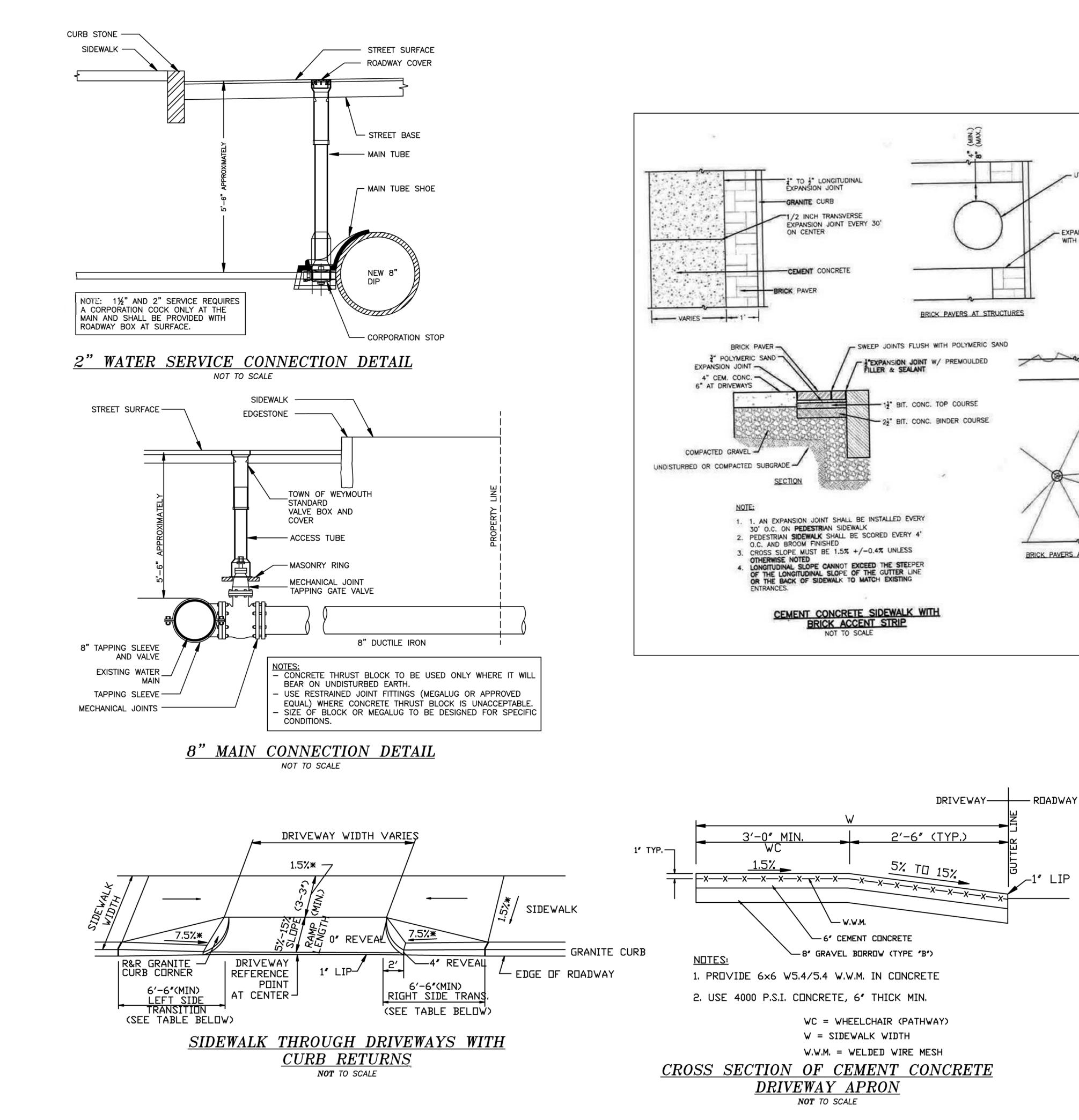
36 S.F.

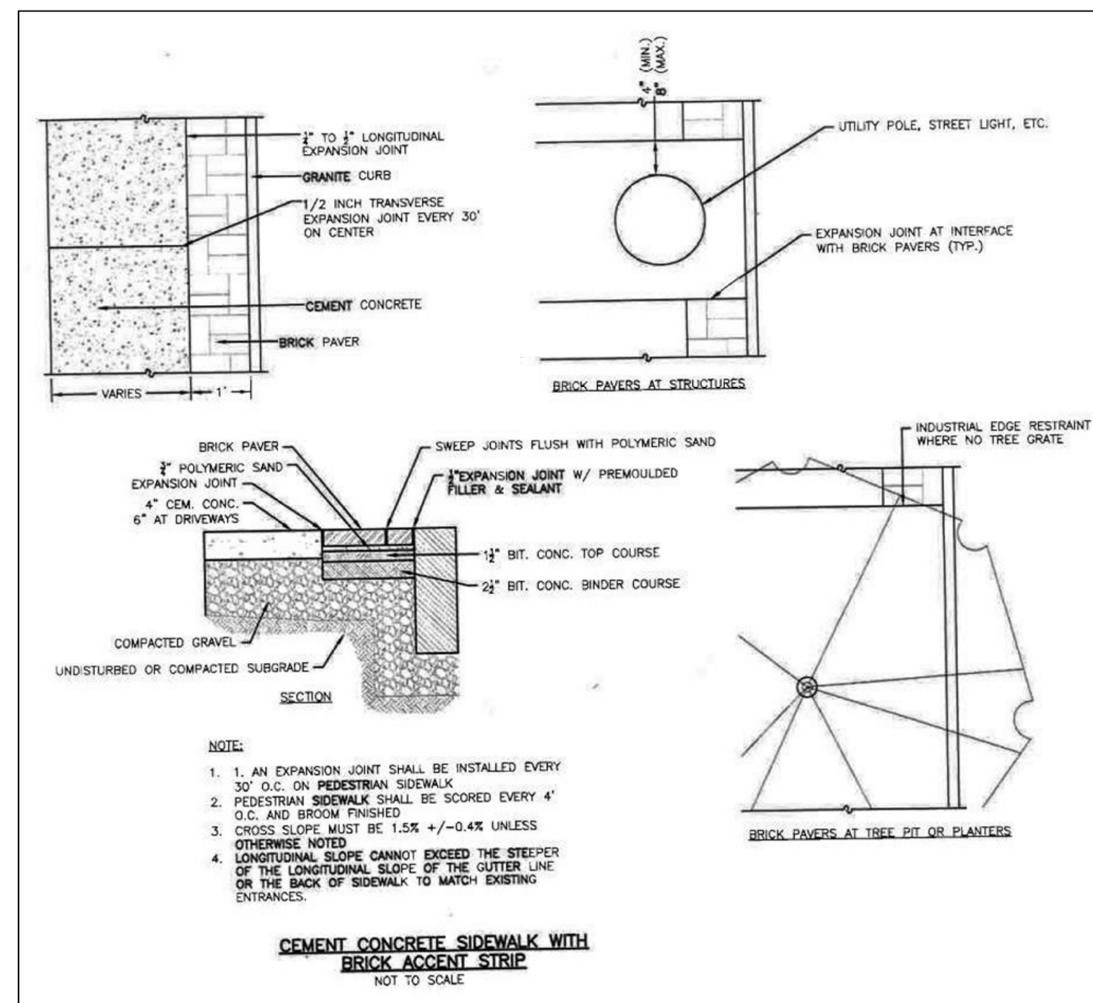
NOTE:

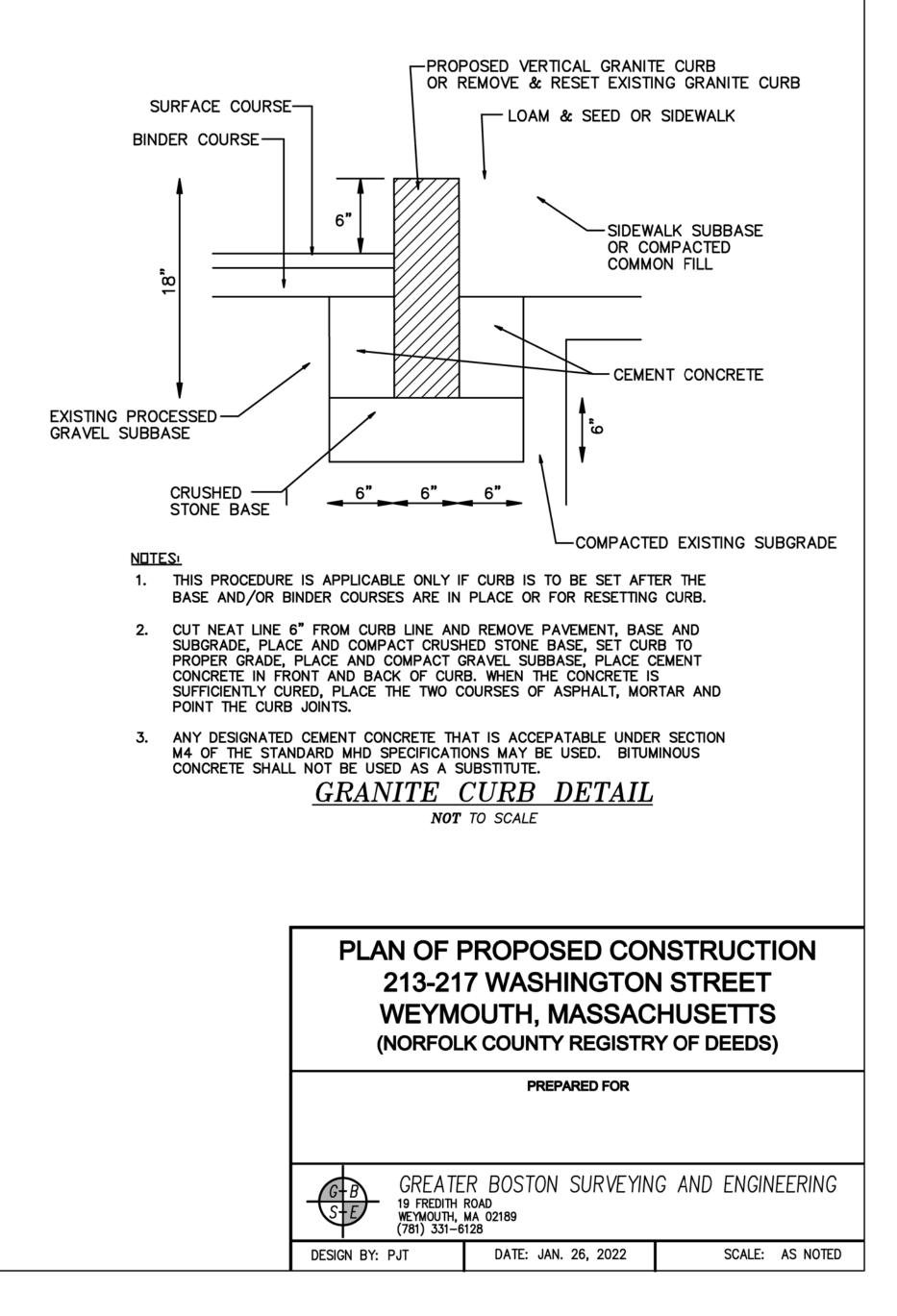
CONTRACTOR SHALL

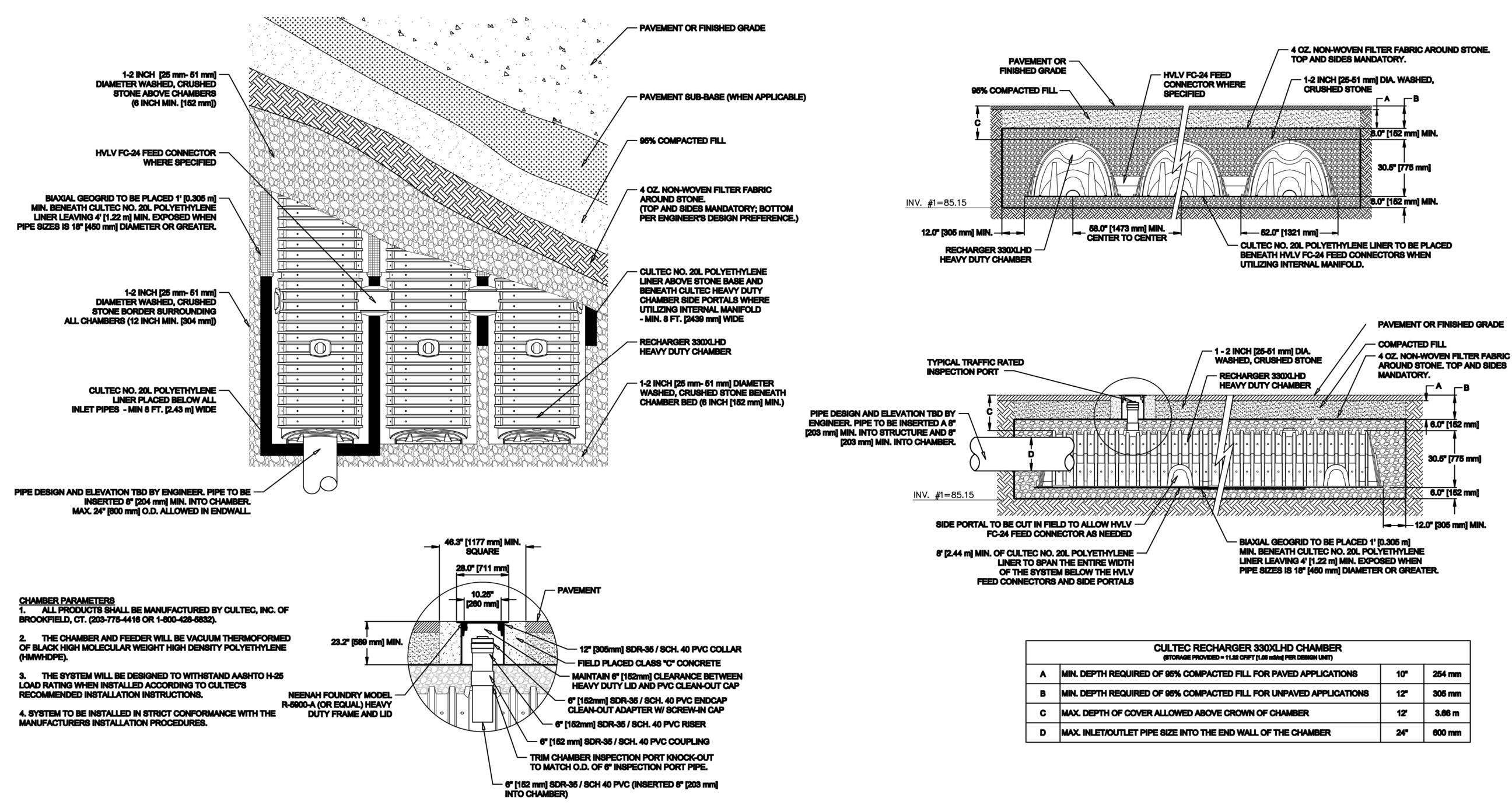
- CONTROL JOINT

- LIGHT BROOM FINISH

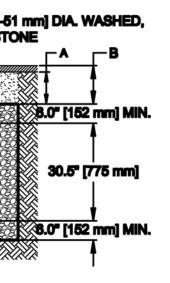

6" 4000 PSI CONCRETE


- 6" BANK RUN GRAVEL




PVC TRENCH DETAIL

NOT TO SCALE



INFILTRAITON SYSTEM DETAIL NOT TO SCALE

NS	10"	254 mm
TONS	12"	305 mm
	12	3.66 m
	24"	600 mm

PLAN OF PROPOSED CONSTRUCTION 213-217 WASHINGTON STREET WEYMOUTH, MASSACHUSETTS (NORFOLK COUNTY REGISTRY OF DEEDS)

PREPARED FOR

S- 19 WE	REATER BOST FREDITH ROAD YMOUTH, MA 02189 81) 331–6128	ON SURVEYIN	IG AND ENG	GINEERING
DESIGN BY: PJT	DATE:	JAN. 26, 2022	SCAL	E: AS NOTED

213-217 Washington Street Weymouth, MA 02188

NUMBER OF UNITS	27
RETAIL AREA	4,285 s.f.
LOT AREA	29,118 s.f.
TOTAL GROSS LIVING AREA	32,106 s.f.
FAR	1.10

FLOOR AREA RATIO (FAR)

The fixed relation between the lot area and the floor area of all multiple-family residential buildings, excluding the floor area of garages, carports, breezeways, stairways, hallways and balconies and excluding the area of any floor more than four feet below average grade where no part of such basement is used for sleeping rooms or other living quarters, and expressed as a fraction of floor area/lot areA.

ZONING	B-2 (Limit	ed Business District)		
	R-1 (Resident District)			
	VC (Villag	e Center Overlay Distr		
	•			
VC (Village Center C	Overlay Distrie	ct		
Maximum Height		4 stories, not to exce		
Front, Side and Rear Setbacks		shall be calculated a side building setback depth of the nearest or 10 feet, whicheve		
•	A portion of the building may be set back from the max articulated facade or accommodate a building entrance			
space created must	not exceed o	ne square foot for ever		
[
PARKING REQUIRE	EMENTS (20-	-25-7)		
Dwelling Units	1.5 per ur			
Retail	1 per 250	s.f. (min.) of gross are		
	on the 1s	t floor of a building		
	PROVIDED PARKING SPACES - 50 TOTAL			
27 Units	41 spaces (1.5 per unit)			
Retail	9 spaces for 4,662 s.f.			
	(4,662 / 250 s.f. = 19 spaces re			
Bike	1 Bike per 20 Parking Spaces			
	(50/20 = 3	3 Bike spaces req'd.)		

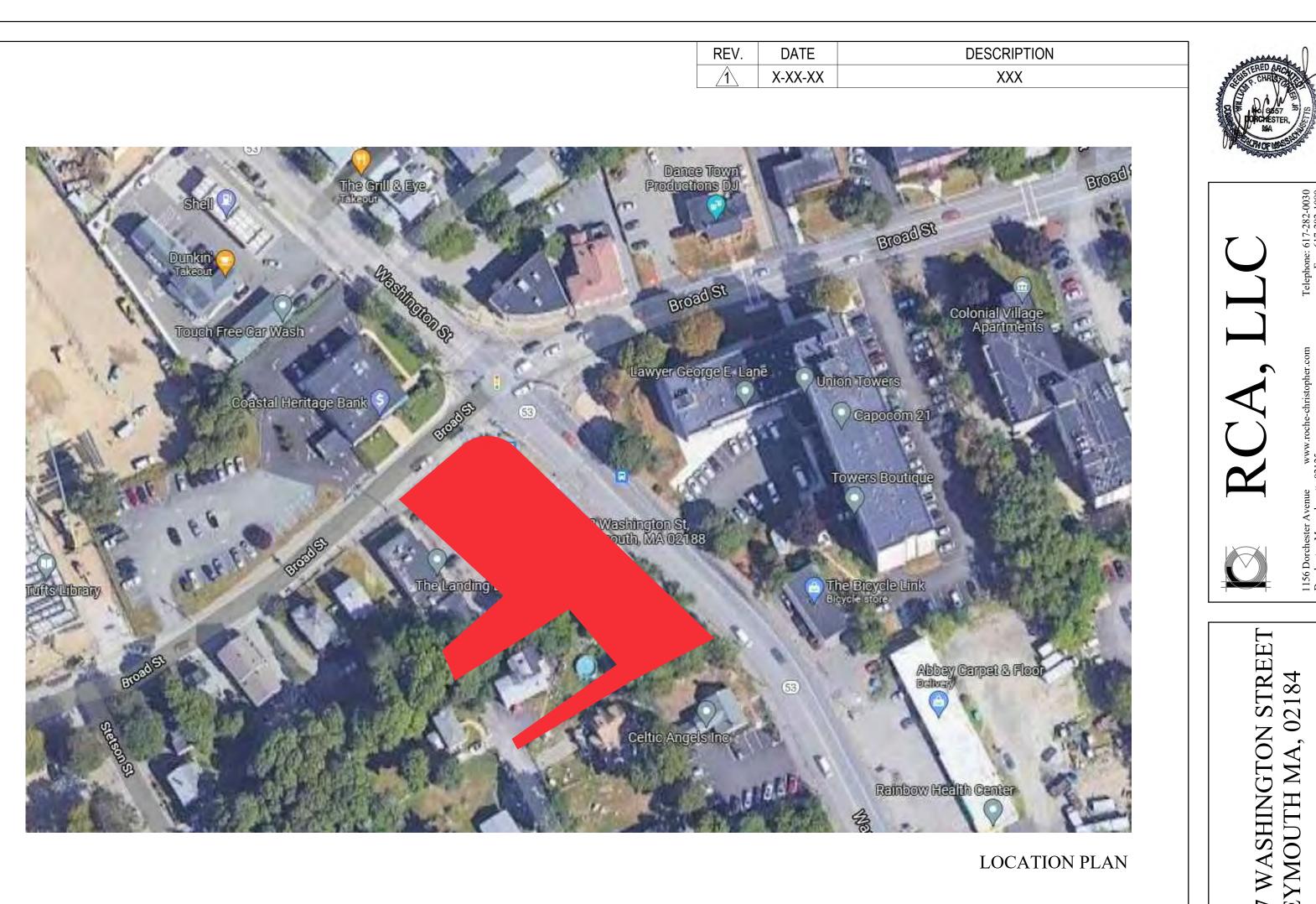
PROPOSED UNIT SQUARE FOOTAGE:

PROPOSED UNIT SQUARE FOOTAGE:

UNIT 1:	TOTAL GROSS LIVING AREA: 1,096 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 10:	TOTAL GROSS LIVING AREA: 1,005 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 2:	TOTAL GROSS LIVING AREA: 1017 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 11:	TOTAL GROSS LIVING AREA: 983 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 3:	TOTAL GROSS LIVING AREA: 993 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 12:	TOTAL GROSS LIVING AREA: 1,007 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 4:	TOTAL GROSS LIVING AREA: 1,005 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 13:	TOTAL GROSS LIVING AREA: 1,007 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 5:	TOTAL GROSS LIVING AREA: 1,005 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 14:	TOTAL GROSS LIVING AREA: 1,001 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 6:	TOTAL GROSS LIVING AREA: 1,037 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 15:	TOTAL GROSS LIVING AREA: 1,001 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 7:	TOTAL GROSS LIVING AREA: 1,017 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 16:	TOTAL GROSS LIVING AREA: 1,108 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 8:	TOTAL GROSS LIVING AREA: 993 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 17:	TOTAL GROSS LIVING AREA: 1,037 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
UNIT 9:	TOTAL GROSS LIVING AREA: 1,005 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02	UNIT 18:	TOTAL GROSS LIVING AREA: 1,017 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02

pc3 reet, (213-217) , DWG To PDF.| ŠTre shington 3:49:44 |

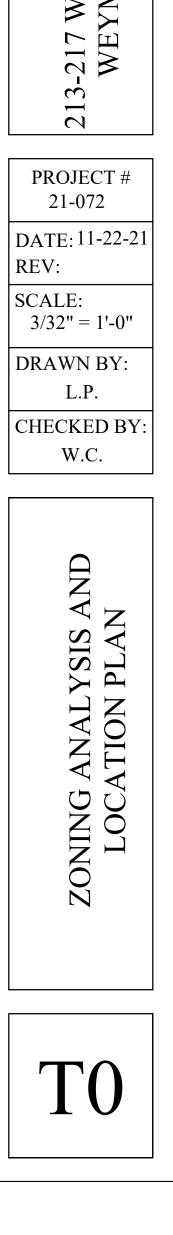
tri	ct	
	••	


cceed 50 feet by special permit l as follows: the maximum front and street

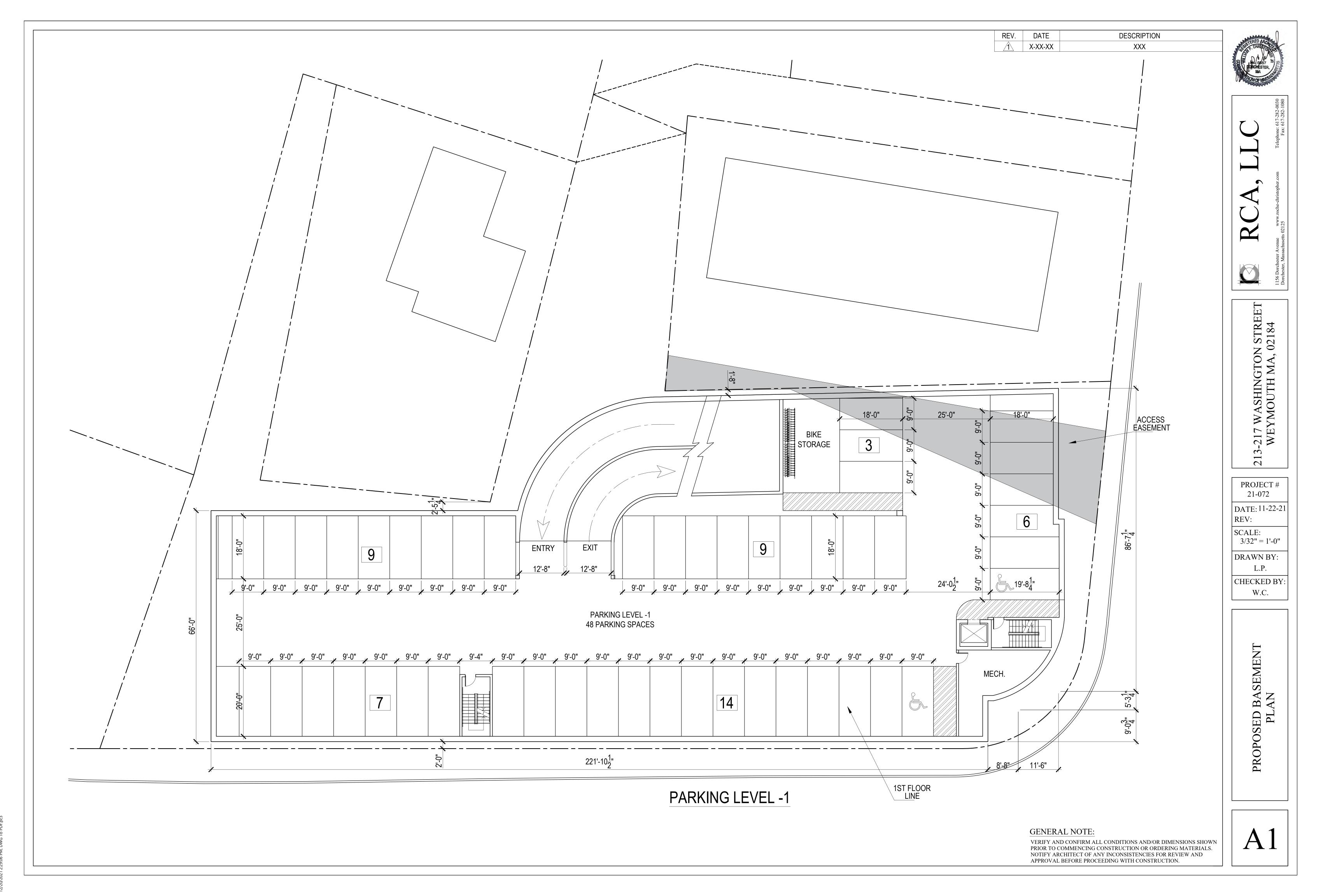
ack may not exceed the average front yard st two lots on both sides of the subject lot ver is less.

