
Stormwater Analysis & Report For Residential Definitive Subdivision at Massapoag Street Weymouth, MA

> April, 2020 Revised November 19, 2021 Revised January 11, 2022

Prepared for: Weathervane Massapoag, LLC. 190 Old Derby Street, Suite 311 Hingham, MA 02043

Prepared by: Crocker Design Group, LLC 2 Sharp Street, Unit A Hingham, MA 02043

TABLE OF CONTENTS

1. NARRATIVE

- 1.1 EXECUTIVE SUMMARY
- 1.2 OBJECTIVE OF CALCULATIONS
- 1.3 METHODOLOGY
- 1.4 SITE HYDROLOGY
- 1.5 STORMWATER MANAGEMENT
- 1.6 BEST MANAGEMENT PRACTICES
- 1.7 PIPE SIZING
- 1.8 CONCLUSION
- 1.9 FIGURES

FIG 1 SITE LOCUS USGS MAP FIG 2 SITE LOCUS ORTHOGRAPHIC MAP FIG 3 NHESP HABITAT MAP FIG 4 FEMA FLOODPLAIN MAP FIG 5 MASSDEP WETLANDS MAP

2. STORMWATER CHECKLIST

3. STORMWATER HYDROLOGY MODEL

- 3.1 EXISTING HYDROLOGY
- 3.2 PROPOSED HYDROLOGY

4. STORMWATER MANAGEMENT CALCULATIONS

- 4.1 RECHARGE CALCULATIONS
- 4.2 DRAWDOWN CALCULATIONS
- 4.3 WATER QUALITY CALCULATIONS
- 4.4 RIP RAP SPLASH PAD CALCULATIONS
- 4.5 TSS REMOVAL

5. LONG-TERM POLLUTION PREVENTION AND OPERATION & MAINTENANCE PLAN

OPERATION & MAINTENANCE NARRATIVE MAINTENANCE MATRIX MANUFACTURER'S RECOMMENDATIONS

6. SOILS TESTING DATA

- 6.1 TEST PIT LOGS DATED 12/28/2021
- 6.2 TEST PIT LOGS 2018

7. HYDRAULIC PIPE ANALYSIS & SIZING

- 8. PROJECT PLANS (Under Separate Cover)
- 9. Draft NPDES SWPPP (To be Prepared Prior to Construction)

SECTION 1 - NARRATIVE

1.1 EXECUTIVE SUMMARY

In accordance with the provisions of the Rules and Regulations of the Planning Board of Weymouth, Massachusetts Governing the Subdivision of Land, the Applicant, Weathervane Massapoag, LLC proposes to develop a residential subdivision consisting of seven (7) single family lots as an extension to the existing Massapoag Street, a private-way.

The site is bounded by existing residential properties to the east and south, woods and wetlands to the north and west. The site topography ranges from a high of approximately 206' in front of the existing house and then slopes down toward the existing wetlands along the north, west and south sides, to an approximate low elevation of 162 to the north, 167 to the west and 183 to the south and to Massapoag Street at 190 +/- to the east. The Braintree town line exists along the western edge of the property. The site is mostly wooded and includes an existing single-family residential house with existing driveway and shed. The extension of Massapoag Street, including the roundabout has been constructed along with utilities within the road right of way. Please refer to the Definitive Subdivision Plans revised 1/11/22.

The property consists of 5.4 +/- acres in total in Weymouth and approximately 0.08 acres in Braintree (note the Braintree land is not counted toward the required subdivision and/or zoning requirements in Weymouth). The property is Zoned Residence R-1 and is located within the Watershed Protection District. **The wetland to the north of the project is tributary to the Mill River which is and Outstanding Resource Water and a critical area under the MA DEP Stormwater Standards.** The site is entirely outside of the FEMA 100year floodplain and is not located within any NHESP Estimated or Priority Habitat areas. Please refer to Section 1.9 - Figures for the accompanying figures.

The proposed project consists of subdividing the property into seven (7) single-family residential parcels meeting the requirements of the Residence R-1 district and Watershed Protection District as well as the subdivision roadway extension and associated drainage and utility infrastructure. The project is considered a new development and has been designed to comply with the Massachusetts Stormwater Regulations. The Applicant is seeking several subdivision design waivers as you'll see on the plans and accompanying Planning Board Application submittal.

1.2 OBJECTIVE OF CALCULATIONS

The purpose of this stormwater analysis is to examine the stormwater runoff from the proposed site based upon the Massachusetts Department of Environmental Protection Stormwater Management Standards and the applicable provisions of the Town of Weymouth subdivision requirements.

The goal of the stormwater management system design on this project is to provide improved water quality, match/reduce post-development peak runoff rates below predevelopment peak flow rates, minimize total area of land disturbance needed, maximize the opportunities for recharge and infiltration, and protect the surrounding area from any potential flooding and/or environmental impacts associated with the unmitigated condition. The following stormwater hydrology calculations were performed using the 2year, 10-year, 25-year, and 100-year frequency, **NOAA-14 precipitation data** and were compared for both pre-development and post-development conditions.

1.3 METHODOLOGY

We utilized the latest version of Hydro CAD for the overall stormwater hydrology/routing analysis to assess and compare peak rates of runoff at the various discharge points from the subject property. We then utilized the Hydraflow Storm Sewers Extension Pack through AutoCAD Civil 3d to analyze the pipe design and to select appropriate pipe sizing.

Refer to Section 1.3 – Hydrocad Model, which includes the detailed print-out of the HydroCAD Model Reports for the 2, 10, 25 and 100-year storms as well as Section 7 – Hydraulic Pipe Analysis / Sizing, which includes the Hydraflow reports for the 10 and 100-year storms for pipe capacity analysis and sizing.

1.4 SITE HYDROLOGY

Existing Conditions

Please refer to the attached Existing Conditions Watershed Analysis Plan in Section 3 of this report. The property has been divided into several subcatchment areas based on the existing site topography and flow paths. These subcatchments then combine where appropriate from an analysis standpoint where they discharge toward wetland resource areas and the existing Massapoag Street right-of-way. Each subcatchment area has been analyzed and assigned an appropriate Curve Number to represent the existing vegetative cover and underlying soils conditions. Times of concentration have been computed and the extent of pervious vs. impervious cover computed. This data was then input into HydroCAD to determine peak rates of runoff at the various design points (identified as "Points of Analysis") which provide the locations for which to compare existing versus proposed conditions to document compliance that the peak rates have been reduced in the regulatory storm events as required. A Summary table is provided in the Hydrology Model Results and Conclusions Section below.

Proposed Conditions

Please refer to the attached Proposed Conditions Watershed Analysis Plan in Section 3 of this report. The proposed subdivision has been divided several subcatchment areas and

the stormwater underground infiltration chambers and their respective outlets have been modeled. Appropriate Times of Concentration and Curve Numbers have been assigned for each catchment area. A Summary table is provided in the Hydrology Model Results and Conclusions Section below.

Hydrology Model Results and Conclusions

The goal of the stormwater design for the project is to fully comply with the Massachusetts Stormwater Standards and the Town of Weymouth regulations. This analysis confirms that the stormwater system is receiving proper treatment and peak rates of runoff have been matched or reduced to below pre-development rates using stormwater Best Management Practices including deep sump hooded catch basins, grass conveyance swales, two (2) underground infiltration chamber systems. The underground infiltration systems proposed include the ADS Isolator Row treatment system. The underground infiltration systems, have been sized and designed to meet the required TSS removal, to infiltrate the required recharge and provide peak flow attenuation. The water quality (CDS) unit has been properly sized in accordance with MADEP guidance for water quality flows. The results of the pre- and post-development hydrology calculations provided in Section 3 are summarized in the following table:

Peak Rate Analysis							
Point of	2-Yr	10-Yr	25-Yr	100-Yr			
Analysis	(CFS)	(CFS)	(CFS)	(CFS)			
#1 Existing	0.00	0.01	0.06	0.39			
#1 Proposed	0.00	0.00	0.01	0.39			
#2 Existing	0.00	0.01	0.05	0.43			
#2 Proposed	0.00	0.01	0.05	0.30			
#3 Existing	0.00	0.05	0.16	0.48			
#3 Proposed	0.00	0.01	0.04	0.17			
#4 Existing	0.08	0.15	0.20	0.26			
#4 Proposed	0.00	0.00	0.00	0.00			

Point of	2-Yr	10-Yr	25-Yr	100-Yr
Analysis	(AcFt)	(AcFt)	(AcFt)	(AcFt)
#1 Existing	0.000	0.008	0.027	0.074
#1 Proposed	0.000	0.001	0.004	0.084
#2 Existing	0.000	0.006	0.030	0.095
#2 Proposed	0.00	0.006	0.017	0.084
#3 Existing	0.001	0.012	0.025	0.050
#3 Proposed	0.000	0.004	0.009	0.020
#4 Existing	0.006	0.011	0.015	0.020
#4 Proposed	0.000	0.000	0.000	0.000
Total Existing	0.007	0.037	0.097	0.239
Total Proposed	0.000	0.011	0.030	0.188

In all cases storm events, the proposed peak rates are less than or equal to the predevelopment peak rates. The project results in an overall decrease in stormwater volume discharge for all storm events. Collectively there is less volume discharging to the wetlands in the proposed condition compared to the existing.

As can be seen based on the above tables, the peak stormwater runoff rates **and volumes** generated by the development are the same or less in post development conditions versus the existing conditions in all cases. Refer to Section 3 for copies of the HydroCAD Analysis and pre and post development watershed plans.

1.5 STORMWATER MANAGEMENT

The following section describes each of the ten (10) Massachusetts Stormwater Management Standards and describes how the project complies with each.

<u>Standard 1: No New Untreated Discharges</u> – No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

All new stormwater system conveyances are treated prior to discharge. The drainage system has been designed to direct stormwater runoff from impervious areas through stormwater BMPs designed to capture, convey, treat, detain, recharge and infiltrate the runoff prior to discharge.

<u>Standard 2: Peak Rate Attenuation</u> – Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed predevelopment peak discharge rates.

The stormwater BMPs employed result in peak discharge rates not being exceeded from predevelopment conditions.

<u>Standard 3: Recharge</u> – Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The stormwater system has been designed to comply and exceed the minimum recharge volume requirements.

<u>Standard 4: Water Quality</u> – Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

The project utilizes deep sump hooded catch basins and ADS Isolator Row Underground Infiltration chambers to fully comply with the TSS requirements of 80% removal. The chambers are designed to treat the 1" water quality volume (WQV) for the impervious area captured on site due to the site being within a critical area. In addition, deep sump hooded catch basins are proposed. Calculations for water quality volume can be found in Section 4.3, and treatment train efficiency can be found in Section 4.4. A long-term Operation and Maintenance Manual for these systems can be found in Section 5.

<u>Standard 5: Land Uses with Higher Potential Pollutant Loads</u> – For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

The project is not considered a LUHPPL (Land Use with Higher Potential Pollutant Load).

<u>Standard 6: Critical Areas</u> – Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near

or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

The wetland to the north of the project is tributary to the Mill River which is and Outstanding Resource Water and a critical area under the MA DEP Stormwater Standards, therefore the project has been design to comply with all applicable Stormwater Standards and to treat 1-inch of water quality volume.

<u>Standard 7: Redevelopment and Other Projects Subject to the Standards only to the</u> <u>maximum extent practicable</u> – A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The project qualifies as a new development and has been designed to comply with the requirements as if it were entirely new development.

<u>Standard 8: Construction Period Pollution Prevention Plan and Erosion and</u> <u>Sedimentation Control</u> – A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

An Erosion and Sedimentation Controls Plan has been incorporated into the Site Plans.

<u>Standard 9: Operation and Maintenance Plan</u> – A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A long-term Operation and Maintenance Plan has been incorporated herein. See Section 5 of the Report.

<u>Standard 10: Prohibition of Illicit Discharges</u> – All illicit discharges to the stormwater management system are prohibited.

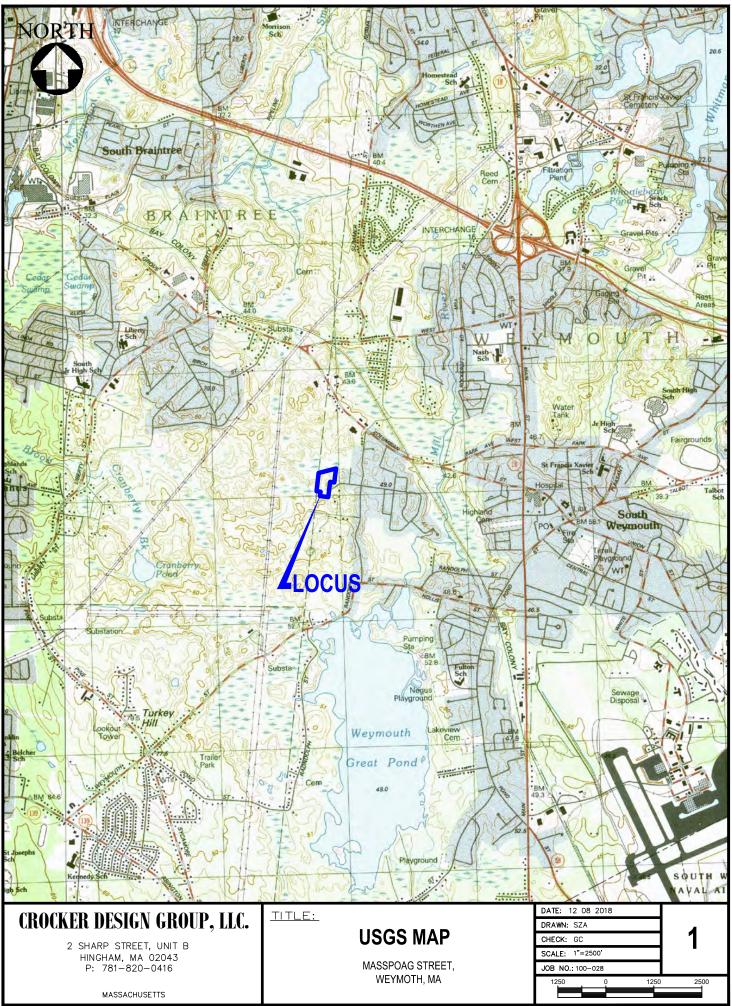
An Illicit Discharge Compliance Statement is included as required.

1.6 BEST MANAGEMENT PRACTICES (BMP'S)

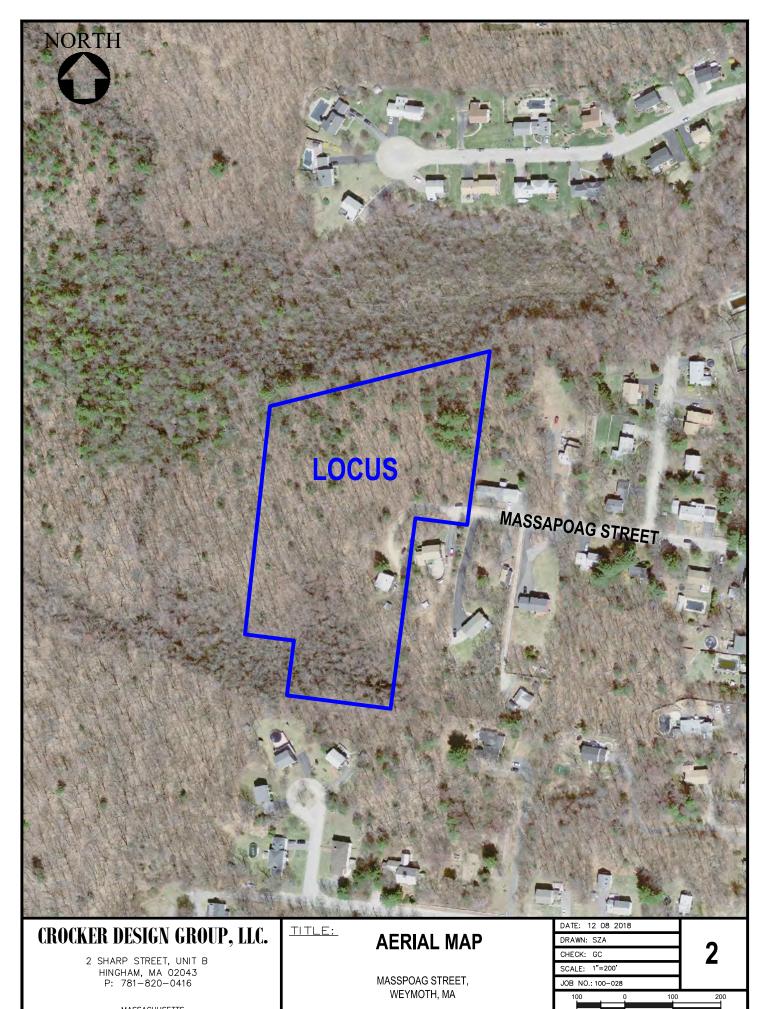
A system of deep sump hooded catch basins, and underground infiltration chambers will be used to treat stormwater runoff on the site. See Section 4.5: Total Suspended Solids (TSS) Calculations.

1.7 PIPE SIZING

Refer to Section 7 for the output results from the Hydraflow Sewer Storm Sewers Extension for AutoCAD Civil 3D. Hydraflow utilized the Rational Method. The tributary area for each inlet/subcatchment area has been computed along with pipe length, slope and friction coefficient. The Rational Method is then utilized to determine the hydraulic grade line. For design purposes, this approach was used to size the pipes such that the 10-year storm event is contained within the pipe. The 100-year storm was then checked to confirm the hydraulic grade line for the pipe network does not exceed the rim elevations of the drainage structures.

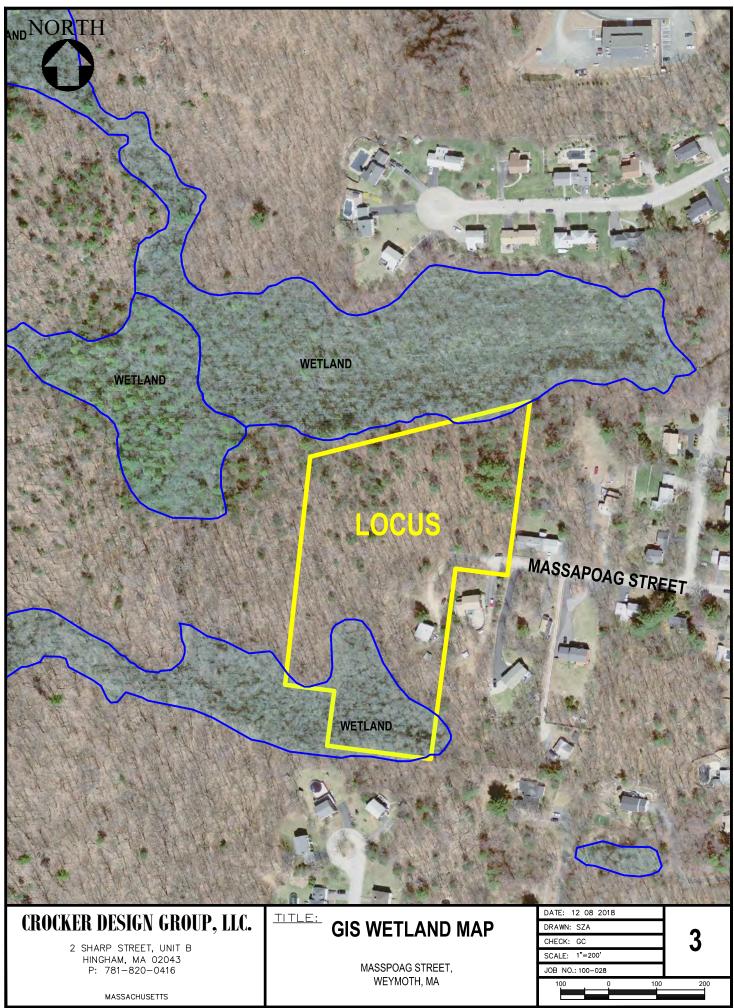

1.8 CONCLUSION

In conclusion, the project has been designed in accordance with the requirements of the MA Stormwater Management Regulations and in compliance with the Town of Weymouth Stormwater Management and Erosion Control By-Law.

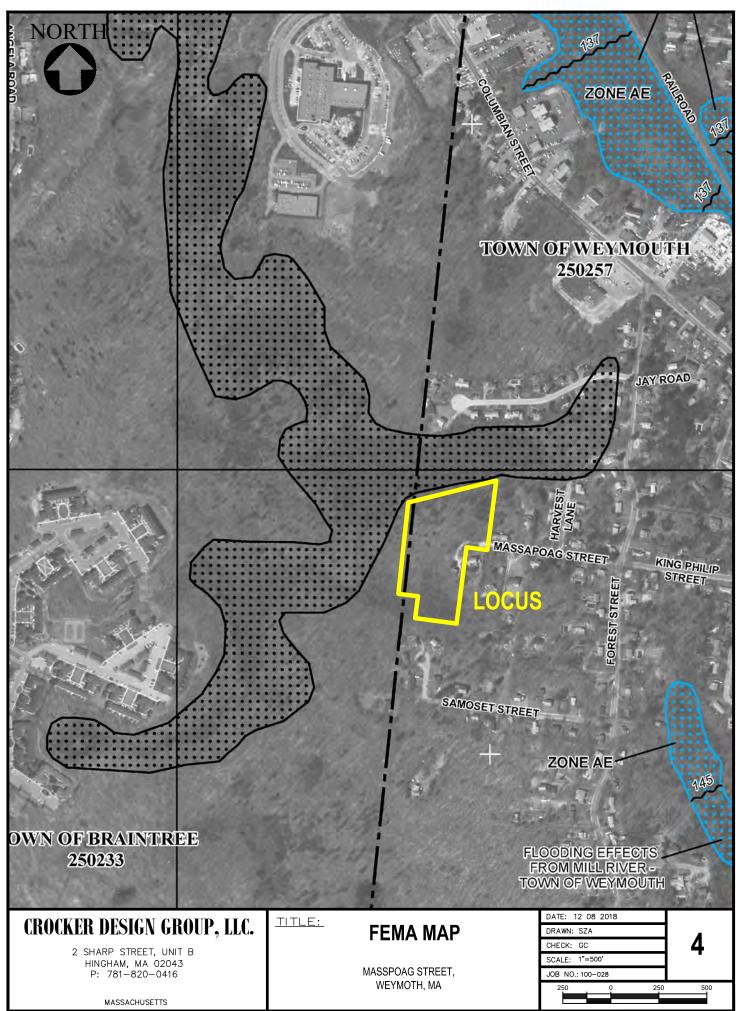

1.9 FIGURES

The following pages contain the following accompanying figures:

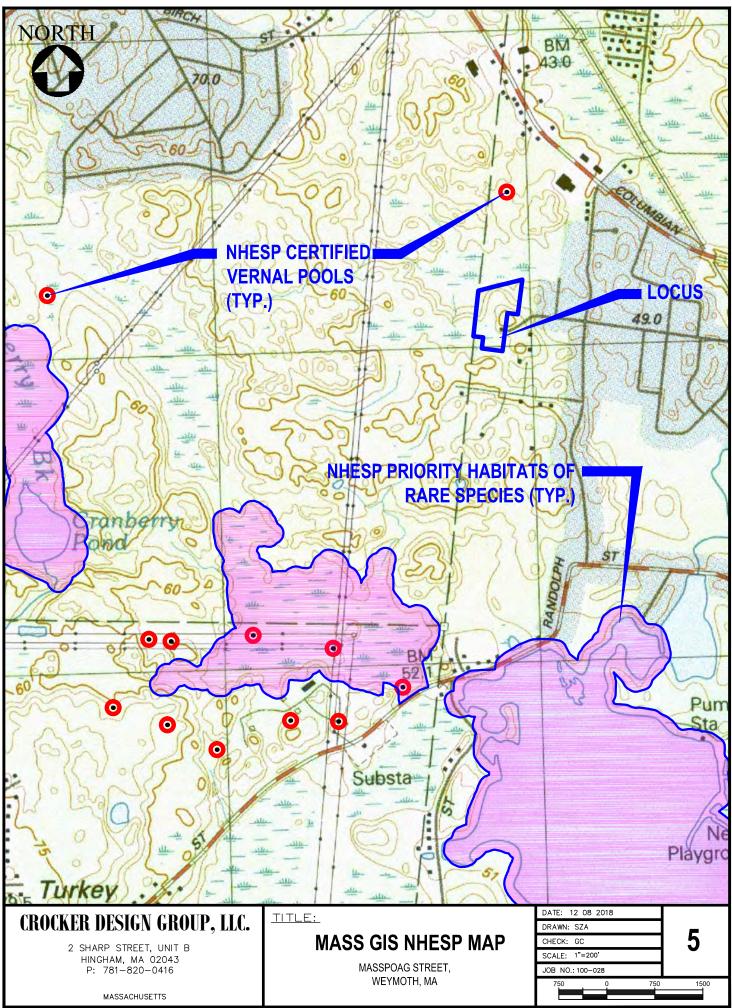
FIG 1 SITE LOCUS USGS MAP FIG 2 SITE LOCUS ORTHOGRAPHIC MAP FIG 3 NHESP HABITAT MAP FIG 4 FEMA FLOODPLAIN MAP FIG 5 MASSDEP WETLANDS MAP



C:\Users\alex\OneDrive\Projects\100-028 Massapaag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, USGS MAP.dwg, Layout1, Dec 08, 2018 16:24



MASSACHUSETTS


C:\Users\alex\OneDrive\Projects\100-028 Massapag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, AERIAL MAP.dwg, Layout1, Dec 08, 2018 15:35

C:\Users\alex\OneDrive\Projects\100-028 Masssapoag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, WETLAND.dwg, Layout1, Dec 08, 2018 16:41

C:\Users\alex\OneDrive\Projects\100-028 Massapaag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, FEMA MAP.dwg, Layout1, Dec 08, 2018 16:16

C:\Users\alex\OneDrive\Projects\100-028 Massapaag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, NHESP.dwg, Layout1, Dec 08, 2018 17:03

SECTION 2 – STORMWATER CHECKLIST

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

1/13/2022 Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\square	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🛛 Static	Simple Dynamic
----------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs	have been siz	zed to infiltrate	the Required	Recharge Volume.
-------------	---------------	---------------	-------------------	--------------	------------------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - $\hfill\square$ Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)
The BMP is sized (and calculations provided) based on:
\boxtimes The $\frac{1}{2}$ " or 1" Water Quality Volume or
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> <i>to</i> the discharge of stormwater to the post-construction stormwater BMPs.
The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
All exposure has been eliminated.
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
☐ The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited	Project
---------	---------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

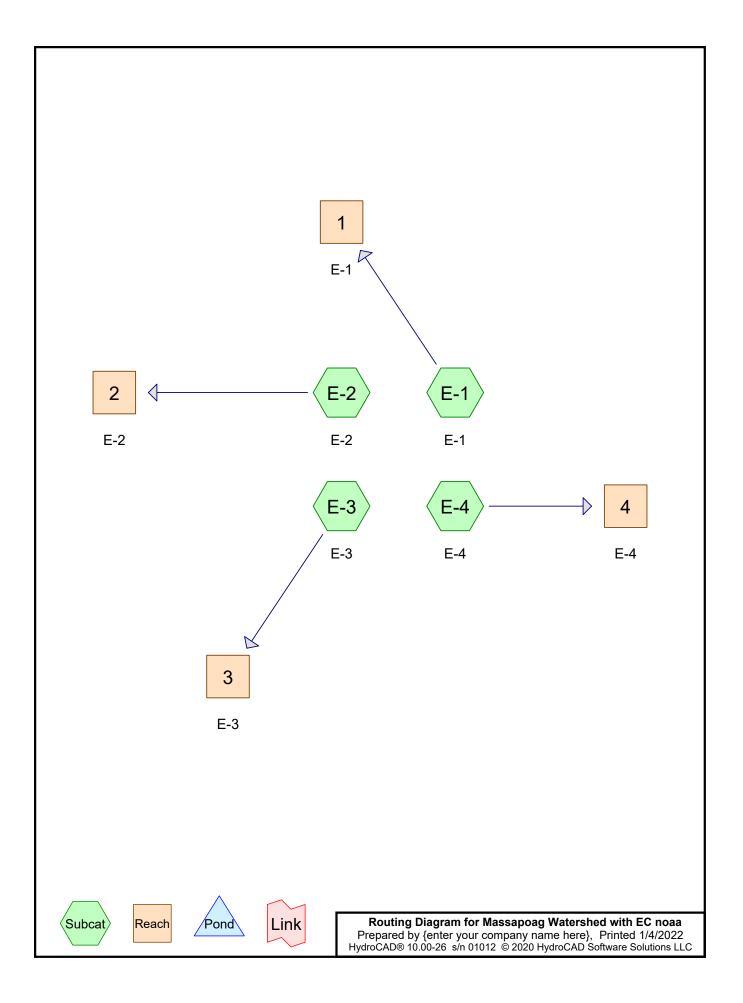
ILLICIT DISCHARGE COMPLIANCE STATEMENT

Standard 10: Massachusetts Stormwater Standards Handbook

Illicit discharges are defined as discharges into waters of the State or municipal separate stormwater system (MS4) that are not entirely comprised of stormwater. Exclusions for non-stormwater discharges into drainage systems include activities or facilities for firefighting, water line flushing, landscape irrigation, uncontaminated groundwater discharge, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, water used to clean residential buildings without detergents, water used for street washing, and flows from riparian habitats/wetlands. These exclusions are subject to change and are under the discretion of the local governing authority.