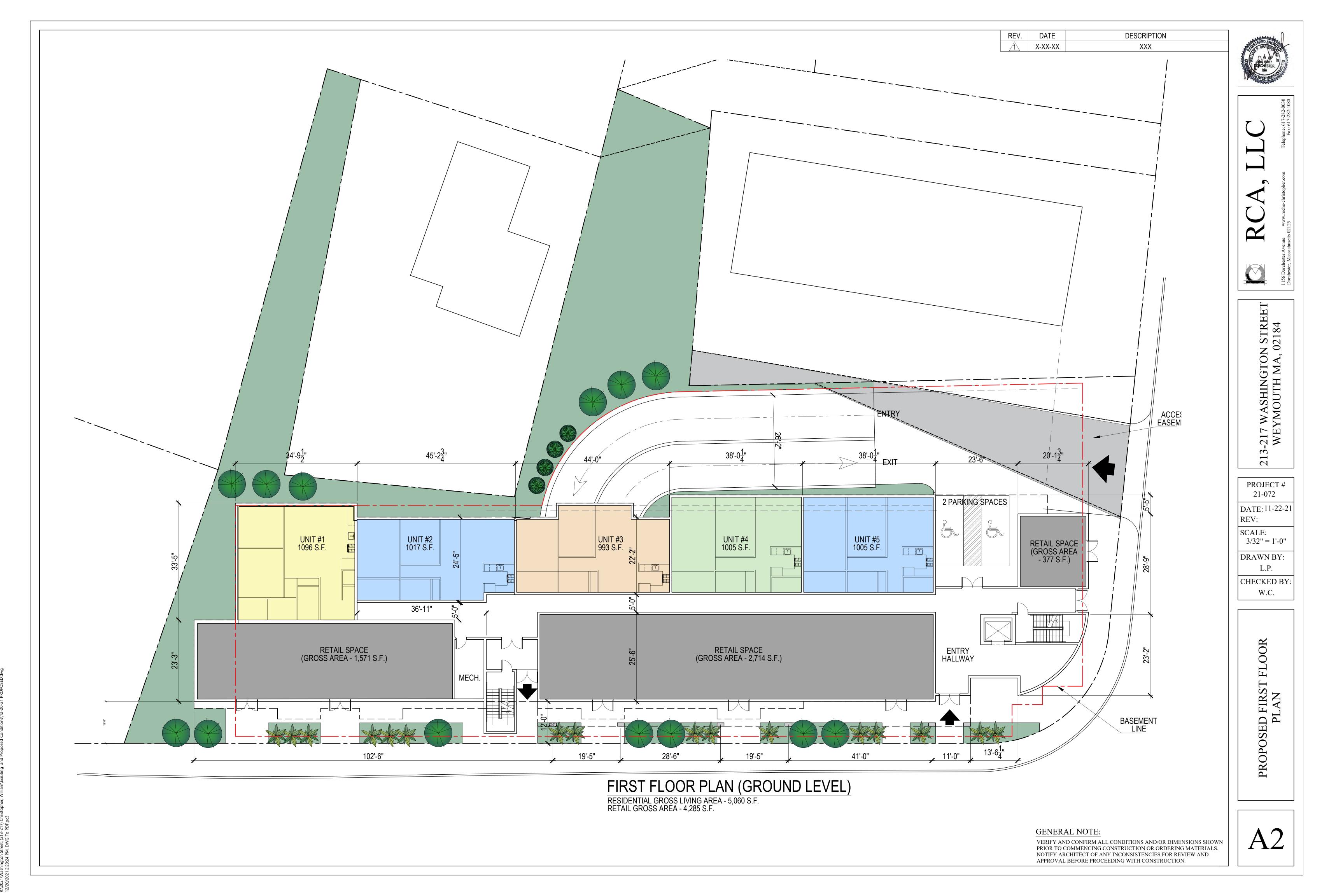
ximum setback line in order to provide an e feature, provided that the total area of the very linear foot of building frontage.

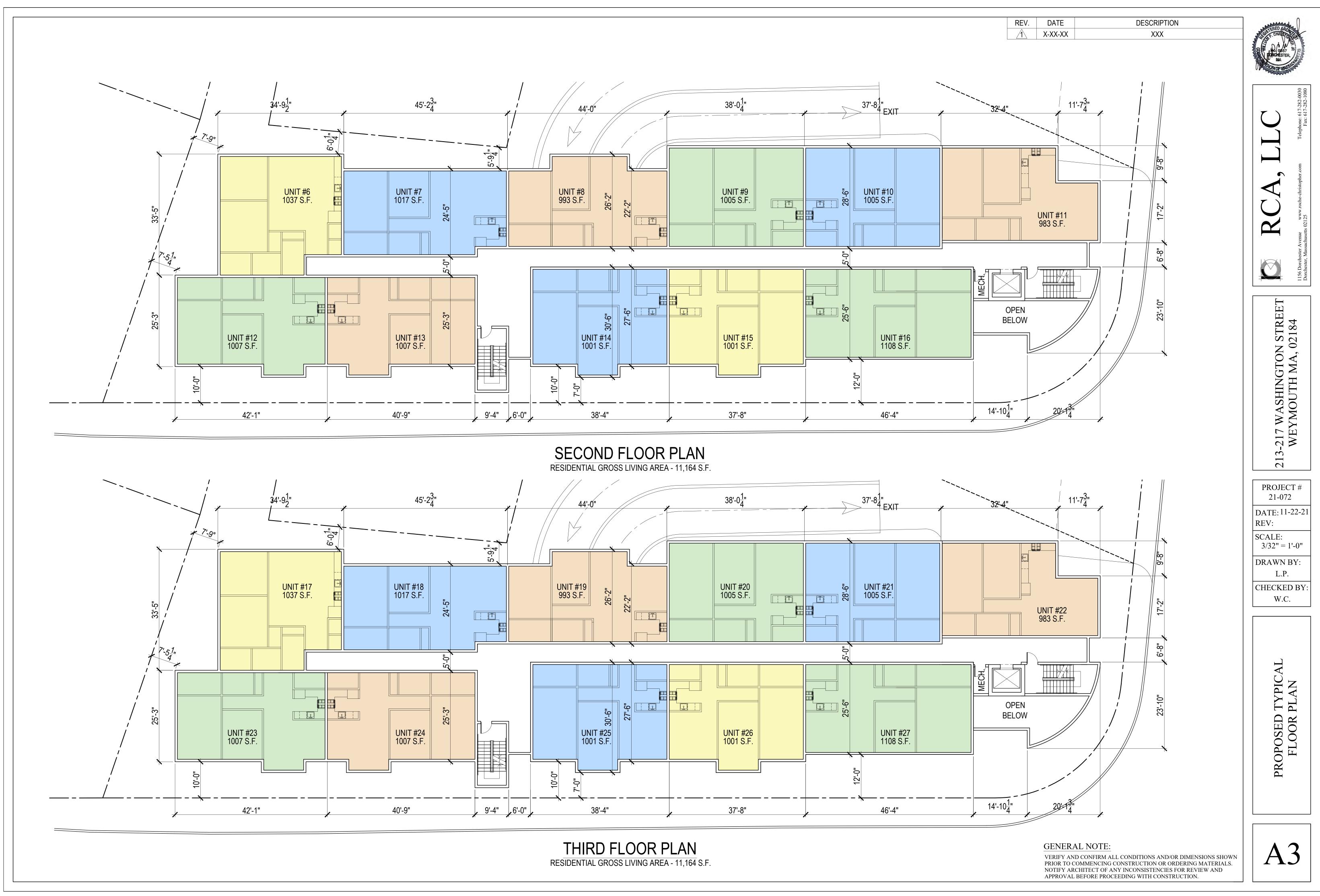
eq'd.)


PROPOSED UNIT SQUARE FOOTAGE:

- TOTAL GROSS LIVING AREA: 993 S.F. UNIT 19: TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- TOTAL GROSS LIVING AREA: 1,005 S.F. **UNIT 20:** TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- TOTAL GROSS LIVING AREA: 1.005 S.F. UNIT 21: TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- UNIT 22: TOTAL GROSS LIVING AREA: 983 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- UNIT 23: TOTAL GROSS LIVING AREA: 1,007 S.F. TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- TOTAL GROSS LIVING AREA: 1,007 S.F. UNIT 24: TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- TOTAL GROSS LIVING AREA: 1,001 S.F. UNIT 25: TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- TOTAL GROSS LIVING AREA: 1,001 S.F. UNIT 26: TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02
- TOTAL GROSS LIVING AREA: 1,108 S.F. UNIT 27: TOTAL NUMBER OF BEDROOMS: 02 TOTAL NUMBER OF BATHS: 02




LOCATION PLAN


GENERAL NOTE:



VERIFY AND CONFIRM ALL CONDITIONS AND/OR DIMENSIONS SHOWN PRIOR TO COMMENCING CONSTRUCTION OR ORDERING MATERIALS. NOTIFY ARCHITECT OF ANY INCONSISTENCIES FOR REVIEW AND APPROVAL BEFORE PROCEEDING WITH CONSTRUCTION.



GENERAL NOTE:

VERIFY AND CONFIRM ALL CONDITIONS AND/OR DIMENSIONS SHOWN PRIOR TO COMMENCING CONSTRUCTION OR ORDERING MATERIALS. NOTIFY ARCHITECT OF ANY INCONSISTENCIES FOR REVIEW AND APPROVAL BEFORE PROCEEDING WITH CONSTRUCTION.

A6

GENERAL NOTE:

VERIFY AND CONFIRM ALL CONDITIONS AND/OR DIMENSIONS SHOWN PRIOR TO COMMENCING CONSTRUCTION OR ORDERING MATERIALS. NOTIFY ARCHITECT OF ANY INCONSISTENCIES FOR REVIEW AND APPROVAL BEFORE PROCEEDING WITH CONSTRUCTION. A7

ZADE

ZADE ASSOCIATES, LLC Consulting Engineers 140 Beach St., Boston, MA 02111 Phone: (617) 338-4406 Fax: (617) 451-2540 Email: <u>zade@zadeengineering.com</u>

RCA, LLC

1156 Dorchester Ave Dorchester, MA 02125

Mohammed Zade Ph.D., P.E. Muzaffer Muctehitzade M.Sc., P.E

11/23/2021

Att: Mr. James Christopher Ref: 213-217 Washington Dorchester

Sbj: Sewer Load

Dear James,

Based on 248 CMR 10.14 Table 1 we estimate the water demand (Hot and Cold) requirements as follows:

Water Demand:

Residential (27 units)			
Item	Quantity	Factor	Total F.U.
Kitchen Sink:	27	2.0	54
Water Closet (tank type):	54	6.0	324
Lavatory:	54	1.0	54
Dishwasher:	27	1.0	27
Tub/Shower	54	2.0	108
Washer:	27	2.0	54
Total:			621

Provide 8" Sewer Service for the Residential Building (good for 1400 FU)

Daily Sewage Flow Rates (per 310 CMR 15):

54 Bed @ 110 gal per:	5,940 GPD
Retail 1 1,574 sqf @ 50/1000 sqf:	79 GPD
Retail 2 2,714 sqf @ 50/1000 sqf:	138 GPD
Retail 3 377 sqf @ 50/1000 sqf:	19 GPD

If you should have any questions, or require further information, please contact our office.

Sincerely, **ZADE ASSOCIATES LLC**

Mohammed Zade Ph.D., P.E. Principal

DRAINAGE SUMMARY

PROPOSED 27-UNIT RESIDENTIAL BUILDING 213-217 WASHINGTON STREET WEYMOUTH, MASSACHUSETTS

January 25, 2022

GREATER BOSTON SURVEY AND ENGINEERING 17 FREDITH ROAD WEYMOUTH, MA 02189

DRAINAGE SUMMARY PROPOSED 27-UNIT RESIDENTIAL BUILDING WEYMOUTH, MASSACHUSETTS

The proposed project consists of the demolition of an existing commercial building and bituminous concrete parking lots, and the construction of a new twenty-seven (27) unit residential building, including underground parking in Weymouth, MA, under the requirements of the City of Weymouth.

The on-site soils in the area are shown as predominantly "602-Urban Land 0 to 15 percent slopes" that are soils that do not fall within any Hydrological Soil Group. A geotechnical investigation was completed for the site by KMM Geotechnical Consultants, LLC and onsite soils were confirmed as a silty sand fill material above glacial till. For purposes of our drainage design, we have designed based on soil Type D and used a conservative infiltration rate of 0.09 in/hr based on Rawles Rates.

Ground cover on the site is an existing building and bituminous concrete parking lots. There is a large exposed ledge outcropping on the southern edge of the site. The entire site is impervious, including the ledge. The existing drainage on the site flows overland towards Broad Street. Overall, the proposed site will consist mostly of the proposed building, with small amounts of walkways and access drives, however stormwater runoff will be collected, infiltrated to maximum extent practical, before it continues to flow towards Broad Street

There are no Bordering Vegetated wetlands within the project area. The proposed drainage controls are designed to capture & contain the runoff from the proposed building. This system will store the runoff from the proposed Building and allow the stored water to slowly infiltrate after the storm event and overflow offsite.

Under the proposed conditions, the rate of site runoff from the re-developed lot area will be greater than the existing conditions for the 2, 10, 25 and 100-year storm events. The proposed controls have been designed to store this increase to maintain the pre and post runoff rates. In addition, the proposed controls will provide some additional recharge of the groundwater at the site.

COMPLIANCE WITH STORMWATER STANDARDS

Untreated Stormwater (Standard 1)

The project is designed so that new stormwater conveyances (outfalls/discharges) do not discharge untreated stormwater into, or cause erosion to, existing wetlands.

Post-Development Peak Rates (Standard 2)

A <u>hydrologic study</u> was performed to determine the rate of runoff for the 2-, 10-, 50- and 100-year storm events under pre-development (existing) conditions. Unmitigated postdevelopment rates were then computed in a similar manner. The study point where the peak rates were compared were taken at one (1) location at the existing offsite flow area. From these analyses, it was determined that the proposed project and its stormwater management system would not increase the peak runoff rates above existing levels. It is the intent of the stormwater management system to minimize impacts to drainage patterns, downstream property, and wetlands prior to its release from the site or discharge to wetlands.

The United States Department of Agriculture (U.S.D.A). Soil Conservation Service (SCS) Technical Release 55 (TR-55), 1986, was used as the procedure for estimating runoff. A SCS TR-20-based computer program was used for estimating peak discharges. TR-55 is a generally accepted model for use on small sites that begin with a rainfall amount uniformly imposed on the watershed over a specified time distribution. Mass rainfall is converted to mass runoff by using a runoff curve number (CN). CN is based on soils, plant cover, impervious areas, interception, and surface storage. Runoff is then transformed into a hydrograph that depends on runoff travel time through segments of the watershed.

Development in a watershed changes the watershed's response to precipitation. The most common effects are reduced infiltration and decreased travel time, which can result in significantly higher peak rates of runoff. The volume of runoff is determined primarily by the amount of precipitation and by infiltration characteristics related to soil type, antecedent rainfall, type of vegetal cover, impervious surfaces, and surface retention. Travel time is determined primarily by slope, flow length, depth of flow, and roughness of flow surfaces. Peak rates of discharge are based on the relationship of the above parameters, as well as the total drainage area of the watershed, the location of the development in relation to the total drainage area, and the effect of any flood control works or other manmade storage. Peak rates of discharge are also influenced by the distribution of rainfall within a given storm event.

Stormwater management computations for the full-build were performed using a SCSbased *HYDROCAD* for existing and proposed conditions, curve numbers, time of concentrations and unit hydrograph computations. NOAA Atlas 14, NOAA Hydrometeorological Design Studies Center, September 2015 was used for the 24-hr design storm.

Existing Conditions

Table 1. Shows the curve numbers, areas and times of concentration used to develop the pre-development hydrologic model of the site.

	Table 1. – Existing Conditions				
Sub-Areas	Surface Cover	Curve Number (CN)	Area (SF)	Tc (Mins.)	Remarks
Area #1				6.0	
	Exist Bldg.	98	7,725		
	Exist. Imp.	98	13,660		Driveway & Walks
	Exist. Ledge	98	8,078		
	Lawn Areas	79	3,614		
		Total Area	29,463		Incls. Easement areas
	*CN based on Class D soils.				

Proposed Conditions

The proposed conditions will result in a new collection system that will collect the site run-off from the proposed building and direct it to underground leaching systems prior to overflowing off-site.

Table 2. Shows the curve numbers, areas and times of concentration used to develop the post-development hydrologic model of the site.

	Table 2. – Proposed Conditions				
Sub- Areas	Surface Cover	Curve Number (CN)	Area (SF)	Tc (Mins.)	Remarks
Area #1				6.0	
	Prop. Building	98	13,548		
Area #2				6.0	
	Prop. Drive	98	2,775		
Area #3					
	Prop. Walk	98	2,118		
	Ledge	98	1,745		
	Prop.	84	9,277		
	Landscaping				
		Total Area	29,463		
		*CN based o	on Class D	soils.	

Peak Rate Summary

Table 3. Shows the peak runoff for the existing, as well as for the developed site at 2-, 10-, 25- and 100-year design storms.

Areas	Design Storm	Existing Runoff* (CFS)	Existing Volume* (Ac-Ft)	Proposed Runoff* (CFS)	Proposed Volume* (Ac- Ft)
Offsite Flow					
	2-yr.	2.15	0.168	1.38	0.104
	10-yr.	3.26	0.260	2.82	0.193
	25-yr	4.14	0.333	4.05	0.264
	100-yr.	5.93	0.482	6.08	0.411

Recharge to Groundwater (Standard 3)

The change in groundcover for the new development will change by decreasing the impervious area by approximately 9,200 sf.

Required Recharge Volume for the entire site was calculated in accordance with the Massachusetts Stormwater Management Standards:

Rv = F * impervious area (in acres) Rv = (0.10/12) * 0.463 = 0.004 Ac-ft. = 168.2 CF

Rv = Required Recharge Volume; F = Target Depth Factor (0.10 in. for soils of Hydrologic Soil Group D); Impervious area = building, pavement on site in post development condition (0.463 Ac).

The proposed onsite leaching systems will infiltrate over 168.2 CF in the 2-year storm event alone. This requirement has been met.

Removal of TSS (Standard 4)

The underground stormwater storage is sized based on the building roof footprint, which will be clean runoff. Therefore, TSS removal is not anticipated.

Land Uses with Higher Potential Pollutant Loads (Standard 5)

The use proposed does not differ from the current use of the space and has no higher potential for pollution.

Critical Areas (Standard 6 – Water Quality Treatments)

This site does not lie within a critical area. One-half inch (1/2") of runoff is the standard for treatment relative to water quality, but as stated prior, the proposed use will not create pollutants in excess of what exists today.

Redevelopment (Standard 7)

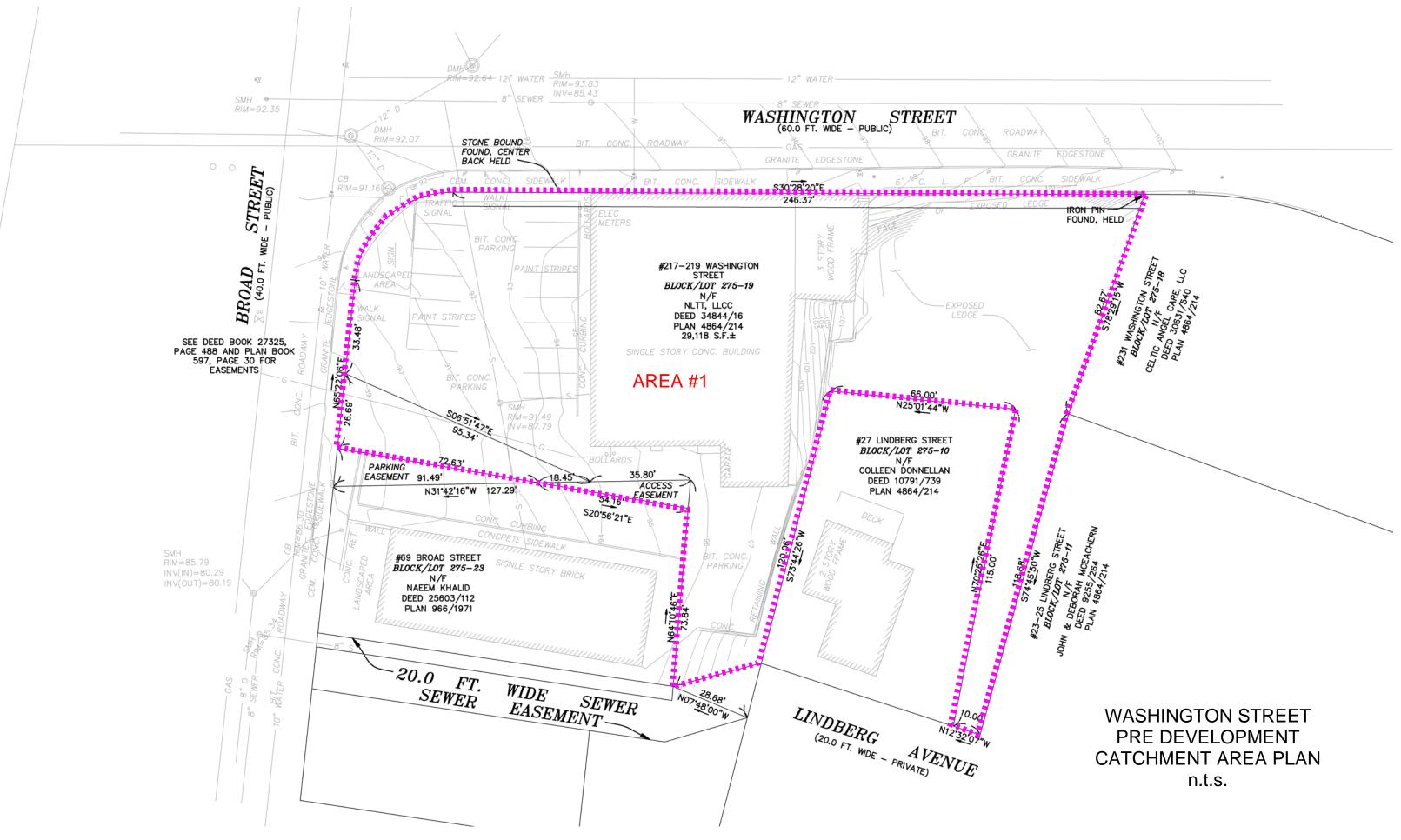
Redevelopment projects are those that involve development, rehabilitation or expansion on previously developed sites provided the redevelopment results in no net increase in impervious area. Furthermore, components of redevelopment project, which include development of previously undeveloped sites, do not fall under Standard 7. In addition, redevelopment of previously developed sites must meet the Stormwater Management Standards to the maximum extent practicable. However, if it is not practicable to meet all the Standards, new (retrofitted or expanded) stormwater management systems must be designed to improve existing conditions.

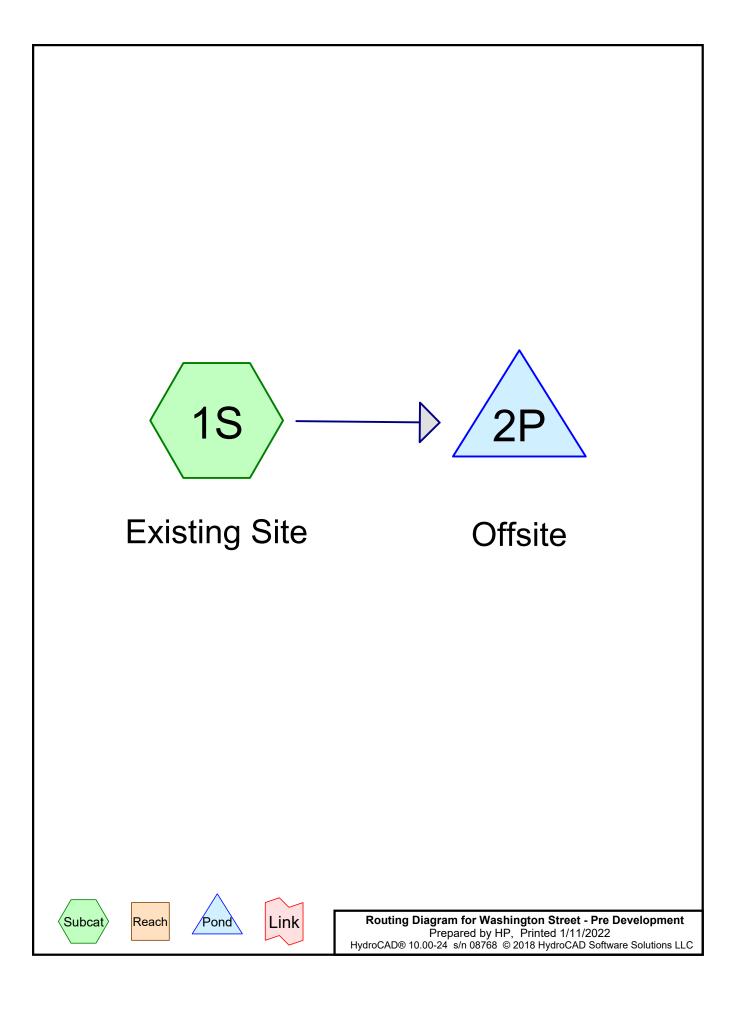
The project, as proposed, is a new building on an existing site that has been previously developed. In addition, the proposed development decreased the impervious area onsite. GBSE has considered this project a re-development and we have met all of the applicable standards of the Massachusetts Stormwater Policy to the maximum extent possible.

Erosion and Sedimentation Controls (Standard 8)

Erosion control is depicted on the Proposed Site Plan provided as part of the application.

Operation and Maintenance Plan (Standard 9)


An Operation and Maintenance (O&M) Plan is provided as part of the application.


Prohibition of Illicit Discharges

The Owner and User of the facility, assures that there will not be illicit discharges to the nearby wetlands from the proposed facility.

Floodplain (310 CMR 10.57)

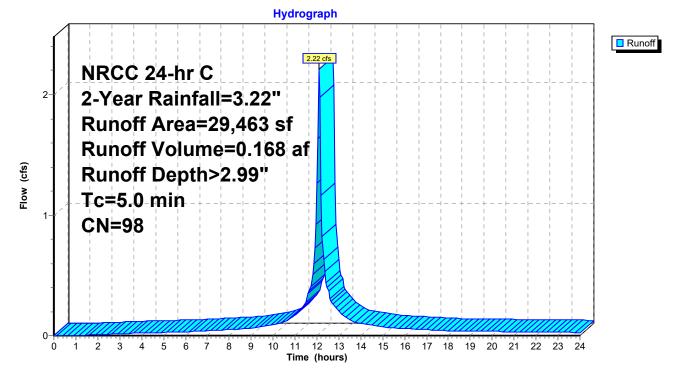
The project site does not fall with a floodplain district.