To the best of our knowledge and professional belief no illicit discharges to the stormwater system, surface waters, or wetland resource areas will remain on the site after construction. We will agree to implement a pollution prevention plan to prevent illicit discharges into the stormwater management system. The design of the site based on the plans entitled "DIVISION SUBDIVISION PLAN FOR MASSAPOAG STREET, WEYMOUTH, MA" prepared by Crocker Design Group, LLC, 2 Sharp Street, Unit A, Hingham, Massachusetts, show a separation and no direct connection between the stormwater management systems and the wastewater and/ or groundwater on the site. To the maximum extent practicable, the design prevents entry of illicit discharges into the stormwater management system.

Engineer's Name: Coche Crocher (please print)


Engineer's Signature:

Date: 1/11/2022

Company: Crocker Design Group, LLC.

SECTION 3 – STORMATER HYDROLOGY MODEL

3.1 EXISTING HYDROLOGY

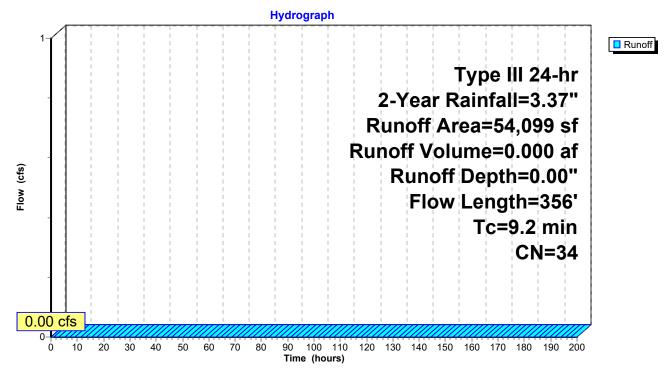
Massapoag Watershed with EC noaa Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

	Area	CN	Description	
_	(acres)		(subcatchment-numbers)	
	0.010	49	50-75% Grass cover, Fair, HSG A (E-4)	
	0.141	98	Paved parking, HSG A (E-1, E-2, E-3, E-4)	
	3.594	32	Woods/grass comb., Good, HSG A (E-1, E-2, E-3)	

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-1: E-1


0.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff = 0.00 cfs @

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

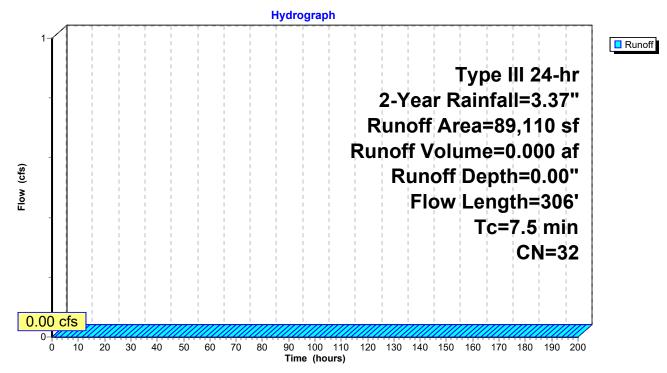
_	A	rea (sf)	CN I	Description				
-		52,183	32	Woods/gras	ss comb., G	Good, HSG A		
_		1,916	98	Paved park	ing, HSG A			
		54,099	34 Weighted Average					
		52,183	ę	96.46% Pei	vious Area			
		1,916	:	3.54% Impe	ervious Area	a		
	Тс	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.5	50	0.1000	0.13		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	2.7	306	0.1400	1.87		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	0.2	256	Total					

9.2 356 Total

Subcatchment E-1: E-1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-2: E-2

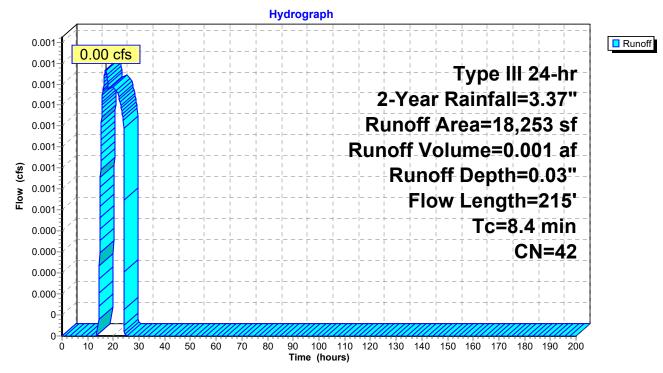

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

_	A	rea (sf)	CN [Description		
		88,738	32 \	Noods/gras	ss comb., G	Good, HSG A
		372	98 F	Paved park	ing, HSG A	
		89,110	32 \	Neighted A	verage	
		88,738	ę	99.58% Per	vious Area	
		372	().42% Impe	ervious Area	a
	Тс	Length	Slope	,	Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.9	50	0.2000	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.6	256	0.1100	1.66		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	75	206	Total			

7.5 306 Total

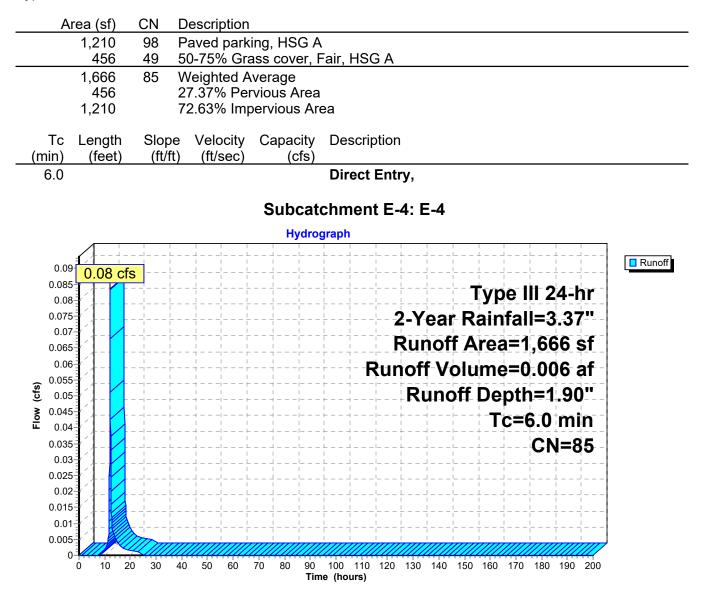
Subcatchment E-2: E-2


Summary for Subcatchment E-3: E-3

Runoff = 0.00 cfs @ 17.05 hrs, Volume= 0.001 af, Depth= 0.03"

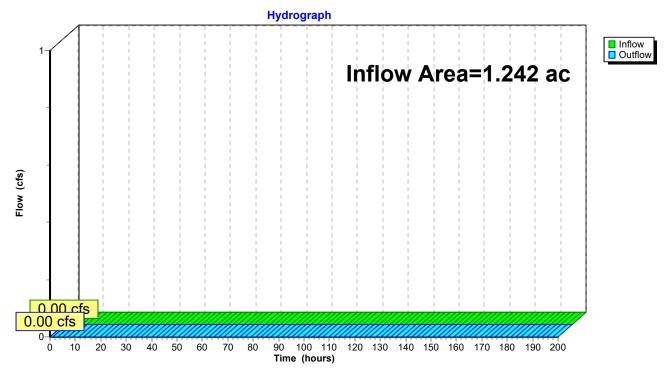
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

	Area (sf)	CN E	Description		
	15,616	32 V	Voods/gras	ss comb., G	Good, HSG A
	2,637	98 F	aved park	ing, HSG A	
	18,253	42 V	Veighted A	verage	
	15,616	8	5.55% Per	vious Area	
	2,637	1	4.45% Imp	pervious Are	ea
	c Length	Slope	Velocity	Capacity	Description
(mir	n) (feet)	(ft/ft)	(ft/sec)	(cfs)	
6.	2 50	0.1100	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.	2 165	0.0600	1.22		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
8.	4 215	Total			


Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

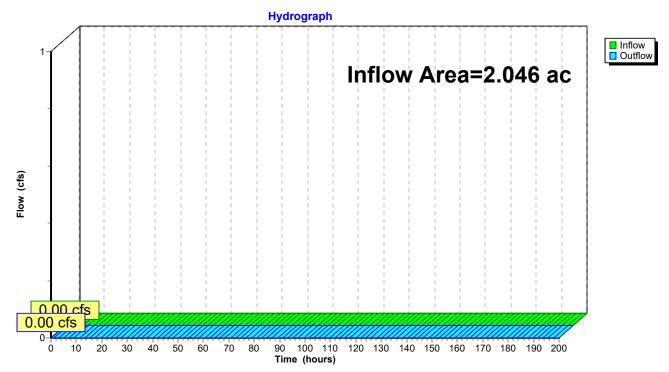
Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 1.90"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

Massapoag Watershed with EC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26s/n 01012© 2020 HydroCAD Software Solutions LLC

Inflow Area =	1.242 ac,	3.54% Impervious, Int	flow Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Inflow Area =	2.046 ac,	0.42% Impervious, Inflov	v Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

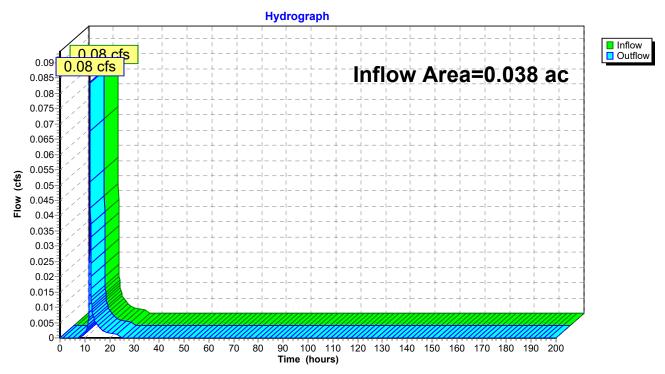


Massapoag Watershed with EC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26s/n 01012© 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: E-3

Inflow Area =	0.419 ac, 14.45% Impervious, Inflow D	epth = 0.03" for 2-Year event
Inflow =	0.00 cfs @ 17.05 hrs, Volume=	0.001 af
Outflow =	0.00 cfs @ 17.05 hrs, Volume=	0.001 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 3: E-3

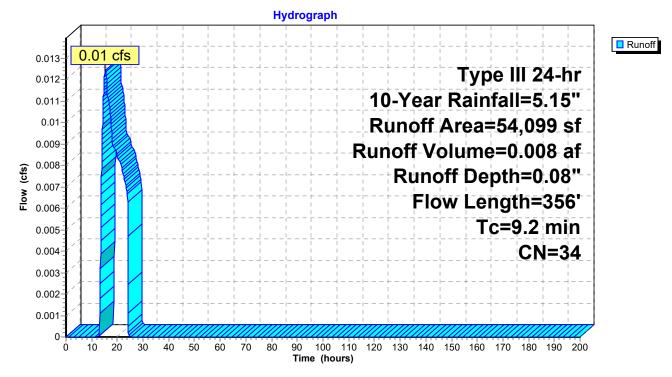
Massapoag Watershed with EC noaaTypPrepared by {enter your company name here}HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 4: E-4

Inflow Area	a =	0.038 ac, 72.63% Impervious, Inflow Depth = 1.90" for 2-Year event	
Inflow	=	0.08 cfs @ 12.09 hrs, Volume= 0.006 af	
Outflow	=	0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Atten= 0%, Lag= 0.0 mi	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 4: E-4

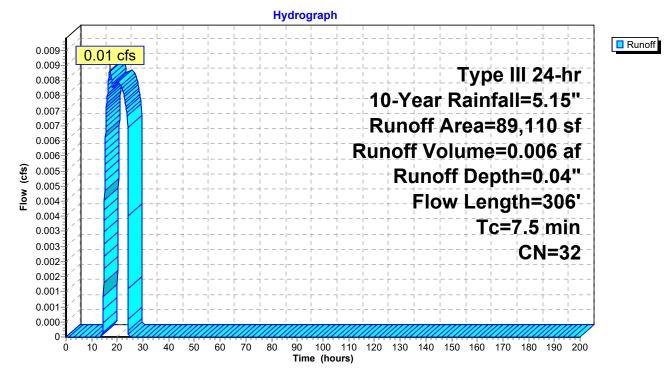

Summary for Subcatchment E-1: E-1

Runoff = 0.01 cfs @ 15.30 hrs, Volume= 0.008 af, Depth= 0.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

_	A	rea (sf)	CN E	Description							
		52,183	32 V	32 Woods/grass comb., Good, HSG A							
_		1,916	98 F	aved park	ing, HSG A						
		54,099	34 V	Veighted A	verage						
		52,183	9	6.46% Per	vious Area						
		1,916	3	.54% Impe	ervious Area	а					
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.5	50	0.1000	0.13		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.20"					
	2.7	306	0.1400	1.87		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	9.2	356	Total								

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

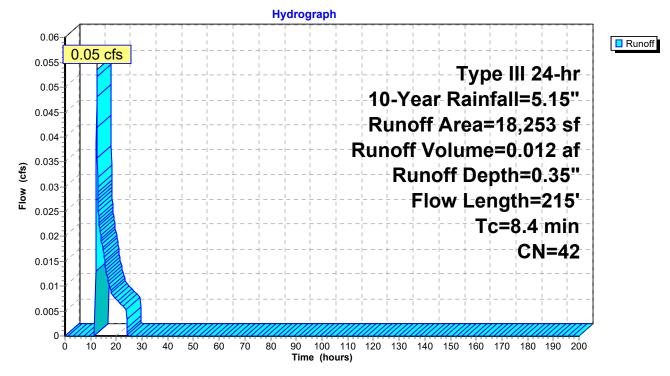
Runoff = 0.01 cfs @ 17.14 hrs, Volume= 0.006 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

A	rea (sf)	CN E	Description		
	88,738	32 V	Voods/gras	s comb., G	Good, HSG A
	372	98 F	aved park	ing, HSG A	
	89,110	32 V	Veighted A	verage	
	88,738	9	9.58% Per	vious Area	
	372	0	.42% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.9	50	0.2000	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.6	256	0.1100	1.66		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
7.5	306	Total			

Subcatchment E-2: E-2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

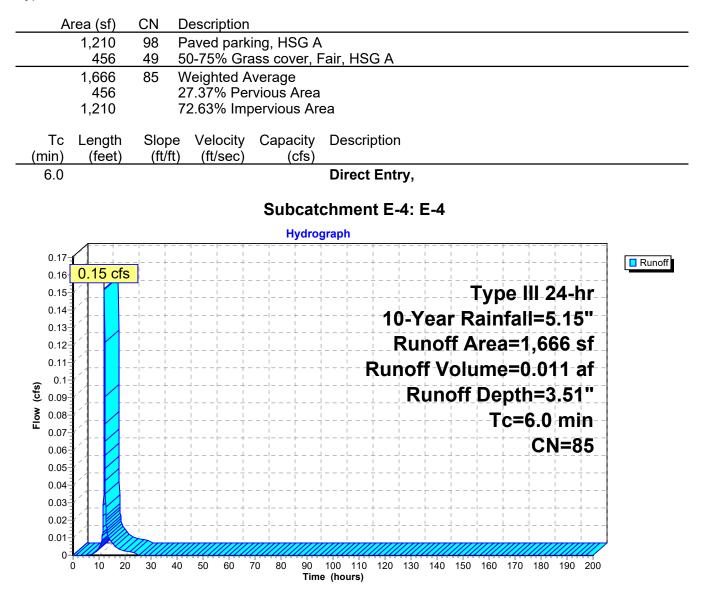

Summary for Subcatchment E-3: E-3

Runoff = 0.05 cfs @ 12.40 hrs, Volume= 0.012 af, Depth= 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

A	Area (sf)	CN E	Description		
	15,616	32 V	Voods/gras	ss comb., G	Good, HSG A
	2,637	98 F	Paved park	ing, HSG A	۱ <u> </u>
	18,253	42 V	Veighted A	verage	
	15,616	8	5.55% Per	vious Area	
	2,637	1	4.45% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.2	50	0.1100	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.2	165	0.0600	1.22		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
8.4	215	Total			

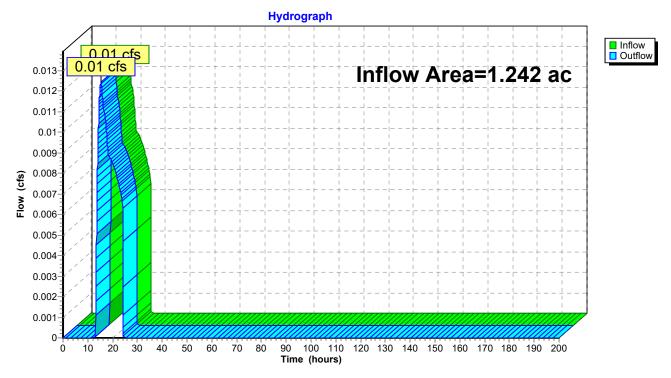
Subcatchment E-3: E-3



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-4: E-4

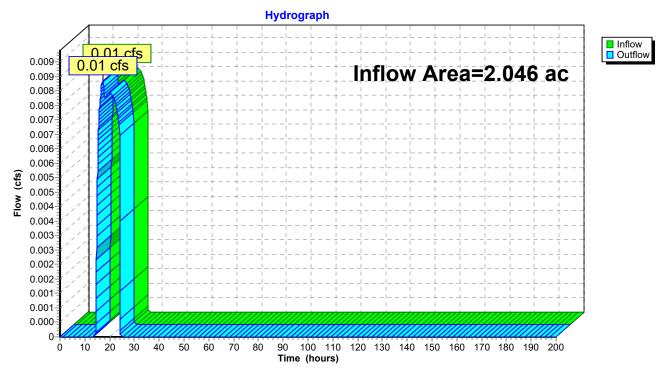
Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 3.51"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

Summary for Reach 1: E-1

Inflow Area	a =	1.242 ac,	3.54% Impervious,	Inflow Depth =	0.08"	for 10-Year event
Inflow	=	0.01 cfs @	15.30 hrs, Volume	= 0.008	af	
Outflow	=	0.01 cfs @	15.30 hrs, Volume	= 0.008	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

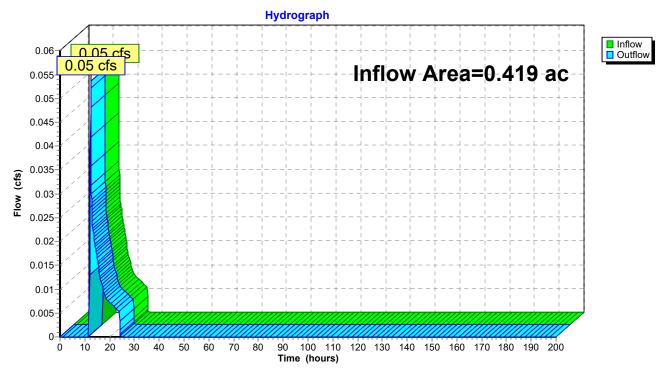


Reach 1: E-1

Summary for Reach 2: E-2

Inflow Area =	2.046 ac,	0.42% Impervious, Inflo	w Depth = 0.04"	for 10-Year event
Inflow =	0.01 cfs @	17.14 hrs, Volume=	0.006 af	
Outflow =	0.01 cfs @	17.14 hrs, Volume=	0.006 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

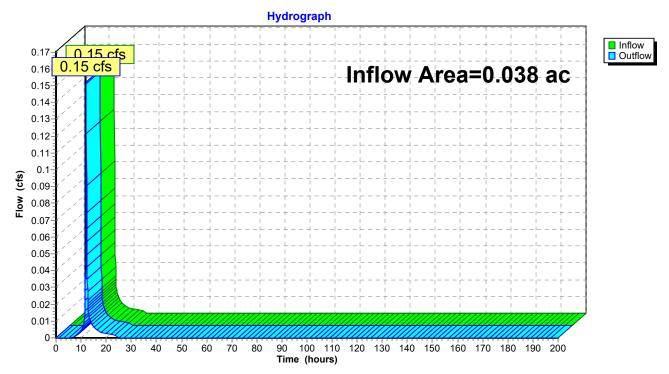


Reach 2: E-2

Summary for Reach 3: E-3

Inflow Area	=	0.419 ac, 1	14.45% Impervious,	Inflow Depth =	0.35"	for 10-Year event
Inflow	=	0.05 cfs @	12.40 hrs, Volume	= 0.012	af	
Outflow	=	0.05 cfs @	12.40 hrs, Volume	= 0.012	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



Reach 3: E-3

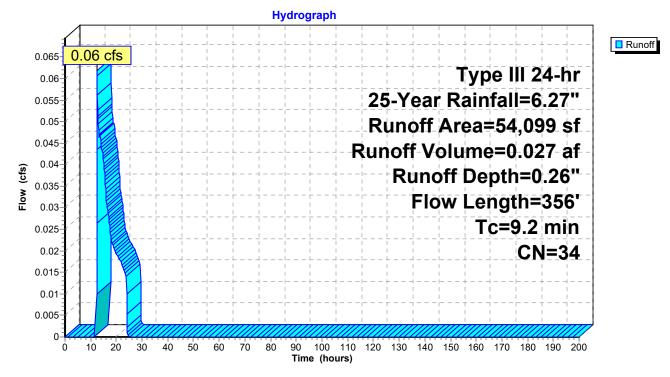
Massapoag Watershed with EC noaa Type III 24-hr 10-Year Rainfall=5.15" Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Inflow Area =	0.038 ac, 72.63% Impervious, Inflow	v Depth = 3.51" for 10-Year event
Inflow =	0.15 cfs @ 12.09 hrs, Volume=	0.011 af
Outflow =	0.15 cfs @ 12.09 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 4: E-4

Printed 1/4/2022

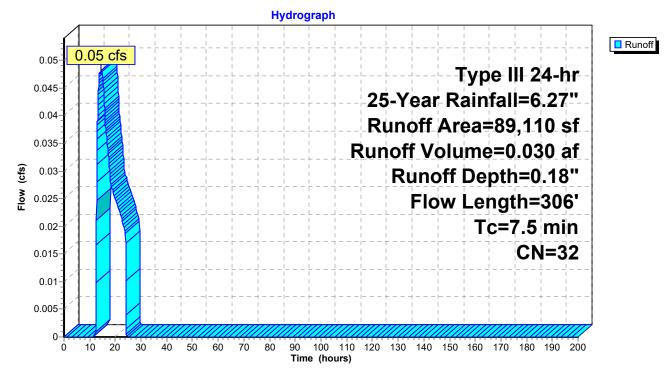

Summary for Subcatchment E-1: E-1

Runoff = 0.06 cfs @ 12.52 hrs, Volume= 0.027 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

A	Area (sf)	CN E	Description							
	52,183	32 V	32 Woods/grass comb., Good, HSG A							
	1,916	98 F	aved park	ing, HSG A						
	54,099	34 V	Veighted A	verage						
	52,183	g	6.46% Per	vious Area						
	1,916	3	.54% Impe	ervious Area	а					
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.5	50	0.1000	0.13		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.20"					
2.7	306	0.1400	1.87		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
9.2	356	Total								

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

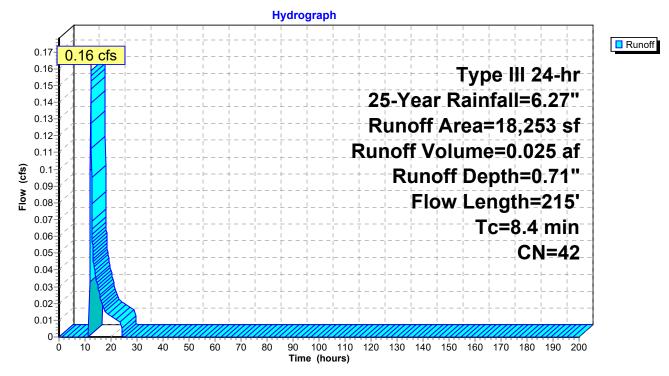
Runoff = 0.05 cfs @ 14.58 hrs, Volume= 0.030 af, Depth= 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

	A	rea (sf)	CN E	Description							
		88,738	32 V	32 Woods/grass comb., Good, HSG A							
		372	98 F	Paved park	ing, HSG A	۱					
		89,110	32 V	Veighted A	verage						
		88,738	9	9.58% Per	vious Area						
		372	0	.42% Impe	ervious Area	а					
	Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	4.9	50	0.2000	0.17		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.20"					
	2.6	256	0.1100	1.66		Shallow Concentrated Flow,					
						Woodland Kv= 5.0 fps					
	7.5	306	Total								

Subcatchment E-2: E-2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

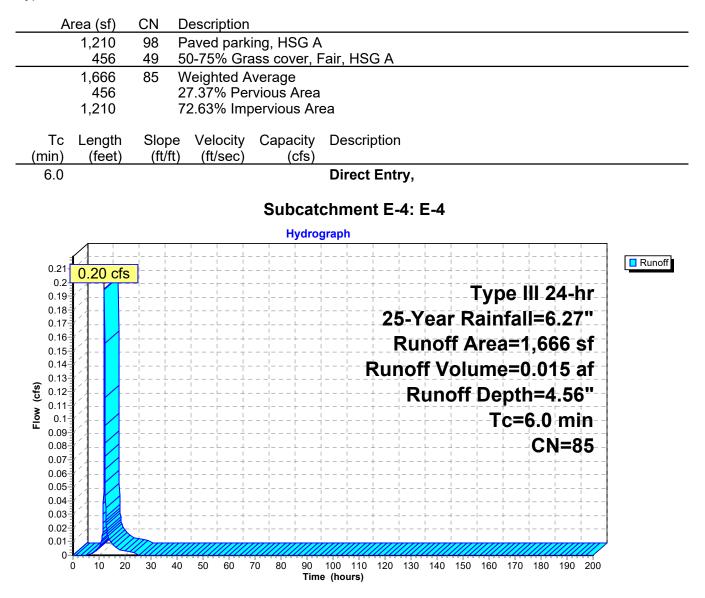

Summary for Subcatchment E-3: E-3

Runoff = 0.16 cfs @ 12.21 hrs, Volume= 0.025 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

_	A	rea (sf)	CN E	Description							
		15,616	32 V	32 Woods/grass comb., Good, HSG A							
_		2,637	98 F	Paved park	ing, HSG A	۱					
		18,253	42 V	Veighted A	verage						
		15,616	8	85.55% Per	vious Area						
		2,637	1	4.45% Imp	pervious Are	ea					
	_				_						
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.2	50	0.1100	0.13		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.20"					
	2.2	165	0.0600	1.22		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	8.4	215	Total								