Printed 1/11/2022 Page 2

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.177	98	Existing Building (1S)
0.185	98	Existing Ledge Outcrop (1S)
0.314	98	Paved parking, HSG D (1S)
0.676	98	TOTAL AREA

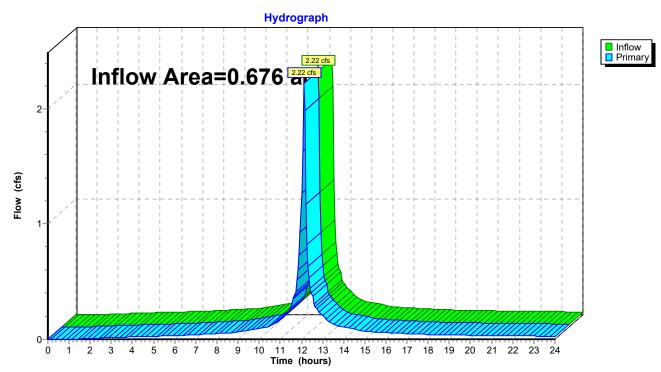
	213-217 Washington Street - Pre Development
Washington Street - Pre Development	NRCC 24-hr C 2-Year Rainfall=3.22"
Prepared by HP	Printed 1/11/2022
HydroCAD® 10.00-24 s/n 08768 © 2018 HydroCAD Software	Solutions LLC Page 3


Summary for Subcatchment 1S: Existing Site

Runoff = 2.22 cfs @ 12.11 hrs, Volume= 0.168 af, Depth> 2.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.22"

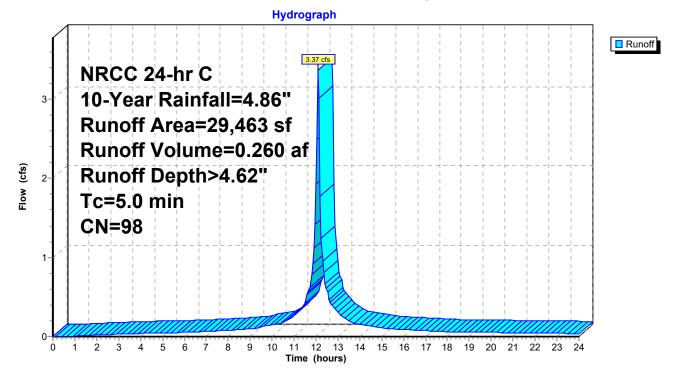
_	A	rea (sf)	CN	Description		
*		7,725	98	Existing Bu	ilding	
*		8,078	98	Existing Lee	dge Outcro	0
_		13,660	98	Paved park	ing, HSG D	
		29,463	98	Weighted A	verage	
		29,463		100.00% In	npervious A	rea
_	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
	5.0					Direct Entry, Direct Entry


Subcatchment 1S: Existing Site

Summary for Pond 2P: Offsite

Inflow Area	a =	0.676 ac,100.00% Impervious, Inflow Depth > 2.99" for 2-Year event
Inflow	=	2.22 cfs @ 12.11 hrs, Volume= 0.168 af
Primary	=	2.22 cfs @ 12.11 hrs, Volume= 0.168 af, Atten= 0%, Lag= 0.0 min

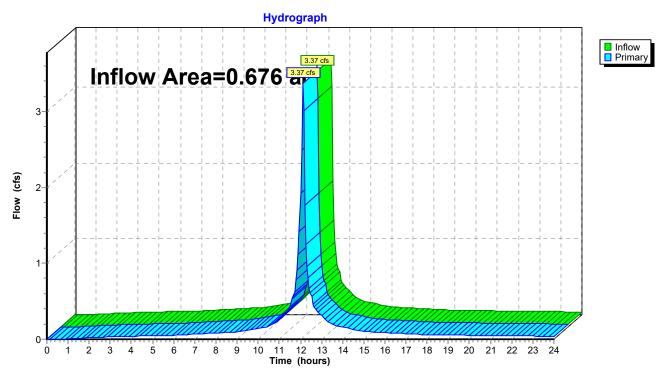
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Summary for Subcatchment 1S: Existing Site

Runoff = 3.37 cfs @ 12.11 hrs, Volume= 0.260 af, Depth> 4.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.86"

	Ar	rea (sf)	CN	Description		
*		7,725	98	Existing Bu	ilding	
*		8,078	98	Existing Le	dge Outcro	ρ
		13,660	98	Paved park	ing, HSG D	
		29,463 29,463	98	Weighted A 100.00% In		rea
	Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
	5.0					Direct Entry, Direct Entry

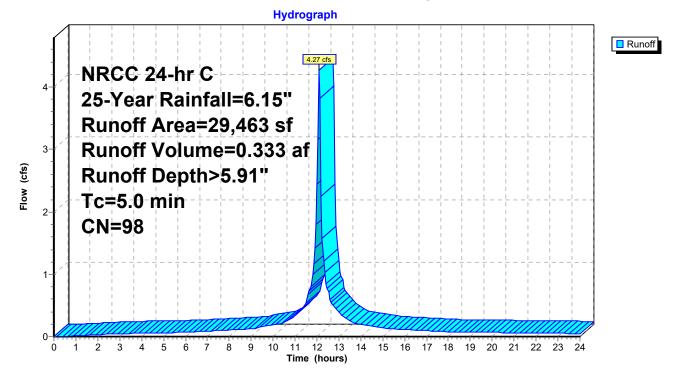

Subcatchment 1S: Existing Site

Summary for Pond 2P: Offsite

Inflow Area	a =	0.676 ac,100.00% Impervious, Inflow Depth > 4.62" for 10-Year event
Inflow	=	3.37 cfs @ 12.11 hrs, Volume= 0.260 af
Primary	=	3.37 cfs @ 12.11 hrs, Volume= 0.260 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

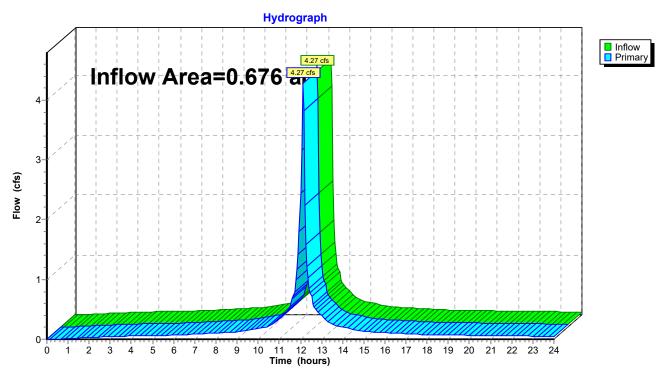
Pond 2P: Offsite


Summary for Subcatchment 1S: Existing Site

Runoff = 4.27 cfs @ 12.11 hrs, Volume= 0.333 af, Depth> 5.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 25-Year Rainfall=6.15"

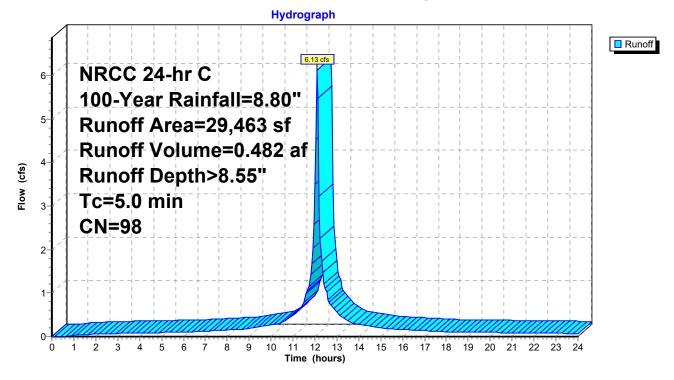
	A	rea (sf)	CN	Description		
*		7,725	98	Existing Bu	ilding	
*		8,078	98	Existing Lee	dge Outcro	р
		13,660	98	Paved park	ing, HSG D	
		29,463	98	Weighted A	verage	
		29,463		100.00% In	npervious A	rea
(Tc min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
	5.0					Direct Entry, Direct Entry


Subcatchment 1S: Existing Site

Summary for Pond 2P: Offsite

Inflow Area	a =	0.676 ac,100.00% Impervious, Inflow Depth > 5.91" for 25-Year event
Inflow	=	4.27 cfs @ 12.11 hrs, Volume= 0.333 af
Primary	=	4.27 cfs @ 12.11 hrs, Volume= 0.333 af, Atten= 0%, Lag= 0.0 min

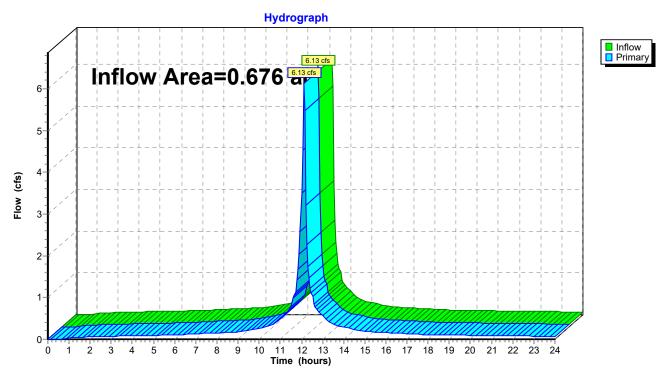
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

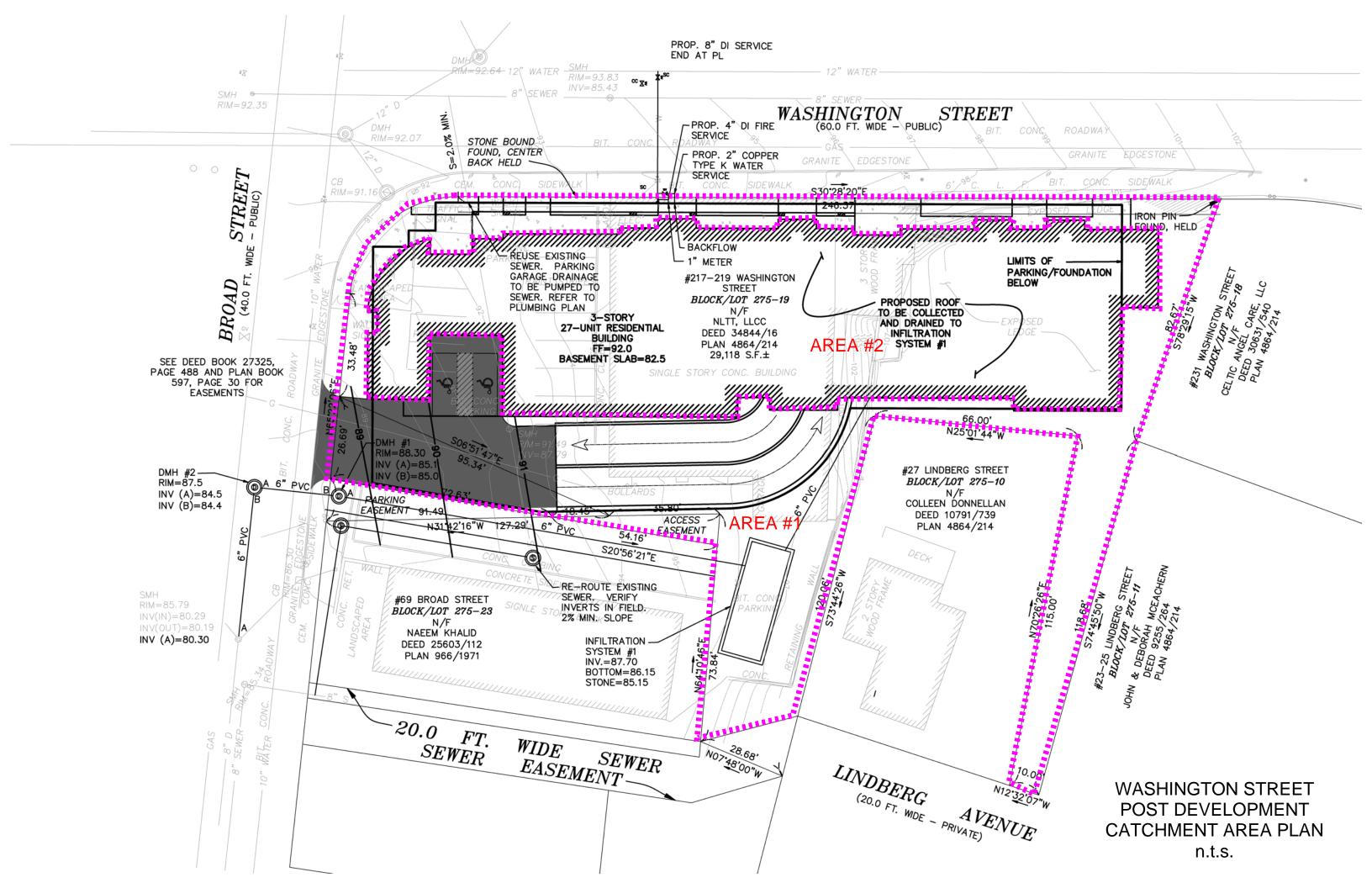

Summary for Subcatchment 1S: Existing Site

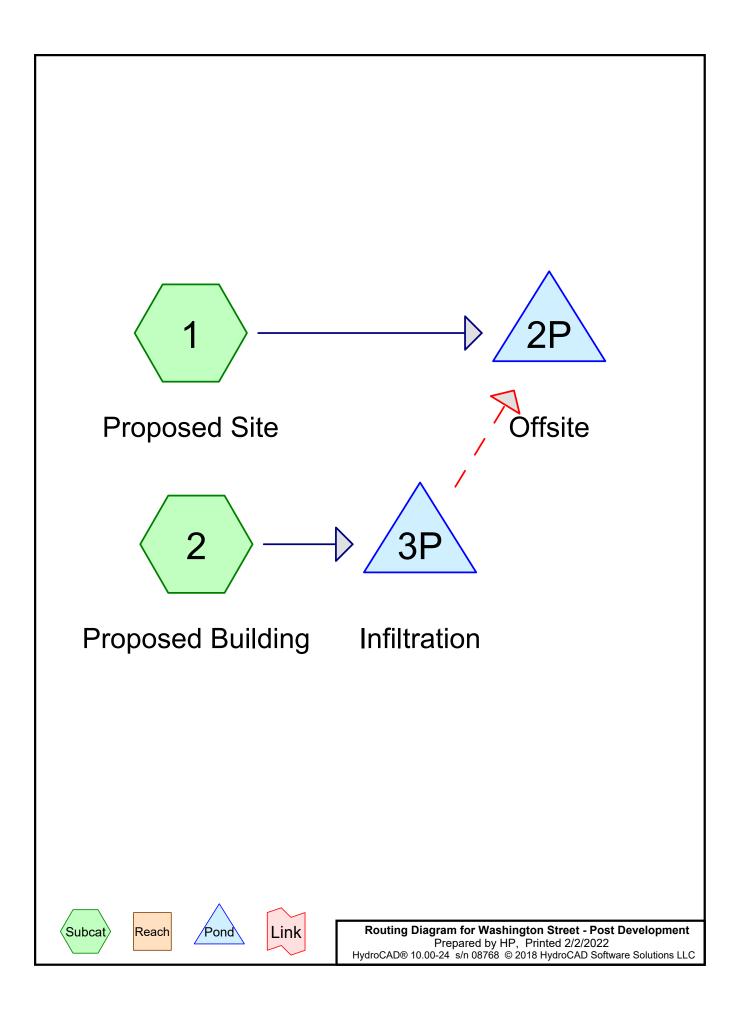
Runoff = 6.13 cfs @ 12.11 hrs, Volume= 0.482 af, Depth> 8.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.80"

	Are	a (sf)	CN	Description		
*	-	7,725	98	Existing Bu	ilding	
*	8	8,078	98	Existing Le	dge Outcro	0
	1:	3,660	98	Paved park	ing, HSG D	
		9,463 9,463	98	Weighted A 100.00% In		rea
(Tc l min)	_ength (feet)	Slop (ft/f		Capacity (cfs)	Description
	5.0					Direct Entry, Direct Entry


Subcatchment 1S: Existing Site


Summary for Pond 2P: Offsite


Inflow Are	a =	0.676 ac,100.00% Impervious, Inflow Depth > 8.55" for 100-Year event
Inflow	=	6.13 cfs @ 12.11 hrs, Volume= 0.482 af
Primary	=	6.13 cfs @ 12.11 hrs, Volume= 0.482 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

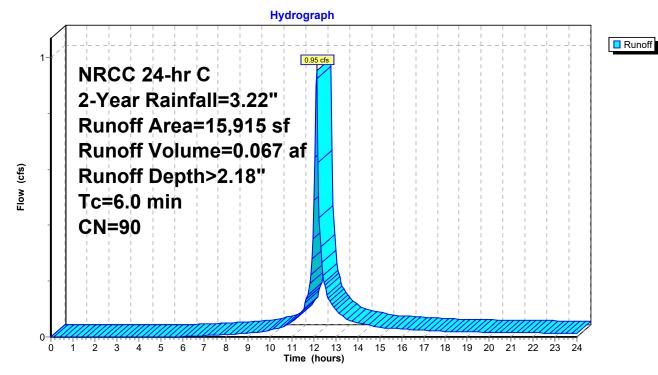
Pond 2P: Offsite

Washington Street - Post Development

Prepared by HP HydroCAD® 10.00-24 s/n 08768 © 2018 HydroCAD Software Solutions LLC Printed 2/2/2022 Page 2

Area Listing (selected nodes)

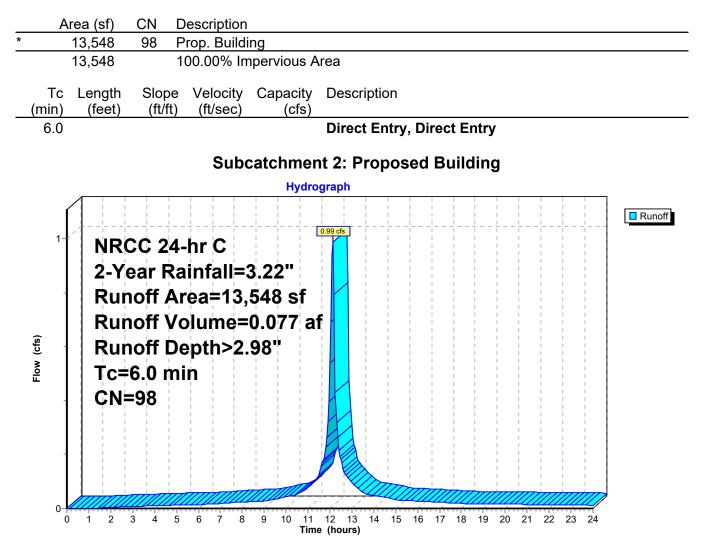
Area	CN	Description
(acres)		(subcatchment-numbers)
0.213	84	50-75% Grass cover, Fair, HSG D (1)
0.040	98	Ledge (1)
0.311	98	Prop. Building (2)
0.049	98	Proposed Conc. Walks (1)
0.064	98	Proposed Drvie (1)
0.676	94	TOTAL AREA


Summary for Subcatchment 1: Proposed Site

Runoff = 0.95 cfs @ 12.13 hrs, Volume= 0.067 af, Depth> 2.18"

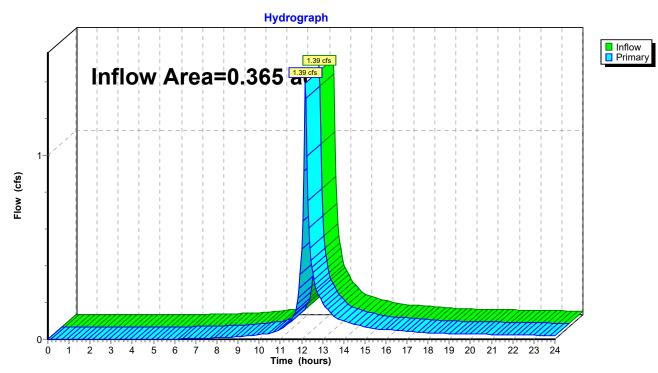
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.22"

	Ar	ea (sf)	CN	Description				
*		2,775	98	Proposed D	Drvie			
*		2,118	98	Proposed C	Conc. Walks	3		
*		1,745	98	Ledge				
		9,277	84	50-75% Gra	ass cover, F	Fair, HSG D		
		15,915	90	Weighted Average				
		9,277		58.29% Pe	rvious Area			
		6,638		41.71% Im	pervious Ar	ea		
	Тс	Length	Slop		Capacity	Description		
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	6.0					Direct Entry, Direct Entry		


Subcatchment 1: Proposed Site

Summary for Subcatchment 2: Proposed Building

Runoff = 0.99 cfs @ 12.13 hrs, Volume= 0.077 af, Depth> 2.98"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.22"

Summary for Pond 2P: Offsite

Inflow Area	a =	0.365 ac, 41.71% Impervious, Inflow Depth > 3.42" for 2-Year event
Inflow	=	1.39 cfs @ 12.17 hrs, Volume= 0.104 af
Primary	=	1.39 cfs @ 12.17 hrs, Volume= 0.104 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Pond 3P: Infiltration

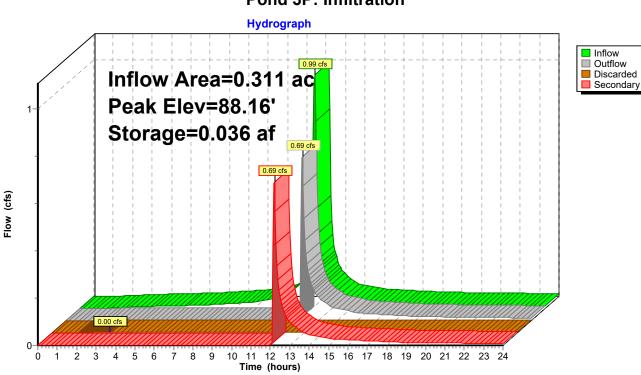
Inflow Area =	0.311 ac,100.00% Impervious, Inflow Depth > 2.98" for 2-Year event	
Inflow =	0.99 cfs @ 12.13 hrs, Volume= 0.077 af	
Outflow =	0.69 cfs @ 12.21 hrs, Volume= 0.046 af, Atten= 30%, Lag= 5.0 m	in
Discarded =	0.00 cfs @ 3.00 hrs, Volume= 0.008 af	
Secondary =	0.69 cfs @ 12.21 hrs, Volume= 0.038 af	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 88.16' @ 12.21 hrs Surf.Area= 0.017 ac Storage= 0.036 af

Plug-Flow detention time= 211.8 min calculated for 0.046 af (59% of inflow) Center-of-Mass det. time= 93.2 min (850.9 - 757.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	85.15'	0.014 af	19.33'W x 38.50'L x 3.54'H Field A
			0.061 af Overall - 0.025 af Embedded = 0.036 af x 40.0% Voids
#2A	85.65'	0.025 af	Cultec R-330XLHD x 20 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows
		0.039 af	Total Available Storage

Storage Group A created with Chamber Wizard


Device	Routing	Invert	Outlet Devices
#1	Discarded		0.270 in/hr Exfiltration over Surface area
#2	Secondary		8.0" Vert. Orifice/Grate C= 0.600

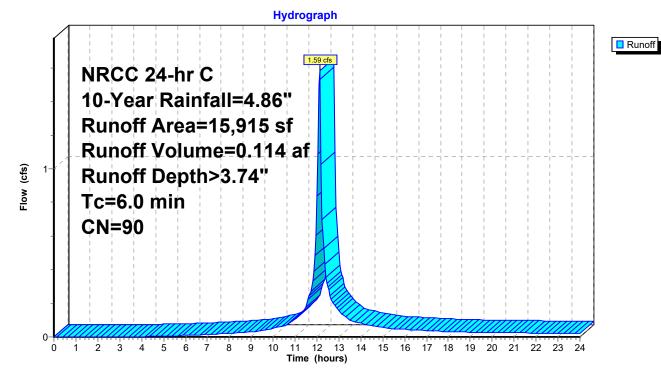
Discarded OutFlow Max=0.00 cfs @ 3.00 hrs HW=85.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.00 cfs)

Secondary OutFlow Max=0.66 cfs @ 12.21 hrs HW=88.14' (Free Discharge) 2=Orifice/Grate (Orifice Controls 0.66 cfs @ 2.39 fps) Washington Street - Post DevelopmentNRCPrepared by HPHydroCAD® 10.00-24s/n 08768© 2018 HydroCAD Software Solutions LLC

Washington Street - Post Development NRCC 24-hr C 2-Year Rainfall=3.22" Printed 2/2/2022

Page 7

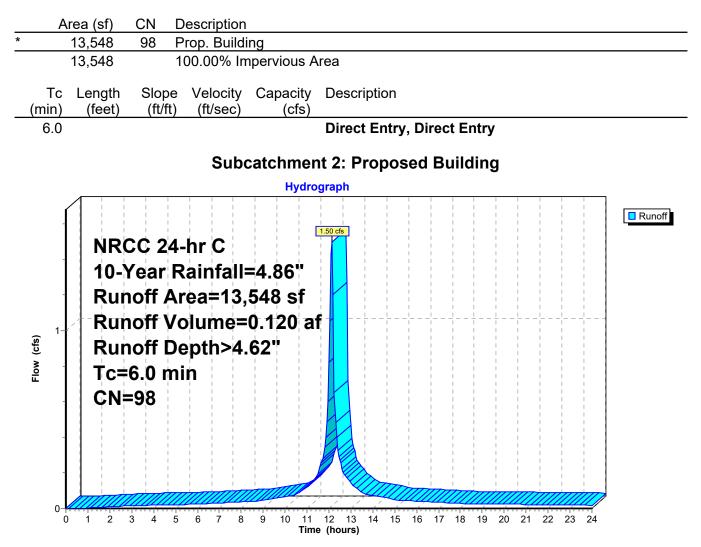
Pond 3P: Infiltration


Summary for Subcatchment 1: Proposed Site

Runoff = 1.59 cfs @ 12.13 hrs, Volume= 0.114 af, Depth> 3.74"

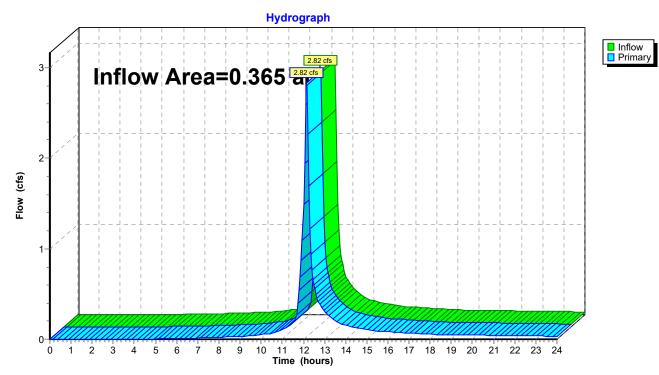
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.86"

		0,000						
		0,000						
		9,277 6,638		41.71% Impervious Area				
		9,277	90	Weighted Average 58.29% Pervious Area				
		15,915			· · · ·			
		9,277	84	50-75% Gr	ass cover. I	Fair, HSG D		
*		1,745	98	Ledge				
*		2,118	98	Proposed C	Conc. Walks	8		
*		2,775	98	Proposed D	Drvie			
_	A	rea (sf)	CN	Description				


Subcatchment 1: Proposed Site

Summary for Subcatchment 2: Proposed Building

Runoff = 1.50 cfs @ 12.13 hrs, Volume= 0.120 af, Depth> 4.62"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.86"

Summary for Pond 2P: Offsite

Inflow Area	=	0.365 ac, 41.71% Impervious, Inflow Depth > 6.35" for 10-Year event
Inflow =	=	2.82 cfs @ 12.14 hrs, Volume= 0.193 af
Primary =	=	2.82 cfs @ 12.14 hrs, Volume= 0.193 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

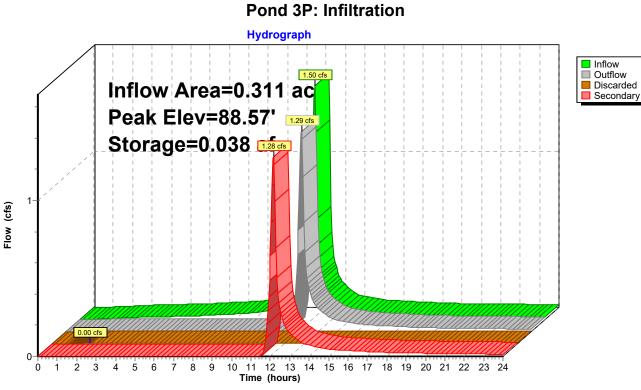
Summary for Pond 3P: Infiltration

Inflow Area =	0.311 ac,100.00% Impervious, Inflow De	epth > 4.62" for 10-Year event
Inflow =	1.50 cfs @ 12.13 hrs, Volume=	0.120 af
Outflow =	1.29 cfs @ 12.17 hrs, Volume=	0.088 af, Atten= 14%, Lag= 2.4 min
Discarded =	0.00 cfs @ 1.95 hrs, Volume=	0.009 af
Secondary =	1.28 cfs @ 12.17 hrs, Volume=	0.080 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 88.57' @ 12.17 hrs Surf.Area= 0.017 ac Storage= 0.038 af

Plug-Flow detention time= 174.9 min calculated for 0.088 af (74% of inflow) Center-of-Mass det. time= 77.5 min (826.8 - 749.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	85.15'	0.014 af	19.33'W x 38.50'L x 3.54'H Field A
			0.061 af Overall - 0.025 af Embedded = 0.036 af x 40.0% Voids
#2A	85.65'	0.025 af	Cultec R-330XLHD x 20 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows
		0.039 af	Total Available Storage

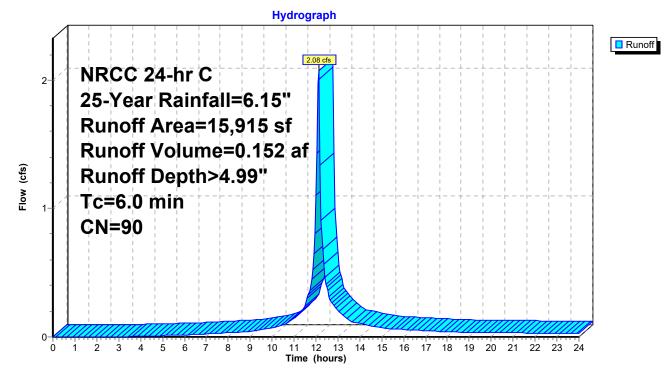

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded		0.270 in/hr Exfiltration over Surface area
#2	Secondary		8.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.00 cfs @ 1.95 hrs HW=85.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.00 cfs)

Secondary OutFlow Max=1.26 cfs @ 12.17 hrs HW=88.54' (Free Discharge) 2=Orifice/Grate (Orifice Controls 1.26 cfs @ 3.61 fps) **Washington Street - Post Development** Prepared by HP HydroCAD® 10.00-24 s/n 08768 © 2018 HydroCAD Software Solutions LLC

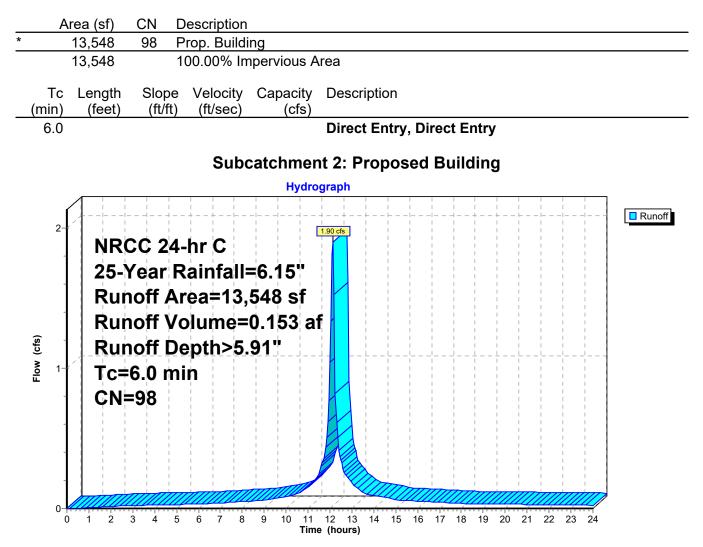
Washington Street - Post Development NRCC 24-hr C 10-Year Rainfall=4.86" Printed 2/2/2022 Page 12


Summary for Subcatchment 1: Proposed Site

Runoff = 2.08 cfs @ 12.13 hrs, Volume= 0.152 af, Depth> 4.99"

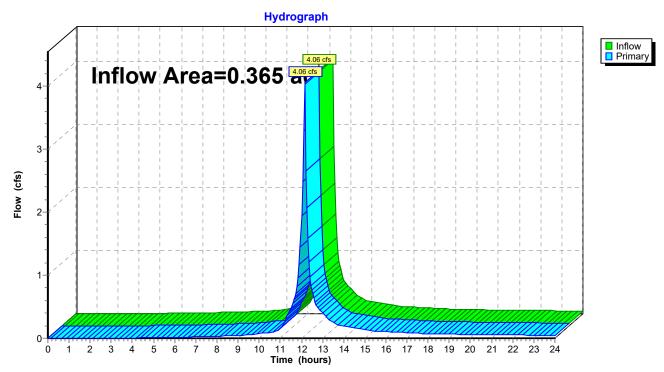
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 25-Year Rainfall=6.15"

	Area (sf)	CN	Description	Description				
*	2,775	98	Proposed D	rvie				
*	2,118	98	Proposed C	onc. Walks	3			
*	1,745	98	Ledge					
	9,277	84	50-75% Gra	ass cover, l	Fair, HSG D			
	15,915	90	Weighted Average					
	9,277		58.29% Per	vious Area				
	6,638		41.71% Imp	ervious Ar	ea			
				- ··				
	Tc Length			Capacity	Description			
(r	min) (feet)	(ft/	ft) (ft/sec)	(cfs)				
	6.0				Direct Entry, Direct Entry			


Subcatchment 1: Proposed Site

Summary for Subcatchment 2: Proposed Building

Runoff = 1.90 cfs @ 12.13 hrs, Volume= 0.153 af, Depth> 5.91"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 25-Year Rainfall=6.15"

Summary for Pond 2P: Offsite

Inflow Area	a =	0.365 ac, 41.71% Impervious, Inflow Depth > 8.69" for 25-Year event
Inflow	=	4.06 cfs @ 12.14 hrs, Volume= 0.265 af
Primary	=	4.06 cfs @ 12.14 hrs, Volume= 0.265 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Pond 2P: Offsite

Summary for Pond 3P: Infiltration

Inflow Area =	0.311 ac,100.00% Impervious, Inflow De	epth > 5.91" for 25-Year event
Inflow =	1.90 cfs @ 12.13 hrs, Volume=	0.153 af
Outflow =	2.03 cfs @ 12.15 hrs, Volume=	0.121 af, Atten= 0%, Lag= 1.4 min
Discarded =	0.00 cfs @ 1.50 hrs, Volume=	0.009 af
Secondary =	2.03 cfs @ 12.15 hrs, Volume=	0.113 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 89.44' @ 12.15 hrs Surf.Area= 0.017 ac Storage= 0.039 af

Plug-Flow detention time= 158.2 min calculated for 0.121 af (79% of inflow) Center-of-Mass det. time= 72.1 min (817.4 - 745.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	85.15'	0.014 af	19.33'W x 38.50'L x 3.54'H Field A
			0.061 af Overall - 0.025 af Embedded = 0.036 af x 40.0% Voids
#2A	85.65'	0.025 af	Cultec R-330XLHD x 20 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows
		0.039 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded		0.270 in/hr Exfiltration over Surface area
#2	Secondary		8.0" Vert. Orifice/Grate C= 0.600

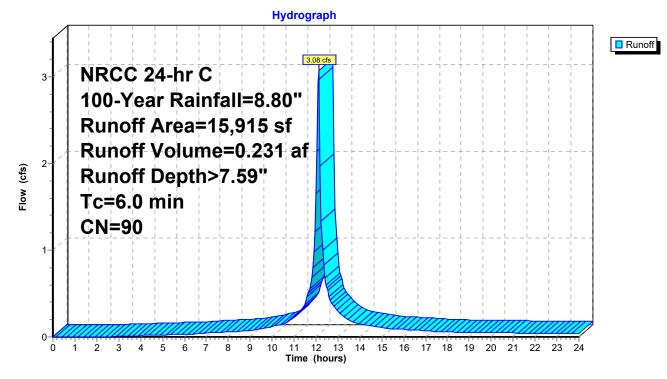
Discarded OutFlow Max=0.00 cfs @ 1.50 hrs HW=85.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.00 cfs)

Secondary OutFlow Max=2.03 cfs @ 12.15 hrs HW=89.44' (Free Discharge) 2=Orifice/Grate (Orifice Controls 2.03 cfs @ 5.80 fps) **Washington Street - Post Development** Prepared by HP HydroCAD® 10.00-24 s/n 08768 © 2018 HydroCAD Software Solutions LLC

Washington Street - Post Development NRCC 24-hr C 25-Year Rainfall=6.15" Printed 2/2/2022 Page 17

Hydrograph Inflow Outflow Inflow Area=0.311 203 05 55 Discarded Secondary Peak Elev=89.44 2 Storage=0.039 at Flow (cfs) 1 0.00 cfs 0-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 2 Ó 1 3 4 9 5 8 6 7

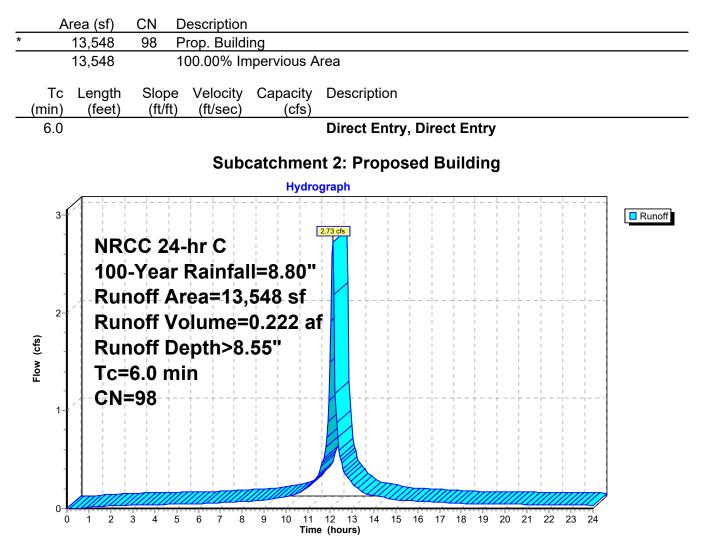
Pond 3P: Infiltration


Summary for Subcatchment 1: Proposed Site

Runoff = 3.08 cfs @ 12.13 hrs, Volume= 0.231 af, Depth> 7.59"

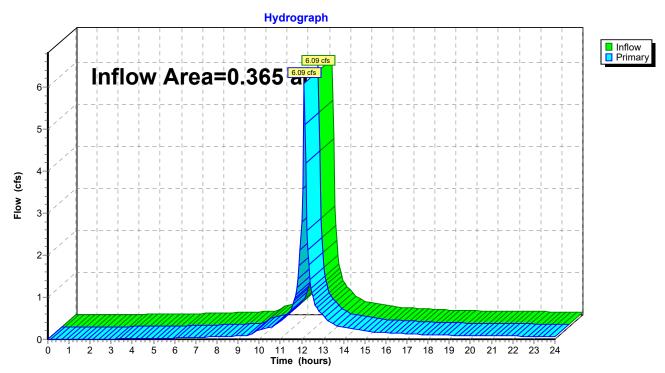
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.80"

	Area	a (sf)	CN	Description			
*	2	2,775	98	Proposed D	Drvie		
*	2	2,118	98	Proposed C	Conc. Walks	3	
*	1	,745	98	Ledge			
	ç),277	84	50-75% Gra	ass cover, I	Fair, HSG D	
	15	5,915	90	Weighted A	verage		
	g),277		58.29% Pervious Area			
	6	638,		41.71% lm	pervious Ar	ea	
	Tc L	.ength	Slope		Capacity	Description	
(r	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	6.0					Direct Entry, Direct Entry	


Subcatchment 1: Proposed Site

Summary for Subcatchment 2: Proposed Building

Runoff = 2.73 cfs @ 12.13 hrs, Volume= 0.222 af, Depth> 8.55"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.80"

Summary for Pond 2P: Offsite

Inflow Are	a =	0.365 ac, 41.71% Impervious, Inflow Depth > 13.53" for 100-Year event
Inflow	=	6.09 cfs @ 12.11 hrs, Volume= 0.412 af
Primary	=	6.09 cfs @ 12.11 hrs, Volume= 0.412 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Pond 2P: Offsite

Summary for Pond 3P: Infiltration

Inflow Area =	0.311 ac,100.00% Impervious, Inflow De	epth > 8.55" for 100-Year event
Inflow =	2.73 cfs @ 12.13 hrs, Volume=	0.222 af
Outflow =	3.10 cfs @ 12.11 hrs, Volume=	0.190 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.00 cfs $\overline{@}$ 1.10 hrs, Volume=	0.009 af
Secondary =	3.10 cfs $\overline{@}$ 12.11 hrs, Volume=	0.181 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 91.35' @ 12.11 hrs Surf.Area= 0.017 ac Storage= 0.039 af

Plug-Flow detention time= 132.5 min calculated for 0.190 af (86% of inflow) Center-of-Mass det. time= 62.8 min (803.1 - 740.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	85.15'	0.014 af	19.33'W x 38.50'L x 3.54'H Field A
			0.061 af Overall - 0.025 af Embedded = 0.036 af x 40.0% Voids
#2A	85.65'	0.025 af	Cultec R-330XLHD x 20 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows
		0.039 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1 #2	Discarded Secondary		0.270 in/hr Exfiltration over Surface area 8.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.00 cfs @ 1.10 hrs HW=85.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.00 cfs)

Secondary OutFlow Max=2.96 cfs @ 12.11 hrs HW=91.08' (Free Discharge) 2=Orifice/Grate (Orifice Controls 2.96 cfs @ 8.48 fps) **Washington Street - Post Development** Prepared by HP HydroCAD® 10.00-24 s/n 08768 © 2018 HydroCAD Software Solutions LLC

Washington Street - Post Development NRCC 24-hr C 100-Year Rainfall=8.80" Printed 2/2/2022 Page 22

Hydrograph Inflow Outflow Inflow Area=0.311 310 fr Discarded Secondary cfs Peak Elev=91.33 3-Storage=0.039 at Flow (cfs) 2 1 0.00 cfs 0-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 2 1 3 9 Ò 4 5 Ż 8 6

Pond 3P: Infiltration

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP	LEGEND	MAP INFORMATION
Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at
Area of Interest (AOI)	Stony Spot	1:25,000.
Soils	Wery Stony Spot	Warning: Soil Map may not be valid at this scale.
Soil Map Unit Polygons	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
Soil Map Unit Lines	∆ Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Soil Map Unit Points	Special Line Featu	contrasting soils that could have been shown at a more detailed
Special Point Features Blowout	Water Features	scale.
BlowoutBorrow Pit	Streams and Cana	Please rely on the bar scale on each map sheet for map measurements.
	Transportation	
Clay Spot	+++ Rails	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Closed Depression	nterstate Highway	
Gravel Pit	JS Routes	Maps from the Web Soil Survey are based on the Web Mercato
Gravelly Spot	Major Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
🔇 Landfill	Local Roads	Albers equal-area conic projection, should be used if more
🙏 🛛 Lava Flow	Background	accurate calculations of distance or area are required.
Marsh or swamp	Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.
Mine or Quarry		Soil Survey Area: Norfolk and Suffolk Counties, Massachuset
Miscellaneous Water		Survey Area Data: Version 17, Sep 3, 2021
Perennial Water		Soil map units are labeled (as space allows) for map scales
Rock Outcrop		1:50,000 or larger.
+ Saline Spot		Date(s) aerial images were photographed: Sep 26, 2020—Oc 15, 2020
Sandy Spot		The orthophoto or other base map on which the soil lines were
Severely Eroded Spot		compiled and digitized probably differs from the background
Sinkhole		imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Slide or Slip		
Sodic Spot		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
602	Urban land, 0 to 15 percent slopes	0.7	94.7%
630C	Charlton-Hollis-Urban land complex, 3 to 15 percent slopes	0.0	5.3%
Totals for Area of Interest		0.7	100.0%

Norfolk and Suffolk Counties, Massachusetts

602—Urban land, 0 to 15 percent slopes

Map Unit Setting

National map unit symbol: vkyj Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 99 percent Minor components: 1 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

Parent material: Excavated and filled land

Minor Components

Rock outcrops Percent of map unit: 1 percent Hydric soil rating: Unranked

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 17, Sep 3, 2021

KEVIN M. MARTIN, P.E. KMM GEOTECHNICAL CONSULTANTS, LLC

7 Marshall Road Hampstead, NH 03841 603-489-5556 (p)/ 603-489-5558 (f)/781-718-4084(m) kevinmartinpe@aol.com

MEMORANDUM

- TO: Jennifer Nguyen c/o RCA, LLC 415 Neponset Avenue Dorchester, MA 02122
- **FROM:** Kevin M. Martin, P.E. Geotechnical Engineer

August 5, 2021

DATE:

RE: PRELIMINARY GEOTECHNICAL REVIEW PROPOSED MIXED-USE BUILDING 213-217 WASHINGTON STREET @ BROAD STREET WEYMOUTH, MASSACHUSETTS

This memorandum report serves as a *Preliminary Geotechnical Summary Report* for the referenced project. The contents of this memorandum are subject to the attached *Limitations*.

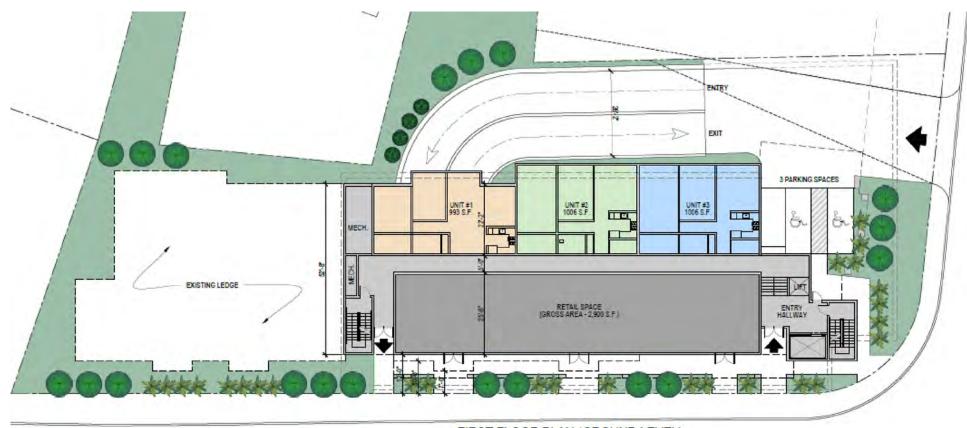
SITE & PROJECT DESCRIPTION

Present development includes a commercial building with associated pavement. Part of the lot also includes massive bedrock outcropping. This building and associated construction will be razed to accommodate the project. KMM has no knowledge of past use, construction and/or development of the property except what is visible or shown on prior Plans. Limited Plans were available at this time. There were no *Topographic or Grading Plans*.

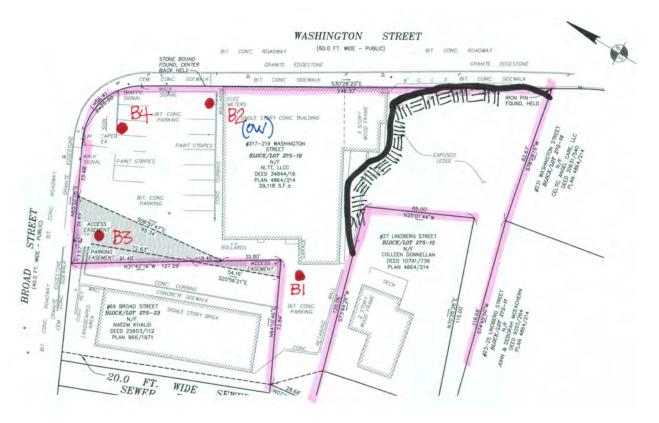
The project includes a new, 4-story, mixed-use, steel and wood-framed building that will occupy the majority of the lot. The first floor will be used for retail, residential units and handicap parking. It is intended to support the building on a basement garage foundation using conventional spread footings. There are two (2) proposed basement levels below grade which will extend ≈ 20 ft in depth if feasible. The basement levels are not included where there is ledge outcrop. *Grading Plans* were not available at this time.

The purpose of this study is to review the subgrade conditions and provide a preliminary geotechnical evaluation related to foundation design and construction per the *Massachusetts State Building Code*. This report does not include an environmental assessment relative to oil, gasoline,

solid waste and/or other hazardous materials. The environmental conditions of the property should be addressed by others as necessary. This study also does not include review of site design or construction issues such as infiltration systems, excavation support, underground utilities, protection of surrounding buildings/utilities, shoring, crane pads, underpinning, blasting, water-proofing, retaining walls or other site and/or temporary design unless specifically addressed herein.



August 5, 2021 Page 3 of 12


August 5, 2021 Page 4 of 12

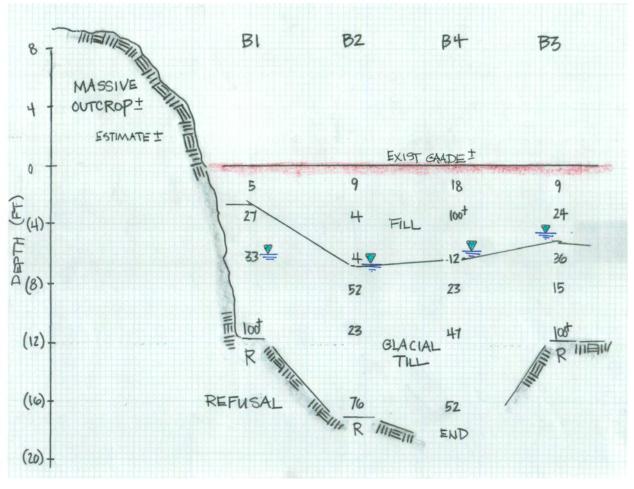
FIRST FLOOR PLAN (GROUND LEVEL) RESIDENTIAL GROSS LIVING AREA - 3,238 S.F. RETAL GROSS AREA - 2,500 S.F.

August 5, 2021 Page 5 of 12

TEST BORE LOCATIONS

SUBSURFACE EXPLORATION PROGRAM

Test Bores


The exploration program involved four (4) test bores throughout the site where accessible. The test bores (B1 to B4) were advanced to refusal depths of \approx 10-17 ft utilizing 4 inch hollow stem augers. Soil samples were typically retrieved at no greater than 5 ft intervals with a 2 inch diameter split-spoon sampler. Standard Penetration Tests (SPTs) were performed at the sampling intervals in general accordance with ASTM-D1586 (*Standard Method for Penetration Test and Split-Barrel Sampling of Soils*). Field descriptions and penetration resistance of the soils encountered, observed depth to groundwater, depth to apparent bedrock refusal and other pertinent data are contained on the attached *Test Boring Logs*. The attached *Sketch* shows the test bore locations.

Observation Well

An Observation Well (OW) was developed in B2 to monitor groundwater fluctuations. The well includes 2 inch diameter slotted well screen set at ≈ 15 ft. The well was constructed with requisite filter sand, bentonite seal, end plugs and a protective road box.

SUBSURFACE CONDITIONS

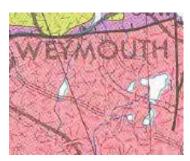
The subgrade conditions below (1) undocumented Fill include (2) stable Glacial soils then (3) apparent Bedrock refusal. Bedrock dominates the southern portions of the site with massive outcropping. A *Subsurface Profile* depicting the soil and groundwater conditions is attached.

SUBSURFACE PROFILE

Undocumented Fill was encountered to depths \approx 5-7 ft. The Fill varies in composition to include Clean Sand (B2) but primarily includes a dark brown, silty Sand, little to trace gravel, trace rubble, brick, organic and other matter. The Fill was generally loose. An apparent abandoned foundation was encountered at B3. Other Fill should also be expected given the existing foundations, intersecting utilities and past construction.

The parent site soils generally consist of a Glacial Till. These soils include a brown, well-graded, fine to medium Sand, some gravel, some silt with embedded cobbles and boulders. These soils are stable and compact. The fine-grained composition of the Glacial soils renders them moisture sensitive, poor-draining and frost susceptible.

August 5, 2021 Page 8 of 12


The USGS Surficial Geologic Map of the area indicates shallow Bedrock. This is consistent with this study.

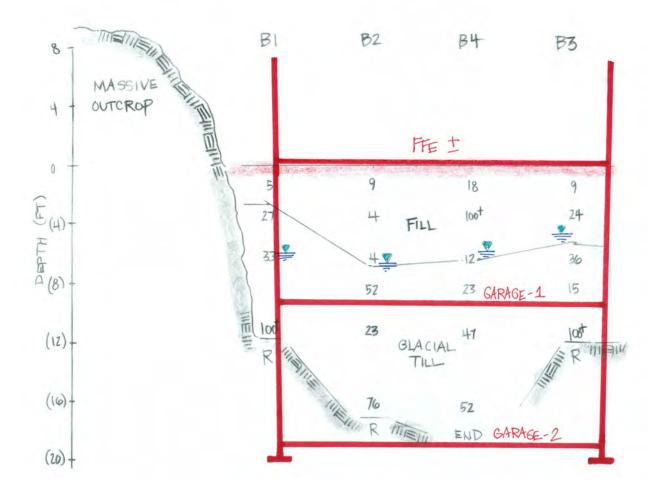
USGS SURFICIAL GEOLOGIC MAP WEYMOUTH, MA - 2018

Bedrock Areas

Bedrock outcrops and areas of abundant outcrop or shallow bedrock—Solid color shows extent of individual bedrock outcrops; horizontal-line pattern indicates areas of shallow bedrock or areas where small outcrops are too numerous to map individually; in areas of shallow bedrock, surficial materials are less than 5 to 10 ft thick. These units were not mapped consistently among all quadrangles; see note at beginning of appendix 1 for information on bedrock outcrop mapping by quadrangle

USGS BEDROCK GEOLOGIC MAP OF MASSACHUSETTS - 1993

Dedham Granite (Proterozoic Z)


Light grayish-pink to greenish-gray, equigranular to slightly porphyritic, variably altered, granite south and west of Boston. Includes dioritic rock near Scituate and Cohasset and Barefoot Hills Quartz Monzonite of Lyons (1969) and Lyons and Wolfe (1971). Intrudes Zdi, Zgb, Zb, Zv

Test Bore refusal, presumably Bedrock, was encountered at depths of $\approx 10-17$ ft below grade. The depth to refusal was surprising given the adjacent outcrop. Rock coring was not completed for this study. The southern portions of the site are dominated by massive bedrock outcrops. The Bedrock is expected to have a sloping and undulation contour given the variable depths. Bedrock in the area is expected to include Dedham Granite. Such rock is characteristically hard and of sound quality.

Groundwater was encountered in the test bores at shallow depths of \approx 4-6 ft below grade. Wet and saturated soils were encountered below these depths. An observation well was installed to monitor groundwater fluctuations. It should be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, utilities, flooding and other factors differing from the time of the measurements. This study was completed at a time of seasonally normal groundwater.

PRELIMINARY FOUNDATION EVALUATION

The subgrade conditions are favorable for supporting the proposed building on a conventional spread footing foundation. Both the Glacial soils and Bedrock are suitable for structural bearing capacity support. However, the concerns with such a deep foundation include (1) bedrock impact, (2) shallow groundwater and (3) support of excavation (SOE).

CONCEPTUAL BASEMENT FOUNDATION

Bedrock Impact

There will some Bedrock excavation and removal to accommodate the proposed basement construction as well as other areas depending on final grading. Based on our general experience with bedrock in the area, it is expected to be hard and of sound quality. As such, bedrock removal will likely involve blasting for large areas or mechanical hoe rams for localized areas.

Bedrock conditions are expected to be encountered throughout the construction. The bedrock surface should be relatively level with a slope no greater than $\approx 15\%$. It is recommended that a minimum ≈ 12 inch lift of one inch minus crushed stone be placed between the footing and the bedrock surface to provide a more uniform and elastic bearing subgrade. The purpose of the gravel base ("cushion base") is to mitigate differential settlements throughout the foundation. Following a ledge blast within the building footprint, the heaved/disturbed over-blast should be fully removed exposing the underlying intact/competent ledge. This is especially important in the building area for support of the spread footing foundation. It should be noted that drill holes at least ≈ 8 ft in depth are typically necessary in order to remove ledge with explosive blasting. This may generate additional over-blast that should require engineering review. It may be possible to leave some of the over-blast in-place, however, this will require engineering review (via test pits) during construction. Extensively heaved/disturbed over-blast will not be considered a suitable subgrade as potential subsidence may be experienced when loaded. Our experience with similar projects suggests that the overblast may remain below the foundation limits. This is contingent upon a one foot base of one inch minus crushed stone being placed a minimum one foot below and laterally beyond the footing limits in order to provide a more uniform subgrade. The over-blast to remain will need to be densified and/or compacted prior to the placement of the specified stone base. This may be accomplished with a thin leveling base of one inch minus stone to fill surface irregularities then densification with a minimum one-ton vibratory compactor operating at peak frequency making at least 4-5 passes across the bearing subgrade. The blasting contractor should understand the concerns associated with the over-blast conditions and provide an appropriate drilling/blast pattern. A one inch minus crushed stone may be used to fill in surface irregularities. Controlled blasting is expected to be necessary given the site location. Line drilling and pre-splitting may be means to provide a near vertical ledge cut. The means and methods of ledge removal should be reviewed by the contractor.