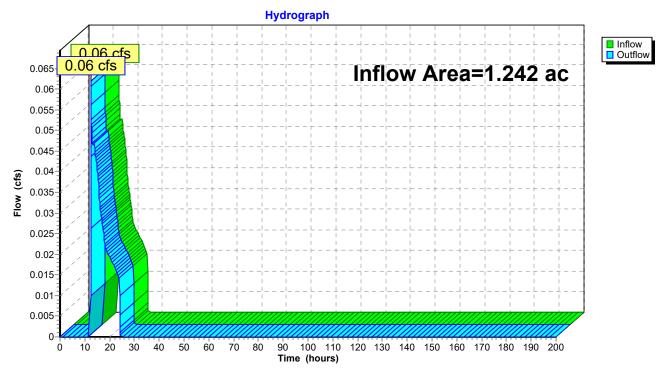
Subcatchment E-3: E-3



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-4: E-4

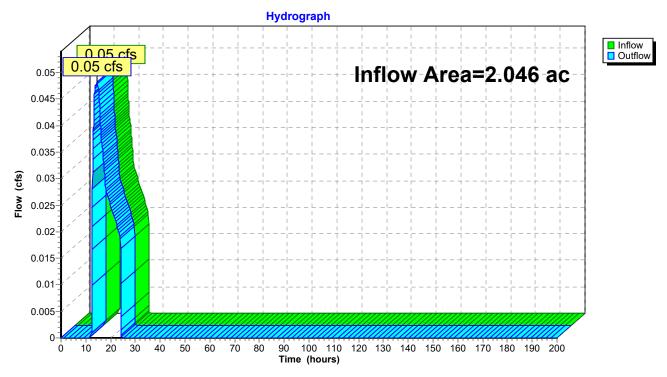
Runoff = 0.20 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 4.56"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

Summary for Reach 1: E-1

Inflow Area	a =	1.242 ac,	3.54% Impervious,	Inflow Depth =	0.26"	for 25-Year event
Inflow	=	0.06 cfs @	12.52 hrs, Volume	= 0.027	af	
Outflow	=	0.06 cfs @	12.52 hrs, Volume	= 0.027	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

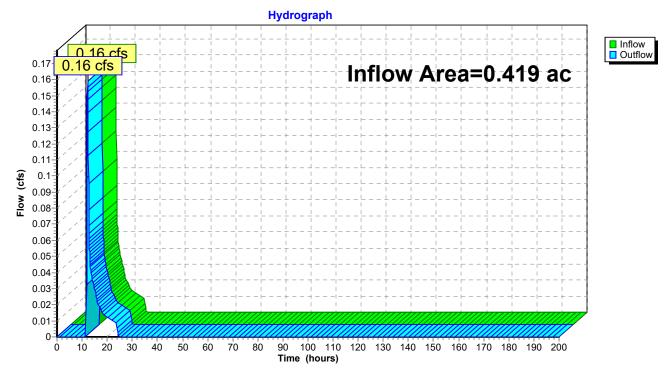


Reach 1: E-1

Summary for Reach 2: E-2

Inflow Area =	2.046 ac,	0.42% Impervious, I	Inflow Depth = 0.18"	for 25-Year event
Inflow =	0.05 cfs @	14.58 hrs, Volume=	0.030 af	
Outflow =	0.05 cfs @	14.58 hrs, Volume=	= 0.030 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

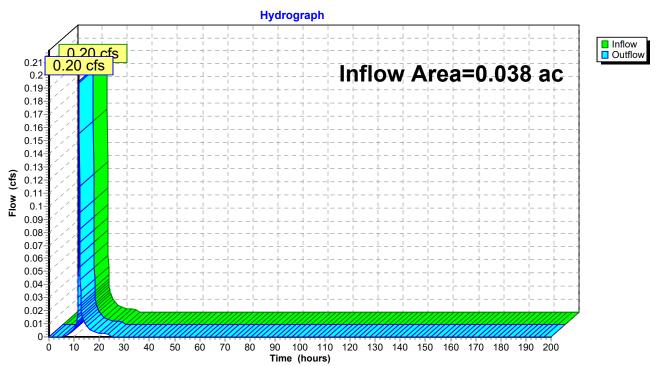


Reach 2: E-2

Summary for Reach 3: E-3

Inflow Area =	0.419 ac, 14.45% Impervious, Inf	low Depth = 0.71"	for 25-Year event
Inflow =	0.16 cfs @ 12.21 hrs, Volume=	0.025 af	
Outflow =	0.16 cfs @ 12.21 hrs, Volume=	0.025 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



Reach 3: E-3

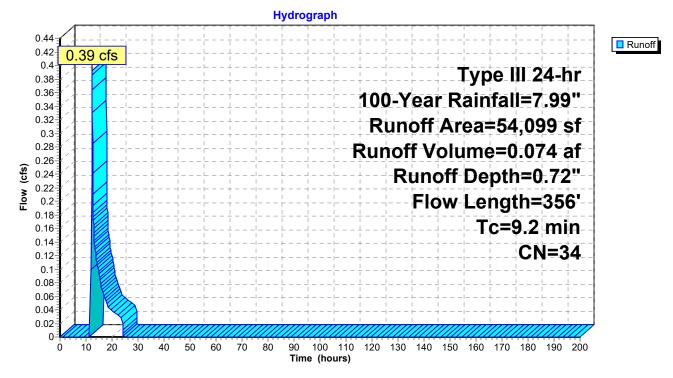
Summary for Reach 4: E-4

Inflow Area	a =	0.038 ac, 72.63% Impervious, Inflow Depth = 4.56" for 25-Year even	nt
Inflow	=	0.20 cfs @ 12.09 hrs, Volume= 0.015 af	
Outflow	=	0.20 cfs $\overline{@}$ 12.09 hrs, Volume= 0.015 af, Atten= 0%, Lag= 0.0) min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 4: E-4

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment E-1: E-1

Runoff = 0.39 cfs @ 12.35 hrs, Volume= 0.074 af, Depth= 0.72"

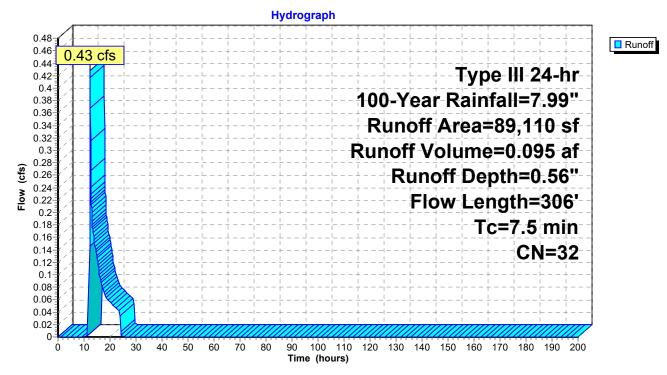
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	Area (sf)	CN E	Description		
	52,183	32 V	Voods/gras	s comb., G	Good, HSG A
	1,916	98 F	Paved park	ing, HSG A	
	54,099	34 V	Veighted A	verage	
	52,183	9	6.46% Per	vious Area	
	1,916	3	.54% Impe	ervious Area	а
Tc	5	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.5	50	0.1000	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.7	306	0.1400	1.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
9.2	356	Total			

Subcatchment E-1: E-1

Type III 24-hr 100-Year Rainfall=7.99" Printed 1/4/2022

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment E-2: E-2

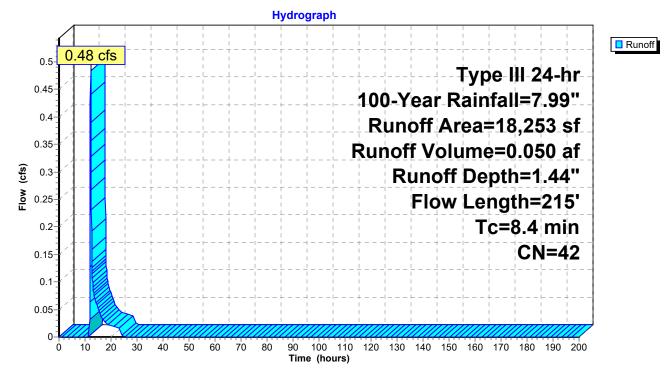
0.43 cfs @ 12.38 hrs, Volume= 0.095 af, Depth= 0.56" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	A	rea (sf)	CN E	Description		
		88,738	32 V	Woods/grass comb., Good, HSG A		
		372	98 F	Paved park	ing, HSG A	۱
		89,110	32 V	Veighted A	verage	
		88,738	9	9.58% Per	vious Area	
		372	0	.42% Impe	ervious Area	а
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.9	50	0.2000	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.6	256	0.1100	1.66		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	7.5	306	Total			

Subcatchment E-2: E-2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

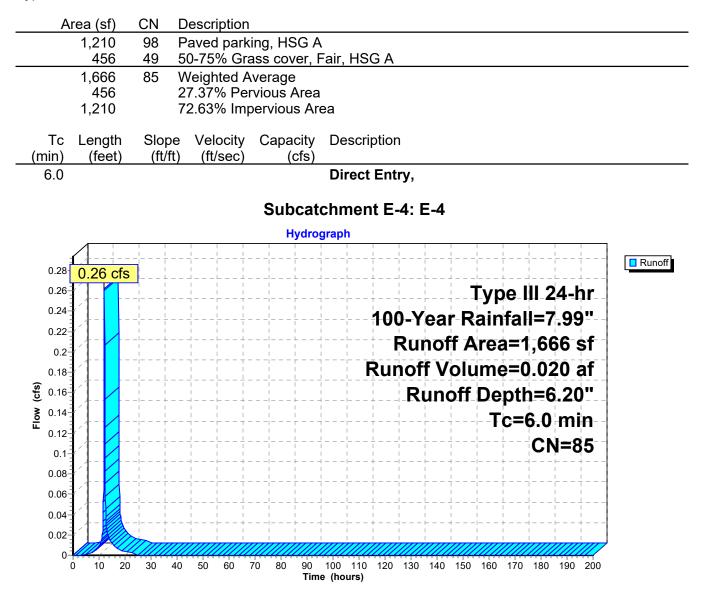

Summary for Subcatchment E-3: E-3

Runoff = 0.48 cfs @ 12.15 hrs, Volume= 0.050 af, Depth= 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

 A	rea (sf)	CN E	Description		
	15,616	32 V	Voods/gras	s comb., G	Good, HSG A
	2,637	98 F	aved park	ing, HSG A	
	18,253	42 V	Veighted A	verage	
	15,616	8	5.55% Per	vious Area	
	2,637	1	4.45% Imp	pervious Are	ea
_					
ŢĊ	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.2	50	0.1100	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.2	165	0.0600	1.22		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
8.4	215	Total			

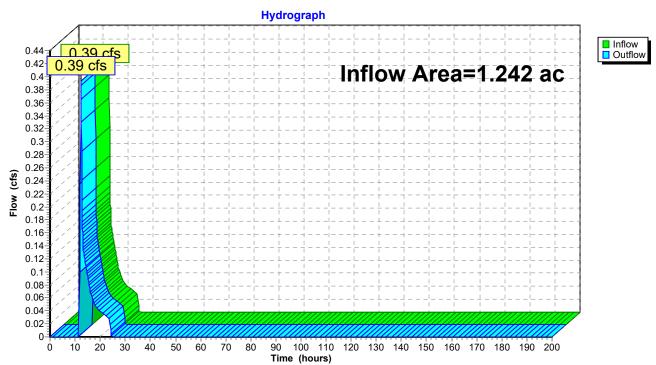
Subcatchment E-3: E-3



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-4: E-4

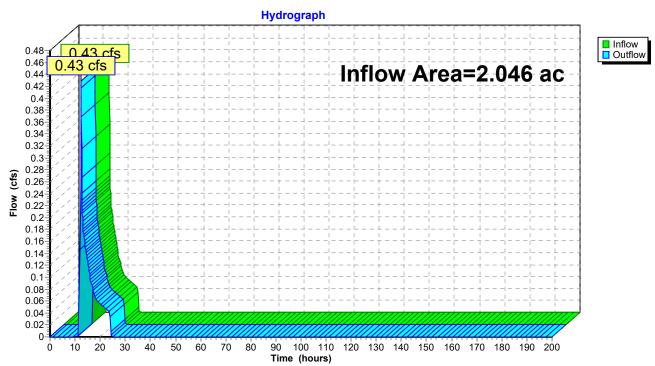
Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af, Depth= 6.20"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

Summary for Reach 1: E-1

Inflow Area =	1.242 ac,	3.54% Impervious, Ir	nflow Depth = 0.72"	for 100-Year event
Inflow =	0.39 cfs @	12.35 hrs, Volume=	0.074 af	
Outflow =	0.39 cfs @	12.35 hrs, Volume=	0.074 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

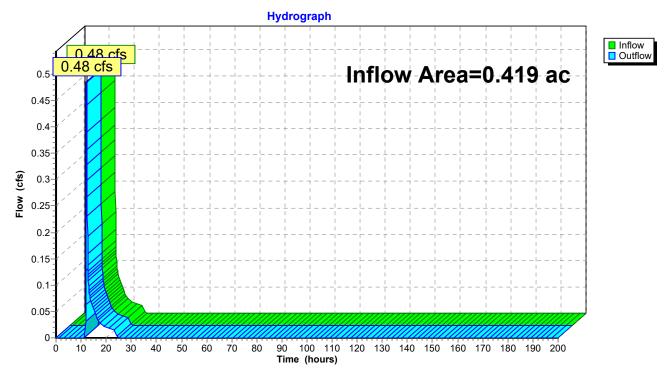


Reach 1: E-1

Summary for Reach 2: E-2

Inflow Area =	2.046 ac,	0.42% Impervious, Infle	Dw Depth = 0.56"	for 100-Year event
Inflow =	0.43 cfs @	12.38 hrs, Volume=	0.095 af	
Outflow =	0.43 cfs @	12.38 hrs, Volume=	0.095 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

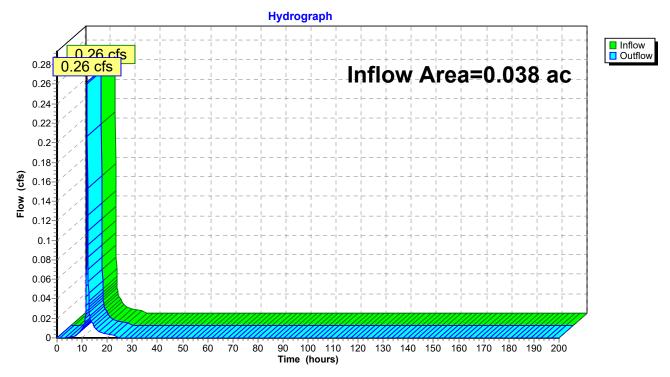


Reach 2: E-2

Summary for Reach 3: E-3

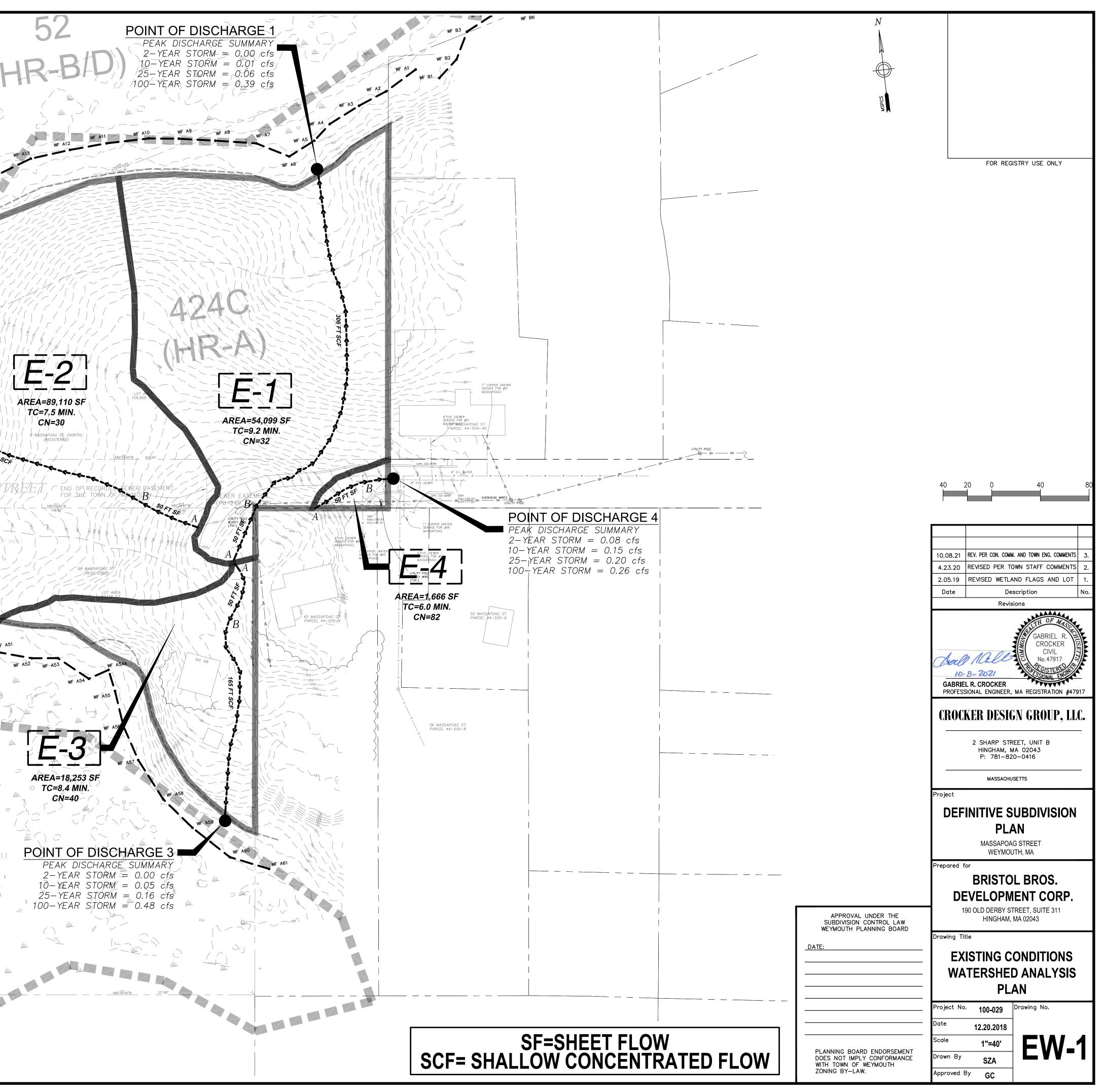
Inflow Area	a =	0.419 ac, 14.45% Impervious, Inflow Depth = 1.44" for 100-Year e	event
Inflow	=	0.48 cfs @ 12.15 hrs, Volume= 0.050 af	
Outflow	=	0.48 cfs $ ilde{@}$ 12.15 hrs, Volume= 0.050 af, Atten= 0%, Lag= 0).0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

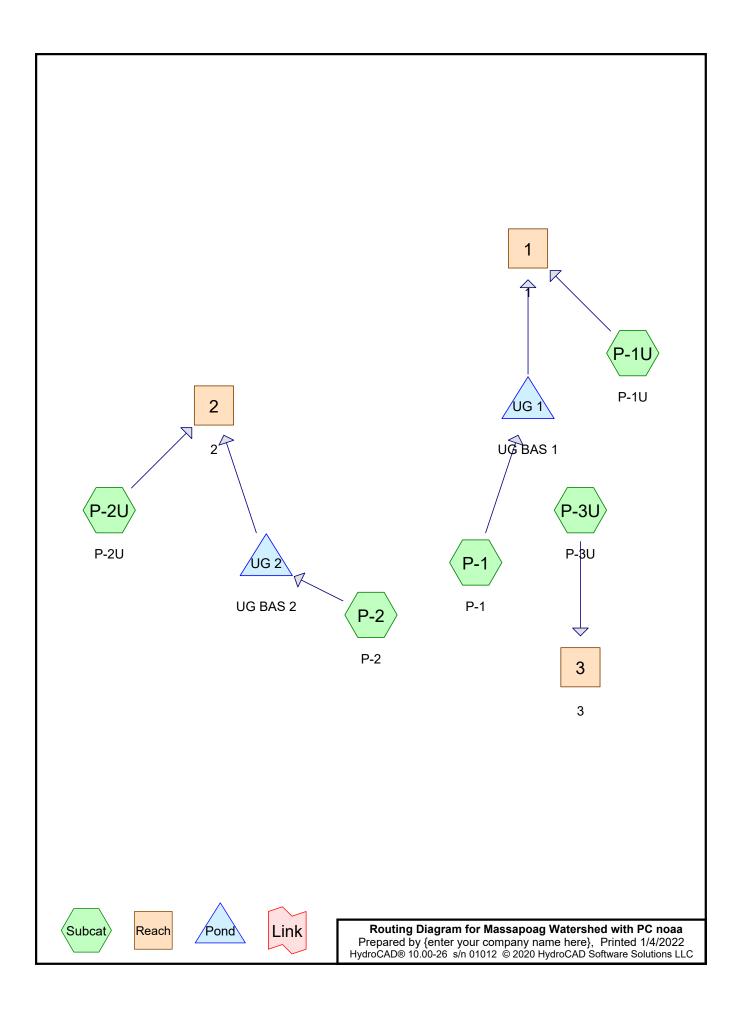


Reach 3: E-3

Summary for Reach 4: E-4


Inflow Area =	0.038 ac, 72.63% Impervious, Inflow D	epth = 6.20" for 100-Year event
Inflow =	0.26 cfs @ 12.09 hrs, Volume=	0.020 af
Outflow =	0.26 cfs @12.09 hrs, Volume=	0.020 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 4: E-4

				7) _/_ <158—
				→上 <
		WE A19 WF A20 WF A20	WE A18 WE A17 16 ¹⁰	
PE.	TOF DISCHARGE 2			
10- 25-	YEAR STORM = 0.00 cfs YEAR STORM = 0.01° cfs YEAR STORM = 0.05 cfs YEAR STORM = 0.43 cfs	WF A24 WF A25 WF A25 WF A26		
	WF A29	WF A27 160 WF A28 161 -162 162 162 162 162 162 162 162		5/APO/XQ
	Ve2 VE A32 VE A32	BRAINTREE JESSORS REF:	D MASSAPOAG S UNREGISTA	Су <u>к</u>
-169 -170 -170 -171 -172 -173 -173 -174	WF 1835			
	WF A35 WF A36 WF A37	-177 -178 -179 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -110 -100	LOT AR 29,941	WF NO #
	WF A38 WE A40 WF A	A1 WF A42 WF A43 WF A4	185 185 185 44	
			WF A45 WF A46 WF A46 	WF A47
				B/D
				<u>ulle</u>
Map unit symbol 52 424C	Map unit name Rating Freetown muck, 0 to 1 percent slopes B/D Canton fine sandy loam, 8 to 15 percent slopes, extremely bouldery A			

SECTION 3 – STORMATER HYDROLOGY MODEL

3.2 PROPOSED HYDROLOGY

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Project Notes

Rainfall events imported from "Massapoag Watershed with EC noaa.hcp"

Prepared by {enter your company name here}	
HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC	

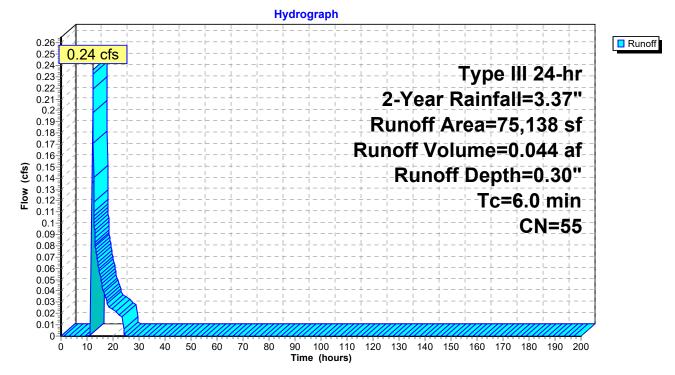
Area Listing (all nodes)

	Area	CN	Description
(a	acres)		(subcatchment-numbers)
(0.061	98	2 driveways (P-1)
(0.103	98	3 houses (P-2)
(0.207	98	4 houses (P-1)
(0.114	98	5 driveways (P-2)
:	2.315	39	>75% Grass cover, Good, HSG A (P-1, P-1U, P-2)
(0.264	98	Massapoag road (P-1, P-2)
(0.029	98	POOL (P-1)
(0.970	32	Woods/grass comb., Good, HSG A (P-1U, P-2U, P-3U)
(0.020	98	ex house to remain (P-3U)
(0.031	98	ex. offsite driveways, HSG A (P-1)
(0.067	98	exist offsite houses, HSG A (P-1)
(0.080	60	rip rap, HSG A (P-2U)

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

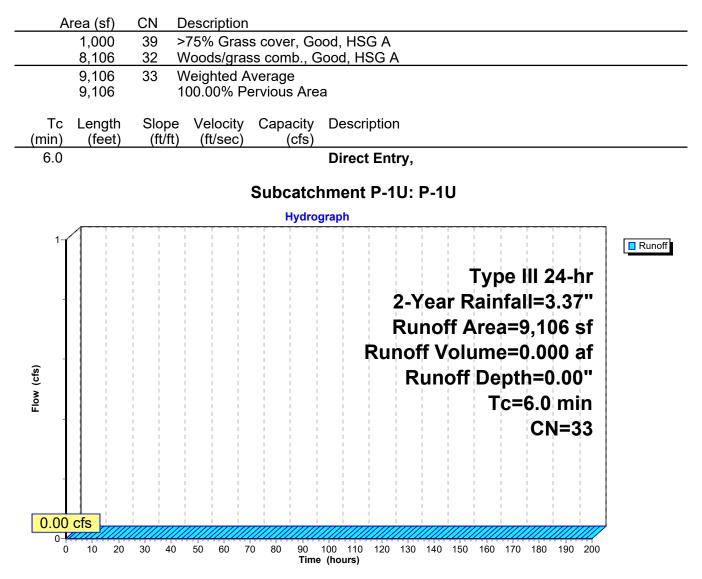
Summary for Subcatchment P-1: P-1

Runoff = 0.24 cfs @ 12.30 hrs, Volume= 0.044 af, Depth= 0.30"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

	Area (sf)	CN	Description							
*	2,640	98	2 driveways							
	55,358	39	75% Grass cover, Good, HSG A							
*	9,000	98	4 houses							
*	2,600	98	Massapoag road							
*	2,930	98	exist offsite houses, HSG A							
*	1,350	98	ex. offsite driveways, HSG A							
*	1,260	98	POOL							
	75,138	55	Weighted Average							
	55,358 73.68% Pervious Area									
	19,780	19,780 26.32% Impervious Area								
	Tc Length	Sloj	be Velocity Capacity Description							
	(min) (feet)	(ft/	ft) (ft/sec) (cfs)							
	60		Direct Entry							

Direct Entry,

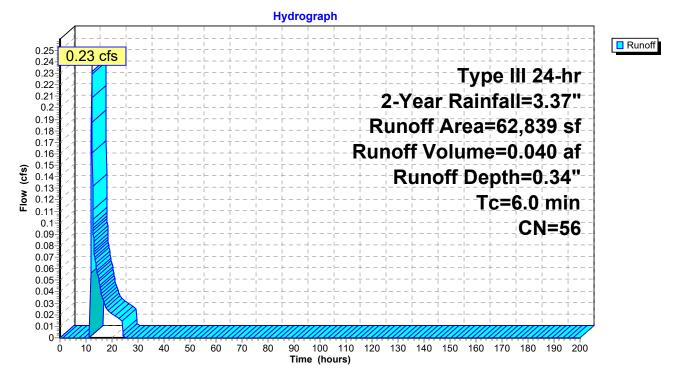

Subcatchment P-1: P-1

Summary for Subcatchment P-1U: P-1U

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-2: P-2

Runoff = 0.23 cfs @ 12.25 hrs, Volume= 0.040 af, Depth= 0.34"