Temporary exposed ledge cuts upwards of \approx 5-15 ft could be necessary for the project. Rock slopes shall be between 1H:3H to 1H:5V provided the exposed rock is stable and intact. Loose and/or overhanging rock shall be removed as necessary. Given the expected rock slopes, it is recommended that the rock face be pre-split or drilled (line drilling) prior to blasting or removal to create a weak plane in order to protect the competency of the bedrock to remain and minimize over fracturing. The pre-drilled holes shall be battered at the proposed rock slope but no steeper than 1H:4V to account for some overhang. The pre-drilled holes shall be minimum 3 inch diameter holes that extend to the base of the slope placed no greater than \approx 2-3 ft on-center. Controlled blasting procedures utilizing pre-splitting and/or cushion blasting with light charges should also be used to create a fractured plane that will not be impacted by the primary blasting. General specifications for pre-splitting bedrock

are outlined in the *MA-DPW Standard Specifications for Highways & Bridges* (Section 120.63). A blast design with Submittal completed by an experienced and qualified Blasting Engineer shall be provided for the project. The condition of the bedrock shall be reviewed by a competent Engineer during construction. The intent is to create a sloped rock face with minimal fracturing for temporary stability. It is difficult to predict the quality or stability of the exposed bedrock given the inherent variabilities with the ledge, blasting and construction. Our experience suggests non-uniform conditions with inherent difficulties providing a stable bedrock cut. We would recommend battering the slope as flat as practicable in this regard. We also recommend at least a 15% contingency for location and grading (ie: room for error). Any overburden atop the rock may also impact surface stability (if to be cut to a steepened slope). A qualified Contractor should also be retained for this work given the concerns and difficulties.

The bearing subgrade should ultimately be stable, dewatered, protected from frost and compact throughout construction. Bearing subgrades that become weakened or disturbed due to wet conditions or other reason will be rendered unsuitable for structural support. The Contractor shall ultimately be responsible for the means and methods of temporary groundwater control, subgrade protection and site stability during construction. An Engineer from KMM should be scheduled to review the foundation subgrade conditions and preparation during construction.

Groundwater Impact

The shallow groundwater will impact the proposed basement level construction and design. Groundwater was encountered about \approx 4-6 ft below grade. An observation was installed to review groundwater fluctuations. Nonetheless, a shallow groundwater table is expected at the site. Groundwater and storm water will need to ne temporarily pumped during construction. The presence of restrictive bedrock would create a "bath tub" scenario both during and post-construction.

Means to address groundwater for design include (1) pumping or (2) water-proofing the foundation with structural fortification to resist lateral hydrostatic pressure as well as buoyant pressures. A pump system does not appear feasible as it will need to continually operate 24/7 and there needs to be a discharge location. Most municipalities will not allow discharge to their drain system. The discharge of collected water would need to be reviewed by the Site Engineer. Pumping groundwater to an on-site infiltration system will likely result in a redundant system given the small lot.

Water-proofing the foundation with structural design to resist increased water pressure and buoyancy would likely be the means to proceed with the intended concept. Such a design would be difficult for a single basement; a sub-basement would result in significantly larger loads. Buoyant pressures of $\approx 1,000$ psf would need to be resisted with 2 levels of basement. Rock anchors acting in tension would likely be necessary given such load. Given such impact, strong consideration should be given to eliminating the sub-basement level. A single basement level will present it's own difficulties given the shallow groundwater.

Lateral Support of Excavation (SOE)

Deep excavations (greater than $\approx 15-25$ ft) are expected for foundation construction and possibly for utility installation around the property. Excavations should be sloped and/or laterally supported in accordance with the *Occupational and Health Administration (OSHA)* regulations (29 CFR Part 1926) and the *Commonwealth of Massachusetts Department of Labor and Industries Division of Industrial Safety (DLIDIS) - Rules and Regulations for the Prevention of Accidents in Construction Operations* (454 CMR 10.00), Part 14. Should excavations be sloped, the minimum slope based on soil type (Fill) is 1.5H:1V provided the groundwater is properly lowered below the bottom of the excavation. The foregoing slope requirement does not consider surcharge loads (stockpiled soils, equipment, materials) which may be situated at the crest of the slope and vibration loads (soil compaction, sheet piling). It should be noted that these slope requirements are minimums required by OSHA regulations. The contractor should be ultimately responsible for design, maintenance and stability of the temporary slopes and/or shoring associated with construction activities.

Laterally supported earth systems should be designed by a qualified Professional Engineer retained by the contractor per OSHA Regulations. The deep excavations along the property limits are expected to require excavation support given the abutting property limits as well as surrounding utilities and roadways. Cantilevered sheeting or soldier piles with lagging are expected to be feasible for depths of \approx 8-10 ft. Bracing or tiebacks will likely be necessary for deeper excavations. Given the depth of excavation (\approx 15-25 ft), the presence of ledge and proposed construction along the property line, it is expected that drilled soldier piles into ledge will be necessary for temporary support. Internal bracing or exterior tiebacks will likely be necessary for a sub-basement (not necessary for a single basement). The means, methods, selection and design of the temporary earth support system should be reviewed by the Contractor.

CLOSURE

This study was completed for Preliminary Geotechnical review. This study is considered preliminary given lack of Plans and a sub-basement concept that may not be feasible. The final foundation design shall be completed in accordance with the *Massachusetts State Building Code*. There are several design and construction issues that will likely need to be reviewed and vetted as the project progresses. Additional (deeper) test bores will likely be necessary especially if the concept of two levels of below grade parking remains for the project.

We trust the contents of this report are responsive to your needs at this time. Should you have any questions or require additional assistance, please do not hesitate to contact our office.

Weymouth213WashingtonSt.wpd

LIMITATIONS

Explorations

- 1. The analyses, recommendations and designs submitted in this report are based in part upon the data obtained from preliminary subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretation of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the individual test pit and/or boring logs.
- 3. Water level readings have been made in the test pits and/or test borings under conditions stated on the logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, and other factors differing from the time the measurements were made.

Review

- 4. It is recommended that this firm be given the opportunity to review final design drawings and specifications to evaluate the appropriate implementation of the recommendations provided herein.
- 5. In the event that any changes in the nature, design, or location of the proposed areas are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of the report modified or verified in writing by KMM Geotechnical Consultants, LLC.

Construction

6. It is recommended that this firm be retained to provide geotechnical engineering services during the earthwork phases of the work. This is to observe compliance with the design concepts, specifications, and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

Use of Report

- 7. This report has been prepared for the exclusive use of RCA, LLC in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made.
- 8. This report has been prepared for this project by KMM Geotechnical Consultants, LLC. This report was completed for preliminary design purposes and may be limited in its scope to complete an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to preliminary geotechnical design considerations only.

					TEST BO	ORIN	g log			
				X, Corp.	Proposed Building 217-291 Washington St					BORING B-1
			oneer Driv oster, MA				ymouth,	-		21-06031
		Elevati te Start e Finish Dril	ed: ed:	7/20/2021 7/20/2021 RB			DATE 7/20/21	GROUNE DEPTH 5.5 ft	OWATER OBSEF CASING AT	VATIONS STABILIZATION
Soil Dept	Engineer/ Casing	Geolog	gist:	Sample		Strata			isual Identificati	
h	-	N				Break				
Ft.	bl/ft	No.	Pen/ Rec	Depth	Blows/6"			of So	il and / or Rock S	ample
						2″	ASPHALT			
			0"	0'2"-1'0"	N/A	-				
1		1	15"	0'6"-2'6"	3-2-3-2	2'6"	Dark Brow	/n, loamy, sill	ty Sand, trace gra	avel (FILL)
		2	14"	2'6"-4'6"	10-12-15-13		Brown, f-r	n Sand, some	e silt, little gravel	
5		3	16"	5'0"-7'0"	5-14-19-28		Brown, fir		Sand, some silt, ACIAL)	some gravel, cobbles
10		4	2″	10'0"-11'3"	22-45-50/3"	11'3"	Same Refusal at Ground W		ered 5'6" at con	npletion
15										
20										
25										
Notor	Hollow St	om Arr	ger /1 1/							
NULES.		.em Au	5CI + /4							
10 -30 N Cohesiv	nless: 0 - ⁄I Dense, 3 e: 0 -2 V S iff, 15 -30	80 -50 D Soft, 2 -	ense, 50 4 Soft, 4	+ V Dense. Little -8 M Stiff Some	10 to 20%		N) R WGT (LB) R FALL (IN)	CASI	14	PLE CORE TYPE SS 0 lb. 30"

-		50		🗙, Corp).		•	osed Buil	-		BORING B-2
148 Pioneer Drive Leominster, MA 01453							217-291 Washington St Weymouth, MA				21-06031
Ground Elevation: Date Started: 7/20/2021 Date Finished: 7/20/2021 Driller: RB						DA 7/20,			GROUNI DEPTH 5.5 ft	OWATER OBSER CASING AT	VATIONS STABILIZATION
	Engineer/	'Geolog	jist:								
Dept h	Casing			Sam	ple		Strata Break		V	'isual Identificatio	n
Ft.	bl/ft	No.	Pen/ Rec	Dept	h	Blows/6"			of So	il and / or Rock Sa	ample
								ASPHALT			
1		1	3″	0'6"-2'	'6"	4-5-4-3	2″	Black, fine	to medium :	Sand & Gravel (Gl	RAVEL FILL)
		2	10"	2'6"-4'	'6"	3-2-2-2	2'6"	Tan, fine to	o medium Sa	ind, dry (FILL)	
5		3	12"	5'0"-6'	'6"	2-2-2		Tan, f-c Sand, trace gravel, wet (FILL)			
		3A 4	6" 6"	6'6"-7' 7'0"-9'		12 14-19-33-20	6'6"	Brown, fin	e to coarse S	and & Gravel, so	me silt, cobbles, wet
10		4	14"	10'0"-1	2'0"	14-12-11-23		Brown, f-n	n Sand & Gra	ivel, some silt, co	bbles, wet
							14'				
15		5	14"	15'0"-1	7'0"	35-34-42-24		Olive, f-m	Sand & Silt, I	ittle gravel, cobb	es, wet
								Refusal at Ground W Well set at	ater encoun	tered 5'6" at com	pletion
20								wen set at	. 15 10		
25											
Notes	Hollow St	tem Au	ger <i>(</i> 1 ¼								
votes.		Leni Au	5CI 4 /4								
	onless: 0 -		-		Trace	0 to 10%			CASI		
	VI Dense, 3 ve: 0-2 V S		-		Little Some	10 to 20% 20 to 35%	ID SIZE (I	N) R WGT (LB)			is Dib.
	iff, 15-30				And	20 to 35% 35% to 50%	HAMME				0" 0"

	E	SO		K, Corp.		-	osed Buil	-		BORING B-3
148 Pioneer Drive Leominster, MA 01453						217-291 Washington St Weymouth, MA				21-06031
Ground Elevation: Date Started: 7/20/2021						DATE 7/20/21	GROUNI DEPTH 3 ft	OWATER OBSER	ATIONS STABILIZATION	
Soil	Engineer/		ler: F	7/20/2021 RB			7720721	510		
)ept	Casing	Geolog	5151.	Sample		Strata		V	isual Identificatio	n
h Ft.	bl/ft	No.	Pen/	Depth	Blows/6"	Break		of So	il and / or Rock Sa	mple
1		1	Rec			2″	ASPHALT		- (5111)	
1		1 2	6" 8"	0'6"-2'6" 2'6"-4'6"	24-5-4-4 7-9-15-22			vel/ Concrete	e (FILL) Gravel, trace orga	anic, wet (FILL)
_						5′				
5		3	12" 18"	5'0"-7'0" 7'0"-9'0"	10-14-22-15 9-9-6-11		Brown fin	e to medium	Sand some silt s	ome gravel, cobbles
		-	10	, 0 50	55011		brown, nin	(GLA		
10		4	10"	10'0"-10'4"	18-24-50/4"	10'4"			tered 2'6" at com	pletion
15										
20										
25										
lotes:	Hollow St	tem Au	ger 4 ¼		•					
	onless: 0 -		-	-	0 to 10%		N ()	CASII		
	VI Dense, 3 /e: 0 -2 V S				10 to 20% 20 to 35%	ID SIZE (I HAMME	N) R WGT (LB)		S: 140	
3 -15 St	iff. 15-30	V. Stiff	30 + Haro	d. And	35% to 50%		R FALL (IN)		30	

		148 Pic	oneer Drive			Proposed Building 217-291 Washington St Weymouth, MA					
Ground Elevation: Date Started: 7/20/2021 Date Finished: 7/20/2021 Driller: RB						GROUNDWATER OBSEI DATE DEPTH CASING AT 7/20/21 4 ft			AVATIONS STABILIZATION		
Soil ept	Engineer/ Casing	Geolog	gist:	Comple		Strata			(iqual Idantificatio		
h				Sample		Break			'isual Identificatio		
Ft.	bl/ft	No.	Pen/ Rec	Depth	Blows/6"			of So	il and / or Rock Sa	mple	
					1	2"	ASPHALT				
1		1	12"	0'6"-2'6"	8-8-10-9	Ζ'	Dark Brow	n, silty Sand	, little gravel		
		2	3″	2'6"-4'6"	18-50/4"		Dark Brov (FILL)	vn, Sand &	Gravel, little silt,	concrete, trace glass	
5		3	12"	5'0"-7'0"	4-3-9-12		Grey-Brown, silty Sand, little gravel, wet				
		4	12"	7'0"-9'0"	7-11-12-14	6'6"			tle gravel, wet		
10		5	18"	10'0"-12'0"	22-24-23-19		Brown, fine to medium Sand, some s clay, cobbles, wet			it, some gravel, trace	
15		6	18"	15'0"-17'0"	7-21-31-34		Brown, f-r	n Sand, some	(GLACIAL) e silt, some gravel,	cobbles, wet	
20								loration at 1 ater encoun	7 ft tered 4 ft at comp	letion	
25											
lotes:	Hollow St	tem Au	ger 4 ¼								
			J /4			-					
0 -30 N	nless: 0 - A Dense, 3 e: 0 -2 V S	80 -50 D	ense, 50+	V Dense. Little	0 to 10% 10 to 20% 20 to 35%	ID SIZE (I HAMME	N) R WGT (LB)	CASII	NG SAMPL S: 140	S	
			30 + Hard		35% to 50%		R FALL (IN)		30		

778

Google Earth

1 Google

BEDROCK OUTCROPS

WEYMOUTH, MASSACHUSETTS

213-217 Washington Street Transportation Impact Assessment

Prepared for Town of Weymouth

Prepared by Howard Stein Hudson

June 2022

June 23, 2022

Town of Weymouth Zoning Board of Appeals 75 Middle Street Weymouth, MA 02189

Re: 213-217 Washington Street Transportation Impact Assessment (TIA)

Dear Reviewer:

This letter shall certify that this Transportation Impact Assessment (TIA) has been prepared under my direct supervision and responsible charge. I am a Registered Professional Engineer (P.E.) in the Commonwealth of Massachusetts (Massachusetts P.E. No. 47252) and hold Certification as a Professional Traffic Operations Engineer (PTOE Certificate No. 906) from the Transportation Professional Certification Board, Inc. (TPCB), an independent affiliate of the Institute of Transportation Engineers (ITE).

\Sincerely,

Keri Pyke, P.E., PTOE Principal of Transportation Planning and Land Development

Table of Contents

Introduction1
Project Description
Study Methodology1
Study Area2
Transportation Summary2
Existing Conditions
Existing Roadway Descriptions4
Existing Intersection Description4
Existing Traffic Data4
Existing On-Street Parking Regulations5
Existing Pedestrian and Bicycle Conditions5
Existing Public Transportation9
Motor Vehicle Crash Data9
No-build (2029) Condition11
Background Traffic Growth12
Specific Development Projects
Infrastructure Improvements14
No-build (2029) Condition Traffic Volumes14
Build (2029) Condition
Site Description, Access, and Parking16
Loading and Service

TRANSPORTATION IMPACT ASSESSMENT 213-217 Washington Street – Weymouth, MA June 2022

Project Vehicle Trip Generation
Travel Mode Shares
Project Trip Generation19
Vehicle Trip Distribution
Build (2029) Condition Traffic Volumes
Traffic Operations Analysis
Transportation Demand Management28
Conclusion

List of Figures

Figure 1.	Study Area
Figure 2.	Existing Condition Vehicle Volumes, Weekday a.m. and p.m. Peak Hours6
Figure 3.	On-Street Parking Regulations7
Figure 4.	Existing Condition Pedestrian Volumes, Weekday a.m. and p.m. Peak Hours8
Figure 5.	Public Transportation10
Figure 6.	Background Development Projects
Figure 7.	No-build (2029) Condition Traffic Volumes, Weekday a.m. and p.m. Peak Hour15
Figure 8.	Site Plan17
Figure 9.	Vehicle Trip Distribution, Residential and Retail22
Figure 10.	Project-generated Vehicle Trips, Weekday a.m. and p.m. Peak Hours23
Figure 11.	Build (2029) Condition Traffic Volumes, Weekday a.m. and p.m. Peak Hours24

List of Tables

Table 1.	Motor Vehicle Crash Data Summary11
Table 2.	Peak Hour Travel Mode Shares and Vehicle Occupancy19
Table 3.	Project Trip Generation
Table 4.	Vehicle Level of Service (LOS) Criteria25
Table 5.	Capacity Analysis Summary, Weekday a.m. and p.m. Peak Hours

Appendices

- Appendix A Traffic Counts
- Appendix B Crash Data and Worksheets
- Appendix C Trip Generation
- Appendix D Synchro Analysis

Introduction

Project Description

Howard Stein Hudson (HSH) has conducted an evaluation of the transportation impacts of the proposed redevelopment of a vacant commercial building with a surface parking, located at 213-217 Washington Street (the "Project"/the "Site") in Weymouth, Massachusetts. The proposed Project will consist of the construction of a new mixed-use building with approximately 27 residential units and approximately 4,285 square feet (sf) of ground floor commercial space. The Project will also have an underground parking garage with a total of 50 parking spaces: 41 parking spaces will be for residential use and nine (9) parking spaces for retail use. Vehicular access to the Site will be provided via Broad Street.

Study Methodology

This transportation study and its supporting analyses were conducted in accordance with Massachusetts Department of Transportation (MassDOT) and the Town of Weymouth guidelines and are described in later sections. The Existing Condition analysis includes an inventory of the existing transportation conditions such as traffic characteristics, roadway and intersection geometries, transit services, and bicycle and pedestrian facilities. Existing vehicular counts were collected at the study area intersections. The traffic data collection effort forms the basis for the transportation analysis.

The future transportation conditions analyses evaluate potential transportation impacts associated with the Project. The long-term transportation impacts are evaluated for the year 2029, based on a seven-year horizon from the year of the filing of this traffic study. The No-build (2029) Condition analysis includes general background traffic growth, traffic growth associated with specific developments (not including this Project), and transportation improvements that are planned in the vicinity of the Project site.

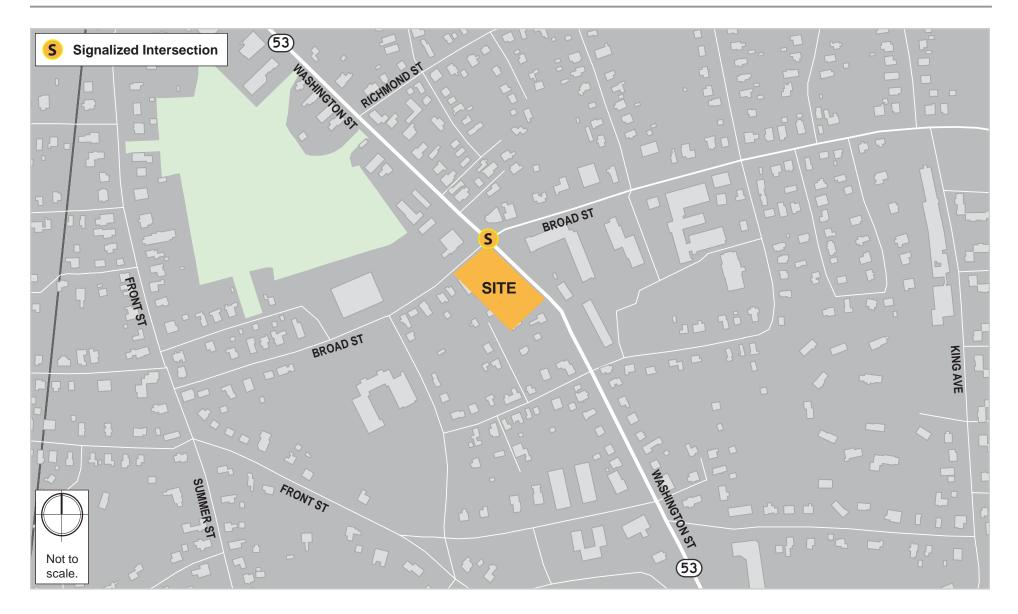
The Build (2029) Condition analysis includes a net increase in traffic volume due to the addition of Project-generated trip estimates to the traffic volumes developed as part of the No-build (2029) Condition analysis. The transportation study identifies expected roadway, parking, and bicycle accommodations, as well as loading capabilities.

The final part of the transportation study identifies measures to mitigate Project-related impacts and to address any traffic, pedestrian, bicycle, transit, safety, or construction-related issues that are necessary to accommodate the Project.

Study Area

The transportation study area is generally bounded by Washington Street to the east, The Landing Laundromat to the west, Broad Street to the north, and private property to the south. The study area consists of the signalized intersection of Washington Street at Broad Street, shown in **Figure 1**.

Transportation Summary


Key transportation characteristics of the Project and analysis results include:

- The Site is located in Weymouth Landing, a walkable area with various nearby amenities. The Site is located within the vicinity of multiple Massachusetts Bay Transportation Authority (MBTA) transit services, which will provide residents and visitors with alternative transportation options.
- The Proponent will provide approximately 25 bicycle spaces in a secure bicycle room located in the basement level of the building.
- The Project will provide a total of 50 vehicle parking spaces, 41 for the residential units and nine (9) for the retail space, resulting in a residential parking ratio of 1.5 spaces per unit (41 spaces/27 units) and a retail parking ratio of 0.5 per 250 sf (9 spaces/4,285 sf).
- The Project will generate 12 new vehicle trips (5 entering and 7 exiting) during the a.m. peak hour and 21 new vehicle trips (11 entering and 10 exiting) during the p.m. peak hour.
- At the study area intersection, the overall operational level of service (LOS) will remain the same from the No-build to the Build condition, indicating that the Project will not affect traffic operations in the area.
- The Project's deliveries, trash/recycling pick-up, and move-in/move-out activity will occur onstreet along Washington Street or Broad Street.
- The Proponent is committed to implementing Transportation Management Plan (TMP) elements to minimize the number of Project vehicle trips on the adjacent roadway network. TMP measures will promote walking and bicycle, as well as other options to reduce single-occupant vehicle trips.

TRANSPORTATION IMPACT ASSESSMENT 213-217 Washington Street – Weymouth, MA June 2022

Figure 1. Study Area

Existing Conditions

This section includes descriptions of existing study area roadway geometries, intersection traffic control, peak-hour vehicular volumes, public transportation availability, and motor vehicle collision data.

Existing Roadway Descriptions

Washington Street is a two-way, two-lane roadway that runs predominantly in the north-south direction between Commercial Street to the north and Whiting Street to the south. Washington Street between Front Street and Broad Street is classified as an urban principal arterial under the Town of Weymouth jurisdiction, and south of Broad Street is classified as an urban principal arterial under MassDOT jurisdiction. Within the study area, on-street parking is not permitted, and sidewalks are provided along both sides of the roadway.

Broad Street is a two-way, two-lane roadway that runs predominately in the east-west direction between Commercial Street to the east and Front Street to the west. Broad Street, between Commercial Street and Washington Street, is classified as an urban collector under the Town of Weymouth jurisdiction, and east of Broad Street is classified as an urban minor arterial under the jurisdiction of the Town of Weymouth. Within the study area, on-street parking is not permitted; sidewalks are provided along both sides of the roadway.

Existing Intersection Description

Washington Street/Broad Street is a four-legged signalized intersection with four approaches. The Broad Street eastbound approach consists of one shared left-turn/through/right-turn lane. The Broad Street westbound approach consists of a shared left-turn/through lane and an exclusive right-turn lane with approximately 100 feet of storage. The Washington Street northbound approach consists of a shared through/right-turn lane. The Washington Street southbound approach consists of an exclusive left-turn lane with approximately 100 feet of storage and a through/right-turn lane. On-street parking is not permitted along any of the approaches. Crosswalks and curb ramps are provided across all approaches.

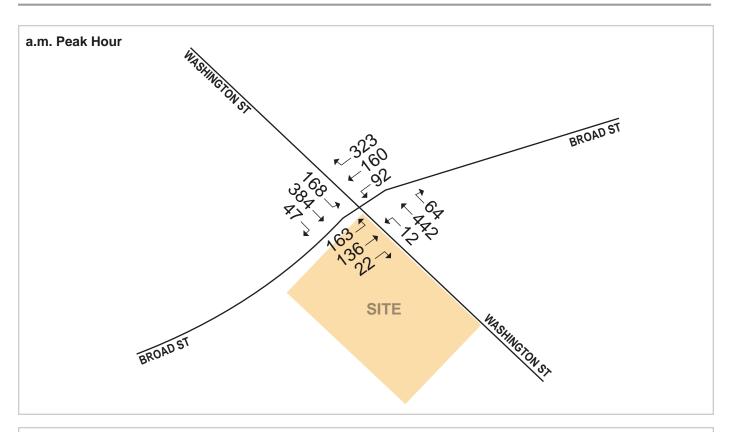
Existing Traffic Data

Typically, the baseline transportation conditions in the vicinity of the Project are established through a targeted data collection program. Turning movement counts (TMCs) were conducted during the weekday a.m. and p.m. peak periods (7:00 - 9:00 a.m. and 4:00 - 6:00 p.m., respectively)

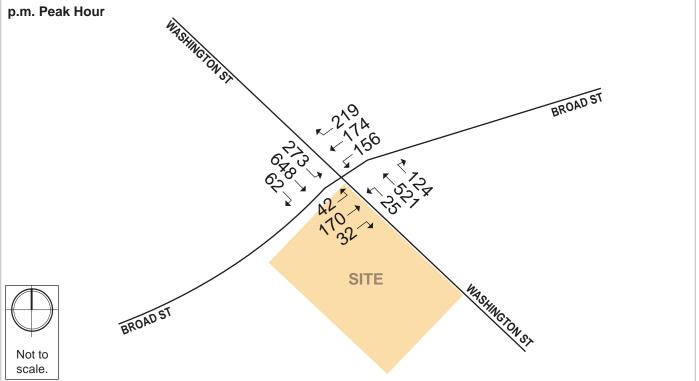
at the study area intersection on Tuesday, May 24, 2022. The TMCs included automobile, truck, pedestrian, and bicycle movements.

To account for the impact on traffic volumes and trip patterns resulting from the pandemic, the traffic volumes were grown according to the revised MassDOT Guidance on Traffic Count Data. The traffic volumes from May 2022 were compared to count data from May 2014 at the Washington Street/Broad Street intersection. This comparison resulted in a 20% difference during the a.m. peak hour and a 32% difference during the p.m. peak hour; therefore, the May 2022 a.m. and p.m. counts were increased by 20% and 32%, respectively, to estimate traffic volumes without the impact of COVID-19. The resulting Existing Condition vehicle volumes for the weekday a.m. and p.m. peak hours are shown in **Figure 2**. The detailed traffic counts are provided in the **Appendix A**.