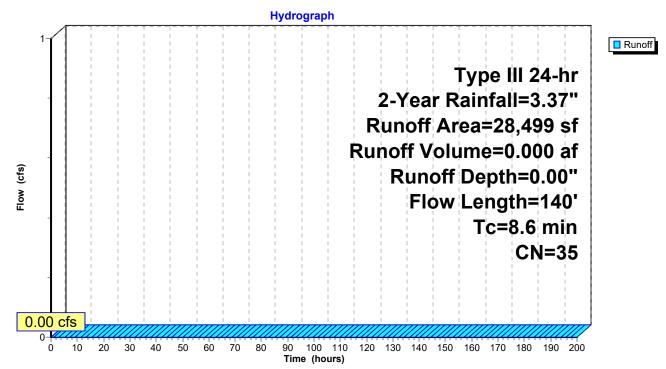
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

	A	rea (sf)	CN	Description								
*		4,960	98	5 driveways								
		44,479	39	>75% Gras	75% Grass cover, Good, HSG A							
*		8,900	98	Massapoag	Aassapoag road							
*		4,500	98	3 houses								
		62,839	56	56 Weighted Average								
		44,479		70.78% Pervious Area								
		18,360		29.22% Impervious Area								
	Tc	Length	Slope	,	Capacity	1						
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)							
	6.0					Direct Entry,						

Subcatchment P-2: P-2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-2U: P-2U

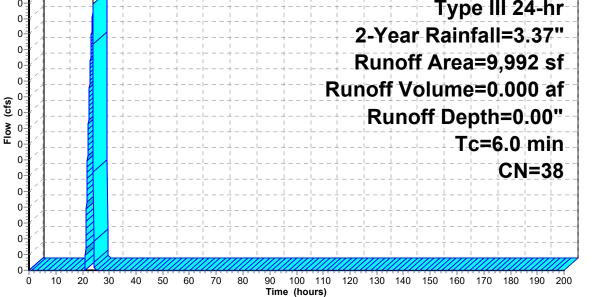

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

	A	rea (sf)	CN E	Description								
		24,999	32 V	Noods/grass comb., Good, HSG A								
*		3,500	60 r	ip rap, HSC	ĞΑ							
		28,499	35 V	Veighted A	verage							
	28,499 100.00% Pervious Area											
	_				- ··							
	ŢĊ	Length	Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	7.5	50	0.0700	0.11		Sheet Flow, AB						
						Woods: Light underbrush n= 0.400 P2= 3.20"						
	1.1	90	0.0800	1.41		Shallow Concentrated Flow, BC						
						Woodland Kv= 5.0 fps						
_	06	140	Tatal									

8.6 140 Total

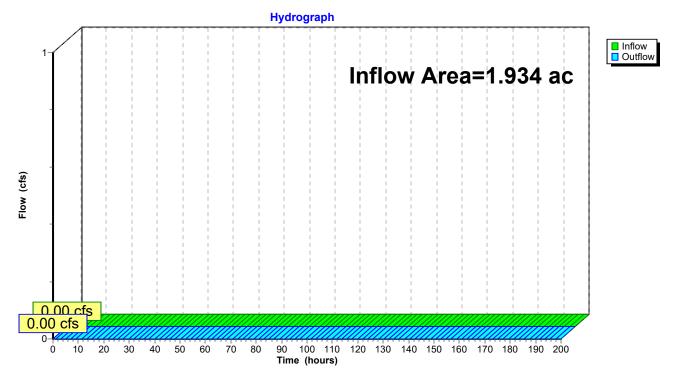
Subcatchment P-2U: P-2U



Summary for Subcatchment P-3U: P-3U

Runoff = 0.00 cfs @ 24.00 hrs, Volume= 0.000 af, Depth= 0.00"

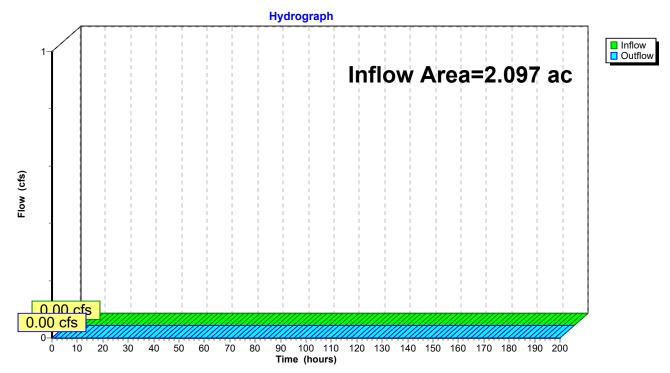
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"


	A	rea (sf)	CN E	Description						
		9,142 32 Woods/grass comb., Good, HSG A								
×		850	98 ex house to remain							
	9,992 38 Weighted Average									
	9,142 91.49% Pervious Area									
	850 8.51% Impervious Area									
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0 Direct Entry,									
					Subcatch	nment P-3U:	P-3U			
					Hydrog	graph				
	/]
	0	0.00	rfe				++-	+		Runoff
Type III 24-hr										
	0				· · · · · · · · · · · · · · · · · · ·		I I Y	he II	I 24-III	
	0				-++-	2-Y	'ear Rai	nfall	=3 37"	_
			i i	i i	i i i					

Summary for Reach 1: 1

Inflow Area =		1.934 ac, 23	3.48% Impervious	, Inflow Depth =	0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volum	e= 0.000	af	
Outflow	=	0.00 cfs @	0.00 hrs, Volum	e= 0.000	af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

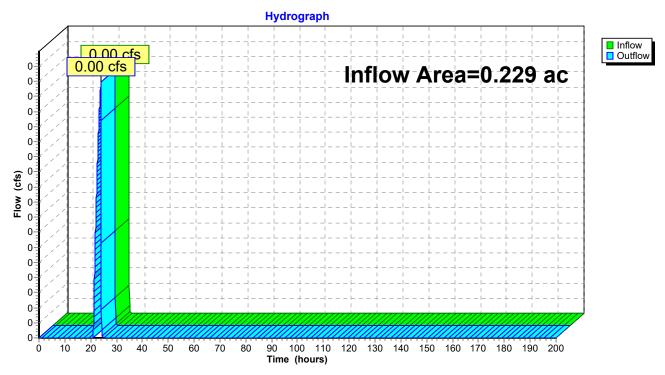


Reach 1:1

Summary for Reach 2: 2

Inflow Are	a =	2.097 ac, 20	0.10% Impervious,	Inflow Depth =	0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 a	af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 a	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 2: 2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: 3

Inflow Area =		0.229 ac,	8.51% Impervious,	Inflow Depth =	0.00"	for 2-Year event
Inflow	=	0.00 cfs @	24.00 hrs, Volume	= 0.000	af	
Outflow	=	0.00 cfs @	24.00 hrs, Volume	= 0.000	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.725 ac, 26.32% Impervious, Inflow De	epth = 0.30" for 2-Year event
Inflow =	0.24 cfs @ 12.30 hrs, Volume=	0.044 af
Outflow =	0.20 cfs @ 12.30 hrs, Volume=	0.044 af, Atten= 16%, Lag= 0.0 min
Discarded =	0.20 cfs @ 12.30 hrs, Volume=	0.044 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 165.05' @ 12.45 hrs Surf.Area= 3,544 sf Storage= 73 cf

Plug-Flow detention time= 4.6 min calculated for 0.044 af (100% of inflow) Center-of-Mass det. time= 4.6 min (949.7 - 945.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 12.30 hrs HW=165.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge) 3=RCP_Round 12" (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

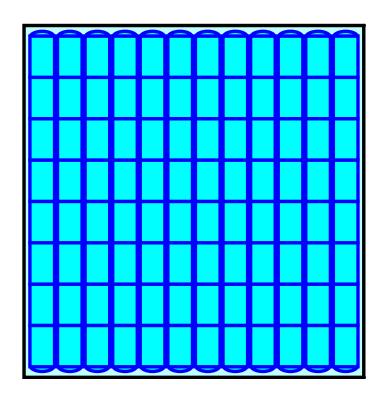
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width

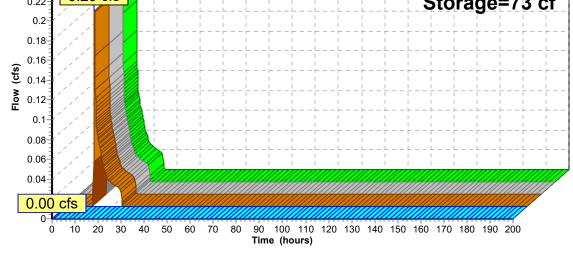

6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage

Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone



Inflow

Outflow Discarded

Primary

Pond UG 1: UG BAS 1 Hydrograph 0.24 cfs Inflow Area=1.725 ac 0.26 Peak Elev=165.05' 0.24 0 20 cfs 0.20 cfs Storage=73 cf 0.22 0.2 0.18

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow De	epth = 0.34" for 2-Year event
Inflow =	0.23 cfs @ 12.25 hrs, Volume=	0.040 af
Outflow =	0.12 cfs @ 12.57 hrs, Volume=	0.040 af, Atten= 47%, Lag= 19.1 min
Discarded =	0.12 cfs @ 12.57 hrs, Volume=	0.040 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 165.19' @ 12.57 hrs Surf.Area= 2,179 sf Storage= 165 cf

Plug-Flow detention time= 9.6 min calculated for 0.040 af (100% of inflow) Center-of-Mass det. time= 9.6 min (947.4 - 937.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
Primary	167.14'	12.0" Round RCP_Round 12"
		L= 17.2' RCP, rounded edge headwall, Ke= 0.100
		Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
		n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
	Discarded Device 3	Discarded 165.00' Device 3 170.20'

Discarded OutFlow Max=0.12 cfs @ 12.57 hrs HW=165.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge)

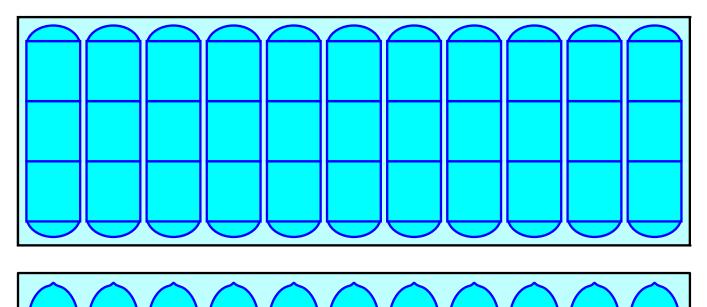
-3=RCP_Round 12" (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

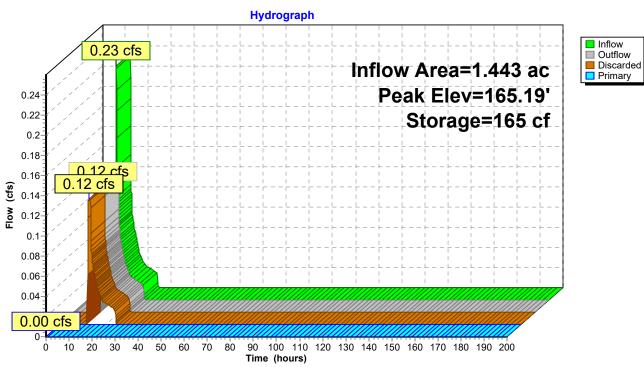
Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

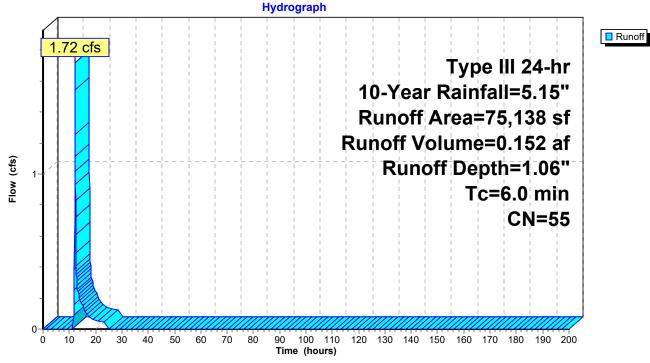
33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

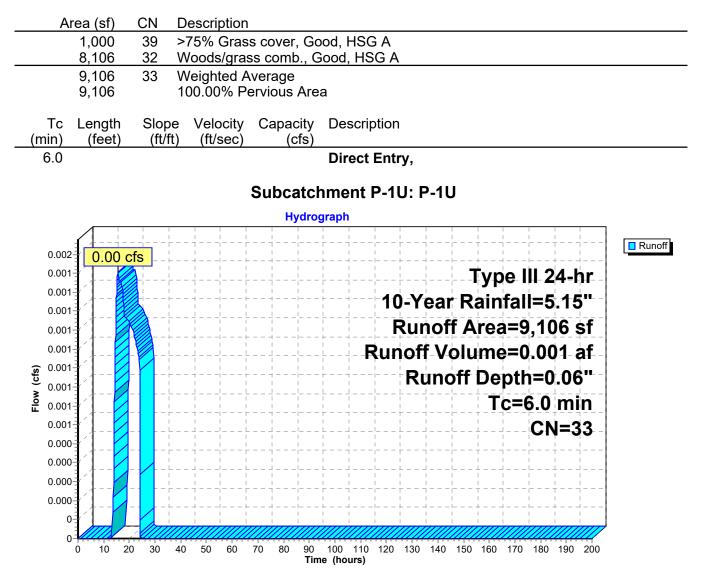

Pond UG 2: UG BAS 2

Summary for Subcatchment P-1: P-1

Runoff = 1.72 cfs @ 12.11 hrs, Volume= 0.152 af, Depth= 1.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

	Area (sf)	CN	Description					
*	2,640	98	2 driveways	;				
	55,358	39	>75% Grass	s cover, Go	ood, HSG A			
*	9,000	98	4 houses					
*	2,600	98	Massapoag	road				
*	2,930	98	exist offsite	houses, HS	SG A			
*	1,350	98	ex. offsite d	riveways, F	ISG A			
*	1,260	98	POOL					
	75,138	55	Weighted A	verage				
	55,358 73.68% Pervious Area							
	19,780 26.32% Impervious Area							
	Tc Length			Capacity	Description			
_	(min) (feet)	(ft/	ft) (ft/sec)	(cfs)				
	6.0				Direct Entry,			
	Subcatchment P-1: P-1							



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1U: P-1U

Runoff = 0.00 cfs @ 15.61 hrs, Volume= 0.001 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

0

Ó

20

30 40

50 60 70 80

10

Summary for Subcatchment P-2: P-2

Runoff = 1.57 cfs @ 12.11 hrs, Volume= 0.135 af, Depth= 1.12"

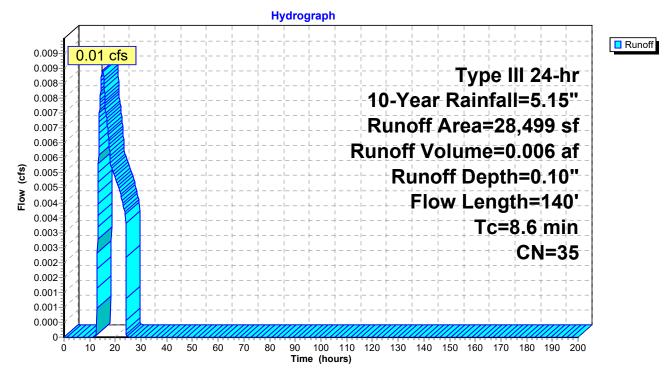
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

* 4	a (sf) CN ,960 98 ,479 39 ,900 98	5 driveways >75% Gras	s s cover, Go	ood, HSG	A				
	,500 98								
44	,839 56 ,479 ,360	 56 Weighted Average 70.78% Pervious Area 29.22% Impervious Area 							
		ope Velocity ft/ft) (ft/sec)	Capacity (cfs)	Descrip	tion				
6.0				Direct E	Entry,				
Flow (cfs)	57 cfs		Subcate Hydrog	graph	P-2: P-2 10-Yea Runof unoff V Rur	Ty ar Rai f Area Volum noff D	=62,8	5.15" 39 sf 35 af 1.12"	Runoff
								N=56	

Time (hours)

90 100 110 120 130 140 150 160 170 180 190 200

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-2U: P-2U

Runoff = 0.01 cfs @ 14.98 hrs, Volume= 0.006 af, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

_	A	rea (sf)	CN [Description						
		24,999		0		Good, HSG A				
*		3,500	60 r	rip rap, HSG A						
		28,499 35 Weighted Average								
		28,499	a							
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•				
	7.5	50	0.0700	0.11		Sheet Flow, AB				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	1.1	90	0.0800	1.41		Shallow Concentrated Flow, BC				
						Woodland Kv= 5.0 fps				
	8.6	140	Total							

Subcatchment P-2U: P-2U

0.001

10 20 30 40 50 60 70 80

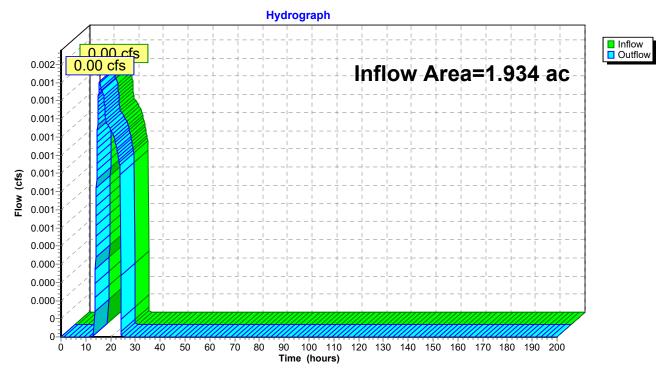
Ó

Summary for Subcatchment P-3U: P-3U

Runoff = 0.01 cfs @ 12.49 hrs, Volume= 0.004 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

	Α	rea (sf)	CN E	Description						
		9,142	32 V	Voods/gras	ss comb., G	Good, HSG A				
*		850	98 e	ex house to	remain					
		9,992	38 V	Veighted A	verage					
		9,142	-	-	rvious Area					
		850	8	8.51% Impe	ervious Area	а				
,	Tc	Length	Slope	Velocity	Capacity	Description				
(r	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	.				
	6.0					Direct Entry,	,			
					Subcatel	nment P-3U:	P-3U			
			1		Hydro	grapn		1 1		1
	0.008		!		·				· L	Runoff
	0.000	0.01 cfs	S		·	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ -			· ·	
	0.007			- + +		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Туре	e III 24-l	nr -
	0.006		! I I			10-	Year	Rainf	all=5.15	5"
	0.006		ii		·	Г			=9,992	η — — — —
	0.005	1 1 1		- + +	·				-	
	0.005					Runo	off Vo	lume	=0.004 a	af
cfs)	0.004						Runo	ff Der	oth=0.20	D''
Flow (cfs)	0.004				i i			. I. E.	I I	1
Ę	0.003								=6.0 mi	
	0.003]/]_							CN=3	38
	0.002]] _ [[· · ·	
	0.002									

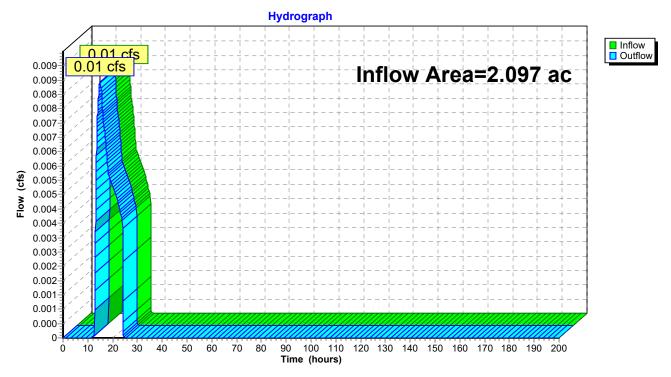

Time (hours)

90 100 110 120 130 140 150 160 170 180 190 200

Summary for Reach 1: 1

Inflow Area	=	1.934 ac, 23.48% Impervious, Inflow Depth = 0.01" for 10-Year even	nt
Inflow	=	0.00 cfs @ 15.61 hrs, Volume= 0.001 af	
Outflow	=	0.00 cfs $\overline{@}$ 15.61 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

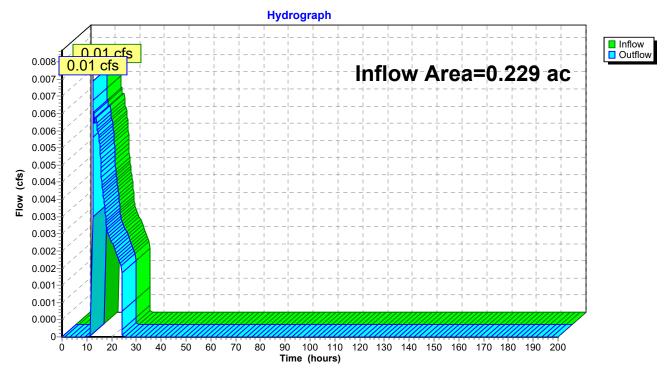

Reach 1: 1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 2: 2

Inflow Area :	=	2.097 ac, 20.10% Impervious, Inflow Depth = 0.03" for 10-Year event	
Inflow =	=	0.01 cfs @ 14.98 hrs, Volume= 0.006 af	
Outflow =	=	$0.01 \text{ cfs} \ (a) = 0.006 \text{ af}, \text{ Atten} = 0\%, \text{ Lag} = 0.0 \text{ min}$	

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



Massapoag Watershed with PC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26s/n 01012© 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: 3

Inflow Area	a =	0.229 ac,	8.51% Impervious,	Inflow Depth =	0.20"	for 10-Year event
Inflow	=	0.01 cfs @	12.49 hrs, Volume	= 0.004	af	
Outflow	=	0.01 cfs @	12.49 hrs, Volume	= 0.004	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.725 ac, 26.32% Impervious, Inflow De	epth = 1.06" for 10-Year event
Inflow =	1.72 cfs @ 12.11 hrs, Volume=	0.152 af
Outflow =	0.20 cfs @ 11.95 hrs, Volume=	0.152 af, Atten= 89%, Lag= 0.0 min
Discarded =	0.20 cfs @ 11.95 hrs, Volume=	0.152 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 166.01' @ 13.90 hrs Surf.Area= 3,544 sf Storage= 2,180 cf

Plug-Flow detention time= 108.8 min calculated for 0.152 af (100% of inflow) Center-of-Mass det. time= 108.8 min (998.7 - 889.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 11.95 hrs HW=165.05' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge) 3=RCP_Round 12" (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

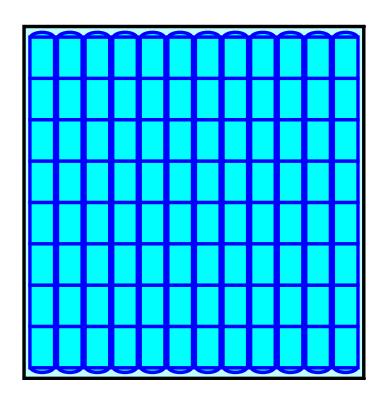
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

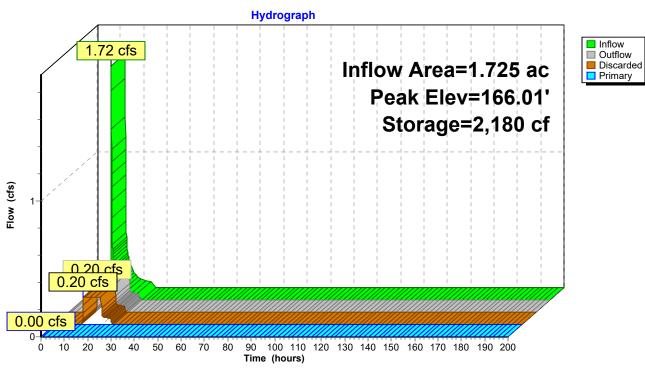
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage


Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 1: UG BAS 1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow De	epth = 1.12" for 10-Year event
Inflow =	1.57 cfs @ 12.11 hrs, Volume=	0.135 af
Outflow =	0.14 cfs @ 14.71 hrs, Volume=	0.135 af, Atten= 91%, Lag= 155.9 min
Discarded =	0.14 cfs @ 14.71 hrs, Volume=	0.135 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 166.69' @ 14.71 hrs Surf.Area= 2,179 sf Storage= 2,290 cf

Plug-Flow detention time= 177.0 min calculated for 0.135 af (100% of inflow) Center-of-Mass det. time= 177.0 min (1,063.2 - 886.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
Primary	167.14'	12.0" Round RCP_Round 12"
		L= 17.2' RCP, rounded edge headwall, Ke= 0.100
		Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
		n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
	Discarded Device 3	Discarded 165.00' Device 3 170.20'

Discarded OutFlow Max=0.14 cfs @ 14.71 hrs HW=166.69' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge)

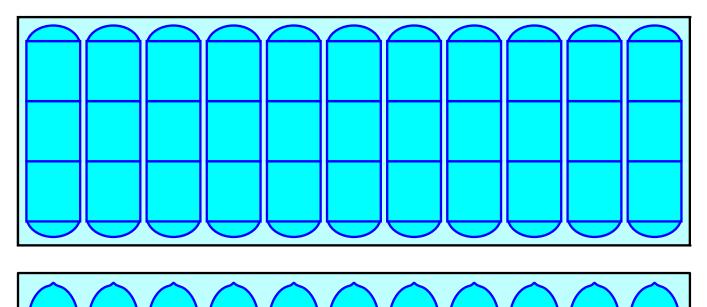
-3=RCP_Round 12" (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

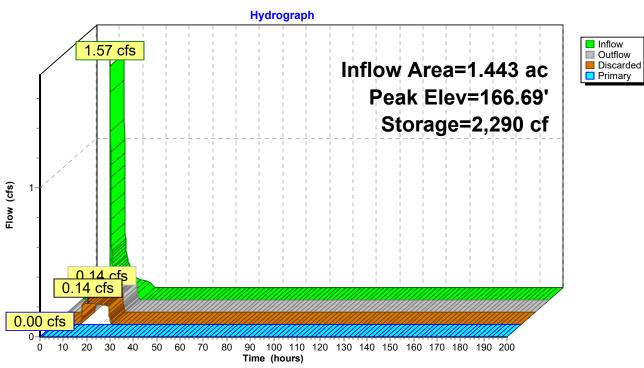
Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

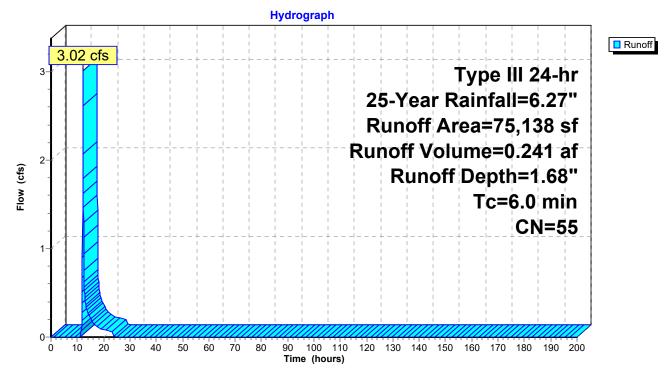
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 2: UG BAS 2

Summary for Subcatchment P-1: P-1

Runoff = 3.02 cfs @ 12.10 hrs, Volume= 0.241 af, Depth= 1.68"

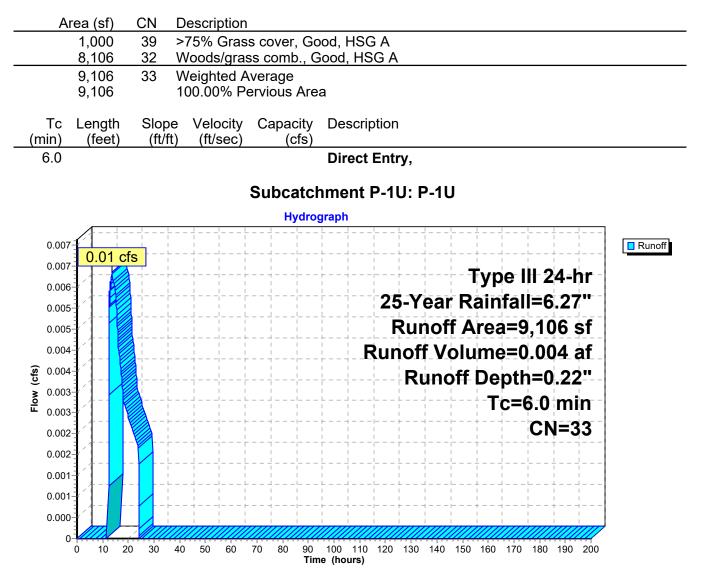
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"


	Area (sf)	CN	Description					
*	2,640	98	driveways					
	55,358	39	>75% Grass cover, Good, HSG A					
*	9,000	98	4 houses					
*	2,600	98	Massapoag road					
*	2,930	98	kist offsite houses, HSG A					
*	1,350	98	ex. offsite driveways, HSG A					
*	1,260	98	POOL					
	75,138	55	Weighted Average					
	55,358		73.68% Pervious Area					
	19,780		26.32% Impervious Area					
	Tc Length	Slop	be Velocity Capacity Description					

					0.00.0	, Oaps	~~,	
((feet)) ((ft/ft)) ((ft/sec)) ((cfs)	

Direct Entry,

Subcatchment P-1: P-1



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1U: P-1U

Runoff = 0.01 cfs @ 13.65 hrs, Volume= 0.004 af, Depth= 0.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

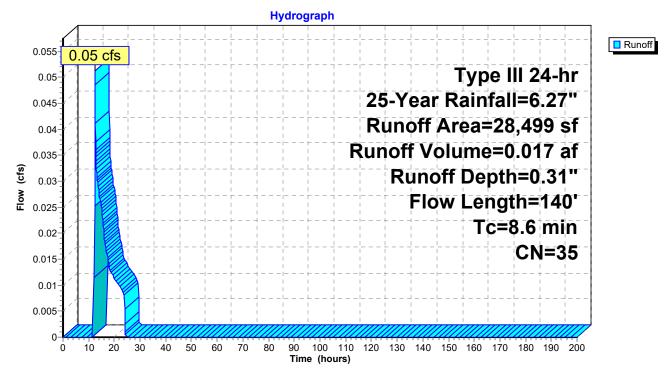
Summary for Subcatchment P-2: P-2

Runoff = 2.68 cfs @ 12.10 hrs, Volume= 0.211 af, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

<u>Area (</u> 4,9 44,4	<i>i</i>	Description								
111	00 90									
		>75% Grass cover, Good, HSG A								
8,9			g road							
			Vorago							
			Capacity (cfs)	Descrip	tion					
6.0				Direct I	Entry,					
			Subcat	chment	P-2: I	P-2				
			Hydro	graph						
	cfs	40 50 60		100 110	Run unof R	ear R off Aı f Volu unoff	ainfa ea=6 ume=0 Dept Tc=	II=6 2,83 0.21 h=1 6.0 CN	.27" 39-sf 1 af .76" min	Runoff
	62,83 44,4 18,30 Tc Len nin) (fe 6.0	62,839 56 44,479 18,360 Tc Length Slo nin) (feet) (f 6.0	62,839 56 Weighted A 44,479 70.78% Pe 18,360 29.22% Im Tc Length Slope Velocity nin) (feet) (ft/ft) (ft/sec) 6.0	62,839 56 Weighted Average 44,479 70.78% Pervious Area 18,360 29.22% Impervious Ar Tc Length Slope Velocity Capacity (ft/ft) (ft/sec) (cfs) 6.0 Subcat Hydro	62,839 56 Weighted Average 44,479 70.78% Pervious Area 18,360 29.22% Impervious Area Tc Length Slope Velocity Capacity Descrip 6.0 Direct I Subcatchment	62,839 56 Weighted Average 44,479 70.78% Pervious Area 18,360 29.22% Impervious Area Tc Length Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment P-2: I Hydrograph 2.68 cfs 25-Y Run Runof Runof	62,839 56 Weighted Average 44,479 70.78% Pervious Area 18,360 29.22% Impervious Area Tc Length Slope Velocity Capacity Description 6.0 Direct Entry, Subcatchment P-2: P-2 Hydrograph 3 2.68 cfs 25-Year R 2 Runoff Ai 2 Runoff Volu 1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	62,839 56 Weighted Average 18,360 29.22% Impervious Area Tc Length Slope Velocity Capacity Description nin) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment P-2: P-2 Hydrograph 2 2 2 1	62,839 56 Weighted Average 18,360 29.22% Impervious Area Tc Length Slope Velocity Capacity Description nin) (feet) Slope Velocity Capacity Description 6.0 Direct Entry, Subcatchment P-2: P-2 Hydrograph 1 2.68 cfs Type III 2 25-Year Rainfall=6 Runoff Area=62,83 Runoff Depth=1 Tc=6.0 1 Tc=6.0 CN CN	62,839 56 Weighted Average 70.78% Pervious Area 18,360 29.22% Impervious Area Tc Length (feet) Slope Velocity Capacity Description 6.0 Direct Entry, Subcatchment P-2: P-2 Hydrograph 3 2.68 cfs Type III 24-hr 25-Year Rainfall=6.27" Runoff Area=62,839 sf Runoff Area=62,839 sf Runoff Volume=0.211 af Runoff Depth=1.76" Tc=6.0 min CN=56

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-2U: P-2U

Runoff = 0.05 cfs @ 12.47 hrs, Volume= 0.017 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

	A	rea (sf)	CN [Description						
		24,999	32 \	Woods/grass comb., Good, HSG A						
*		3,500	60 r	p rap, HSG A						
		28,499	35 \	35 Weighted Average						
		28,499	100.00% Pervious Area							
	_				•					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	(min)	. ,			(015)					
	7.5	50	0.0700	0.11		Sheet Flow, AB				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	1.1	90	0.0800	1.41		Shallow Concentrated Flow, BC				
						Woodland Kv= 5.0 fps				
	86	140	Total							

Subcatchment P-2U: P-2U

0-

Ó

20 30

10

40 50

60

70 80

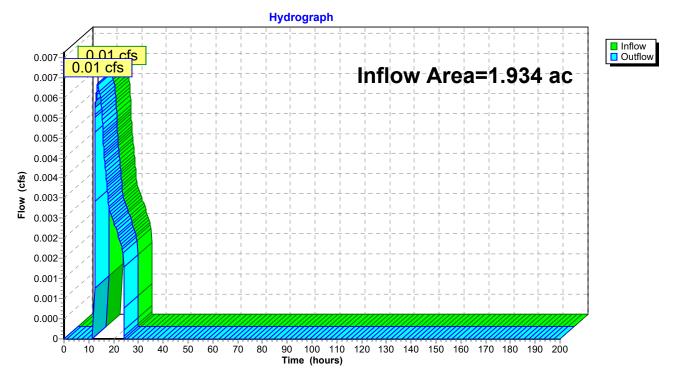
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-3U: P-3U

Runoff = 0.04 cfs @ 12.34 hrs, Volume= 0.009 af, Depth= 0.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

A	rea (sf)	CN D	escription								
	9,142	32 V	Voods/gras	ss comb., G	Good, HS	SG A					
	850	98 e	x house to	remain							
	9,992	38 V	Veighted A	verage							
	9,142			rvious Area							
	850	8	.51% Impe	ervious Are	а						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	ption					
6.0					Direct	Entry,					
				Subcatc	hment	P-3U:	P-3U				
				Hydro	graph						
		!			·					!	
0.04		S +	+	·	· +	- + 		-++	+ -		Runoff
0.04 0.04		 		·		- 		Туре	III 24	l-hr	
0.0			- +	·	· +		'ear F	- +			
0.03 0.03		l +	+	· +	+ +	+		- +	+ -		
0.03	- / '					Ru	noff /	Area=	:9,992	2 sf -	
0.03		' 		·		Runo	ff Vol	Hmes		9 af	
	= / '	<mark> </mark> <u> </u>	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}$		·						
(5) 0.02		!		·	· +	K	unof	пер	tn=0.	4/	
<u>ð</u> 0.02	2 - 2	¦ ¦		·		-	$\frac{1}{1}$ $\frac{1}{1}$	Tc:	=6.0 r	nin -	
L 0.02	- / .	!	- + +	· + · -	+ +	- + - ! !	+	- + - +	CN:		
0.01	6	l L		·	· L	- L		- <u>L</u>		-30	
0.01 0.01		i i i i	- +i +	·	· +	-i +		- +	 - + -	i 	
0.01		-!			+	- +		-++-	+ -		
0.00				·	·	-		-++-	+ - 		
0.00 0.00				·	·	-' <u> </u> - +		- ' ' - +	¦		
0.00	= / .									-	

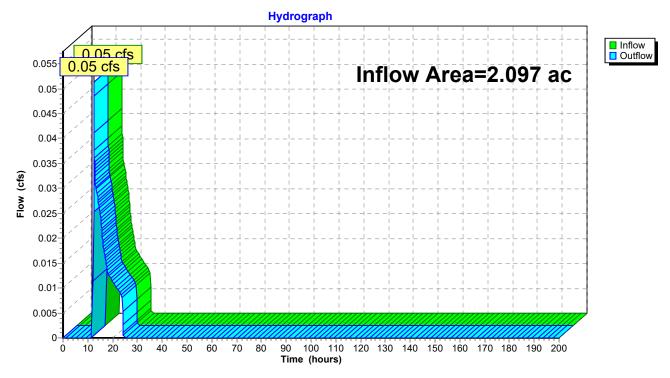

Time (hours)

90 100 110 120 130 140 150 160 170 180 190 200

Summary for Reach 1: 1

Inflow Area	a =	1.934 ac, 23.48% Impervious, Inflow Depth = 0.02" for 25-Year event	
Inflow	=	0.01 cfs @ 13.65 hrs, Volume= 0.004 af	
Outflow	=	0.01 cfs @ 13.65 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

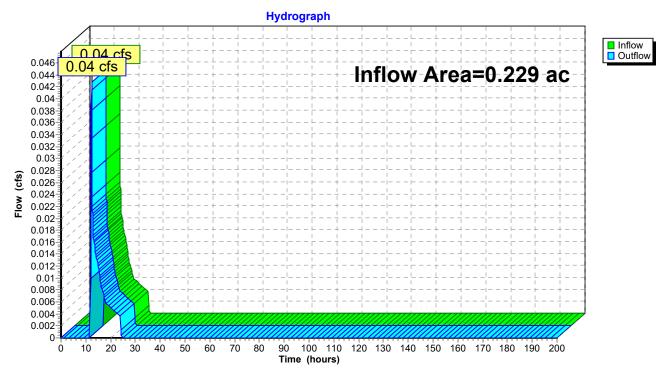

Massapoag Watershed with PC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26s/n 01012© 2020 HydroCAD Software Solutions LLC

0 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LL

Summary for Reach 2: 2

Inflow Area	a =	2.097 ac, 20.10% Impervious, Inflow	Depth = 0.10"	for 25-Year event
Inflow	=	0.05 cfs @ 12.47 hrs, Volume=	0.017 af	
Outflow	=	0.05 cfs @12.47 hrs, Volume=	0.017 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 2: 2

Massapoag Watershed with PC noaa Prepared by {enter your company name here}

Summary for Reach 3: 3

Inflow Area =	0.229 ac,	8.51% Impervious, I	Inflow Depth = 0.47"	for 25-Year event
Inflow =	0.04 cfs @	12.34 hrs, Volume=	= 0.009 af	
Outflow =	0.04 cfs @	12.34 hrs, Volume=	= 0.009 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.725 ac, 26.32% Impervious, Inflow De	epth = 1.68" for 25-Year event
Inflow =	3.02 cfs @ 12.10 hrs, Volume=	0.241 af
Outflow =	0.20 cfs @ 11.80 hrs, Volume=	0.241 af, Atten= 93%, Lag= 0.0 min
Discarded =	0.20 cfs @ 11.80 hrs, Volume=	0.241 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 166.98' @ 15.39 hrs Surf.Area= 3,544 sf Storage= 4,825 cf

Plug-Flow detention time= 266.2 min calculated for 0.241 af (100% of inflow) Center-of-Mass det. time= 266.2 min (1,140.0 - 873.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 11.80 hrs HW=165.05' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge) 3=RCP_Round 12" (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

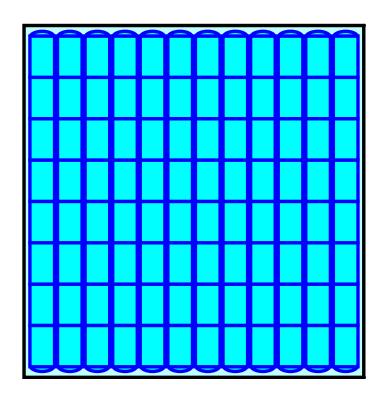
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

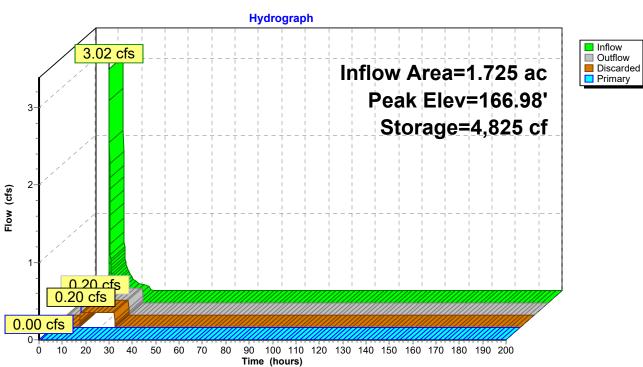
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage


Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 1: UG BAS 1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow D	epth = 1.76" for 25-Year event
Inflow =	2.68 cfs @ 12.10 hrs, Volume=	0.211 af
Outflow =	0.16 cfs @ 15.62 hrs, Volume=	0.211 af, Atten= 94%, Lag= 211.1 min
Discarded =	0.16 cfs @ 15.62 hrs, Volume=	0.211 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 168.09' @ 15.62 hrs Surf.Area= 2,179 sf Storage= 4,567 cf

Plug-Flow detention time= 332.2 min calculated for 0.211 af (100% of inflow) Center-of-Mass det. time= 332.2 min (1,203.1 - 870.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
#2	Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.14'	12.0" Round RCP_Round 12"
			L= 17.2' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.16 cfs @ 15.62 hrs HW=168.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge)

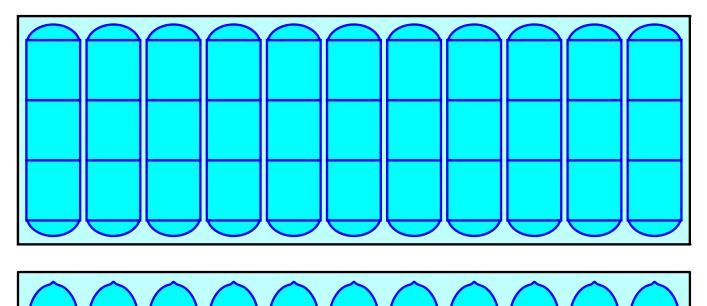
-3=RCP_Round 12" (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 2: UG BAS 2

Summary for Subcatchment P-1: P-1

Runoff = 5.30 cfs @ 12.10 hrs, Volume= 0.399 af, Depth= 2.78"

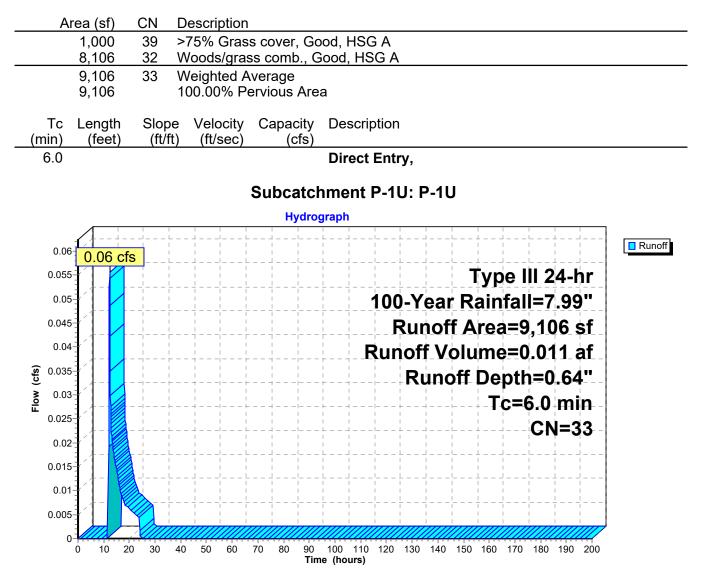
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	Area (sf)	CN	Description			
*	2,640	98	2 driveways			
	55,358	39	>75% Grass cover, Good, HSG A			
*	9,000	98	4 houses			
*	2,600	98	Massapoag road			
*	2,930	98	exist offsite houses, HSG A			
*	1,350	98	ffsite driveways, HSG A			
*	1,260	98	POOL			
	75,138	55	Weighted Average			
	55,358		73.68% Pervious Area			
	19,780		26.32% Impervious Area			
	Tc Length	Slop	be Velocity Capacity Description			

				,	 ····/	
(feet) (ft/ft)	(ft/s	sec)	(cfs))

Direct Entry,

Subcatchment P-1: P-1

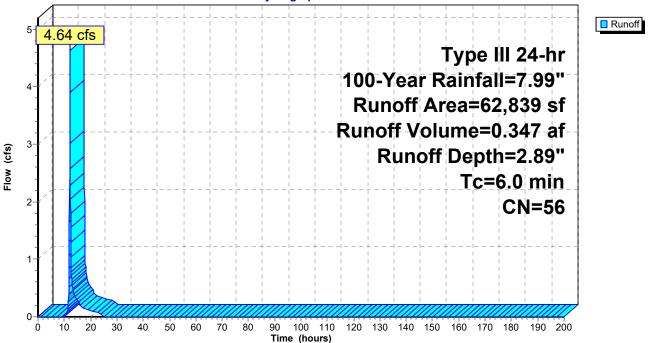

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1U: P-1U

Runoff = 0.06 cfs @ 12.33 hrs, Volume= 0.011 af, Depth= 0.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"


Massapoag Watershed with PC noaa

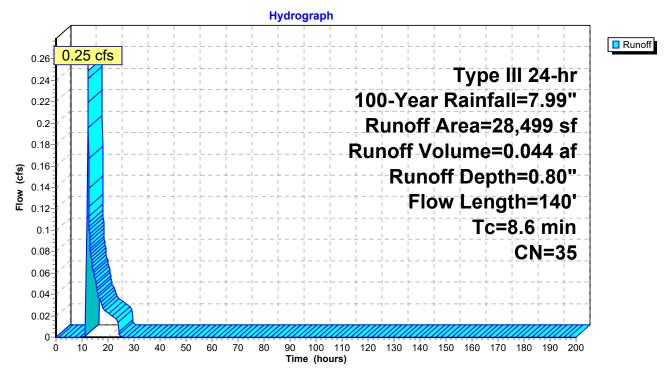
Summary for Subcatchment P-2: P-2

Runoff = 4.64 cfs @ 12.10 hrs, Volume= 0.347 af, Depth= 2.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	A	rea (sf)	CN	Description					
*		4,960	98	5 driveways	3				
		44,479	39	>75% Gras	s cover, Go	Good, HSG A			
*		8,900	98	Massapoag	road				
*		4,500	98	3 houses					
		62,839	56 Weighted Average						
		44,479		70.78% Pervious Area					
		18,360		29.22% Impervious Area					
	Тс	Length	Slope	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)				
	6.0					Direct Entry,			
		- -							
	Subcatchment P-2: P-2								
		Hydrograph							

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

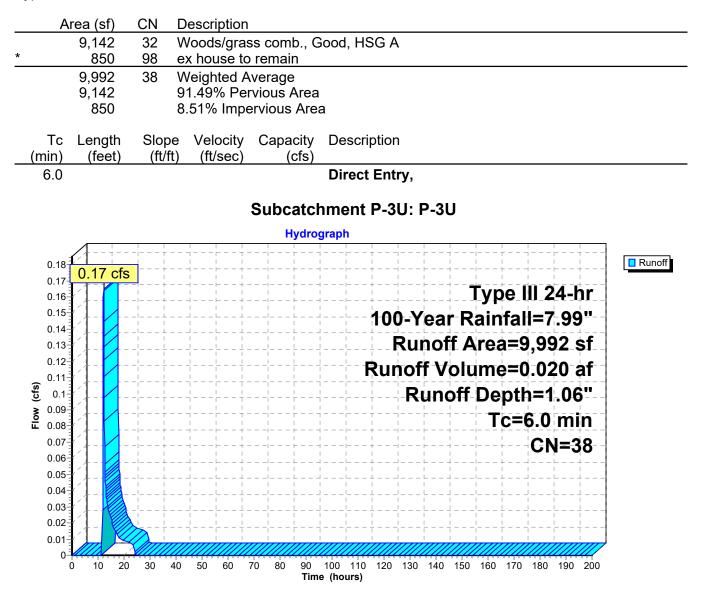

Summary for Subcatchment P-2U: P-2U

Runoff = 0.25 cfs @ 12.31 hrs, Volume= 0.044 af, Depth= 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

_	A	rea (sf)	CN [Description					
		24,999	32 Woods/grass comb., Good, HSG A						
*		3,500	60 r	rip rap, HSG A					
	28,499 35 Weighted Average								
	28,499 100.00% Pervious Area					a			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.5	50	0.0700	0.11		Sheet Flow, AB			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	1.1	90	0.0800	1.41		Shallow Concentrated Flow, BC			
						Woodland Kv= 5.0 fps			
	8.6	140	Total						

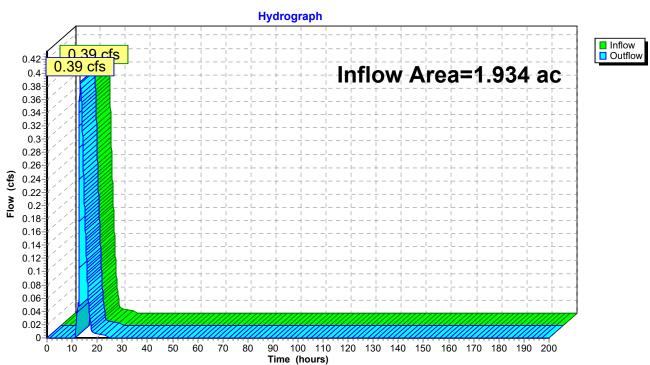
Subcatchment P-2U: P-2U



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-3U: P-3U

Runoff = 0.17 cfs @ 12.13 hrs, Volume= 0.020 af, Depth= 1.06"

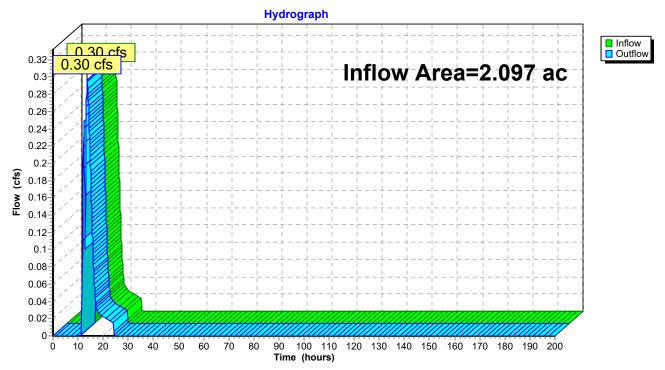

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

Summary for Reach 1: 1

Inflow Area =	1.934	ac, 23.48% Impervious,	Inflow Depth = 0.5	52" for 100-Year event
Inflow =	0.39 ct	s @ 13.21 hrs, Volume	= 0.084 af	
Outflow =	0.39 ct	's @13.21 hrs, Volume	= 0.084 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 1: 1

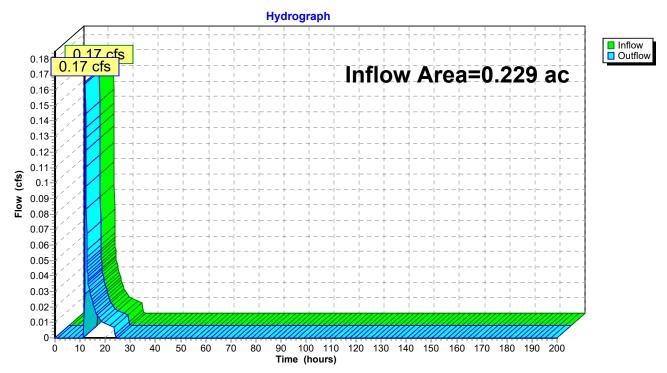

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 2: 2

Inflow Area	a =	2.097 ac, 20.10% Impervious, Inflow	Depth = 0.48"	for 100-Year event
Inflow	=	0.30 cfs @ 13.64 hrs, Volume=	0.084 af	
Outflow	=	0.30 cfs @ 13.64 hrs, Volume=	0.084 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 2:2

Massapoag Watershed with PC noaaType InPrepared by {enter your company name here}HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: 3

Inflow Area =		0.229 ac,	8.51% Impervious,	Inflow Depth = $-$	1.06" for 100-Year even	nt
Inflow	=	0.17 cfs @	12.13 hrs, Volume	= 0.020 a	f	
Outflow	=	0.17 cfs @	12.13 hrs, Volume	= 0.020 a	f, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.725 ac, 26.32% Impervious, Inflow De	epth = 2.78" for 100-Year event
Inflow =	5.30 cfs @ 12.10 hrs, Volume=	0.399 af
Outflow =	0.56 cfs @ 13.22 hrs, Volume=	0.399 af, Atten= 89%, Lag= 67.2 min
Discarded =	0.20 cfs @ 11.55 hrs, Volume=	0.326 af
Primary =	0.37 cfs @ 13.22 hrs, Volume=	0.073 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 168.48' @ 13.22 hrs Surf.Area= 3,544 sf Storage= 7,577 cf

Plug-Flow detention time= 332.2 min calculated for 0.399 af (100% of inflow) Center-of-Mass det. time= 332.2 min (1,190.0 - 857.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 11.55 hrs HW=165.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.37 cfs @ 13.22 hrs HW=168.48' (Free Discharge) 3=RCP_Round 12" (Passes 0.37 cfs of 1.60 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.37 cfs @ 2.68 fps)

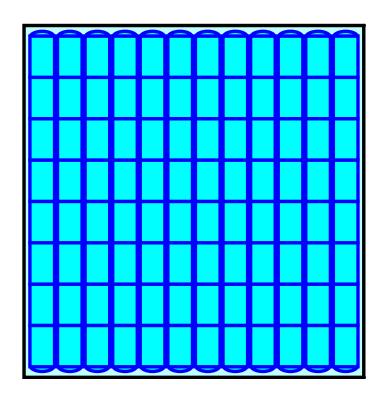
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

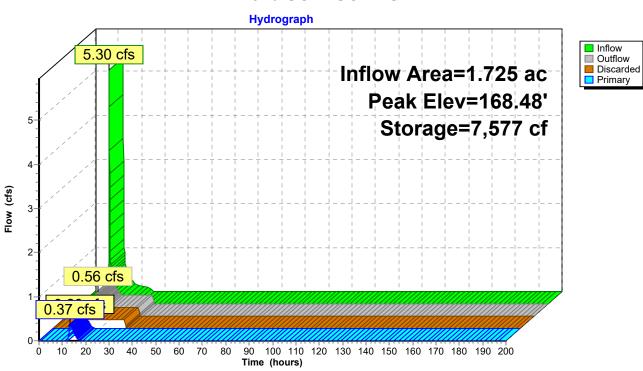
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage


Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 1: UG BAS 1

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow De	epth = 2.89" for 100-Year event
Inflow =	4.64 cfs @ 12.10 hrs, Volume=	0.347 af
Outflow =	0.41 cfs @ 13.71 hrs, Volume=	0.347 af, Atten= 91%, Lag= 96.6 min
Discarded =	0.19 cfs @ 13.71 hrs, Volume=	0.306 af
Primary =	0.22 cfs @ 13.71 hrs, Volume=	0.041 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 170.65' @ 13.71 hrs Surf.Area= 2,179 sf Storage= 7,300 cf