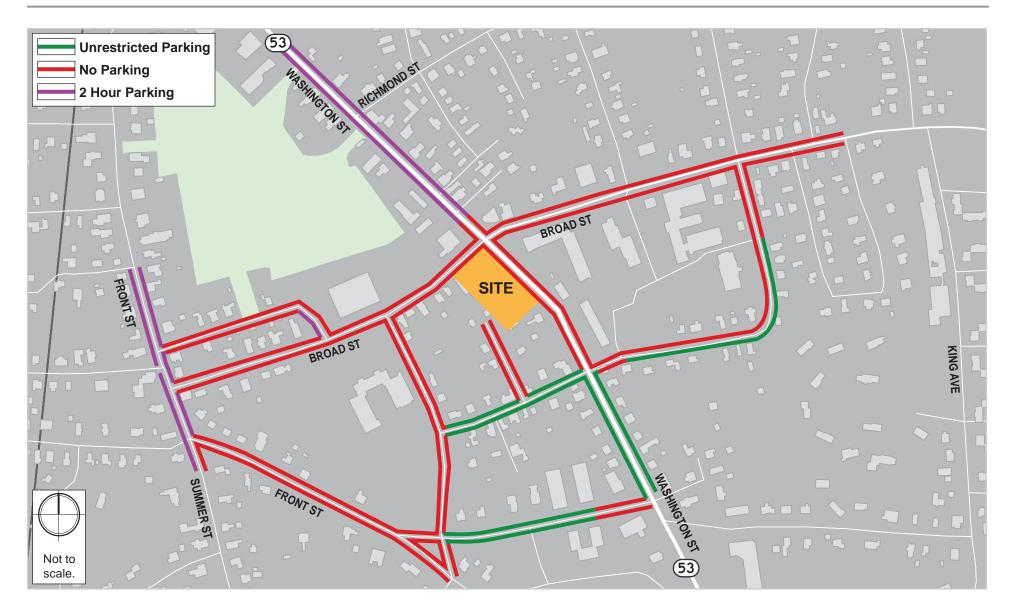
Existing On-Street Parking Regulations


An inventory of the existing curb uses and on-street parking in the vicinity of the Site was collected. Along Washington Street, on-street parking consists of two-hour parking, unrestricted parking, or no parking. There is no parking permitted along Broad Street. The existing on-street parking regulations are shown on **Figure 3**.

Existing Pedestrian and Bicycle Conditions


Sidewalks of sufficient width are generally provided along both sides of Washington Street and Broad Street. However, the sidewalks along Broad Street, west of Washington Street, and the sidewalks along Washington Street, south of Broad Street, are generally in poor condition with overgrown vegetation. Crosswalks and wheelchair ramps are provided at the study area signalized intersection; however, the crosswalks are in poor conditions and the wheelchair ramps are not ADAcomplaint. The existing pedestrian volumes are shown in **Figure 4**.

In recent years, bicycle use has increased, and communities are incorporating bicycle facilities (bicycle lanes/paths) into the public realm. While there are no formal on-street bicycle facilities within the study area, the Town of Weymouth implemented the Pleasant Street Bike Lane Project in May 2021. This project, located on the east side of the Town, included buffered bike lanes along the eastern side of Pleasant Street, between Tower Street and Water Street, and bike lanes along the western side of the road. Pavement markings are found along Water Street and Commercial Street, between Broad Street and the East Weymouth Commuter Rail Station. Based on the existing bicycle data, no bike activity was observed during the morning peak hour and minimal activity during the afternoon peak hour.



TRANSPORTATION IMPACT ASSESSMENT 213-217 Washington Street – Weymouth, MA June 2022

Figure 3. **On-street Parking Regulations**

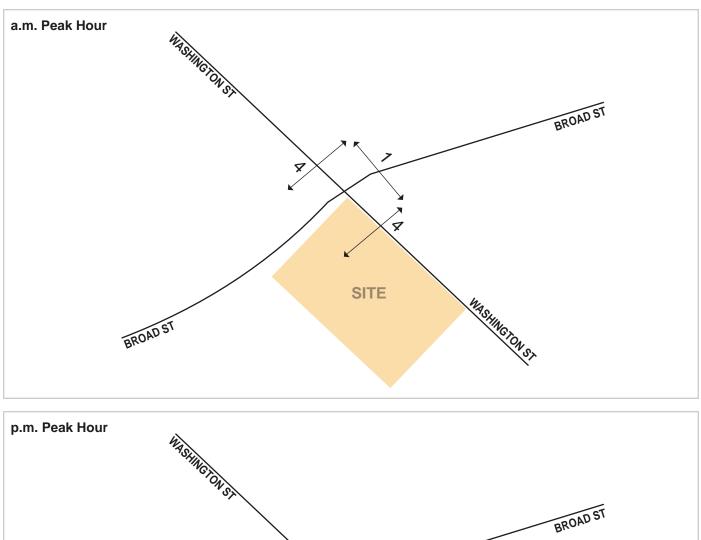
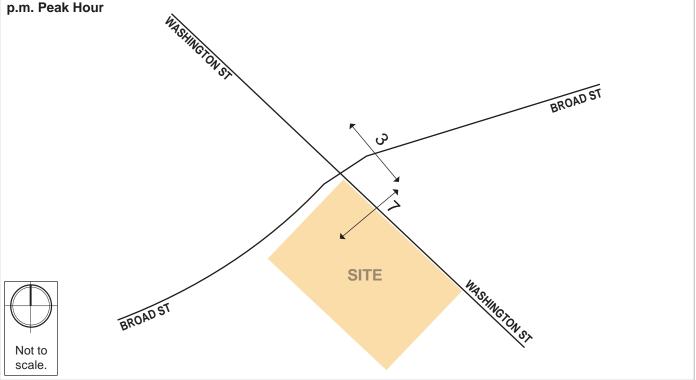
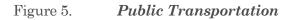
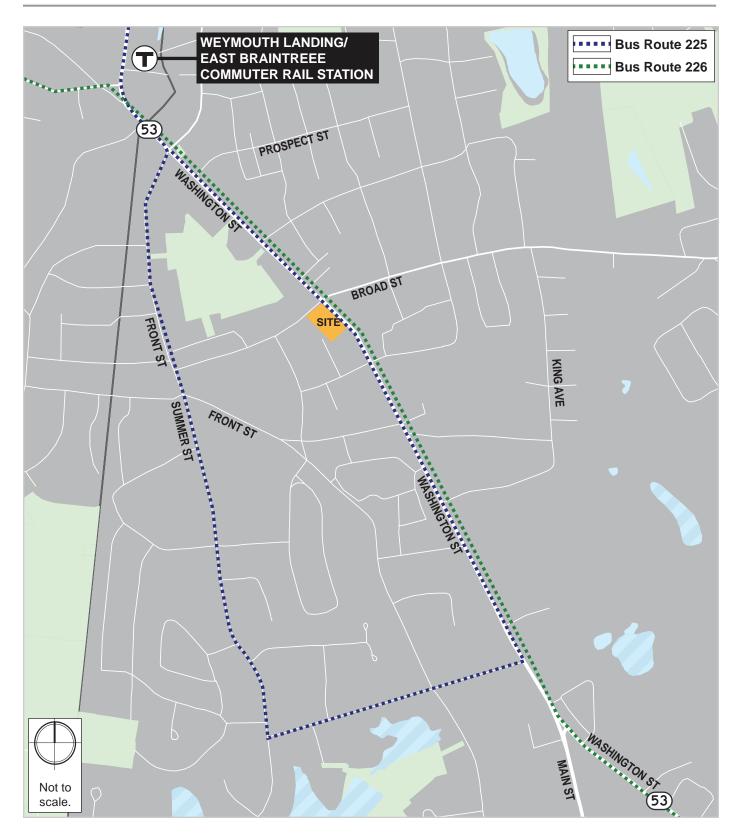



Figure 4. Existing Condition Pedestrian Volumes, Weekday a.m. and p.m. Peak Hours


Existing Public Transportation


The Project is proximate to two MBTA commuter rail stations, providing access to the Greenbush Line commuter rail and Kingston Line Commuter Rail. Weymouth Landing/East Braintree Station, located approximately a half mile north of the Project Site, provides access to the Greenbush Line Commuter Rail and operates with a headway of 70 minutes. Braintree Station, located approximately three miles west of the Project Site, provides access to the Kingston Line commuter rail and the Red Line. The Kingston Line operates with a headway of 60 minutes, and the Red Line operates with a headway of 11 minutes. The Project Site is located along Bus Routes 225 and 226, providing access to Weymouth Landing and Braintree Stations. A map of the public transportation services in the study area is shown in **Figure 5**.

Motor Vehicle Crash Data

HSH compiled motor vehicle crash data from the MassDOT Crash Records System for the most recent five-year period for which they are available (2015-2019). Crash rates are determined based on the number of crashes per million entering vehicles (MEV) at an intersection. **Table 1** shows the crash summary information. The detailed crash data and crash rate worksheets are included in **Appendix B**.

Characteristic	Washington Street/Broad Street
Year	
2015	8
2016	3
2017	11
2018	6
2019	9
Crash Type	
Angle	10
Rear-end	14
Single vehicle	5
Sideswipe	6
Head-on	1
Rear to Rear	1
Pedestrian	0
Not Reported	0
Weather	
Clear	25
Cloudy	4
Rain	7
Snow	1
Not Reported	0
Total Crashes	37
Crash Rate	0.75
District 6 Average – Signalized Intersections	0.71

Table 1.Motor Vehicle Crash Data Summary

Source: MassDOT, Crash Portal and District 6 Average Crash Rates

As shown in **Table 1**, the signalized intersection has a crash rate of approximately 0.75 crashes per MEV, which is above the MassDOT District 6 average of 0.71 crashes per MEV for signalized intersections. Although the crash rate at Washington Street/Broad Street exceeds the district average, the intersection was part of the Highway Safety Improvement Program (HSIP), where a safety study was completed at the intersection in 2015. The Town is currently exploring signal timing changes and other improvements at the intersection.

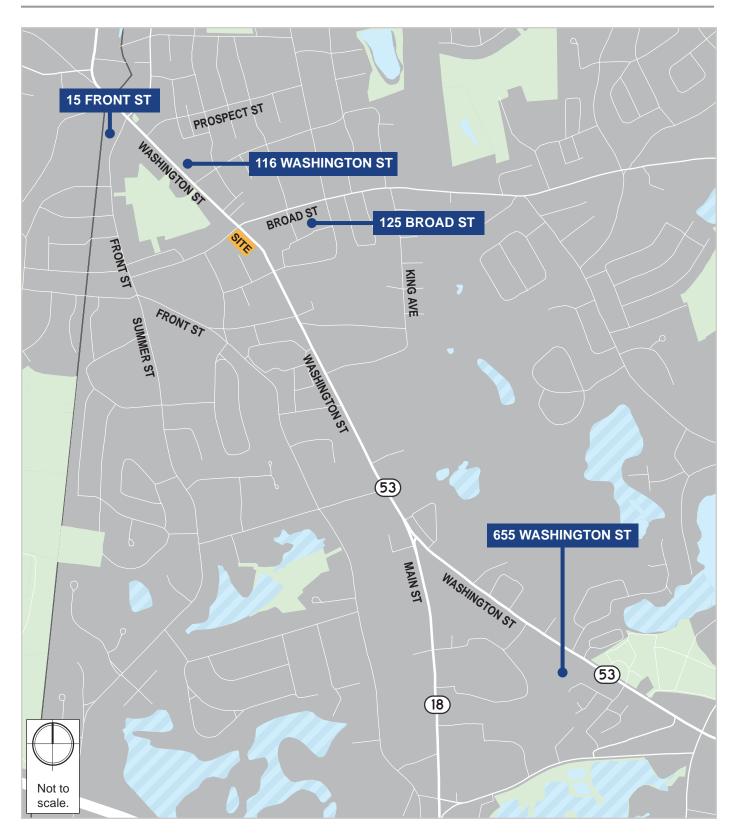
No-build (2029) Condition

For transportation impact analyses, it is standard practice to evaluate two future conditions: A Nobuild Condition (without the proposed Project) and a Build Condition (with the proposed Project). In accordance with MassDOT guidelines, these conditions are projected to a future date seven years from the current year. For the evaluation of this Project, 2029, seven years from the date the Project is submitted, was selected as the horizon year for the future conditions' analyses.

The No-build (2029) Condition reflects a future scenario that incorporates anticipated traffic volume changes associated with general background traffic growth, traffic associated with other planned specific developments, and planned infrastructure improvements that will affect travel patterns throughout the study area. These infrastructure improvements include roadway, public transportation, pedestrian, and bicycle improvements. The No-build (2029) Condition does not include the Project-related impacts.

Background Traffic Growth

The methodology to account for future background traffic growth, independent of large development projects, may be affected by changes in demographics, smaller scale development projects, or projects unforeseen at this time. Based on a review of traffic-volume data compiled by MassDOT permanent count stations located in the area and to account for any additional unforeseen traffic growth, a conservative 1% annual growth rate was applied to the existing intersection volumes, compounded annually over seven years to account for background growth by 2029.


Specific Development Projects

Traffic volumes associated with other development projects can affect traffic patterns throughout the study area within the future analysis time horizon. Traffic associated with the following projects was directly incorporated into the future conditions' traffic volumes:

- 655 Washington Street This project consists of the redevelopment of the Boston Motel into a mixed-use development with 160 residential units and 4,000 sf of ground floor retail space. Off-street parking will be provided for 260 vehicles.
- **116 Washington Street** This project consists of the development of a mixed-use building with 22 residential units and 1400 sf of retail/commercial space.
- **15 Front Street** This project consists of the development of a new mixed-use building with 24 residential units and 900 sf of retail/commercial space.
- 125 Broad Street This project consists of the development of a new residential building with 60 residential units.

A map of the background development projects is shown in Figure 6.

Figure 6. Background Development Projects

HOWARD STEIN HUDSON

Engineers + Planners

Infrastructure Improvements

A review of planned improvements to roadways, public transportation, and bicycle and pedestrian facilities was conducted to determine if there were any nearby infrastructure improvement projects that would affect travel patterns or behavior. As previously mentioned, one planned improvement was identified which consists of signal timing changes and adding a Broad Street westbound lead left-turn to the intersection of Washington Street at Broad Street. The proposed traffic signal plans were obtained from the Town of Weymouth and incorporated into the future conditions.

No-build (2029) Condition Traffic Volumes

The 1% per year annual growth rate was applied to the Existing Condition traffic volumes, and then the traffic volumes from the specific development projects were added to the study area intersection to develop the No-build (2029) Condition traffic volumes. The No-build (2029) Condition Weekday a.m. and p.m. peak hour traffic volumes are shown in Figure 7.

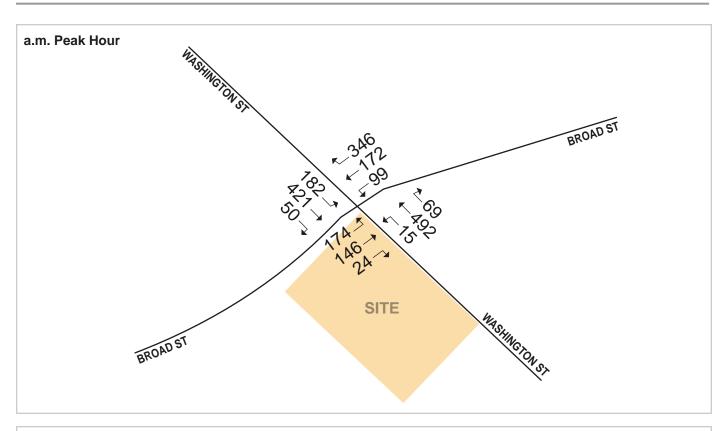


Figure 7. No-build (2029) Condition Traffic Volumes, Weekday a.m. and p.m. Peak Hours

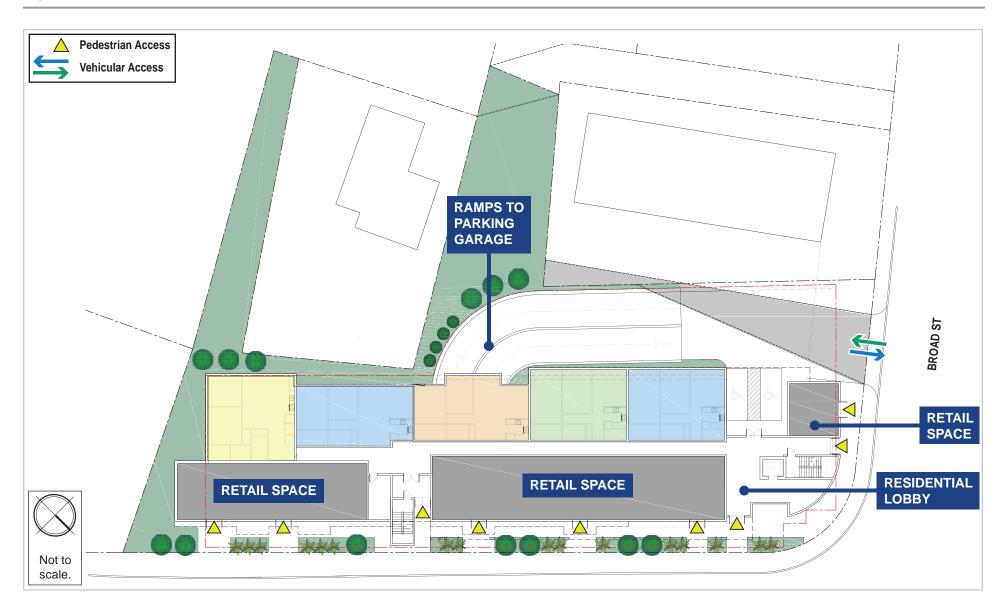
Build (2029) Condition

As previously summarized, the Project site is located at 213-217 Washington Street in Weymouth, Massachusetts. The Project will consist of the construction of approximately 27 residential units, approximately 4,285 sf of ground floor commercial space, and approximately 50 parking spaces.

Site Description, Access, and Parking

The site plan for the proposed Project is shown in **Figure 8.** The main residential lobby will be located at the corner of Washington Street and Broad Street. The retail space, broken into three different spaces, will be primarily accessed via Washington Street, with one retail space along Broad Street.

The current Project site has an approximately 25-foot-wide curb cut along Broad Street. The proposed Project will retain the existing curb cut to provide access to the underground parking garage with approximately 48 parking spaces. Two handicap parking spaces will be provided on the ground floor, before the parking garage ramp. The Project will include a secure, covered bicycle storage room for approximately 25 bicycles on the basement level.


Loading and Service

Residential units primarily generate delivery trips related to small packages, prepared food that arrive in small box trucks or smaller vehicles, as well as move-in/move-out activity. These deliveries, move-in/move-out activity, and retail deliveries would be accommodated on-street along Washington Street and Broad Street. The trash room will be in the basement level, next to the bicycle room, and is expected to be picked up by a private company.

TRANSPORTATION IMPACT ASSESSMENT 213-217 Washington Street – Weymouth, MA June 2022

Figure 8. Site Plan

Project Vehicle Trip Generation

TRIP GENERATION METHODOLOGY

As is standard practice, new trip generation is based on rates published in the Institute of Transportation Engineers (ITE) *Trip Generation* (11th edition, 2021). The ITE rates, available for a variety of land uses, produce "unadjusted" vehicle trip estimates, which are converted to person trips based on vehicle occupancy. Through application of the appropriate travel mode share information for the specific study area, the total person trips are "adjusted" to vehicle, transit, and walk/bicycle trips. Detailed trip generation worksheets are provided in **Appendix C**. To estimate the trip generation for the Project, the following ITE land use codes (LUCs) were used:

- Land Use Code 221 Multifamily Housing Mid-Rise Residential. Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have between three and 10 levels (floors).
- LUC 820 Shopping Center "Retail". A shopping center is an integrated group of commercial establishments that is planned, developed, owner, and managed as a unit. A shopping center's composition is related to its market area in terms of size, location, and type of store. A shopping center also provides on-site parking facilities sufficient to serve its own parking demands.

Travel Mode Shares

Travel mode shares reflect the distribution of person trips among automobiles, transit, and walking/bicycling. The Project area is within a 10-minute walk to the MBTA Weymouth Landing Station and several bus routes. The transit-oriented nature of the Project Site will allow some residents to choose to forego auto ownership and rely on public transit for many of their daily trips.

The American Census Survey (ACS) provides travel mode share rates for residents traveling from home to work and back via walking/biking, transit, and vehicles by census tract. The Project Site is located within Census Tract 4224.02. An average of the travel mode shares from the census tract were adopted for the Project's residential and retail uses.

The unadjusted vehicular trips were converted to person-trips by using vehicle occupancy rates published by the Federal Highway Administration (FHWA)¹. The person-trips were then distributed to different modes according to the mode shares shown in **Table 2**.

¹ Summary of Travel Trends: 2017 National Household Travel Survey; FHWA; Washington, D.C.; July 2018

Land Lice		Average Vehicle		
Land Use	Vehicle	Transit	Walk/Bicycle	Occupancy (AVO)
Residential/Retail	82%	16%	2%	1.18/1.82

Table 2. Peak Hour Travel Mode Shares and Vehicle Occupancy

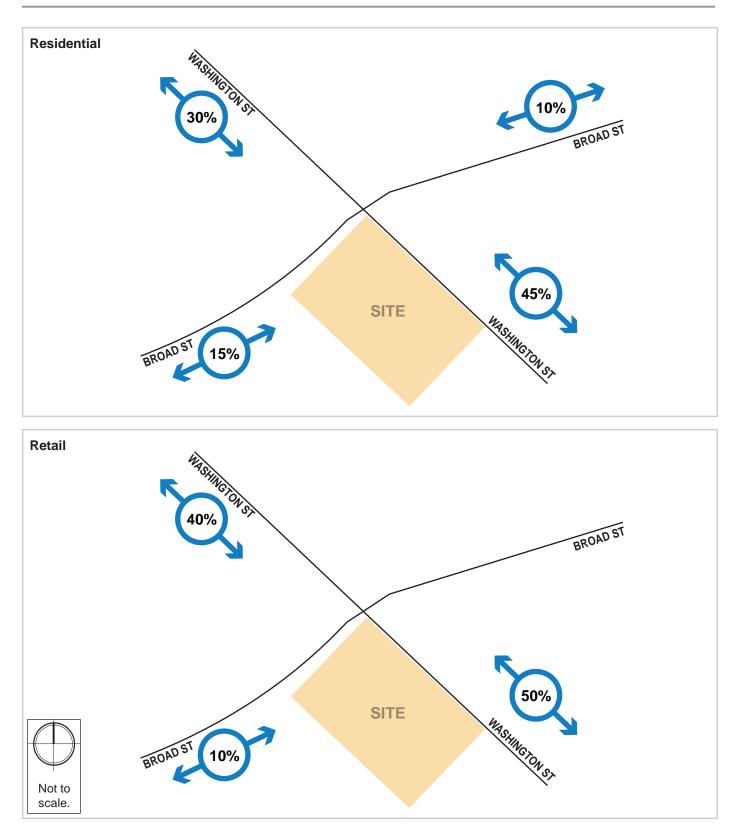
Project Trip Generation

The travel mode share percentages shown in **Table 2** were applied to the number of person trips to develop walk/bicycle, transit, and vehicle trip generation estimates for the Project. Vehicle trips include automobiles, taxicabs, and transportation network company (TNC) services, such as Uber and Lyft. Uber/Lyft activity, included as 2% of vehicle trips, is comprised of both an arriving trip and departing trip during the same time period, as opposed to the single trip generated by vehicles that are parking. The trip generation of the Project by travel mode is shown in **Table 3**. The detailed trip generation information is provided in the **Appendix C**.

Table 3.Project Trip Generation

	l Use/ ction	Walk/Bike Trips	Transit Trips	Vehicle Trips						
	Daily									
	In	1	12	50						
Residential	Out	<u>1</u>	<u>12</u>	<u>50</u>						
27 units	Subtotal	2	24	100						
	In	3	23	65						
Retail 4,285 sf	Out	<u>3</u>	<u>23</u>	<u>65</u>						
1,200 01	Subtotal	6	46	130						
	Total	8	70	230						
	a.m	n. Peak Hour								
	In	0	1	3						
Residential	Out	<u>0</u>	<u>1</u>	<u>6</u>						
27 units	Subtotal	0	2	9						
	In	0	1	2						
Retail 4,285 sf	Out	<u>0</u>	<u>0</u>	<u>1</u>						
4,203 31	Subtotal	0	1	3						
	Total	0	3	12						
	p.m	n. Peak Hour	-							
	In	0	1	5						
Residential 27 units	Out	<u>0</u>	<u>1</u>	<u>3</u>						
	Subtotal	0	2	8						
	In	0	2	6						
Retail 4,285 sf	Out	<u>0</u>	<u>2</u>	<u>7</u>						
7,200 31	Subtotal	0	4	13						
	Total	0	6	21						

As shown in **Table 3**, the Project Site is expected to generate approximately 12 vehicle trips during the weekday a.m. peak hour and 21 vehicle trips during the weekday p.m. peak hour. The Project Site is expected to generate approximately three transit person trips during the a.m. peak hour and approximately six transit person trips during the p.m. peak hour. These new transit person trips are expected to primarily use the MBTA's bus routes to access the commuter rail and Red Line to commute in and out of Boston and other points north and south of the Project Site.


Vehicle Trip Distribution

A vehicle trip distribution pattern identifies the various travel paths for vehicles arriving at a destination and the corresponding departure travel paths. New vehicle trips generated to the Project site will include mostly residents. The trip distribution for the new Project trips was based on a review of previous studies done in the Town of Weymouth, existing counts patterns, and Journey-to-Work data obtained from the U.S. Census for persons residing in the Town of Weymouth. **Figure 9** shows the trip distribution pattern for Project trips entering and exiting the Site.

Build (2029) Condition Traffic Volumes

The trip distribution patterns were applied to the new Project trips to develop the Project-generated Vehicle Trips shown in **Figure 10.** Then, the Project-generated trips were added to the No-build (2029) Condition traffic volumes to develop the Build (2029) Condition traffic volumes shown in **Figure 11** for the weekday a.m. and p.m. peak hours.

Figure 9. Vehicle Trip Distribution, Residential and Retail

HOWARD STEIN HUDSON

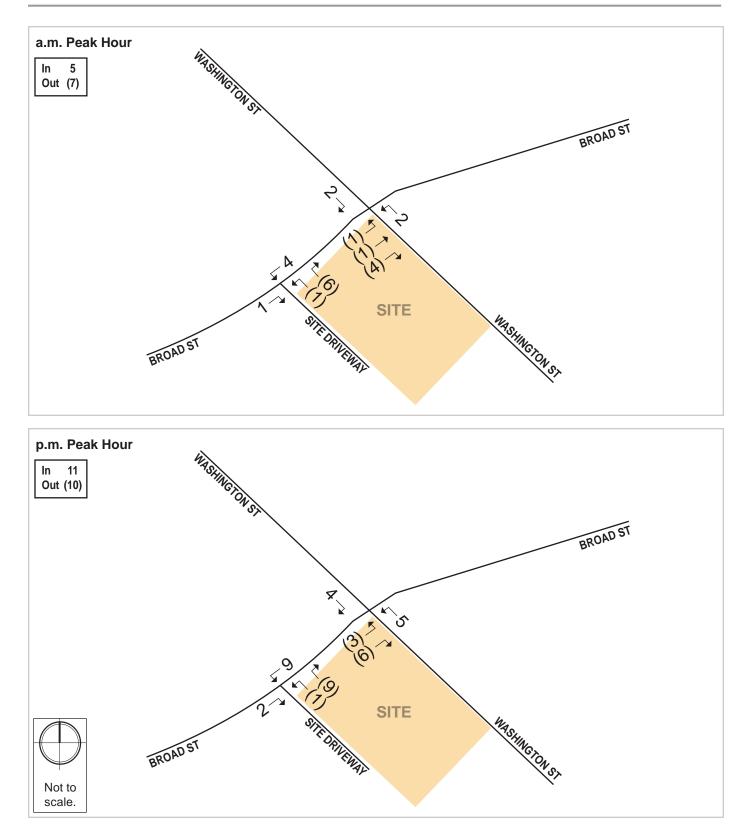


Figure 10. Project-generated Vehicle Trips, Weekday a.m. and p.m Peak Hours

Figure 11. Build (2029) Condition Vehicle Volumes, Weekday a.m. and p.m. Peak Hours

Traffic Operations Analysis

Trafficware's Synchro (version 11) software package was used to calculate average delay and associated level of service (LOS) at the study area intersection. This software is based on the traffic operational analysis methodology of the Transportation Research Board's (TRB's) *Highway Capacity Manual (HCM)*, 6th Edition.