Plug-Flow detention time= 405.9 min calculated for 0.347 af (100% of inflow) Center-of-Mass det. time= 406.0 min (1,261.4 - 855.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
#2	Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.14'	12.0" Round RCP_Round 12"
			L= 17.2' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.19 cfs @ 13.71 hrs HW=170.65' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

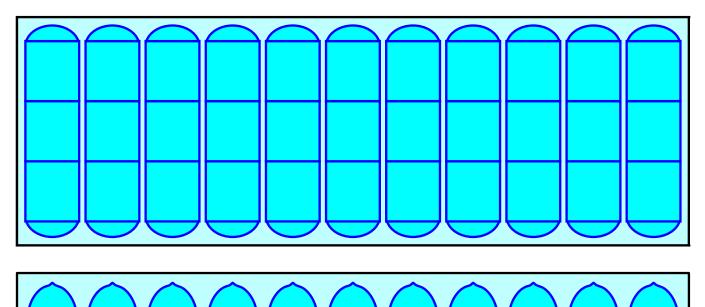
Primary OutFlow Max=0.22 cfs @ 13.71 hrs HW=170.65' (Free Discharge) -3=RCP_Round 12" (Passes 0.22 cfs of 8.52 cfs potential flow) -2=Orifice/Grate (Orifice Controls 0.22 cfs @ 2.57 fps)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

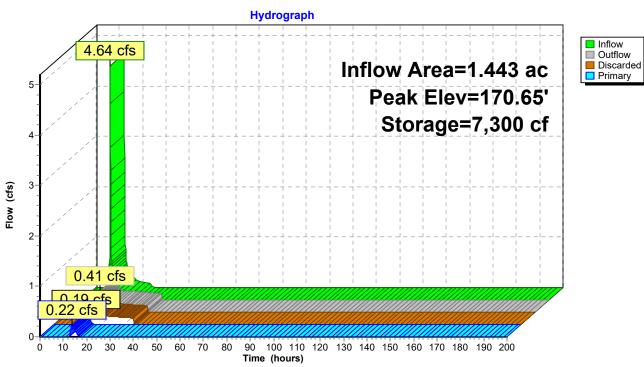
Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

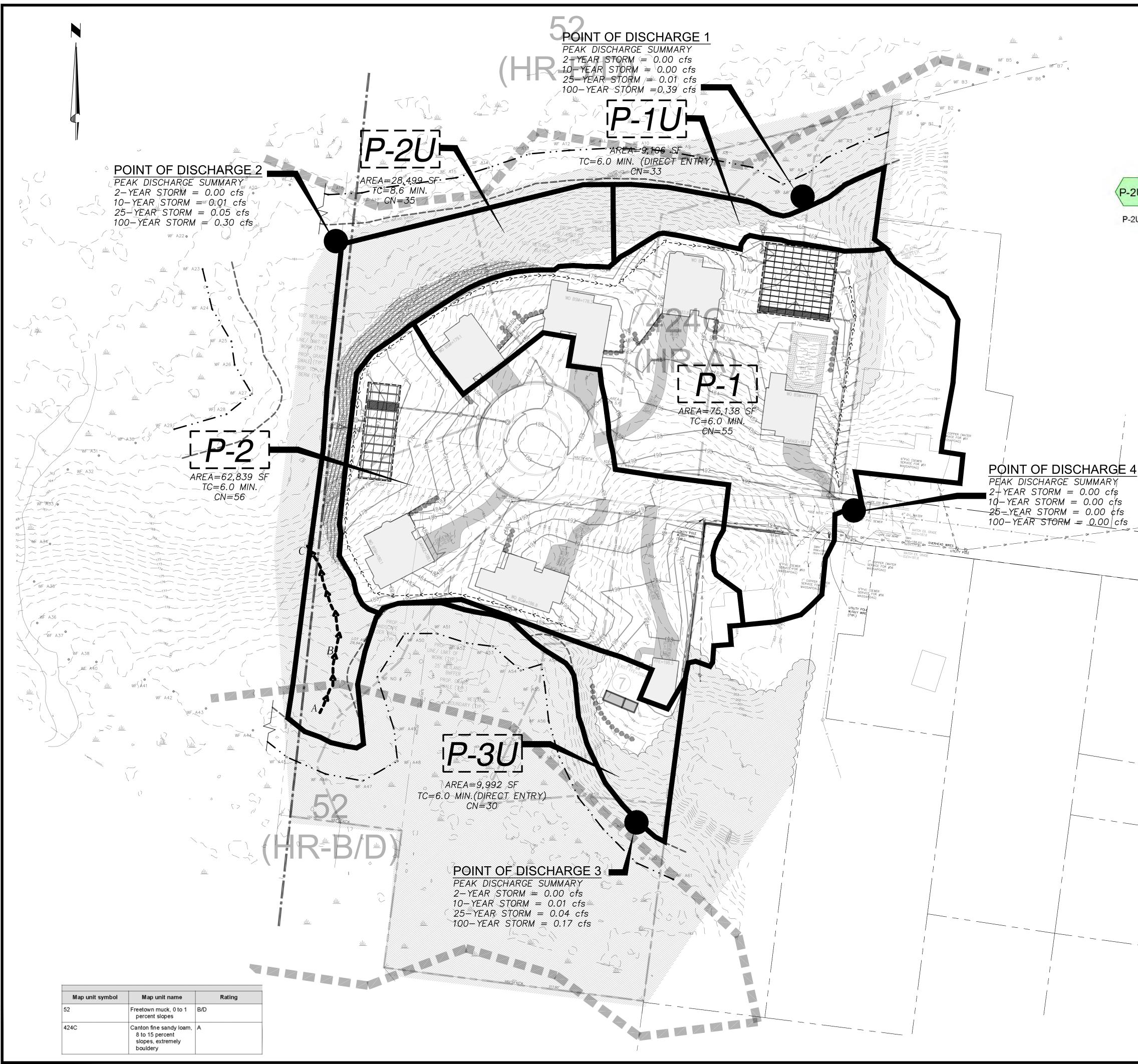
77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$


33 Chambers 457.3 cy Field 310.8 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 2: UG BAS 2

2 2 BAS 2 BAS 2 BAS 2	$\frac{1}{P-1U}$ As 1 $P-3U$ $P-3U$ $P-3U$ $P-3U$ 3 3	For reg	ISTRY USE ONLY
<u>1</u>		40 20 0	40 80
			DMMENTS 3. A. AND TOWN ENG. COMMENTS 3. DWN STAFF COMMENTS 2.
			ND FLAGS AND LOT 1. scription No. ions
		GABRIEL R. CROCKER PROFESSIONAL ENGINEER,	GABRIEL R. CROCKER CIVIL No. 47917 CISTER SIONAL ENSING MA REGISTRATION #47917
		2 SHARP STE HINGHAM, M	EET, UNIT B IA 02043
		P: 781-82 MASSACHU Project	0–0416
		DEFINITIVE S PLA MASSAPOA WEYMOU	AN g street
	APPROVAL UNDER THE		
	SUBDIVISION CONTROL LAW WEYMOUTH PLANNING BOARD 	Drawing Title PROPOSED (WATERSHEI PL	CONDITIONS D ANALYSIS
	PLANNING BOARD ENDORSEMENT DOES NOT IMPLY CONFORMANCE WITH TOWN OF WEYMOUTH ZONING BY-LAW.	Project No. 100-029 Date 12.20.2018 Scale 1"=40' Drawn By SZA Approved By GC	Drawing No. PW-1

SECTION 4 – STORMWATER MANAGEMENT CALCS

4.1 RECHARGE CALCULATIONS

The <u>Required Recharge Volume</u> is computed using the equation provided in the 2008 Massachusetts Stormwater Handbook. The volume is computed as an equivalent depth of rainfall over the proposed impervious areas in accordance with a Target Depth Factor based on the soil classifications. The Calculations is as follows:

- Rv = F x impervious area (Equation 1) Volume 3, Ch 1, page 15
- *Rv* = *Required Recharge Volume*, expressed in cubic feet, cubic yards, or acre-feet
- *F* = Target Depth Factor associated with each Hydrologic Soil Group (HSG)
- Impervious Area = new pavement and new rooftop area
- The Target Depth Factor "F" per Table 2.3.2, Volume 3, Chapter 1 for each soil classification is as follows:
 - A soils = 0.60 inches
 - B soils = 0.35 inches
 - C soils = 0.25 inches
 - D soils = 0.10 inches

Based on the above formula, the required recharge volume for the site is as follows:

Recharge Within "A" Soils:

- Impervious Area = 33,890 SF
- 0.6 inches x 1/12 feet x 33,890 SF = 1,695 CUBIC FEET

TOTAL RECHARGE VOLUME REQUIRED = 1,632 CUBIC FEET

Capture Area Adjustment:

Not required. All impervious area associated with the overall development is conveyed to the recharge BMP's.

TOTAL RECHARGE VOLUME PROVIDED = 7,179 CUBIC FEET (see below)

Recharge Volume BMP Table

Infiltration BMP	Infiltration Rate (in/hr) k	Storage (Recharge) Volume (c.f.) Rv
BAS 1	2.41	4,356
BAS 2	2.41	2,823
Totals		7,179

The Storage Recharge volume numbers provided in the table above have been derived utilizing the HydroCAD output for stage storage. The following pages provide a copy of those printouts and the cumulative stage-storage up to the controlling invert elevation has been highlighted.

Conclusion:

The recharge provided by the proposed underground systems greatly exceeds the required recharge by 4.40 times. The project satisfies Standard 3 of the Massachusetts DEP Stormwater Regulations accordingly.

4.2 DRAWDOWN TIME

Below are the drawdown time calculations for the infiltration BMPs proposed on the site. The calculation uses estimated hydraulic conductivity values "K" in accordance with the Rawls Rates table. The formula below utilized the recommended formula per the MA Stormwater Handbook as follows:

- Drawdown Time = Rv / ((K/12)*Bottom Area)
- Rv = Storage Volume (cf)
- K Saturated Hydraulic Conductivity per Rawls Rate Table
- Bottom Area = Area of Bottom of Proposed Recharge Structure

Below is a summary table of the drawdown calculations:

BASIN DRAWDOWN CALCULATIONS								
Infiltration BMP	Infiltration Rate (in/hr) k	Storage (Recharge) Volume (c.f.) Rv	Bottom Area (s.f.)	Draw Down Time(hours)				
BAS 1	2.41	4,356	3,544	6.12				
BAS 2	2.41	2,829	2179	6.46				
Totals		7,179		12.58				
k = saturated hyd	draulic conductivity	(in/hr)						
Rv = storage volu	Rv = storage volume (c.f.)							
Bottom Area (s.f.	.)							
Volume 3, Chapt	er 1 of the MA Storn	nwater Handbo	pok					

Conclusion:

The calculations show that the infiltration BMP draws down in 12.58 hours which is less than the required 72 hours.

Massapoag Watershed with PC noaaType IIIPrepared by {enter your company name here}HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond UG 2: UG BAS 2

Elevation	Wetted	Storage	Elevation	Wetted	Storago
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	Storage (cubic-feet)
165.00	2,179	0	170.30	3,316	6,993
165.10	2,201	87	170.40	3,338	7,081
165.20	2,222	174	170.50	3,359	7,168
165.30	2,243	261	170.60	3,381	7,255
165.40	2,265	349			
165.50	2,286	436			
165.60	2,308	523			
165.70	2,329	610			
165.80	2,351	743			
165.90	2,372	920			
166.00 166.10	2,394 2,415	1,097 1,273			
166.20	2,413	1,449			
166.30	2,458	1,623			
166.40	2,479	1,797			
166.50	2,501	1,971			
166.60	2,522	2,143			
166.70	2,544	2,314			
166.80	2,565	2,485			
166.90	2,587	2,654			
167.00	2,608	2,823			
167.10 167.20	2,630 2,651	2,990 3,156			
167.30	2,673	3,321			
167.40	2,694	3,484			
167.50	2,716	3,646			
167.60	2,737	3,806			
167.70	2,758	3,964			
167.80	2,780	4,121			
167.90	2,801	4,276			
168.00	2,823	4,429			
168.10 168.20	2,844 2,866	4,580 4,728			
168.30	2,887	4,720			
168.40	2,909	5,017			
168.50	2,930	5,157			
168.60	2,952	5,294			
168.70	2,973	5,428			
168.80	2,994	5,557			
168.90	3,016	5,683			
169.00	3,037	5,802			
169.10 169.20	3,059 3,080	5,914			
169.30	3,102	6,018 6,114			
169.40	3,123	6,207			
169.50	3,145	6,296			
169.60	3,166	6,383			
169.70	3,188	6,470			
169.80	3,209	6,558			
169.90	3,231	6,645			
170.00	3,252	6,732			
170.10 170.20	3,273 3,295	6,819 6,906			
170.20	3,290	0,900			

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Elevation Storage Elevation Horizontal Horizontal Storage (feet) (cubic-feet) (feet) (sq-ft) (cubic-feet) (sq-ft) 165.00 3,544 167.65 3,544 6,329 0 165.05 3,544 71 167.70 3,544 6,423 165.10 3,544 142 167.75 3,544 6,512 165.15 3,544 213 167.80 3,544 6,596 3,544 283 167.85 3,544 6,676 165.20 165.25 3,544 354 167.90 3,544 6,752 165.30 3,544 425 167.95 3,544 6,827 165.35 3,544 496 168.00 3,544 6,899 6,970 165.40 3,544 567 168.05 3,544 165.45 3,544 638 168.10 3,544 7,040 165.50 3,544 709 168.15 3,544 7,111 7,182 165.55 3,544 856 168.20 3,544 165.60 3,544 1.003 168.25 3,544 7,253 165.65 3,544 1,150 168.30 3,544 7,324 165.70 3,544 1,296 168.35 3,544 7,395 3,544 1,442 168.40 3,544 7,466 165.75 165.80 3,544 1,588 168.45 3,544 7,536 165.85 3,544 1,733 168.50 3,544 7,607 7,607 165.90 3,544 1,877 168.55 3,544 165.95 3,544 2,021 168.60 3,544 7,607 2,165 7,607 166.00 3,544 168.65 3,544 166.05 3,544 2,307 168.70 3,544 7,607 7,607 3,544 2,449 166.10 168.75 3,544 2,591 166.15 3,544 166.20 3,544 2,732 166.25 3,544 2,872 166.30 3,544 3,011 166.35 3,544 3,150 166.40 3,544 3,287 166.45 3,544 3.424 166.50 3,544 3,560 166.55 3,544 3,696 166.60 3,544 3,830 166.65 3,544 3,963 166.70 3,544 4.095 166.75 3,544 4,226 166.80 3,544 4.356 166.85 3,544 4,485 166.90 3,544 4,613 166.95 3,544 4,739 167.00 3,544 4,864 167.05 3,544 4,988 167.10 3.544 5,111 167.15 3,544 5,231 167.20 3,544 5,350 3,544 5,468 167.25 3,544 5,583 167.30 3,544 167.35 5,696 3,544 5,808 167.40 167.45 3,544 5,917 167.50 3,544 6,024 167.55 3,544 6,129 167.60 3,544 6,231

Stage-Area-Storage for Pond UG 1: UG BAS 1

4.3 WATER QUALITY

This site qualifies for the treatment of 1.0" of Rainfall under the MA Stormwater Regulations because the wetland to the North of the project is tributary to Mill River which is and Outstanding Resource Water. Therefore, the wetland the project is discharging to qualifies as a Critical Area. A table has been provided below that provides the sizing of the Isolator Row treatment.

UG Basin /	Tributary Area	Tributary Area	Pervious	Impervious	CN Value	WQRD	WQ Volume	Tc	qu	WQF = qu A Q
Isolator row	(acres)	(sq miles)	(sf)	%	(Estimated)	(In)	(cf)	(min)	(csm/in)	(cfs)
UG-1	1.44	0.0023	44,475	29%	72	1.00	1528	5	795	0.52
UG-2	1.73	0.0027	55,358	26%	71	1.00	1652	5	795	0.57

ISOLATOR ROW	UNIT TYPE	Treated flow per unit	Flow required to be treated	Number of units Provided	Treated Flow per Isolator Row
		cfs	cfs		cfs
UG-1	SC-740	0.26	0.52	8	2.08
UG-2	MC-3500	0.40	0.57	3	1.20

STORMTECH ISOLATOR ROW SIZING CHART									
SC-310 SC-740 DC-780 MC-3500 MC-4500									
20	27.8	27.8	43.2	30.1					
0.11	0.15	0.15	0.24	0.17					
	20	20 27.8	20 27.8 27.8	20 27.8 27.8 43.2					

and it has shown to have a TSS removal efficiency of 84% for SIL-CO-SIL 250 NJCAT verified Treated Flow Rate (GPM / Sq.Ft.) 2.5

NJCAT TECHNOLOGY VERIFICATION

Isolator[®] Row PLUS StormTech, LLC

July 2020

Table of Contents	i
List of Figures	ii
List of Tables	iii
1. Description of Technology	1
2. Laboratory Testing	2
2.1 Test Setup 2.2 Test Sediment	7
2.3 Sediment Removal Efficiency Testing2.4 Sediment Mass Loading Capacity	
3. Supporting Documentation	9
 4. Testing Results 4.1 Flow Rate 4.2 Water Temperature 4.3 Head 4.4 Sediment Concentration and Removal Efficiency 	9 10 10 11
4.5 Sediment Mass Loading5. Performance Verification	
6. Design Limitations	
7. Maintenance Plan	22
8. Statements	23
Specifications	29

Table of Contents

List of Figures

Figure 1 Schematic of the StormTech Isolator Row PLUS System	1
Figure 2 Isolator Row PLUS Detail	2
Figure 3 Schematic of the Isolator Row PLUS Test Configuration	3
Figure 4 Photograph of Flow Meter	4
Figure 5 Photograph of Sediment Delivery Port	4
Figure 6 Side View Photograph of Isolator Row PLUS Test Box	4
Figure 7 Top View Photograph of Isolator Row PLUS Test Box	5
Figure 8 Photograph of Background Sampling Port	6
Figure 9 Average Particle Size Distribution of Test Sediment Verified by ECS	7
Figure 10 Removal Efficiency vs. Sediment Mass Loading	<u>19</u>
Figure 11 Driving Head vs. Sediment Mass Loading	20

List of Tables

Table 1 Sampling Schedule for the Isolator Row PLUS Tests	
Table 2 Particle Size Distribution of Test Sediment as Analyzed by ECS	8
Table 3 Flow Rate and Temperature Summary for All Runs	10
Table 4 Sediment Maximum Head (inches) for All Runs	11
Table 5 Background TSS Concentrations	12
Table 6 Sediment Rate Measurements for Runs 1-10	13
Table 7 Sediment Rate Measurements for Runs 11-16	14
Table 8 Effluent Sample TSS Concentrations	15
Table 9 Drawdown Sample TSS Concentrations	16
Table 10 Removal Efficiency Drawdown Losses	17
Table 11 Summary of Sediment Concentrations and Removal Efficiency	18
Table 12 Sediment Mass Loading Summary	19
Table 13 Isolator Row PLUS Model Sizes and New Jersey Treatment Capacities	21

1. Description of Technology

The Isolator[®] Row PLUS (**shown in Figures 1 and 2**) is the first row of StormTech chambers that is surrounded with filter fabric and connected to a closely located manhole for easy access. The Isolator Row PLUS provides for settling and filtration of sediment as stormwater rises in the chamber and ultimately passes through the filter fabric. The open-bottom chambers allow stormwater to flow out of the chambers, while sediment is captured in the Isolator Row PLUS.

A single layer of proprietary Advanced Drainage Systems (ADS) PLUS fabric is placed between the angular base stone and the Isolator Row PLUS chamber. The geotextile provides the means for stormwater filtration and provides a durable surface for maintenance operations. A non-woven fabric is placed over the chambers. See link to O&M Manual (pg. 23) for installation pictures.

The Isolator Row PLUS is designed to capture the "first flush" runoff and offers the versatility to be sized on a volume basis or a flow basis. An upstream manhole not only provides access to the Isolator Row PLUS but includes a high/low concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row PLUS bypass through a manifold to the other chambers. This is achieved with either an elevated bypass manifold or a high-flow weir. This creates a differential between the Isolator Row PLUS row of chambers and the manifold to the rest of the system, thus allowing for settlement time in the Isolator Row PLUS. After Stormwater flows through the Isolator Row PLUS and into the rest of the StormTech chamber system it is either infiltrated into the soils below or passed at a controlled rate through an outlet manifold and outlet control structure. Since this technology fits under the infiltration basin BMP in the New Jersey Stormwater BMP Manual, it is not eligible for NJDEP MTD certification.

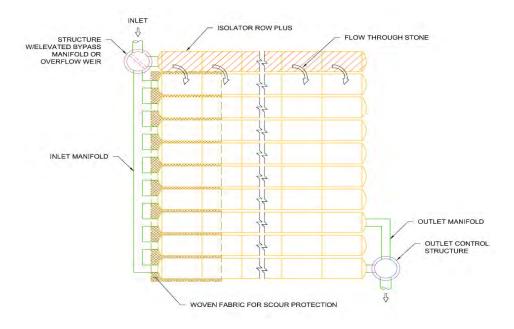


Figure 1 Schematic of the StormTech Isolator Row PLUS System

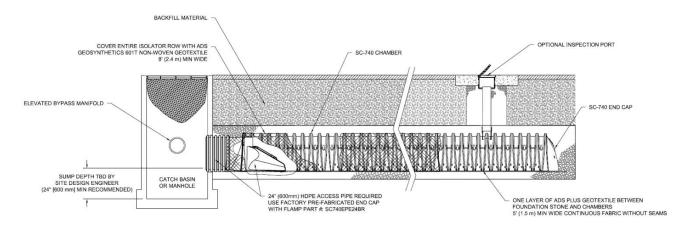


Figure 2 Isolator Row PLUS Detail

2. Laboratory Testing

Beginning in January 2020, two overlapping StormTech SC-740 Isolator Row PLUS commercial size chambers were installed at the BaySaver Laboratory in Mount Airy, Maryland, to evaluate the performance of Isolator Row PLUS on Total Suspended Solid (TSS) removal. Boggs Environmental Consultants (BEC) provided third-party review and oversight of all testing and data collection procedures, in accordance with the *New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January 2013)*. All sediment concentration samples were analyzed by Fredericktowne Labs (FTL) using ASTM D3977-97 (2019). All sediment PSD analysis was performed by Environmental Consulting Services (ECS), using the methodology of ASTM D422-63 (2007). Prior to the start of testing, a Quality Assurance Project Plan (QAPP), revision dated January 9, 2020, was submitted to, and approved by the New Jersey Corporation for Advanced Technology (NJCAT).

2.1 Test Setup

The testing system, shown in **Figure 3**, consisted of a source tank, feed pump, flow control valve, flow meter, background sample port, screw-auger sediment feeder (doser), and an Isolator Row PLUS test system. This verification report only addresses the performance of the Isolator Row PLUS and not the entire StormTech system, since this is the row designed to remove sediment until the system goes into bypass.

Testing Procedure

The water source was potable water from the Town of Mount Airy Water & Sewer Department, obtained from an onsite tap, which served as the raw water supply for the testing system. Municipal tap water was used to fill the source tank, and then pumped to the system. Flow rate was controlled to the target of 225 gpm by a flow control valve. An inline flow meter (FloCat MFE electromagnetic flow meter) was used to measure the flow, and a SeaMetrics DL76 data logger (pictured in **Figure 4**) recorded the flow at one-minute intervals. The test sediment was

introduced to the inlet stream via a 12 -inch dosing port teed with a 12-inch influent line (pictured in **Figure 5**) located approximately 4 feet upstream of the system inlet. The dosing rate was controlled by a screw-auger Velodyne Barracuda 1000A volumetric feeder with a $\frac{1}{2}$ HP variable speed motor. The dosing rate was set to deliver an amount of sediment that, when mixed with the water from the source tank, would produce influent water with a target test sediment concentration of 200 mg/L.

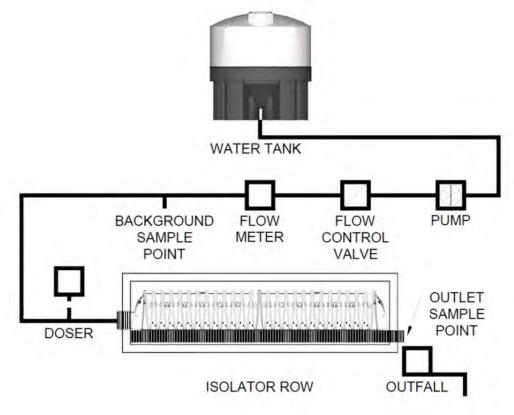


Figure 3 Schematic of the Isolator Row PLUS Test Configuration

The Isolator Row PLUS was installed inside a watertight 16'L x 6'W x 4'H test box (pictured in **Figures 6 and 7**). The Isolator Row PLUS is an arch-shaped stormwater detention/retention sediment collection and filtering device, sealed with end caps, with a 12"-inch inlet pipe welded into the upstream end cap. A ramp apparatus (patent pending) was attached to the inside of the chamber end cap to provide a smooth transition from pipe invert to fabric bottom. It is configured to improve chamber function performance over time by distributing sediment and debris that would otherwise collect at the inlet. It also serves to improve the fluid and solid flow back into the inlet pipe during maintenance and cleaning, and to guide cleaning and inspection equipment back into the inlet pipe when complete.

The chambers were installed on a 10-inch base of washed, angular, crushed stone, (#57, ³/₄ inch blue stone) containing an 8-inch perforated underdrain pipe running the length of the test box, penetrating the wall of the downstream end of the test box to the discharge collection point. An ADS non-woven geotextile fabric was placed over the top of the chamber row. The chambers were then backfilled with the washed crushed stone up to the top of the chamber elevation.

Additionally, an opening was cut into the top of one chamber to allow for visual monitoring and head measurement. No bypass or weir was installed upstream of the test box.

The test flow entered the chamber via the influent pipe and flowed across the filter fabric, filling the row. The water then flowed through the filter fabric, driven by hydrostatic head. The treated water exited the test box via the underdrain.

Figures 4 and 5 Photographs of Flow Meter and Sediment Delivery Port

Figure 6 Side View Photograph of Isolator Row PLUS Test Box

Figure 7 Top View Photograph of Isolator Row PLUS Test Box

Test Unit and Scaling Explanation

The Isolator Row PLUS used in this test was constructed from two (2) overlapping polypropylene open-bottom StormTech SC-740 chambers (one shortened by 5-in. to enable fitting into the test box), two (2) SC-740 end caps, a ramp apparatus and one layer of ADS PLUS geotextile fabric. The chamber floor filtration area (effective filtration treatment area, EFTA) was approximately 54.5 ft². (calculated using an average contact width inside the chamber of 45 in). The target test flow was 225 gpm. The calculated hydraulic loading rate, flow rate/EFTA is 4.13 gpm/ft² and the ratio of effective sedimentation treatment area to EFTA is 1.0. Given these data, one can effectively scale the test results for all commercial systems.

Sample Collection

The grab sampling method was used for all sample collection by sweeping a wide-mouth 1-L plastic bottle through the free-discharge effluent stream, to ensure the full cross section of the flow was sampled. The start time for each run was recorded.

The sampling schedule is provided in **Table 1**. The detention time for the Isolator Row PLUS unit operating at 20 inches hydrostatic head (maximum head tested) is 2.1 minutes. To comply with the NJDEP Filter Protocol, after initiating and stabilizing the flow rate at the MTFR and beginning sediment feed, effluent sampling did not begin until the filtration MTD has been in operation for a minimum of three detention times.

Background water samples were collected upstream of the doser (shown in **Figures 3 and 8**) in correspondence with the odd-numbered effluent samples (i.e., Samples E1, E3, E5 at t = 9, 20, 31 minutes).

Time (min)	Sample(s)	Time (min)	Sample(s)
0	S1	22	S3
9	E1, BG1	31	E5, BG3
10	E2	32	E6
11	S2	33	Stop Flow
20	E3, BG2	N/A	DDA
21	E4	N/A	DDB

Table 1 Sampling Schedule for the Isolator Row PLUS Tests

NOTE: S = sediment rate; E = effluent; BG = background; DD = drawdown

Figure 8 Photograph of Background Sampling Port

Two evenly-volume-spaced drawdown samples, DDA and DDB, were taken after the flow and sediment feed to the unit had been stopped.

Sediment injection rates were measured using a stopwatch and the mass collected measured on a calibrated scale once at the very beginning of the run and twice more during the run. A fourth sediment rate sample was taken after the run was finished as an internal check but was not included in the calculations for the report. The duration of each run was 33 minutes.

A Chain of Custody (COC) form was used for each test run to record sampling date and time for externally analyzed samples. Copies of these forms were maintained by BaySaver Laboratory and FTL. Sample bottles were labeled to identify the test run number and sample type (e.g., background, effluent), corresponding to the sample identification on the COC form. BEC was present during each test run and witnessed labeling, completion of COC forms, and packaging of

samples for delivery to the external laboratory (FTL). Each person taking or relinquishing possession of the samples was required to sign a COC form before samples changed hands.

Other Instrumentation and Measurement

Water temperature was recorded every minute by a HOBO data logger placed in the source water tank of the test system. The water level in the Isolator Row PLUS was recorded every 5 minutes by visual observation of a yardstick mounted through the observation port on top of the first chamber. Run and sampling times were measured using a digital timer and a stopwatch, respectively.

2.2 Test Sediment

The test sediment had the particle size distribution (PSD) presented in **Figure 9**. The test sediment was custom-blended using various commercially available silica sands. The resulting blended sediment met the specification for the NJDEP Filter Protocol. The test sediment was batched, labeled, and stored in covered bins for the duration of this project. Under the supervision of BEC, twenty-one subsamples, taken from various locations within the test sediment containers, were composited. From the composite, three random samples were taken for PSD and moisture content analyses, which were performed by ECS, using the methodology of ASTM method D422-63 (2007).

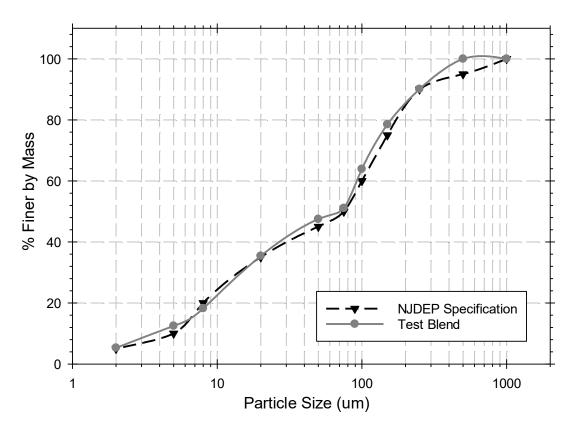


Figure 9 Average Particle Size Distribution of Test Sediment Verified by ECS

The PSD test analysis results are summarized in **Table 2**. ECS results showed that 17-19% of the particles were less than 8 μ m and 89-90% of the particles were less than 250 μ m. The d₅₀ values (approximately 72 μ m) also indicated that there was no significant difference between the NJDEP target gradation and the ECS-verified gradation of the test sediment. Thus, the blended test sediment was found to meet the NJDEP particle size specification and was acceptable for use. ECS also analyzed the sediment samples for moisture. The average moisture content was 0.1%.

Particle Size		Test Blend	% Finer by M	ass Analyzed	by ECS
μm)	<u>NJ Blend A</u>	<u>NJ Blend B</u>	NJ Blend C	<u>Average</u>	NJDEP Specification (minimum % finer)
1000	100.0	100.0	100.0	100.0	98
500	100.0	100.0	100.0	100.0	93
250	90.3	89.8	90.2	90.1	88
150	79.3	78.1	78.1	78.5	73
100	66.0	63.2	62.7	63.9	58
75	52.0	50.9	50.3	51.1	50
50	47.5	47.7	47.4	47.5	43
20	35.9	36.0	34.3	35.4	33
8	18.6	18.7	17.4	18.2	18
5	13.0	13.0	11.6	12.5	8
2	5.5	5.4	5.1	5.3	3
d ₅₀	69 µm	72 µm	74 µm	72 µm	75 μm

Table 2 Particle Size Distribution of Test Sediment as Analyzed by ECS

2.3 Sediment Removal Efficiency Testing

Sediment removal efficiency testing adhered to the guidelines set forth in Section 5 of the NJDEP Laboratory Protocol for Filtration MTDs. The target flow through the system was 225 gpm, with a target sediment concentration of 200 mg/L. All samples were collected in clean, 1-L wide-mouth bottles. Three background samples were taken at 9, 20 and 31 minutes after the test began to ensure the supply water met the sediment concentration requirement. According to the NJDEP Filter Protocol, these background concentrations cannot exceed a TSS concentration of 20 mg/L.

The test sediment screw-auger feeder introduced the test sediment into the influent stream to achieve the target influent TSS concentration of 200 mg/L. According to the NJDEP Filter Protocol, this influent concentration must stay within 10% of target, allowing for a 180 mg/L to 220 mg/L influent concentration. The feeder was calibrated prior to each run. In order to confirm sediment feed rates during the test, in accordance with the NJDEP Filter Protocol, three samples of the test sediment were collected from the injection point (**Figure 3**, "Doser") into a clean one-liter container for verification of sediment feed rate, over an interval timed to the nearest second, with a minimum volume of 0.1 liter or a collection interval not exceeding one minute (whichever came first). The time was measured with a stopwatch. The samples were weighed to the nearest

milligram in the BaySaver Laboratory under the observation of BEC. The sediment feed rate coefficient of variance (COV) for the test sediment samples did not exceed 0.10. The mass from the sediment feed rate measurement samples was subtracted from the total mass introduced to the system when removal efficiency was calculated.

Effluent sampling was performed by the grab sampling method during each run, according to the schedule in **Table 1**. When the test sediment feed was interrupted for test sediment measurements, the next effluent samples were collected after at least three detention times had elapsed. During the drawdown period, two evenly volume-spaced samples were collected after flow and sediment feed had stopped. All sediment concentration samples were analyzed by Fredericktowne Labs (FTL) using ASTM D3977-97 (2019) "Standard Test Methods for Determining Sediment Concentrations in Water Samples."

2.4 Sediment Mass Loading Capacity

The sediment mass loading capacity testing occurred as a continuation of removal efficiency testing, with the target for influent concentration remaining at 200 mg/L, and all aspects of testing procedures kept the same to ensure consistency throughout. The sediment mass loading capacity of the Isolator Row PLUS is defined per the protocol as the point at which the cumulative mass removal drops below 80.0%. For this testing program, the sediment mass loading testing was stopped prior to that point (after Run 16), because it was incorrectly assumed this criterion was reached. Thus, the mass loading is defined as mass loaded into the unit through the end of Run 16.

3. Supporting Documentation

The Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from NJCAT states that copies of the laboratory test reports, all data from performance evaluation test runs, original data, pertinent calculations, and documentation of any maintenance activities that occur during the testing process are to be included in this section. All of this information has been provided to NJCAT and is available upon request. It is not practical to include it in this report.

4. Testing Results

A total of 16 removal efficiency testing runs were completed in accordance with the NJDEP filter protocol. The target flow and influent sediment concentration were 225 gpm and 200 mg/L, respectively. The results from all 16 runs were used to calculate the overall cumulative removal efficiency of the Isolator Row PLUS.

4.1 Flow Rate

Flow was monitored by an inline flow meter (FloCat MFE electromagnetic flow meter) and recorded by a SeaMetrics DL76 data logger every minute during each run. For each run, the flow was maintained within 10% of the target (202.5 - 247.5 gpm). The average flow for all 16 runs was 226.1 gpm. The flow data with coefficient of variance (COV) values for all 16 runs are summarized in **Table 3**.

4.2 Water Temperature

Temperatures were recorded every minute by a HOBO water level logger (U20L-04). On average for all runs, the water temperature during testing was 45.7 degrees Fahrenheit, with a maximum of 52.2 degrees Fahrenheit, meeting the NJDEP Filter Protocol requirement to be below 80 degrees Fahrenheit. Data are summarized in **Table 3**.

Run	Max Flow (gpm)	Min Flow (gpm)	Average Flow (gpm)	Flow COV	Flow Compliance (COV< 0.1)	Maximum Temperature (Fahrenheit)	NJDEP Temperature Compliance (< 80 F)
1	232.8	223.9	226.3	0.0078	Y	48.2	Y
2	228.9	218.6	220.8	0.0104	Y	51.5	Y
3	229.4	220.0	227.2	0.0094	Y	44.7	Y
4	230.2	218.7	223.2	0.0138	Y	40.5	Y
5	228.7	216.9	222.2	0.0103	Y	44.7	Y
6	227.6	217.0	224.2	0.0115	Y	46.7	Y
7	229.7	221.9	226.4	0.0092	Y	44.6	Y
8	230.3	222.2	226.8	0.0089	Y	43.5	Y
9	233.2	218.4	225.6	0.0136	Y	45.5	Y
10	232.2	219.7	228.4	0.0126	Y	44.7	Y
11	226.9	219.2	224.1	0.0088	Y	52.4	Y
12	232.2	222.1	226.9	0.0107	Y	48.5	Y
13	234.7	221.2	226.1	0.0109	Y	48.5	Y
14	231.9	223.4	228.7	0.0103	Y	45.6	Y
15	236.8	224.1	231.4	0.0131	Y	52.2	Y
16	232.5	221.3	229.0	0.0137	Y	47.8	Y
Average			226.1			45.7	
Max						52.2	

Table 3 Flow Rate and Temp	erature Summary for All Runs
----------------------------	------------------------------

4.3 Head

The head level in the Isolator Row PLUS was recorded to the nearest 1/8 inch every five minutes, through visual observation of a yard stick mounted through the observation port of the first chamber. With each run, after the first several measurements, the head during the run remained the same or increased slightly over that of the previous run. The maximum head reached during all 16 runs was 18.75 inches. Maximum head for each run is summarized in **Table 4**.

Run	Maximum Head (inches)	Run	Maximum Head (inches)
1	9.00	9	17.50
2	12.00	10	18.00
3	14.00	11	17.25
4	15.25	12	18.00
5	15.75	13	18.25
6	16.25	14	18.50
7	17.50	15	18.75
8	17.25	16	18.75

Table 4 Maximum Head (inches) for All Runs

4.4 Sediment Concentration and Removal Efficiency

Background TSS

Municipal tap water was used as the water source during testing. The background TSS concentration for all runs was well below the 20 mg/L NJDEP Protocol limit. Background TSS concentrations for each run are provided in **Table 5**. The average background TSS concentration for each run was subtracted from the effluent and drawdown concentrations to provide adjusted figures, per the protocol.

Sediment Dosing Rate and Influent TSS

Influent TSS concentration was calculated by dividing the total mass of sediment added during a given run by the total volume of water flowing through the MTD during the addition of test sediment during that run. The volume of water flowing through the device during the run was calculated by multiplying the average measured flow by the time of sediment addition only. The average influent TSS was 204.2 mg/L, with individual run averages ranging from 195.9 to 216.7 mg/L. All values are within the target range of 200 ± 20 mg/L. **Tables 6 and 7** provide the measured sediment rates for each run, and the resulting calculated influent TSS concentration. In these tables, NJDEP Protocol compliance is defined as a TSS concentration in the range 180 - 220 mg/L and sediment feed rate COV < 0.1.

Run	BG TSS 9 min	BG TSS 20 min	BG TSS 31 min	Average	MDL
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	0.5	4	2	2.2	1.0
2	1	1	0.5	0.8	1.0
3	1	0.5	0.5	0.7	1.0
4	0.5	0.5	0.5	0.5	1.0
5	0.5	0.5	0.5	0.5	1.0
6	0.5	0.5	0.5	0.5	1.0
7	0.5	0.5	0.5	0.5	1.0
8	0.5	0.5	0.5	0.5	1.0
9	0.5	0.5	0.5	0.5	1.0
10	0.5	0.5	0.5	0.5	1.0
11	0.5	0.5	0.5	0.5	1.0
12	0.5	0.5	0.5	0.5	1.0
13	0.5	0.5	0.5	0.5	1.0
14	0.5	0.5	0.5	0.5	1.0
15	0.5	0.5	0.5	0.5	1.0
16	0.5	0.5	0.5	0.5	1.0

Table 5 Background TSS Concentrations

Note: In cases where the measured background TSS concentration was below the Minimum Detection Level (MDL) of 1.0 mg/L, half the MDL was reported for the background concentration.

Run	Run Time (min)	Sediment Weight (g)	Duration (s)	Sediment Feed Rate (g/min)	Influent Water Flow Rate (gpm)	Influent TSS Conc. (mg/L)	NJDEP Compliance
	0	117.767	39.78	177.6			
1	11	110.674	40.16	165.4	226.2	202.9	Y
1	22	118.819	40.00	178.2	226.3	202.9	Y
	cov			0.0418			
	0	114.921	39.91	172.8			
	11	106.158	39.96	159.4	220.0	100 5	
2	22	110.429	40.10	165.2	220.8	198.5	Y
	cov			0.0404			
	0	117.364	39.85	176.7			
	11	116.700	39.90	175.5	1		
3	22	120.156	39.72	181.5	227.2	206.8	Y
	cov			0.0179	1		
	0	121.043	39.79	182.5			
	11	125.058	39.88	188.2			
4	22	118.657	39.85	178.7	223.2	216.7	Y
	cov			0.0261			
	0	111.624	40.03	167.3	-		
	11	117.883	40.00	176.8			
5	22	132.393	39.88	199.2	222.2	215.0	Y
	cov	102.000	00100	0.0904			
	0	114.723	39.94	172.3		206.6	
	11	119.043	40.03	172.5			
6	22	117.644	40.28	175.2	224.2		Y
	cov	117.011	10.20	0.0174			
	0	115.351	40.00	173.0			
	11	110.196	40.25	164.3			
7	22	114.603	40.00	171.9	226.4	198.1	Y
	cov	111.005	10.00	0.0281			
	0	115.664	39.72	174.7			
	11	115.004	39.93	174.7	1		
8	22	110.840	39.82	167.0	226.8	201.5	Y
	COV	110.040	55.02	0.0307	1		
	0	116.845	39.87	175.8			
	11	110.845	39.87	173.8	1		
9	22	114.133	39.81	172.0	225.6	205.2	Y
		117.034	33.75		1		
	cov	111 206	20.57	0.0172			
	0	111.306	39.57	168.8	1		Y
10	11	119.680	39.81	180.4	228.4	203.0	
	22	118.275	39.90	177.9	4		
	COV			0.0347			

Table 6 Sediment Rate Measurements for Runs 1-10

Run #	Run Time (min)	Sediment Weight (g)	Duration (s)	Sediment Feed Rate (g/min)	Influent Water Flow Rate (gpm)	Influent TSS Conc. (mg/L)	NJDEP Compliance
	0	114.505	39.90	172.2			
11	11	119.160	39.94	179.0	224.1	207.8	Y
	22	118.629	40.03	177.8	224.1	207.8	I
	cov			0.0207			
	0	115.516	39.78	174.2			
12	11	118.805	39.87	178.8	226.9	208.8	Y
12	22	124.236	40.22	185.3	220.5	208.8	T
	cov			0.0311			
	0	114.776	39.78	173.1	226.1		
13	11	106.924	39.85	161.0		198.0	Y
15	22	115.083	39.69	174.0		150.0	'
	cov			0.0429			
	0	112.871	39.72	170.5		199.9	Y
14	11	116.869	39.84	176.0	228.7		
14	22	114.529	39.81	172.6	228.7	199.9	r
	cov			0.0161			
	0	112.091	39.72	169.3			
15	11	112.200	39.81	169.1	231.4	195.9	Y
15	22	117.588	39.94	176.6	231.4	193.9	Т
	cov			0.0250			
	0	118.503	39.59	179.6	229.0		
16	11	116.834	39.78	176.2		202.2	Y
10	22	112.971	39.84	170.1		202.3	ř
	cov			0.0273			

 Table 7 Sediment Rate Measurements for Runs 11-16

Effluent TSS

During each run, grab samples were taken of the effluent according to the schedule in **Table 1**, and all TSS analyses were conducted by Fredericktowne Labs. For each run, the average effluent concentration was adjusted by subtracting the average background TSS concentration. The average adjusted effluent TSS concentration during testing was 39 mg/L, with individual run averages ranging from 32.0 to 45.5 mg/L. Effluent and adjusted effluent TSS concentrations for each run are given in **Table 8**.

Run	EFF TSS 9 min	EFF TSS 10 min	EFF TSS 20 min	EFF TSS 21 min	EFF TSS 31 min	EFF TSS 32 min	Mean	MDL	Adjusted Effluent TSS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	48	48	47	47	48	48	47.7	1.0	45.5
2	32	32	33	32	35	33	32.8	1.0	32.0
3	33	37	37	40	38	38	37.2	1.0	36.5
4	28	31	34	38	32	38	33.5	1.0	33.0
5	40	41	39	33	42	42	39.5	1.0	39.0
6	38	41	39	37	41	44	40.0	1.0	39.5
7	37	40	37	36	37	38	37.5	1.0	37.0
8	38	41	38	40	32	38	37.8	1.0	37.3
9	35	41	36	36	42	41	38.5	1.0	38.0
10	39	44	34	38	37	41	38.8	1.0	38.3
11	35	41	38	38	38	43	38.8	1.0	38.3
12	36	43	36	41	46	47	41.5	1.0	41.0
13	41	46	37	37	42	45	41.3	1.0	40.8
14	44	49	39	42	42	45	43.5	1.0	43.0
15	40	43	41	39	40	45	41.3	1.0	40.8
16	43	45	41	44	45	46	44.0	1.0	43.5

Table 8 Effluent Sample TSS Concentrations

Note: Adjusted effluent TSS concentration is the average effluent TSS concentration minus the average background TSS concentration (Table 5).

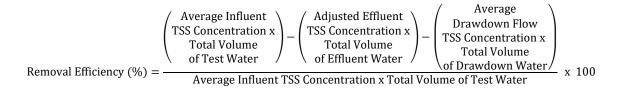
Drawdown TSS

According to the NJDEP Filter Protocol, the amount of sediment that leaves the filter during the drawdown period must be accounted for and documented. During each run, two evenly volume-spaced grab samples were taken of the drawdown, and all TSS analyses were conducted by Fredericktowne Labs. For each run, the average drawdown concentration was adjusted by subtracting the average background TSS concentration (**Table 9**).

Run	DDA	DDB	Average	MDL	Adjusted Drawdown TSS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	62	11	36.5	1.0	34.3
2	39	16	27.5	1.0	26.7
3	42	14	28.0	1.0	27.3
4	41	18	29.5	1.0	29.0
5	42	16	29.0	1.0	28.5
6	45	17	31.0	1.0	30.5
7	44	16	30.0	1.0	29.5
8	48	17	32.5	1.0	32.0
9	42	18	30.0	1.0	29.5
10	45	17	31.0	1.0	30.5
11	43	17	30.0	1.0	29.5
12	44	16	30.0	1.0	29.5
13	46	18	32.0	1.0	31.5
14	50	18	34.0	1.0	33.5
15	47	17	32.0	1.0	31.5
16	48	15	31.5	1.0	31.0

Table 9 Drawdown Sample TSS Concentrations

Note: Adjusted drawdown TSS concentration is the average drawdown TSS concentration minus the average background TSS concentration (Table 5).


In order to estimate the volume of water during drawdown, under observation by BEC, the unit was filled prior to all testing with clean water and the drawdown volume as a function of time was calculated from the height of the flow stream in the effluent pipe as a function of time. Total drawdown volume was estimated at 268.6 gal at an operating head of 2.5 inches. This volume was used to determine the volume of the void space of the gravel bed, which was then used, along with the dimensions of the Isolator Row PLUS chambers, to calculate the drawdown volume for incremental head levels above 2.5 inches. Adjusted average drawdown TSS concentrations and drawdown losses are given in **Table 10**.

Run	Head Level at End of Run (in)	Drawdown Volume (gal)	Average Adjusted Drawdown TSS Conc. (mg/L)	Total Sediment Lost During Drawdown (g)
1	9.00	285.2	34.3	37.1
2	12.00	354.2	26.7	35.7
3	14.00	403.3	27.3	41.7
4	15.25	432.8	29.0	47.5
5	15.75	443.9	28.5	47.9
6	16.25	454.2	30.5	52.4
7	17.50	476.0	29.5	53.2
8	17.00	468.2	32.0	56.7
9	17.25	472.3	29.5	52.7
10	17.75	476.0	30.5	55.0
11	17.25	472.3	29.5	52.7
12	17.5	476.0	29.5	53.2
13	18.00	482.4	31.5	57.5
14	18.25	484.9	33.5	61.5
15	18.50	486.8	31.5	58.1
16	18.25	484.9	31.0	56.9

Table 10 Drawdown Losses

Removal Efficiency Calculation

Removal efficiency was calculated using the following equation from the NJDEP Filter Protocol:

For each run, sediment concentrations of background, influent, effluent, and drawdown, as well as the calculated removal efficiency, are summarized in **Table 11**. As shown in this summary table, the Isolator Row PLUS demonstrated a cumulative sediment removal efficiency of 81.2% over the course of 16 test runs.

Run	Average Influent TSS (mg/L)	Influent Water Volume (gal)	Adjusted Average Effluent TSS (mg/L)	Effluent Water Volume (gal)	Adjusted Average Drain Down TSS (mg/L)	Drain Down Water Volume (gal)	Single Run Removal Efficiency (%)	Mass of Captured Sediment (g)	Cumulative Removal Efficiency (%)
1	203	7166	46	6881	34	285	77.8	4282	77.8
2	199	6993	32	6639	27	354	84.0	4415	80.8
3	207	7197	37	6793	27	403	82.6	4654	81.4
4	217	7068	33	6635	29	433	84.9	4923	82.3
5	215	7037	39	6593	29	444	82.2	4705	82.3
6	207	7097	40	6643	31	454	81.2	4504	82.1
7	198	7169	37	6693	30	476	81.6	4386	82.0
8	201	7184	37	6716	32	468	81.6	4473	82.0
9	205	7147	38	6675	30	472	81.8	4539	82.0
10	203	7235	38	6759	31	476	81.4	4523	81.9
11	208	7096	38	6624	30	472	81.8	4567	81.9
12	209	7185	41	6709	30	476	80.7	4584	81.8
13	198	7162	41	6680	32	482	79.7	4277	81.6
14	200	7242	43	6757	34	485	78.8	4318	81.4
15	196	7329	41	6842	32	487	79.5	4320	81.3
16	202	7254	44	6769	31	485	78.9	4384	81.2
Ave.	204.2	7160	39	6713	31	447	81.2	4491	N/A
Cumu	lative Mas	s Removed	l (g)					71854	
Cumu	lative Mas	s Removed	l (lb)					158.4	
Total	Mass Load	ed (lb)						195.2	
Cumu	lative Rem	oval Efficie	ency (%)					81.2	

Table 11 Removal Efficiency Results

4.5 Sediment Mass Loading

Sediment mass loading for each run was approximately 12.2 lbs on average. These data are summarized in **Table 12**.

Sediment mass loading was calculated from the summation of the total sediment mass added during dosing in each run.

Run	Sediment Loading (lbs)	Cumulative Sediment Loading (lbs)	Run	Sediment Loading (lbs)	Cumulative Sediment Loading (lbs)
1	12.1	12.1	9	12.2	110.0
2	11.6	23.7	10	12.3	122.2
3	12.4	36.1	11	12.3	134.5
4	12.8	48.9	12	12.5	147.0
5	12.6	61.5	13	11.8	158.9
6	12.2	73.8	14	12.1	170.9
7	11.9	85.6	15	12.0	182.9
8	12.1	97.7	16	12.2	195.2

Table 12 Sediment Mass Loading Summary

Overall, a total of 195.2 lbs of sediment was loaded into the Isolator Row PLUS over the course of the 16 runs. Total captured mass over the 16 runs was 158.4 lbs (**Table 11**).

The relationship between removal efficiency and sediment mass loading is shown in **Figure 10**. The relationship between driving head and sediment mass loading is shown in **Figure 11**.

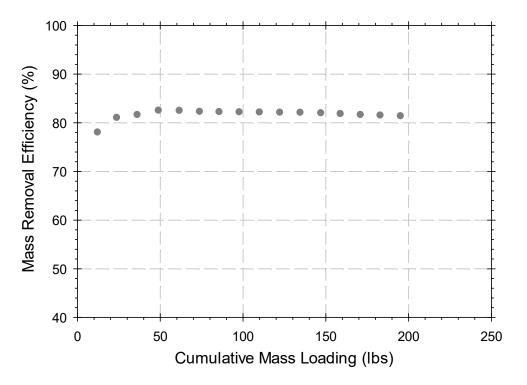


Figure 10 Removal Efficiency vs. Sediment Mass Loading

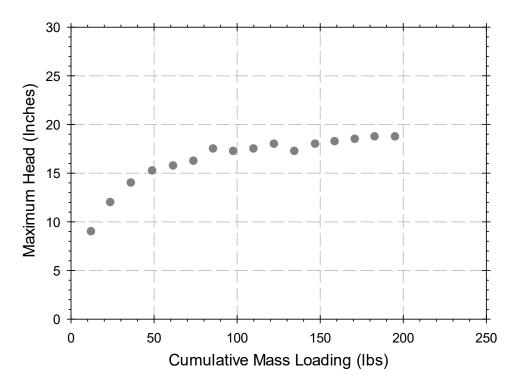


Figure 11 Driving Head vs. Sediment Mass Loading

5. Performance Verification

The Isolator Row PLUS used in this test, constructed from two (2) overlapping StormTech SC-740 chambers and one layer of ADS PLUS fabric, demonstrated a cumulative mass TSS removal efficiency of 81.2% and a sediment mass loading capacity of 3.58 lb./ft² (mass capture capacity of 2.91 lb./ft²) of geotextile fabric filtration area when operated with a driving head < 20 inches at a hydraulic loading rate of 4.13 gpm/ft² of geotextile fabric filtration area. The MTFR's and maximum allowable drainage area for other StormTech Isolator Row PLUS models are shown in **Table 13**.

Table 13 Isolator Row PLUS System Model Sizes and New Jersey Treatment Capacities

	Surface Loading Rate (gpm/ft ²)	Effective Filtration Treatment Area (ft ²)	MTFR (cfs) ¹	Mass Loading Capacity (lbs)	Mass Capture Capacity (lbs)	Drainage Area (acres)
Model	Single Chamber	Single Chambar	Single Chamber	Single Chamber	Single Chamber	Single Chamber
StormTech	Chamber	Chamber	Chamber	Chamber	Chamber	Chamber
Storm Lech SC-160	4.13	11.45	0.105	41.0	33.4	0.06
StormTech						
SC-310	4.13	17.7	0.163	63.4	51.6	0.09
StormTech						
SC-740	4.13	27.8	0.256	99.6	81.0	0.14
StormTech						
DC-780	4.13	27.8	0.256	99.6	81.0	0.14
StormTech	4.12	42.0	0.205	152 7	125.0	0.21
MC-3500	4.13	42.9	0.395	153.7	125.0	0.21
StormTech MC-4500	4.13	30.1	0.277	107.8	87.7	0.15
1. Based of	on 4.13 gpm/ft ² of	effective filtra	ation treatment	area.		
2. Drainag	ge Area is based o	n the equation	in the NJDEP	Filter Protocol	wherein drain	age area is
calculat	ed by dividing th	e pounds of m	ass captured by	y 600 lb/acre.		

6. Design Limitations

Maximum Flow Rate

The StormTech Isolator Row PLUS unit has an MTFR of 0.501 cfs (225 gpm) and an effective filtration treatment area (EFTA) of 54.5 ft^2 (loading rate 4.13 gpm/ft²).