LOS designations are based on average delay per vehicle for all vehicles entering an intersection. **Table 4** displays the intersection LOS criteria. LOS A indicates the most favorable condition, with minimum traffic delay, while LOS F represents the worst condition, with significant traffic delay. LOS D or better is typically considered acceptable. However, LOS E or F is often typical for a stopcontrolled minor street that intersects a major roadway.

Level of Service	Average Stopped	Delay (sec/vehicle)
	Signalized Intersection	Unsignalized Intersection
A	≤10	≤10
В	>10 and ≤20	>10 and ≤15
С	>20 and ≤35	>15 and ≤25
D	>35 and ≤55	>25 and ≤35
E	>55 and ≤80	>35 and ≤50
F	>80	>50

Table 4.Vehicle Level of Service (LOS) Criteria

Source: 2010 Highway Capacity Manual, Transportation Research Board.

In addition to delay and LOS, the operational capacity and vehicular queues are calculated and used to further quantify traffic operations at intersections. The volume-to-capacity (v/c) ratio is a measure of congestion at an intersection approach. A v/c ratio below one indicates that the intersection approach has adequate capacity to process the arriving traffic volumes over the course of an hour. A v/c ratio of one or greater indicates that the traffic volume on the intersection approach exceeds capacity. The 95th percentile queue length, measured in feet, represents the farthest extent of the vehicle queue (to the last stopped vehicle) upstream from the stop line during five percent of all signal cycles. The 95th percentile queue will not be seen during each cycle. The queue would be this long only 5% of the time and would typically not occur during off-peak hours. Since volumes fluctuate throughout the hour, the 95th percentile queue represents what can be considered a "worst case" scenario. Queues at the intersection are generally below the 95th percentile queue throughout

the course of the peak hour. It is also unlikely that the 95^{th} percentile queues for each approach to the intersection will occur simultaneously.

Table 5 summarizes the Existing Condition, the No-build (2029) Condition, and the Build (2029) Condition capacity analysis for the study area intersection during the weekday a.m. and p.m. peak hours, respectively. **Table 5** shows that the signalized intersection of Washington Street/Broad Street currently operates at an acceptable LOS during the a.m. peak hour and at a LOS E during the p.m. peak hour. The Broad Street eastbound approach currently operates at LOS F during both the a.m. and p.m. peak hour. The Broad Street westbound approach and Washington Street southbound left-turn approach currently operate at a LOS F during the p.m. peak hour.

Under the No-build condition, the intersection decreases to a LOS E during the a.m. peak hour and to a LOS F during the p.m. peak hour. The Broad Street eastbound approach improves to a LOS E from a LOS F during the p.m. peak hour with the proposed signal timing improvements. The Washington Street northbound through approach decreases from LOS C to a LOS E during the p.m. peak hour. The Washington Street southbound left-turn approach decreases from LOS C to LOS E during the a.m. peak hour.

Under the Build Condition, all approaches continue to operate at the same LOS as the No-build condition, indicating that the Project will not affect traffic operations in the area. The detailed Synchro results are provided in **Appendix D**.

			Existing C	ondition			No	-build (202	9) Condition				Build (202	9) Condition	
Intersection/Movement	LOS	Delay (s)	V/C ratio	50 th % Queue Length	95 th % Queue Length	LOS	Delay (s)	V/C ratio	50 th % Queue Length	95 th % Queue Length	LOS	Delay (s)	V/C ratio	50 th % Queue Length	95 th % Queue Length
		1			Wee	ekday a.m.	Peak Hour	1		1 I		:	1	1	:
Washington Street/Broad Street	D	48.8	-	-	-	E	73.1	-	-	-	Е	75.4	-	-	-
Broad Street EB left/thru/right	F	>80.0	>1.00	~186	#542	F	>80.0	>1.00	~331	#667	F	>80.0	>1.00	~340	#677
Broad Street WB left/thru	D	35.4	0.67	90	#369	С	33.3	0.59	135	#364	С	33.4	0.59	135	#365
Broad Street WB right	А	5.7	0.42	17	72	А	6.8	0.44	34	99	А	6.8	0.48	34	99
Washington Street NB left	В	18.3	0.04	3	20	С	23.8	0.06	5	27	С	23.9	0.07	7	30
Washington Street NB thru	С	33.7	0.81	158	#474	D	40.7	0.83	259	#650	D	40.7	0.83	259	#650
Washington Street NB right	А	3.0	0.12	0	17	А	0.8	0.12	0	4	А	0.8	0.12	0	4
Washington Street SB left	С	25.3	0.64	33	#169	E	61.3	0.90	58	#276	Е	61.3	0.90	58	#276
Washington Street SB thru/right	В	16.5	0.55	105	339	С	24.0	0.61	189	481	С	24.1	0.62	190	485
					Wee	ekday p.m.	Peak Hour								
Washington Street/Broad Street	E	56.3	-	-	-	F	100.0	-	-	-	F	105.0	-	-	-
Broad Street EB left/thru/right	F	>80.0	1.00	120	#421	Е	66.2	0.88	163	#442	Е	72.3	0.91	170	#465
Broad Street WB left/thru	F	>80.0	>1.00	~206	#566	F	>80.0	>1.00	~314	#673	F	>80.0	>1.00	~314	#673
Broad Street WB right	А	8.2	0.34	26	68	А	8.1	0.33	36	76	А	8.1	0.33	36	76
Washington Street NB left	В	19.2	0.13	8	34	D	39.0	0.37	14	55	D	44.8	0.45	18	#73
Washington Street NB thru	С	31.0	0.80	239	#569	E	58.1	0.97	394	#793	Е	58.1	0.97	394	#793
Washington Street NB right	А	8.1	0.20	14	58	А	7.7	0.23	12	54	А	7.7	0.23	12	54
Washington Street SB left	F	>80.0	>1.00	56	#354	F	>80.0	>1.00	~210	#526	F	>80.0	>1.00	~210	#526
Washington Street SB thru/right	В	19.8	0.70	199	#696	С	34.9	0.87	371	#970	D	35.2	0.87	374	#975

Table 5.Capacity Analysis Summary, Weekday a.m. and p.m. Peak Hours

Grey Shading indicates LOS E or F in the Existing Condition or a decrease to LOS E or LOS F in the No-build (2029) Condition and Build (2029) Condition.

 $\sim 50^{th}$ Percentile volume exceeds capacity, queue shown after two cycles

95th Percentile volume exceeds capacity, queue shown after two cycles

Transportation Demand Management

The Proponent is committed to implementing Transportation Demand Management (TDM) measures to minimize automobile usage and Project-related traffic impacts. TDM will be facilitated by the nature of the Project and its proximity to public transit alternatives. The Proponent will work with the Town of Weymouth to develop a TDM program appropriate to the Project and consistent with its level of impact. The TDM measures for the Project may include, but are not limited, to the following:

- Transportation Coordinator: The property manager will be the transportation coordinator for the site. The transportation coordinator will oversee all transportation issues, including parking, service and loading, deliveries, move-in/move-out operations, and all TDM programs.
- Transit Information: The property manager will keep a supply of transit information (schedules, maps, and fare information) to be made available to the residents and patrons of the Project site.
- Orientation Packets: The Proponent will provide orientation packets to new tenants containing information on available transportation choices, including transit routes/schedules. On-site management will work with residents and tenants as they move in to help facilitate transportation for new arrivals.
- *Newsletter:* Provide an annual (or more frequent) newsletter or bulletin summarizing transit, ridesharing, bicycling, alternative work schedules, and other travel options.
- Bicycle Accommodation: The Proponent will provide approximately 25 secure, covered bicycle parking spaces for residents to encourage bicycling as an alternative mode of transportation.

Conclusion

The Project is located 10 minutes walking from the Weymouth Landing/East Braintree commuter rail station and approximately a nine-minute drive from the Braintree MBTA station, with easy access to downtown Boston. Weymouth Landing is a walkable area, with various nearby amenities, where new residents will be able to accomplish errands without relying only on the automobile as their sole means for transportation. According to the trip generation and traffic operations analysis, the Project generated trips will have a minimal impact on traffic at the nearby intersections and roadways.

Traffic Counts

Client: Emma Parisi Project #: 946 001 HSH BTD #: Location 1 Location: Weymouth, MA Washington Street Street 1: Street 2: Broad Street Count Date: 5/24/2022 Day of Week: Tuesday Clouds & Sun, 60°F Weather:

Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						PASSEN	IGER CA	RS & HEA	AVY VEHI	CLES CO	MBINED					
		Washing	ton Street			Washing	ton Street			Broad	Street			Broad	Street	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	2	98	10	0	23	66	13	0	12	18	1	0	25	12	64
7:15 AM	0	2	121	9	0	24	60	16	0	13	20	2	0	19	26	64
7:30 AM	0	2	105	11	0	35	85	16	0	17	26	7	0	11	38	86
7:45 AM	0	4	102	10	0	42	79	6	0	11	26	4	0	21	37	62
8:00 AM	0	2	82	15	0	31	77	7	0	3	36	4	0	17	21	59
8:15 AM	0	2	79	17	0	32	79	10	0	4	25	3	0	28	37	62
8:30 AM	0	3	105	20	0	31	112	7	0	14	24	5	0	20	23	37
8:45 AM	0	1	94	23	0	49	106	17	0	10	26	4	0	31	25	44
			.							_	.				.	
		Washing					ton Street				Street				Street	
		North					bound	D : 1 :		Eastb		D ! /			bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	8	123	28	0	49	127	14	0	9	33	9	0	29	40	41
4:15 PM	0	4	97	15	0	52	125	13	0	4	30	4	0	34	32	46
4:30 PM	0	3	90	25	0	62	114	14	0	13	29	6	0	20	36	36
4:45 PM	0	4	85	26	0	44	125	6	0	6	37	5	0	35	24	43
5:00 PM	0	7	95	34	0	53	148	6	0	4	40	1	0	22	31	40
5:15 PM	0	4	96	32	0	45	121	10	0	2	34	4	0	37	19	51
5:30 PM	0	7	99	34	0	43	113	9	0	6	31	1	0	26	23	42
5:45 PM	0	5	110	23	0	58	105	8	0	7	23	5	0	30	20	24
AM PEAK HOUR	l	Washing	on Street			Weehing	ton Street			Brood	Street			Brood	Street	
7:30 AM		North				•	bound			Eastb					bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Riaht	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	10	368	53	0	140	320	39	0 10111	35	113	18	0	77	133	269
PHF	v	0.		00		-	.92	00	- v		83	10	•		.89	
HV %	0.0%	0.0%	7.1%	5.7%	0.0%	9.3%	8.1%	5.1%	0.0%	5.7%	1.8%	5.6%	0.0%	1.3%	0.0%	3.0%
11 7 70	010 /0	01070		011 /0	01070	01070	0.1.70	01170	01070	011 /0	11070	01070	0.070	11070	01070	0.070
PM PEAK HOUR		Washing	on Street			Washing	ton Street			Broad	Street			Broad	Street	
4:00 PM		North			Washington Street Southbound						ound				bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	19	395	94	0	207	491	47	0	32	129	24	0	118	132	166
PHF		0.	80		0.98					0.	91			0.	.93	
HV %	0.0%	0.0%	3.5%	0.0%	0.0%	1.0%	4.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.7%	2.3%	3.0%

5/28/2022, 11:39 AM, 946_TMC_1

Client: Emma Parisi Project #: 946 001 HSH BTD #: Location 1 Location: Weymouth, MA Street 1: Washington Street Street 2: Broad Street Count Date: 5/24/2022 Day of Week: Tuesday Clouds & Sun, 60°F Weather:

Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								HEAVY V	EHICLES	;						
		Washingt Northl				•	ton Street bound			Broad Eastb	Street oound				Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	8	0	0	3	6	0	0	0	0	0	0	0	1	0
7:15 AM	0	0	7	0	0	2	2	0	0	0	0	0	0	0	0	2
7:30 AM	0	0	4	0	0	3	5	1	0	0	1	0	0	0	0	0
7:45 AM	0	0	7	2	0	5	8	0	0	0	0	0	0	1	0	4
8:00 AM	0	0	6	1	0	1	9	0	0	0	0	1	0	0	0	3
8:15 AM	0	0	9	0	0	4	4	1	0	2	1	0	0	0	0	1
8:30 AM	0	1	6	2	0	2	3	0	0	0	1	0	0	1	0	1
8:45 AM	0	0	8	0	0	5	7	2	0	1	0	0	0	2	1	2
		Washingt	on Street			Washing	ton Street			Broad	Street			Broad	Street	
		North				•	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	5	Ő	0	1	4	Ő	0	0	0	0	0	1	1	3
4:15 PM	0	0	6	0	0	0	5	0	0	0	0	0	0	0	1	1
4:30 PM	0	0	1	0	0	1	5	0	0	0	0	0	0	0	1	1
4:45 PM	0	0	2	0	0	0	7	0	0	0	0	0	0	1	0	0
5:00 PM	0	0	3	0	0	1	1	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	3	0	0	0	5	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	1	1
5:45 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	1	0	1
AM PEAK HOUR		Washingt	ton Street			Washing	ton Street			Broad	Street			Broad	Street	
8:00 AM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	1	29	3	0	12	23	3	0	3	2	1	0	3	1	7
PHF		0.	92		0.68					0.	50			0.	55	
PM PEAK HOUR		Washingt			Washington Street					Broad					Street	
4:00 PM			bound		Southbound				-		ound				bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	14	0	0	2	21	0	0	0	0	0	0	2	3	5
PHF		0.	58			0.82				0.	00			0.	50	

Client: Emma Parisi Project #: 946 001 HSH BTD #: Location 1 Weymouth, MA Location: Washington Street Street 1: Street 2: Broad Street 5/24/2022 Count Date: Day of Week: Tuesday Weather: Clouds & Sun, 60°F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259

Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

										0220						
		Washing	ton Street			Washing	ton Street			Broad	Street			Broad	Street	
		North	bound			South	bound			East	bound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1
8:00 AM	0	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
8:30 AM	0	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
		Washington Street Washington Street					· · · · · · · · · · · · · · · · · · ·	Broad	Street		-	Broad	Street			

		Washing	ton Street			Washing	ton Street			Broad	Street			Broad	Street	
		North	bound			Southbound				East	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	3
4:45 PM	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	2	0	0	0	1	0	0	0	0	0	0	1	1
5:15 PM	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	2
5:30 PM	0	0	0	2	1	0	0	0	0	0	0	0	0	0	1	0
5:45 PM	0	0	0	5	0	1	0	0	0	0	0	0	0	0	0	1

AM PEAK HOUR ¹ 7:30 AM			ton Street bound				ton Street bound				Street				Street bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	4	0	0	0	4	0	0	0	0	0	0	0	1
				•	•		-	•			•	•			-	
PM PEAK HOUR ¹		Washing	ton Street			Washing	ton Street			Broad	Street			Broad	Street	
4:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	0	0	7	0	1	0	0	0	1	0	0	0	0	0	3

¹NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Appendix B

Crash Data and Worksheets

213-217 WASHINGTON STREET - WEYMOUTH, MA

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN :	Weymouth			COUNT DA	TE :	5/24/2022
DISTRICT : 6	UNSIGN	IALIZED :		SIGNA	LIZED :	X
		~ IN1	TERSECTION	I DATA ~		
MAJOR STREET :	Washington	Street				
MINOR STREET(S) :	Broad Street					
INTERSECTION DIAGRAM (Label Approaches)	↑ North					
						- Alt
APPROACH :	1	2	PEAK HOUF	R VOLUMES	5	Total Peak Hourly
APPROACH : DIRECTION :	1 NB	2 SB			5	Hourly Approach
			3	4	5	Hourly
DIRECTION : PEAK HOURLY	NB	SB 983	3 EB	4 WB 549 (V) = TOTA		Hourly Approach Volume
DIRECTION : PEAK HOURLY VOLUMES : " K " FACTOR : TOTAL # OF CRASHES :	NB 670 0.090 37	SB 983 INTERSE # OF YEARS :	3 EB 244 ECTION ADT APPROACH	4 WB 549 (V) = TOTA VOLUME : AVERA CRASHES A	AL DAILY GE # OF PER YEAR () :	Hourly Approach Volume 2,446 27,178 7.40
DIRECTION : PEAK HOURLY VOLUMES : " K " FACTOR : TOTAL # OF CRASHES :	NB 670 0.090 37	SB 983 INTERSE # OF YEARS :	3 EB 244 ECTION ADT APPROACH 5	4 WB 549 (V) = TOTA VOLUME : AVERA CRASHES A	GE # OF PER YEAR () :	Hourly Approach Volume 2,446 27,178 7.40

Project Title & Date: 213 Washington Street, Weymouth MA

Trip Generation

213-217 WASHINGTON STREET - WEYMOUTH, MA

213-217 Washington Street

Proposed Trip Generation Assessment

HOWARD STEIN HUDSON

8-Jun-2022

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Primary Person- Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Auto Share ²	Auto Person- Trips	Private Auto Person-Trips	Assumed Local Auto Occupancy Rate ³	Taxi/TNC Auto Trips	Primary Non- Taxi Auto Trips	Total AutoTrips
Daily Peak Hour																			
Multifamily Housing (Mid Rise) ⁴	27	Total		4.540	122	1.18	144	144	16%	24	2%	2	82%	118	118	1.18	0	100	100
	units	In	50%	2.270	61	1.18	72	72	16%	12	2%	1	82%	59	59	1.18	0	50	50
		Out	50%	2.270	61	1.18	72	72	16%	12	2%	1	82%	59	59	1.18	0	50	50
Shopping Center⁵	4.285	Total		37.010	158	1.82	288	288	16%	46	2%	6	82%	236	236	1.82	0	130	130
	KSF	In	50%	18.505	79	1.82	144	144	16%	23	2%	3	82%	118	118	1.82	0	65	65
		Out	50%	18.505	79	1.82	144	144	16%	23	2%	3	82%	118	118	1.82	0	65	65
Total		Total			280		432	432		70		8		354			0	230	230
		In			140		216	216		35		4		177			0	115	115
		Out			140		216	216		35		4		177			0	115	115
AM Peak Hour																			
Multifamily Housing (Mid Rise) ⁴	27	Total		0.360	10	1.18	12	12		2		0		10	10	1.18	0	9	9
	units	In	26%	0.094	3	1.18	4	4	16%	1	2%	0	82%	3	3	1.18	0	3	3
		Out	74%	0.266	7	1.18	8	8	16%	1	2%	0	82%	7	7	1.18	0	6	6
Shopping Center ⁵	4.285	Total		0.84	3	1.82	6	6		1		0		5	5	1.82	0	3	3
	KSF	In	62%	0.521	2	1.82	4	4	16%	1	2%	0	82%	3	3	1.82	0	2	2
		Out	38%	0.319	1	1.82	2	2	16%	0	2%	0	82%	2	2	1.82	0	1	1
Total		Total			13		18	18		3		0		15			0	12	12
		In			5		8	8		2		0		6			0	5	5
		Out			8		10	10		1		0		9			0	7	7
PM Peak Hour																			
Multifamily Housing (Mid Rise) ⁴	27	Total		0.390	10	1.18	12	12		2		0		10	10	1.18	0	8	8
	units	In	61%	0.238	6	1.18	7	7	16%	1	2%	0	82%	6	6	1.18	0	5	5
		Out	39%	0.152	4	1.18	5	5	16%	1	2%	0	82%	4	4	1.18	0	3	3
Shopping Center ⁵	4.285	Total		3.40	15	1.82	28	28		4		0		24	24	1.82	0	13	13
	KSF	In	48%	1.632	7	1.82	13	13	16%	2	2%	0	82%	11	11	1.82	0	6	6
		Out	52%	1.768	8	1.82	15	15	16%	2	2%	0	82%	13	13	1.82	0	7	7
Total		Total			25		40	40		6		0		34	<u>u</u>		0	21	21
		In			13		20	20		3		0		17			0	11	11
1		Out			12		20	20		3		0		17			0	10	10

1. 2017 National vehicle occupancy rates - 1.18:home to work; 1.82: family/personal business; 1.82: shopping; 2.1 social/recreational

2. Mode shares based on peak-hour BTD Data for Area 1

3. Local vehicle occupancy rates based on 2017 National vehicle occupancy rates

4. ITE Trip Generation Manual, 11th Edition, LUC 221 (Multifamily Housing Mid-Rise (3-10 floors)), average rate

5. ITE Trip Generation Manual, 11th Edition, LUC 820 (Shopping Center), average rate

Synchro Analysis

213-217 WASHINGTON STREET - WEYMOUTH, MA

	٨	+	~	4	Ļ	×.	•	t	*	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9
Lane Configurations	LDL	4	LDIX	VVDL	A A	1				<u>30L</u>		JUN	05
Traffic Volume (vph)	162	136	22	92	160	323	12	442	64	168	384	47	
Future Volume (vph)	162	136	22	92	160	323	12	442	64	168	384	47	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0		0	0 0		100	75 1		120 1	100 1		0 0	
Storage Lanes Taper Length (ft)	25		U	25		1	25		1	25		U	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.991				0.850			0.850		0.984		
Flt Protected		0.975			0.982		0.950			0.950			
Satd. Flow (prot)	0	1760	0	0	1859	1568	1805	1776	1524	1656	1742	0	
Fit Permitted	0	0.547	0	0	0.740	1500	0.495	1770	1504	0.190	1740	0	
Satd. Flow (perm) Right Turn on Red	0	987	0 Yes	0	1401	1568 Yes	940	1776	1524 Yes	331	1742	0 Yes	
Satd. Flow (RTOR)		3	165			275			98		7	165	
Link Speed (mph)		30			30	2.0		30			30		
Link Distance (ft)		436			689			227			460		
Travel Time (s)		9.9			15.7			5.2			10.5		
Peak Hour Factor	0.83	0.83	0.83	0.89	0.89	0.89	0.91	0.91	0.91	0.92	0.92	0.92	
Heavy Vehicles (%)	6%	2%	6%	1%	0%	3%	0%	7%	6%	9%	8%	2%	
Adj. Flow (vph) Shared Lane Traffic (%)	195	164	27	103	180	363	13	486	70	183	417	51	
Lane Group Flow (vph)	0	386	0	0	283	363	13	486	70	183	468	0	
Turn Type	Perm	NA	Ŭ	Perm	NA	pm+ov	Perm	NA	Prot	pm+pt	NA	Ŭ	
Protected Phases		8			4	1		2	2	1	6		9
Permitted Phases	8			4		4	2			6			
Detector Phase	8	8		4	4	1	2	2	2	1	6		
Switch Phase	~ ~	~ ~		~ ~	~ ~ ~	~ ~	10.0	10.0	10.0		~ ~		10
Minimum Initial (s) Minimum Split (s)	6.0 11.0	6.0 11.0		6.0 11.0	6.0 11.0	6.0 10.0	10.0 15.0	10.0 15.0	10.0 15.0	6.0 10.0	6.0 11.0		1.0 31.0
Total Split (s)	25.0	25.0		25.0	25.0	10.0	41.0	41.0	41.0	10.0	55.0		31.0
Total Split (%)	22.5%	22.5%		22.5%	22.5%	9.0%	36.9%	36.9%	36.9%	9.0%	49.5%		28%
Maximum Green (s)	20.0	20.0		20.0	20.0	6.0	36.0	36.0	36.0	6.0	50.0		27.0
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	2.0	2.0		2.0	2.0	1.0	2.0	2.0	2.0	1.0	2.0		1.0
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s) Lead/Lag		5.0			5.0	4.0 Lead	5.0 Lag	5.0 Lag	5.0 Lag	4.0 Lead	5.0		
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min		None
Walk Time (s)													5.0
Flash Dont Walk (s)													20.0
Pedestrian Calls (#/hr)		04.4			04.4	20.4	00.7	00.7	00.7	25.2	24.0		9
Act Effct Green (s) Actuated g/C Ratio		21.1 0.30			21.1 0.30	32.1 0.46	23.7 0.34	23.7 0.34	23.7 0.34	35.3 0.51	34.2 0.49		
v/c Ratio		1.29			0.67	0.40	0.04	0.81	0.12	0.64	0.55		
Control Delay		178.2			35.4	5.7	18.3	33.7	3.0	25.3	16.5		
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay		178.2			35.4	5.7	18.3	33.7	3.0	25.3	16.5		
LOS		F			D	A	В	C	A	С	B		
Approach Delay Approach LOS		178.2 F			18.7 B			29.5 C			19.0 B		
Queue Length 50th (ft)		~186			90	17	3	158	0	33	105		
Queue Length 95th (ft)		#542			#369	72	20	#454	17	#169	339		
Internal Link Dist (ft)		356			609			147			380		
Turn Bay Length (ft)						100	75	10-1	120	100			
Base Capacity (vph)		300			423	871	568	1074	960	287	1319		
Starvation Cap Reductn Spillback Cap Reductn		0			0	0	0	0	0	0 0	0		
Storage Cap Reductn		0			0	0	0	0	0	0	0		
Reduced v/c Ratio		1.29			0.67	0.42	0.02	0.45	0.07	0.64	0.35		
					0.01	0.12	0.02	0.10	0.01	0.01	0.00		
Intersection Summary Area Type:	Other												
Cycle Length: 111	Julei												
Actuated Cycle Length: 69.7													
Natural Cycle: 150													
Control Type: Actuated-Uncod	ordinated												
Maximum v/c Ratio: 1.29						1.00							
Intersection Signal Delay: 48.					tersection		`						
Intersection Capacity Utilization Analysis Period (min) 15	on 79.4%			IC	U Level o	f Service [J						
 Volume exceeds capacity 	queue is the	eoretically	infinite										
Queue shown is maximum													
# 95th percentile volume ex			may be lo	nger.									
Queue shown is maximum													
Online and Disc. O. Mit.	in the O		0										
Splits and Phases: 3: Wash		t & Broad	Street										
	2								_ 11	∲ ø4			. ∦\$ _Ø9
10 s 41 s									25	is			31s

Ø1	™ ø₂	√ Ø4	₩k _{Ø9}
10 s	41 s	25 s	31 s
Ø6		A 108	
55 s		25 s	

Synchro 11	
Lanes, Volumes,	Timings

Lanes, volumes, 1 in										,		,	3: Washington Street & Broa
	٨	-	\rightarrow	1	-		1	T	1	1	ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9
Lane Configurations		4			र्स	1	<u> </u>	↑	1	ሻ	4î		
Traffic Volume (vph)	42	170	32	156	174	219	25	521	124	273	648	62	
Future Volume (vph)	42	170	32	156	174	219	25	521	124	273	648	62	
deal Flow (vphpl) Storage Length (ft)	1900 0	1900	1900 0	1900 0	1900	1900 100	1900 75	1900	1900 120	1900 100	1900	1900 0	
Storage Lanes	0		0	0		100	15		120	100		0	
Taper Length (ft)	25		U	25			25			25		0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.982				0.850			0.850		0.987		
Flt Protected		0.991			0.977		0.950			0.950			
Satd. Flow (prot)	0	1849	0	0	1820	1568	1805	1827	1615	1787	1809	0	
Flt Permitted		0.562			0.588		0.275			0.143			
Satd. Flow (perm)	0	1049	0	0	1095	1568	522	1827	1615	269	1809	0	
Right Turn on Red			Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)		6			20	142		20	98		6		
Link Speed (mph)		30			30 689			30			30 460		
Link Distance (ft) Travel Time (s)		436 9.9			15.7			227 5.2			10.5		
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.80	0.80	0.80	0.98	0.98	0.98	
Heavy Vehicles (%)	0%	0%	0%	2%	2%	3%	0%	4%	0%	1%	4%	0%	
Adj. Flow (vph)	46	187	35	168	187	235	31	651	155	279	661	63	
Shared Lane Traffic (%)										2. 0			
ane Group Flow (vph)	0	268	0	0	355	235	31	651	155	279	724	0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Perm	NA	Prot	pm+pt	NA		
Protected Phases		8			4	. 1		2	2	1	6		9
Permitted Phases	8			4		4	2			6			
Detector Phase	8	8		4	4	1	2	2	2	1	6		
Switch Phase							40.0		40.0		10.0		
Minimum Initial (s)	6.0	6.0		6.0	6.0	6.0	10.0	10.0	10.0	6.0	10.0		1.0
Minimum Split (s)	11.0	11.0		11.0	11.0	10.0	15.0	15.0	15.0	10.0	15.0		31.0
Total Split (s) Total Split (%)	25.0 22.5%	25.0 22.5%		25.0 22.5%	25.0 22.5%	10.0 9.0%	40.0 36.0%	40.0 36.0%	40.0 36.0%	10.0 9.0%	55.0 49.5%		31.0 28%
Maximum Green (s)	22.5%	22.5%		22.5%	22.5%	9.0 % 6.0	35.0	35.0	35.0	9.0 <i>%</i> 6.0	49.5%		27.0
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	2.0	2.0		2.0	2.0	1.0	2.0	2.0	2.0	1.0	2.0		1.0
Lost Time Adjust (s)	2.0	0.0		2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1.0
Total Lost Time (s)		5.0			5.0	4.0	5.0	5.0	5.0	4.0	5.0		
Lead/Lag						Lead	Lag	Lag	Lag	Lead			
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min		None
Walk Time (s)													7.0
Flash Dont Walk (s)													20.0
Pedestrian Calls (#/hr)		00 5			00.5	24.0	20.4	20.4	20.4	47.7	40.0		10
Act Effct Green (s) Actuated g/C Ratio		20.5 0.25			20.5 0.25	31.2 0.38	36.4 0.44	36.4 0.44	36.4 0.44	47.7 0.58	46.6 0.57		
v/c Ratio		1.00			1.30	0.38	0.44	0.44	0.44	1.03	0.57		
Control Delay		90.6			187.3	8.2	19.2	31.0	8.1	82.3	19.8		
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay		90.6			187.3	8.2	19.2	31.0	8.1	82.3	19.8		
LOS		F			F	А	В	С	А	F	В		
Approach Delay		90.6			115.9			26.3			37.2		
Approach LOS		F			F			С			D		
Queue Length 50th (ft)		120			~206	26	8	239	14	56	199		
Queue Length 95th (ft)		#421			#566	68	34	#569	58	#354	#696		
Internal Link Dist (ft)		356			609	100	75	147	100	100	380		
Turn Bay Length (ft) Base Capacity (vph)		267			274	684	261	914	120 857	100 270	1134		
Starvation Cap Reductn		207			0	004	201	914	007	2/0	0		
Spillback Cap Reductn		0			0	0	0	0	0	0	0		
Storage Cap Reductn		0			0	0	0	0	0	0	0		
Reduced v/c Ratio		1.00			1.30	0.34	0.12	0.71	0.18	1.03	0.64		
Intersection Summary	Other												
Vatural Cycle: 150													
Control Type: Actuated-Uncod	ordinated												
Maximum v/c Ratio: 1.30													
ntersection Signal Delay: 56.					tersection								
Intersection Capacity Utilization	on 93.9%			IC	U Level c	of Service F	-						
Analysis Period (min) 15			infinit-										
 Volume exceeds capacity, Queue shown is maximum 	, queue is the	eoretically	intinite.										
Queue shown is maximum 95th percentile volume exit			may he lo	nger									
Queue shown is maximum			may De 10	ngei.									
Splits and Phases: 3: Wash	nington Stree	t & Broad	Street										
									•	Ø4			.
₩ _{Ø1} 40 s	2									▼ Ø4			(五○)
40 S									25	3			515

Ø1	Ø2	₩ Ø4	* B ø9
10 s	40 s	25 s	31 s
Ø6		28	
55 s		25 s	

	٦	-	\mathbf{r}	1	+	•	1	Ť	1	1	↓	-				
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø4	Ø7	Ø9	
ne Configurations		4			र्भ	1	٦		1	٦	4Î					
affic Volume (vph)	174	146	24	99	172	346	15	492	69	182	421	50				
ture Volume (vph)	174	146	24	99	172	346	15	492	69	182	421	50				
al Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
orage Length (ft)	0		0	0		100	75		120	100		0				
orage Lanes	0		0	0		1	1		1	1		0				
per Length (ft)	25			25			25			25						
ne Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Desta sta d		0.991			0.000	0.850	0.050		0.850	0.050	0.984					
Protected	0	0.975	0	0	0.982	1500	0.950 1805	1770	1504	0.950	1711	0				
td. Flow (prot) Permitted	0	1760 0.690	0	U	1859 0.745	1568	0.395	1776	1524	1656 0.154	1741	U				
td. Flow (perm)	0	1246	0	0	1410	1568	750	1776	1524	268	1741	0				
aht Turn on Red	0	1240	Yes	0	1410	Yes	750	1770	Yes	200	1/41	Yes				
itd. Flow (RTOR)		3	163			274			131		6	163				
k Speed (mph)		30			30	214		30	101		30					
k Distance (ft)		436			689			227			460					
avel Time (s)		9.9			15.7			5.2			10.5					
ak Hour Factor	0.83	0.83	0.83	0.89	0.89	0.89	0.91	0.91	0.91	0.92	0.92	0.92				
avy Vehicles (%)	6%	2%	6%	1%	0%	3%	0%	7%	6%	9%	8%	2%				
j. Flow (vph)	210	176	29	111	193	389	16	541	76	198	458	54				
ared Lane Traffic (%)	2.0					500	.5	5				0.				
ne Group Flow (vph)	0	415	0	0	304	389	16	541	76	198	512	0				
rn Type	Perm	NA	Ŭ	Perm	NA	pm+ov	Perm	NA	Prot	pm+pt	NA	Ŭ				
otected Phases		8			47	1		2	2	1	6		4	7	9	
ermitted Phases	8	-		47		47	2	_		6						
etector Phase	8	8		47	47	1	2	2	2	1	6					
vitch Phase		-					_	_								
nimum Initial (s)	6.0	6.0				6.0	10.0	10.0	10.0	6.0	10.0		6.0	5.0	1.0	
inimum Split (s)	11.0	11.0				10.0	15.0	15.0	15.0	10.0	15.0		11.0	10.0	31.0	
otal Split (s)	25.0	25.0				10.0	41.0	41.0	41.0	10.0	55.0		25.0	14.0	31.0	
tal Split (%)	20.0%	20.0%				8.0%	32.8%	32.8%	32.8%	8.0%	44.0%		20%	11%	25%	
aximum Green (s)	20.0	20.0				6.0	36.0	36.0	36.0	6.0	50.0		20.0	9.0	27.0	
llow Time (s)	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
-Red Time (s)	2.0	2.0				1.0	2.0	2.0	2.0	1.0	2.0		2.0	2.0	1.0	
st Time Adjust (s)		0.0				0.0	0.0	0.0	0.0	0.0	0.0					
otal Lost Time (s)		5.0				4.0	5.0	5.0	5.0	4.0	5.0					
ad/Lag	Lag	Lag				Lead	Lag	Lag	Lag	Lead				Lead		
ad-Lag Optimize?	Yes	Yes				Yes	Yes	Yes	Yes	Yes				Yes		
ehicle Extension (s)	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
ecall Mode	None	None				None	Min	Min	Min	None	Min		None	None	None	
alk Time (s)															7.0	
ash Dont Walk (s)															20.0	
edestrian Calls (#/hr)															9	
t Effct Green (s)		20.4			34.8	45.4	35.0	35.0	35.0	46.2	45.2					
ctuated g/C Ratio		0.21			0.37	0.48	0.37	0.37	0.37	0.49	0.48					
c Ratio		1.54			0.59	0.44	0.06	0.83	0.12	0.90	0.62					
ontrol Delay		287.6			33.3	6.8	23.8	40.7	0.8	61.3	24.0					
ueue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0					
tal Delay		287.6			33.3	6.8	23.8	40.7	0.8	61.3	24.0					
)S		F			С	A	С	D	A	E	С					
proach Delay		287.6			18.4			35.5			34.4					
proach LOS		F			В			D			С					
ueue Length 50th (ft)		~331			135	34	5	259	0	58	189					
eue Length 95th (ft)		#667			#364	99	27	#650	4	#276	481					
ernal Link Dist (ft)		356			609	400		147	400	400	380					
rn Bay Length (ft)		070			F40	100	75	705	120	100	040					
ise Capacity (vph)		270			516	893	323	765	731	220	940					
arvation Cap Reductn		0			0	0	0	0	0	0	0					
illback Cap Reductn		0			0	0	0	0	0	0	0					
orage Cap Reductn educed v/c Ratio		0 1.54			0 0.59	0 0.44	0 0.05	0 0.71	0	0 0.90	0 0.54					
duced v/c Ralio		1.94			0.59	0.44	0.05	0.71	0.10	0.90	0.54					
ersection Summary																
ea Type:	Other															
cle Length: 125																
tuated Cycle Length: 94.9)															
tural Cycle: 150																
ntrol Type: Actuated-Unc	oordinated															
aximum v/c Ratio: 1.54																
ersection Signal Delay: 73					tersection											
tersection Capacity Utilizat					U Level o											
nalysis Period (min) 15																
Volume exceeds capacit	ty, queue is th	eoretically	infinite.													
Queue shown is maximum																
95th percentile volume e			may be lo	nger.												
Queue shown is maximum																
ts and Phases: 3: Was	shington Stree	et & Broad	Street													
E									-							

Ø1	▲‡ _{Ø2}	♦ Ø4	∦ k _{Ø9}
10 s	41 s	25 s	31 s
Ø6		★ Ø7	
55 s		14 s 25 s	

Synchro 11	
Lanes, Volumes,	Timings

	٦	-	\mathbf{i}	1	+	•	1	Ť	1	1	↓	∢				
ne Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø4	Ø7	Ø9	
e Configurations		\$			र्स	1	٦	1	1	٦	4Î					
ffic Volume (vph)	45	183	35	167	187	237	29	574	133	299	711	66				
ure Volume (vph)	45	183	35	167	187	237	29	574	133	299	711	66				
al Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
orage Length (ft)	0		0	0		100	75		120	100		0				
orage Lanes	0		0	0		1	1		1	1		0				
per Length (ft)	25	1.00	4.00	25	4.00	4.00	25	4.00	4.00	25	4.00	1.00				
ne Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Desta sta d		0.982			0.077	0.850	0.050		0.850	0.050	0.987					
Protected	0	0.992	0	0	0.977	1660	0.950	1007	1615	0.950	1900	0				
td. Flow (prot)	0	1851 0.864	0	0	1820	1568	1805 0.128	1827	1615	1787 0.090	1809	0				
Permitted	0	1612	0	0	0.386 719	1568	243	1827	1615	169	1809	0				
td. Flow (perm) aht Turn on Red	0	1012	Yes	U	719	Yes	243	1027	Yes	109	1009	Yes				
td. Flow (RTOR)		5	165			143			131		4	165				
ik Speed (mph)		30			30	145		30	131		30					
k Distance (ft)		436			689			227			460					
avel Time (s)		9.9			15.7			5.2			10.5					
ak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.80	0.80	0.80	0.98	0.98	0.98				
avy Vehicles (%)	0%	0%	0%	2%	2%	3%	0%	4%	0%	1%	4%	0%				
j. Flow (vph)	49	201	38	180	201	255	36	718	166	305	726	67				
ared Lane Traffic (%)																
ne Group Flow (vph)	0	288	0	0	381	255	36	718	166	305	793	0				
m Type	Perm	NA		Perm	NA	pm+ov	Perm	NA	Prot	pm+pt	NA					
otected Phases		8			47	1		2	2	1	6		4	7	9	
rmitted Phases	8			47		47	2			6						
etector Phase	8	8		47	47	1	2	2	2	1	6					
vitch Phase																
nimum Initial (s)	6.0	6.0				6.0	10.0	10.0	10.0	6.0	10.0		6.0	6.0	1.0	
nimum Split (s)	11.0	11.0				10.0	15.0	15.0	15.0	10.0	15.0		11.0	11.0	31.0	
tal Split (s)	25.0	25.0				10.0	40.0	40.0	40.0	10.0	55.0		25.0	14.0	31.0	
otal Split (%)	20.0%	20.0%				8.0%	32.0%	32.0%	32.0%	8.0%	44.0%		20%	11%	25%	
aximum Green (s)	20.0	20.0				6.0	35.0	35.0	35.0	6.0	50.0		20.0	9.0	27.0	
llow Time (s)	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
-Red Time (s)	2.0	2.0				1.0	2.0	2.0	2.0	1.0	2.0		2.0	2.0	1.0	
st Time Adjust (s)		0.0				0.0	0.0	0.0	0.0	0.0	0.0					
tal Lost Time (s)		5.0				4.0	5.0	5.0	5.0	4.0	5.0					
ad/Lag	Lag	Lag				Lead	Lag	Lag	Lag	Lead				Lead		
ad-Lag Optimize?	Yes	Yes				Yes	Yes	Yes	Yes	Yes				Yes		
hicle Extension (s)	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
ecall Mode	None	None				None	Min	Min	Min	None	Min		None	None	None	
alk Time (s)															7.0	
ash Dont Walk (s)															20.0	
edestrian Calls (#/hr)		00.0				44.0	10.5	10 5	10.5	54.7	50 7				10	
ct Effct Green (s)		20.3 0.20			34.4 0.34	44.9 0.45	40.5	40.5	40.5 0.40	51.7	50.7					
tuated g/C Ratio							0.40	0.40		0.52	0.51					
c Ratio ontrol Delay		0.88 66.2			1.54 290.7	0.33 8.1	0.37 39.0	0.97 58.1	0.23 7.7	1.66 337.7	0.87 34.9					
ueue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0					
tal Delay		66.2			290.7	8.1	39.0	58.1	7.7	337.7	34.9					
IS State		E			230.7 F	A	D	50.1 E	A	557.7 F	C					
proach Delay		66.2			177.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U	48.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		119.0					
proach LOS		E			F			-10.0 D			F					
ueue Length 50th (ft)		163			~314	36	14	394	12	~210	371					
ieue Length 95th (ft)		#442			#673	76	55	#793	54	#526	#970					
ernal Link Dist (ft)		356			609			147			380					
rn Bay Length (ft)						100	75		120	100						
ise Capacity (vph)		329			247	782	98	738	731	184	916					
arvation Cap Reductn		0			0	0	0	0	0	0	0					
illback Cap Reductn		0			0	0	0	0	0	0	0					
orage Cap Reductn		0			0	0	0	0	0	0	0					
duced v/c Ratio		0.88			1.54	0.33	0.37	0.97	0.23	1.66	0.87					
ersection Summary ea Type:	Other															
cle Length: 125	Other															
	2															
tuated Cycle Length: 100. tural Cycle: 150	2															
ntrol Type: Actuated-Unco	ordinated															
iximum v/c Ratio: 1.66	orundleu															
ersection Signal Delay: 10	14.3			In	tersection	LOS F										
ersection Capacity Utilizat					U Level of											
ersection Capacity Utilizat alysis Period (min) 15	1011 33.0%			IC	O LEVEL O	SELVICE										
Volume exceeds capacity	v aueue ie th	enretically	infinite													
Queue shown is maximur	n after two ov	cles														
95th percentile volume e			may he lo	nger												
Queue shown is maximur																
guodo snown is maximul	n antor two Cy	0.00.														
ts and Phases: 3: Was	shinaton Stree	et & Broad	Street													
C- ∠								-	-							

opilio and i naboo. 0. Wabilington barbor a broad broad babbr		
\$ø₁ \$ ø₂	♦ Ø4	∦\$ @9
10 s 40 s	25 s	31 s
▼ Ø6	₹ _{Ø7} ▲ _{Ø8}	
55 s	14 s 25 s	

	٦	-	\mathbf{i}	1	-	×	1	Ť	~	1	ţ	1				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø4	Ø7	Ø9	
Lane Configurations		4			4 172	1	۲.	^	1	۲.	f,		2.		~	
Traffic Volume (vph)	175	147	28	99		346	17	492	69	182	421	52				
Future Volume (vph)	175 1900	147 1900	28 1900	99 1900	172 1900	346 1900	17 1900	492 1900	69 1900	182 1900	421 1900	52 1900				
Ideal Flow (vphpl) Storage Length (ft)	1900	1900	1900	1900	1900	1900	75	1900	1900	1900	1900	1900				
Storage Lanes	0		0	0		1	1		1	1		0				
Taper Length (ft)	25			25			25			25						
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Frt Flt Protected		0.989 0.976			0.982	0.850	0.950		0.850	0.950	0.983					
Satd. Flow (prot)	0	1758	0	0	1859	1568	1805	1776	1524	1656	1740	0				
Flt Permitted		0.692			0.741		0.391			0.154						
Satd. Flow (perm)	0	1246	0	0	1403	1568	743	1776	1524	268	1740	0				
Right Turn on Red		2	Yes			Yes			Yes		c	Yes				
Satd. Flow (RTOR) Link Speed (mph)		3 30			30	274		30	131		6 30					
Link Distance (ft)		436			689			227			460					
Travel Time (s)		9.9			15.7			5.2			10.5					
Peak Hour Factor	0.83	0.83	0.83	0.89	0.89	0.89	0.91	0.91	0.91	0.92	0.92	0.92				
Heavy Vehicles (%)	6%	2%	6%	1%	0%	3%	0%	7%	6%	9%	8%	2%				
Adj. Flow (vph) Shared Lane Traffic (%)	211	177	34	111	193	389	19	541	76	198	458	57				
Lane Group Flow (vph)	0	422	0	0	304	389	19	541	76	198	515	0				
Turn Type	Perm	NA	-	Perm	NA	pm+ov	Perm	NA	Prot	pm+pt	NA					
Protected Phases		8			47	. 1		2	2	1	6		4	7	9	
Permitted Phases	8	_		47		47	2	~	_	6	^					
Detector Phase Switch Phase	8	8		47	47	1	2	2	2	1	6					
Minimum Initial (s)	6.0	6.0				6.0	10.0	10.0	10.0	6.0	10.0		6.0	5.0	1.0	
Minimum Split (s)	11.0	11.0				10.0	15.0	15.0	15.0	10.0	15.0		11.0	10.0	31.0	
Total Split (s)	25.0	25.0				10.0	41.0	41.0	41.0	10.0	55.0		25.0	14.0	31.0	
Total Split (%)	20.0%	20.0%				8.0%	32.8%	32.8%	32.8%	8.0%	44.0%		20%	11%	25%	
Maximum Green (s)	20.0	20.0				6.0	36.0	36.0	36.0	6.0	50.0		20.0	9.0	27.0	
Yellow Time (s) All-Red Time (s)	3.0 2.0	3.0 2.0				3.0 1.0	3.0 2.0	3.0 2.0	3.0 2.0	3.0 1.0	3.0 2.0		3.0 2.0	3.0 2.0	3.0 1.0	
Lost Time Adjust (s)	2.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0		2.0	2.0	1.0	
Total Lost Time (s)		5.0				4.0	5.0	5.0	5.0	4.0	5.0					
Lead/Lag	Lag	Lag				Lead	Lag	Lag	Lag	Lead				Lead		
Lead-Lag Optimize?	Yes	Yes 3.0				Yes 3.0	Yes	Yes	Yes	Yes	2.0		2.0	Yes 3.0	2.0	
Vehicle Extension (s) Recall Mode	3.0 None	None				None	3.0 Min	3.0 Min	3.0 Min	3.0 None	3.0 Min		3.0 None	None	3.0 None	
Walk Time (s)	None	None				None	IVIII I			None	WIIII		None	None	7.0	
Flash Dont Walk (s)															20.0	
Pedestrian Calls (#/hr)															9	
Act Effct Green (s) Actuated g/C Ratio		20.4 0.21			34.8 0.37	45.4 0.48	35.0 0.37	35.0 0.37	35.0 0.37	46.2 0.49	45.2 0.48					
v/c Ratio		1.56			0.57	0.40	0.07	0.83	0.37	0.49	0.48					
Control Delay		298.4			33.4	6.8	23.9	40.7	0.8	61.3	24.1					
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Total Delay		298.4			33.4	6.8	23.9	40.7	0.8	61.3	24.1					
LOS Approach Delay		F 298.4			C 18.5	A	С	D 35.5	A	E	C 34.4					
Approach LOS		230.4 F			10.5 B			55.5 D			04.4 C					
Queue Length 50th (ft)		~340			135	34	7	259	0	58	190					
Queue Length 95th (ft)		#677			#365	99	30	#650	4	#276	485					
Internal Link Dist (ft)		356			609	400	70	147	400	400	380					
Turn Bay Length (ft) Base Capacity (vph)		270			514	100 893	75 320	765	120 731	100 220	940					
Starvation Cap Reductn		0			0	0	0	0	0	0	0					
Spillback Cap Reductn		0			0	0	0	0	0	0	0					
Storage Cap Reductn		0			0	0	0	0	0	0	0					
Reduced v/c Ratio		1.56			0.59	0.44	0.06	0.71	0.10	0.90	0.55					
Intersection Summary																
Area Type:	Other															
Cycle Length: 125																
Actuated Cycle Length: 94.9 Natural Cycle: 150																
Control Type: Actuated-Unco	oordinated															
Maximum v/c Ratio: 1.56																
Intersection Signal Delay: 75					tersection		_									
Intersection Capacity Utilizat	ion 85.5%			IC	U Level c	of Service I	:									
Analysis Period (min) 15 ~ Volume exceeds capacity	v. queue is th	eoretically	infinite													
Queue shown is maximur																
# 95th percentile volume e	xceeds capa	city, queue	may be lo	nger.												
Queue shown is maximur	m after two cy	cles.														
Colito and Decession 2: 14/	hingto- Ct	+ 0 D	Stract													
Splits and Phases: 3: Was	Sundin Stie	el & Bload	Slieet					-								

	∲ Ø4	Å Åø9
10 s 41 s	25 s	31 s
▶ Ø6	₹ _{Ø7} ▲ _{Ø8}	
55 s	14 s 25 s	

	٦	-	\rightarrow	1	+	•	1	1	1	1	↓	-				
ne Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø4	Ø7	Ø9	
ne Configurations		4			स्	1	5	1	1	٦	4					
ffic Volume (vph)	48	183	41	167	187	237	34	574	133	299	711	70				
ure Volume (vph)	48	183	41	167	187	237	34	574	133	299	711	70				
al Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
rage Length (ft)	0		0	0		100	75		120	100		0				
prage Lanes	0		0	0		1	1		1	1		0				
per Length (ft)	25			25			25			25						
ne Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
		0.980				0.850			0.850		0.987					
Protected		0.991			0.977	0.000	0.950		0.000	0.950	0.007					
td. Flow (prot)	0	1845	0	0	1820	1568	1805	1827	1615	1787	1809	0				
Permitted	Ū	0.857	U	Ŭ	0.385	1000	0.124	1021	1010	0.090	1000	Ŭ				
td. Flow (perm)	0	1596	0	0	717	1568	236	1827	1615	169	1809	0				
aht Turn on Red	0	1550	Yes	0	111	Yes	200	1027	Yes	105	1005	Yes				
td. Flow (RTOR)		6	165			143			131		5	165				
k Speed (mph)		30			30	145		30	131		30					
		436			689			227			460					
k Distance (ft)																
avel Time (s)		9.9			15.7			5.2			10.5					
ak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.80	0.80	0.80	0.98	0.98	0.98				
avy Vehicles (%)	0%	0%	0%	2%	2%	3%	0%	4%	0%	1%	4%	0%				
j. Flow (vph)	53	201	45	180	201	255	43	718	166	305	726	71				
ared Lane Traffic (%)																
ne Group Flow (vph)	0	299	0	0	381	255	43	718	166	305	797	0				
rn Type	Perm	NA		Perm	NA	pm+ov	Perm	NA	Prot	pm+pt	NA					
otected Phases		8			47	1		2	2	1	6		4	7	9	
rmitted Phases	8			47		47	2			6						
etector Phase	8	8		47	47	1	2	2	2	1	6					
vitch Phase																
nimum Initial (s)	6.0	6.0				6.0	10.0	10.0	10.0	6.0	10.0		6.0	6.0	1.0	
nimum Split (s)	11.0	11.0				10.0	15.0	15.0	15.0	10.0	15.0		11.0	11.0	31.0	
tal Split (s)	25.0	25.0				10.0	40.0	40.0	40.0	10.0	55.0		25.0	14.0	31.0	
tal Split (%)	20.0%	20.0%				8.0%	32.0%	32.0%	32.0%	8.0%	44.0%		20%	11%	25%	
iximum Green (s)	20.0	20.0				6.0	35.0	35.0	35.0	6.0	50.0		20.0	9.0	27.0	
llow Time (s)	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
	2.0					1.0	2.0	2.0	2.0	1.0	2.0		2.0	2.0	1.0	
-Red Time (s)	2.0	2.0 0.0				0.0	2.0		2.0		2.0		2.0	2.0	1.0	
st Time Adjust (s)								0.0		0.0						
tal Lost Time (s)	1.44	5.0				4.0	5.0	5.0	5.0	4.0	5.0			Level		
ad/Lag	Lag	Lag				Lead	Lag	Lag	Lag	Lead				Lead		
ad-Lag Optimize?	Yes	Yes				Yes	Yes	Yes	Yes	Yes				Yes		
hicle Extension (s)	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
ecall Mode	None	None				None	Min	Min	Min	None	Min		None	None	None	
alk Time (s)															7.0	
ash Dont Walk (s)															20.0	
destrian Calls (#/hr)															10	
t Effct Green (s)		20.3			34.4	44.9	40.5	40.5	40.5	51.7	50.7					
tuated g/C Ratio		0.20			0.34	0.45	0.40	0.40	0.40	0.52	0.51					
Ratio		0.91			1.55	0.33	0.45	0.97	0.23	1.66	0.87					
ontrol Delay		72.3			292.9	8.1	44.8	58.1	7.7	337.7	35.2					
ieue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0					
tal Delay		72.3			292.9	8.1	44.8	58.1	7.7	337.7	35.2					
S		E			F	А	D	E	А	F	D					
proach Delay		72.3			178.7			48.5			118.9					
proach LOS		E			F			D			F					
eue Length 50th (ft)		170			~314	36	18	394	12	~210	374					
ieue Length 95th (ft)		#465			#673	76	#73	#793	54	#526	#975					
ernal Link Dist (ft)		356			609			147			380					
rn Bay Length (ft)						100	75		120	100						
se Capacity (vph)		327			246	782	95	738	731	184	916					
arvation Cap Reductn		0			0	0	0	0	0	0	0					
illback Cap Reductn		0			0	0	0	0	0	0	0					
prage Cap Reductn		0			0	0	0	0	0	0	0					
duced v/c Ratio		0.91			1.55	0.33	0.45	0.97	0.23	1.66	0.87					
ersection Summary		0.91			1.00	0.33	0.45	0.97	0.23	1.00	0.07					
a Type:	Other															
cle Length: 125																
tuated Cycle Length: 100.	2															
tural Cycle: 150																
ntrol Type: Actuated-Unco	ordinated															
ximum v/c Ratio: 1.66																
ersection Signal Delay: 10	5.0			In	tersection	LOS' F										
ersection Capacity Utilizati						f Service (2									
	1011 100.5%			IC.	O LEVELO	I SELVICE (J									
alysis Period (min) 15			infinit-													
Volume exceeds capacity			intinite.													
Queue shown is maximum																
95th percentile volume ex			may be lo	nger.												
Queue shown is maximur	n after two cy	cles.														
s and Phases: 3: Was	shington Stree	et & Broad	Street													
-																

\$ ₀₁	◆ _{Ø4}	∦\$ ø9
10 s 40 s	25 s	31 s
₩ø6		
55 s	14 s 25 s	

11 Beacon Street, Suite 1010 Boston, Massachusetts 02108 617.482.7080

www.hshassoc.com