Slope

The StormTech Isolator Row PLUS is recommended for installation with little to no slope to ensure proper, consistent operation. Steep slopes should be reviewed by ADS/StormTech Engineering support.

Allowable Head Loss

There is an operational head loss associated with the StormTech Isolator Row PLUS. The head loss will increase over time due to the sediment loading to the system. Site-specific treatment flow rates, peak flow rates, pipe diameter, and pipe slopes should be evaluated to ensure there is appropriate head for the system to function properly.

Sediment Load Capacity

Based on laboratory testing results, the StormTech Isolator Row PLUS unit has a mass loading capacity of 195.2 lbs. while operating at a sediment removal efficiency of 81.2%; the total sediment load captured by the tested Isolator Row PLUS is 158.4 lbs.

Pre-treatment Requirements

The StormTech Isolator Row PLUS unit does not require additional pre-treatment.

Configurations

The StormTech Isolator Row PLUS is available in multiple configurations. The length and size can be adjusted to meet project specific design volumes or flow rates.

Structure Load Limitations

The StormTech Isolator Row PLUS, as part of the overall chamber system, is designed to meet the full scope of design requirements of the American Society of Testing Materials (ASTM) International specification F2787 "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers" and produced to the requirements of the ASTM F2418 "Standard Specification for Polypropylene (PP) Corrugated Stormwater Collection Chambers". The StormTech chambers provide the full AASHTO safety factors for live loads and permanent earth loads. The ASTM F 2787 standard provides specific guidance on how to design thermoplastic chambers in accordance with AASHTO Section 12.12. of the AASHTO LRFD Bridge Design Specifications. ASTM F 2787 requires that the safety factors included in the AASHTO guidance are achieved as a prerequisite to meeting ASTM F 2418. The three standards provide both the assurance of product quality and safe structural design.

7. Maintenance Plan

The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location, based upon site-specific variables. The type of land use (i.e. industrial, commercial, public, residential), anticipated pollutant load, percent imperviousness, climate, rainfall data, etc., all play a critical role in determining the actual frequency of inspection and maintenance practices.

The Isolator Row PLUS may also be part of a treatment train. By treating stormwater prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row PLUS chamber should be inspected every 6 months for the first year of operation. For subsequent years, the inspection schedule should be adjusted based upon previous observation of sediment deposition.

The Isolator Row PLUS incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the Isolator Row PLUS from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If, upon visual inspection, it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row PLUS, clean-out should be performed.

The Isolator Row PLUS was designed to reduce the cost of periodic maintenance. By "isolating" sediment to just one row of the StormTech system, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high-pressure water nozzle to propel itself down the Isolator Row PLUS while scouring and suspending sediment. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency.

Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear-facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose, allowing maintenance of an Isolator Row PLUS up to 50 chambers long. The JetVac process should only be performed on StormTech Isolator Rows PLUS that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

Complete details of the design, operation, and maintenance of the Isolator Row PLUS can be found in the StormTech O&M Manual, available online at: <u>https://www.stormtech.com/download_files/pdf/11081-stormtech-isolator-row-plus-manual-07-20.pdf</u>

8. Statements

The attached pages include signed statements from the manufacturer (Advanced Drainage Systems, Inc.), the third-party environmental consulting firm (Boggs Environmental Consultants, Inc.), and NJCAT. These statements are included as a requirement for the verification process.

June 26th, 2020

Dr. Richard S. Magee, Sc.D., P.E., BCEE NJCAT Center for Environmental Systems Steven Institute of Technology Castle Point on Hudson Hoboken, NJ 07030-0000

Dr. Magee,

Advanced Drainage Systems is pleased to provide this letter as our statement certifying that the protocol, "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a filtration Manufactured Treatment Device" (NJDEP Filter Protocol, January 25, 2013), was strictly followed while testing our StormTech Isolator® Row PLUS. The testing was performed at BaySaver Laboratories, located in Mount Airy, MD. All data pertaining to the StormTech Isolator Row PLUS NJDEP Protocol test is included in the Verification Report.

Respectfully,

Greg Spires, PE General Manager - StormTech Advanced Drainage Systems 614.325.0032 greg.spires@ads-pipe.com

www.stormtech.com Advanced Drainage Systems, Inc. 4640 Trueman Blvd Hilliard Ohio 800.821.6710

Middletown, MD & Morgantown, WV

Administrative Office: 200 W Main Street Middletown, Maryland 21769 Fax

Office (301) 694-5687 (301) 694-9799

June 25, 2020

StormTech Advanced Drainage Systems, Inc. 520 Cromwell Avenue Rocky Hill, CT 06067 gregory.spires@ads-pipe.com

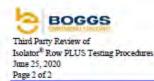
ATTENTION Greg Spires, PE General Manager, StormTech Advanced Drainage Systems, Inc.

REFERENCE: Third Party Review of Testing Procedures of the Isolator® Row PLUS at the BaySaver Laboratory 1207 Park Ridge Drive Mount Airy, MD 21771

BOGGS ENVIRONMENTAL CONSULTANTS, INC. (BEC) provided Third Party Review services for the testing of the Isolator® Row PLUS to evaluate if the required testing meets certification standards established by the New Jersey Department of Environmental Protection (NJDEP).

LABORATORY TESTING PROCEDURES & METHODOLOGIES

The following two procedures and testing requirements were followed during the testing process of the Isolator® Row PLUS:


- New Jersey Department of Environmental Protection, Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device, dated January 25, 2013.
- QAPP for Isolator⁸⁰ Row PLUS, New Jersey Department of Environmental Protection Testing, prepared by StormTech (a subsidiary of Advanced Drainage Systems, Inc.), Revision dated January 9, 2020.

ONSITE THIRD-PARTY OBSERVATION OF TESTING PROCEDURES

BEC was present at the BaySaver Laboratory, at 1207 Park Ridge Drive, in Mount Airy, MD 21771, to observe the following testing of the Isolator® Row PLUS:

- The mixing and establishment of a sediment blend that included manufactured sands that when delivered to the feed water would result in influent Total Suspended Solids (TSS) concentrations within the established range of approximately 200 mg/L and a particle size distribution specified and approved by NJDEP;
- BEC assisted in the establishment of a Procedure Checklist to be used on each run to verify and document the following: Verify that pumps and measurement devices are turned on and functioning; Verification that the correct measurements of dry sediments are added to the doser and feed stream; Document that, background effluent, and duplicate samples are collected at established intervals during the run; and, Recording of periodic flow rates and head measurements during each run;
- Observation of Runs 1 through 16 from January 14, 2020 to February 12, 2020 and verified that that sediment. background, effluent samples were collected during each 33-minute run, and that drawdown samples were collected after the end of each run.
- · After sampling was completed for each run, BEC was present for the downloading of flow data as well as sediment feed rates to verify that calculated sediment feed rates met NJDEP protocols for testing. BEC also verified that that sample containers were properly labeled and chain of custodies were filled and were boxed and sealed for delivery to Fredericktowne Labs for analysis of Total Suspended Solids (TSS).

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES

THIRD-PARTY VERIFICATION & OPINIONS

Based on observations during the runs and the reported TSS analytical results, BEC verified the following:

- That the testing of the Isolator[®] Row PLUS at the BaySaver Laboratory was conducted in accordance with the New Jersey Department of Environmental Protection, Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device, dated January 25, 2013 and procedures established in Advanced Drainage Systems, Inc.'s QAPP for Isolator[®] Row PLUS, New Jersey Department of Environmental Protection Testing, prepared by StormTech (a subsidiary of Advanced Drainage Systems), Revision dated January 9, 2020.
- The report titled NJCAT Technology Verification, of Isolator[®] Row PLUS, prepared by StormTech, dated June 2020, used applicable NJCAT protocol and accurately reflects the testing observed by BEC.

BEC has no financial conflict of interest, as defined in the Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation of Advanced Technology (NJEP 2013).

Should you have any questions, contact our office at your earliest convenience.

Sincerely, BOGGS ENVIRONMENTAL CONSULTANTS, INC.

William R. Warfel Principal Environmental Scientist

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES

Center for Environmental Systems Stevens Institute of Technology One Castle Point Hoboken, NJ 07030-0000

May 1, 2020

George F. Ives III, P.E. StormTech, LLC 520 Cromwell Ave Rocky Hill, CT 06067

Dear Mr. Ives,

Based on my review, evaluation and assessment of the testing conducted on the StormTech, LLC Isolator Row PLUS at the BaySaver Laboratory (Storm Tech, LLC and BaySaver Technologies, LLC are subsidiaries of Advanced Drainage Systems, Inc.), under the independent third-party oversight of Boggs Environmental Consultants (BEC), Inc., the test protocol requirements contained in the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" (NJDEP Filter Protocol, January 2013) were met or exceeded. Specifically:

Test Sediment Feed

The test blend was custom-blended using various commercially available silica sands under the oversight of BEC. The particle size distribution was independently analyzed by Environmental Consulting Services (ECS), using the methodology of ASTM method D422-63. The blended silica met the specification within tolerance as described in Section 5B of the NJDEP filter protocol and was acceptable for use.

Removal Efficiency Testing

Sixteen (16) removal efficiency testing runs were completed in accordance with the NJDEP filter protocol. The target flow rate was 225 gpm and the influent sediment concentration was 200 mg/L. The average flow rate for all 16 runs was 226.1, with a coefficient of variation (COV) below the flow compliance (COV) < 0.1 for all the runs. Likewise, for all runs the sediment feed rate COV was below the < 0.03 protocol limit. The Isolator Row PLUS demonstrated a cumulative sediment removal efficiency of 81.2% over the course of the 16 test runs.

Sediment Mass Loading Capacity

Mass loading capacity testing was conducted concurrently with removal efficiency testing. The Isolator Row PLUS has a mass loading capture capacity of 158.4 lbs (2.91 lbs/ft² of filtration area).

No maintenance was performed on the test system during the entire testing program.

Scour Testing

No scour testing was performed. Hence the Isolator Row PLUS is verified for off-line installation only.

Sincerely,

Behard & Magee

Richard S. Magee, Sc.D., P.E., BCEE

Specifications

Introduction

- Manufacturer StormTech, LLC, 520 Cromwell Ave, Rocky Hill, CT 06067
- Website: http://www.StormTech.com. Phone: 888-892-2694
- MTD StormTech Isolator Row PLUS verified models are shown in Table 13
- TSS Removal Rate 81.2%
- Off-line installation

Detailed Specification

• NJDEP sizing tables and physical dimensions of StormTech Isolator Row PLUS verified models are shown in **Table 13**. These sizing tables are valid for NJ following NJDEP Water Quality Design Storm Event of 1.25" in 2 hours (NJAC 7:8-5.5(a)).

• Maximum inflow drainage area

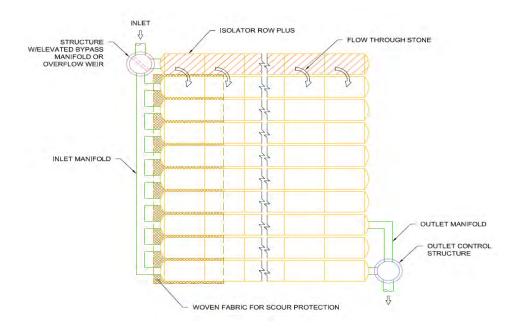
[°] The maximum inflow drainage area is governed by the maximum treatment flow rate of each model as presented in **Table 13**.

• Driving head will vary for a given Isolator Row PLUS model based on the site-specific configuration. The maximum head without bypass is 36", but the minimum head varies depending on the flow rate through the unit. Design support is given by StormTech for each project, and site-specific drawings (cut sheets) will be provided that show pipe inverts, finish surface elevation, and peak treatment and maximum flow rates through the unit.

• The drawdown flow exits via the underdrain. A clean filter draws down in approximately 20 minutes.

	ROW SIZI	STORMTECH ISOLATOR ROW SIZING CHART							
C-310	SC-740	DC-780	MC-3500	MC-4500					
20	27.8	27.8	43.2	30.1					
0.11	0.15	0.15	0.24	0.17					
	20	20 27.8	20 27.8 27.8	20 27.8 27.8 43.2					

and it has shown to have a TSS removal efficiency of 84% for SIL-CO-SIL 250 NJCAT verified Treated Flow Rate (GPM / Sq.Ft.) 2.5

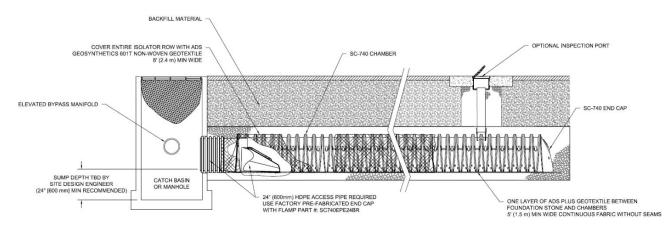

StormTech Isolator Row PLUS – Pollutant Removal

The following information is intended to provide a general overview of the pollutant removal capability of the StormTech Isolator[™] Row PLUS, which is a patented filtration type BMP manufactured by StormTech, LLC. The StormTech Isolator Row PLUS is covered under several US and International patents.

I. Description:

The StormTech Isolator Row PLUS is a row or rows of thermoplastic chambers that sit on a layer of ADS PLUS fabric and are connected to a closely located structure for easy access. The chambers provide for settling and filtration of sediment and other contaminants as stormwater rises in the Isolator Row PLUS and ultimately passes through the fabric. The open-bottom chambers allow stormwater to flow out of the chambers. Sediment is captured in the Isolator Row PLUS, protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

The StormTech Isolator Row PLUS is designed to capture the "first flush" and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole not only provides access to the Isolator Row but includes a high low/concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row bypass through a manifold to the other chambers. This is achieved with either a high-flow weir or an elevated manifold. This creates a differential between the Isolator Row PLUS and the manifold, thus allowing for settlement time in the Isolator Row PLUS.


Schematic of the StormTech Isolator Row PLUS System

www.stormtech.com 520 Cromwell Ave Rocky Hill Connecticut 06067 888.892.2694 fax 866.328.8401

Some of the unique features of the Isolator Row that contribute to its effectiveness and practicality include:

- Vast filtration surface area
- Large sediment storage volume
- Easily maintainable by most pipe and sewer maintenance companies
- Large network of ADS personnel that can help with designs and provide onsite guidance
- A state-of-the-art structural design that meets ASTM standards and incorporates AASHTO safety factors for both live loads and permanent dead loads

II. Applicable Sites:

The Isolator Row PLUS can be effectively used for essentially all developed sites. The most common applications are highly impervious sites such as paved parking areas, roads as well as developed sites that include grassy or other landscaped areas. It is not intended to be used for construction sediments.

III. StormTech System & Isolator Row Testing:

October 2006 – Tennessee Tech University's Civil and Environmental Department prepared the "Performance Evaluation of Sediment Removal Efficiency – StormTech Isolator Row". Testing on a full-scale Isolator Row in a laboratory was done to determine the sediment removal efficiency with two different silica-water slurries in accordance with NJCAT protocols. In August of 2007, the technology was verified by NJCAT. Results are shown in Table 1.

September 2010 – The University of New Hampshire Stormwater Center released the "Final Report on Field Verification Testing of the StormTech Isolator Row Treatment Unit". Testing consisted of determining the water quality performance for multiple stormwater pollutants in accordance with TARP Tier II protocol. Testing was done for a system only consisting of the StormTech Isolator Row. Data was recorded for 23 storm events. Results are shown in Table 1.

January 2020 – BaySaver Technologies prepared the "NJCAT Technology Verification of Isolator Row PLUS". Testing on a full-scale Isolator Row PLUS in a laboratory was done to determine the sediment removal efficiency with a silica-water slurry in accordance with the updated NJCAT protocols. In July of 2020, the technology was verified by NJCAT. Results are shown in Table 1.

June 2020 – North Carolina State University Department of Biological and Agricultural Engineering prepared the technical report "An Evaluation of the StormTech Isolator Row and Subsurface Stormwater Management System at Capital Oaks Retirement Resort, Raleigh, North Carolina". 14 months of monitoring and over 73 precipitation events were completed to study the hydrologic and water quality performance of a StormTech MC-4500 system in Raleigh, NC. Results are shown in Table 1.

Table 1: StormTech Isolator Row 3rd Party Pollutant Removal Efficiency Data

Pollutant	University of New Hampshire (Isolator Row Only) Median	Raleigh, North Carolina (StormTech system with Isolator Row)	Tennessee Tech University (Isolator Row Only)	NJCAT Verification (Isolator Row PLUS only)
Total Suspended Solids	83%*	91%*	84%*	81%**
Total Phosphorus	33%	68%	Not Tested	Not Tested
Total Nitrogen	Not Tested	35%	Not Tested	Not Tested
Total Zinc	81%	Not Tested	Not Tested	Not Tested
Total Petroleum Hydrocarbons	91%	Not Tested	Not Tested	Not Tested

*Based on a flow rate of 2.5 gpm/sf (Isolator Row)

** Based on a flow rate of 4.1 gpm/sf (Isolator Row PLUS)

IV. Product Performance and Design

Minimum 80% TSS removal is achieved by sizing the Isolator Row PLUS to treat the water quality at a specific flow rate per chamber floor area using a single layer of ADS PLUS fabric. The design flow rates for each chamber size are listed below.

Model	Specific Flow Rate	Bottom Area	Flow Per Model
StormTech SC-160LP	4.1 gpm/sf	11.45 sf	0.11 cfs
StormTech SC-310	4.1 gpm/sf	17.7 sf	0.16 cfs
StormTech SC-740	4.1 gpm/sf	27.8 sf	0.26 cfs
StormTech DC-780	4.1 gpm/sf	27.8 sf	0.26 cfs
StormTech MC-3500	4.1 gpm/sf	42.9 sf	0.40 cfs
StormTech MC-4500	4.1 gpm/sf	30.1 sf	0.28 cfs

V. StormTech Isolator Row Approvals:

The StormTech Isolator Row and Isolator Row PLUS have been approved on a project by project basis for tens of thousands of projects around the world. Following are some examples:

- The Isolator Row PLUS is a verified filtration manufactured treatment device by the New Jersey Corporation for Advanced Testing (NJCAT) in accordance with NJDEP Filter Protocols.
- In Ohio, the Isolator Row is approved per the Ohio EPA as a pretreatment to underground storage and can be used for both storage volume and pretreatment as the water quality volume all passes through the Isolator Row.
- The Metropolitan St. Louis Sewer District (MSD) has approved the StormTech Isolator Row as a standalone post-construction stormwater Best Management Practice.
- In Massachusetts, approvals for the State DEP requirement of 80% TSS removal on an annual load basis are issued at the Conservation Commission level, and the Isolator Row is commonly used to meet these criteria.
- In Oregon, the Rogue Valley Storm Water Advisory Team (SWAT) has incorporated the StormTech Isolator Row into their Stormwater Design Manual as a pre-approved proprietary device for stormwater quality treatment.
- The Kansas City Metro Chapter of the American Public Works have included the StormTech Isolator Row wit a value rating of 3.0 in their Manual of Best Management Practices for Stormwater Quality.
- Maine DEP has approved the Isolator Row pollutant removal efficiency based on laboratory testing of 110 micron (US Silica OK-110) particle size
- In Texas, the City of Houston PWE as well as Harris county, has recognized the Isolator Row as an official water quality device.
- Under the New Environmental Technology Evaluation program, the Ontario (Canada) Ministry of the Environment has evaluated the Isolator row and issued a Certificate of Technology Assessment
- The Isolator Row PLUS is currently being evaluated for Canadian Environment Technology Verification (ETV) by VerifiGlobal.

V. Isolator Row Maintenance:

The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location, based upon site-specific variables. The type of land use (i.e. industrial, commercial, public, residential), anticipated pollutant load, percent imperviousness, climate, rainfall data, etc., all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection schedule should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If, upon visual inspection, it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediment to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout.

Maintenance is accomplished with the jetvac process. The jetvac process utilizes a high-pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediment. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/jetvac combination vehicles. Selection of an appropriate jetvac nozzle will improve maintenance efficiency.

Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear-facing jets with an effective spread of at least 45" are best. Most jetvac reels have 200 feet of hose, allowing maintenance of an Isolator Row up to 50 chambers long. The jetvac process shall only be performed on StormTech Isolator Rows that have fabric specified by StormTech over their angular base stone.

Complete details of the design, operation, and maintenance of the Isolator Row PLUS can be found in the StormTech Isolator Row and Isolator Row PLUS O&M Manuals.

4.4 RIP RAP SPLASH PAD

Rip rap splash pads are designed to dissipate energy, prevent scour at the stormwater outlet, and minimize the potential for downstream erosion. A riprap splash pad was sized for each of the outlets of the drainage system. The calculations below are in accordance with the methodology of the "2002 Connecticut Guidelines for Soil Erosion and Sediment Control" produced by The Connecticut Council on Soil and Water Conservation.

Rip-Rap Outlet Sizing Calculations								
	Q	Do	ΤW	La	W	d50		
	(cfs)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(in.)	
FES F1	0.6	1.00	0.30	8.95	11.95	0.03	0.37	
FES F2	0.4	1.00	0.30	8.70	11.70	0.02	0.24	

Conclusion:

As identified above, the discharge points have been designed to accommodate and exceed the required minimum rip-rap stone sizing.

4.5 TSS REMOVAL

The project has been designed to comply with the required 80% TSS (minimum) removal per the Massachusetts Stormwater Regulations. Various combinations of stormwater BMPs including deep sump hooded catch basins, proprietary water quality units and an infiltration basin.

Please refer to the attached TSS calculation sheets that follow:

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

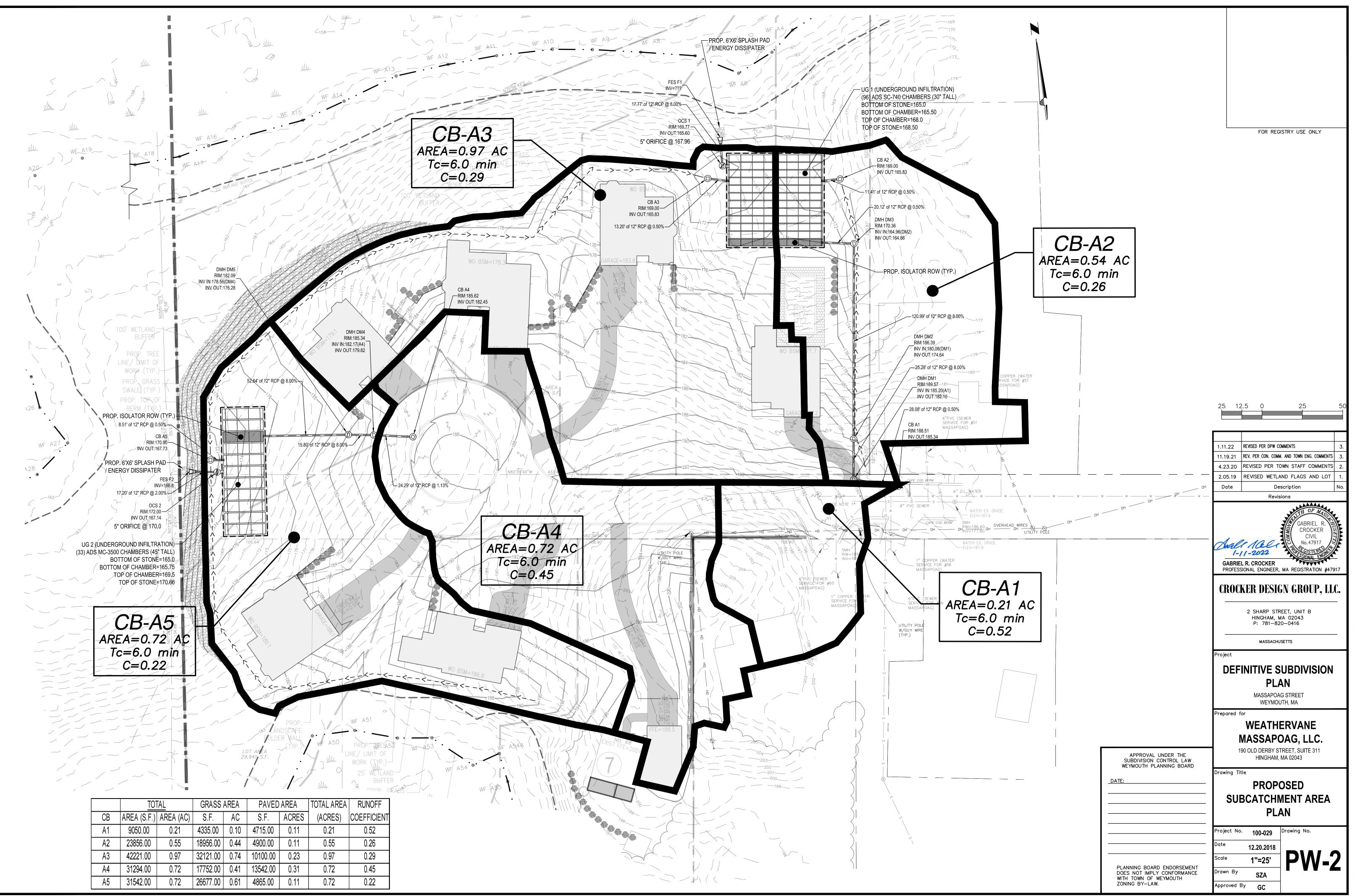
4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	CB A1, CB A2, CB A3, UG-1				
	А	В	С	D	E	
TSS Removal Calculation Worksheet		TSS Removal	Starting TSS	Amount	Remaining	
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)	
	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75	
	Infiltration Basin (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15	
		0.00	0.15	0.00	0.15	
		0.00	0.03	0.00	0.15	
		0.00	0.03	0.00	0.15	
		Total	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train		
Project: Massapoag, Weymouth Prepared By: SZA Date: Revised 1/4/22				*Equals remaining load from previous BMP (E) which enters the BMP		

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table


2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	CB A4, CB A5, UG-2			
	А	В	С	D	E
TSS Removal Calculation Worksheet	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
	Deep Sump and Hooded		Load		
	Catch Basin	0.25	1.00	0.25	0.75
	UG-1 Infiltration Basin (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
		0.00	0.15	0.00	0.15
		0.00	0.03	0.00	0.15
		0.00	0.03	0.00	0.15
		Total		Separate Form Needs to be Completed for Each Outlet or BMP Train	
Project: Massapoag, Weymouth Prepared By: sza Date: Revised 1/4/22			*Equals remaining load from previous BMP (E) which enters the BMP		

SECTION 5 – LONG TERM OPERATION & MAINTENANCE

LONG-TERM STORMWATER OPERATION & MAINTENANCE PLAN MASSAPOAG STREET – DEFINITIVE SUBDIVISION

12/21/2018 Revised 1/5/2022

PROJECT OVERVIEW:

The proposed project consists of construction of a seven (7) lot residential subdivision. The project has been designed to comply with the Massachusetts Stormwater Management Regulations.

Appended to this document is a sample maintenance form and a chart describing the anticipated frequency of tasks.

OWNER AND RESPONSIBLE PARTY:

Applicant/Developer

Bristol Bros. Development Corp 190 Old Derby Street, Suite 311 Hingham, MA 02043

Bristol Bros. Development Corp. plans on creating a Homeowners Association which will include personnel who will be responsible for maintenance of the stormwater management system. For any service beyond their service ability, they subcontract to the appropriate vendors such as street sweeping and catch basin and water quality cleaning, etc.

CONSTRUCTION MANAGEMENT:

A construction manager with adequate knowledge and experience on projects of similar size and scope shall be employed to oversee all site work related construction. The contractor shall incorporate the appropriate techniques to control sediment and erosion pollution during construction in accordance with the *Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas* and any conditions of approval from the local conservation commission.

Care should be taken when constructing stormwater control structures. Light earth-moving equipment shall be used to excavate in the vicinity of the infiltration areas. Use of heavy-equipment causes excessive compaction of the soils beneath the basin resulting in reduced infiltration capacity. At no time shall temporary infiltration areas or settling basins be constructed in the vicinity of the proposed infiltration basins in order to prevent the soils from becoming clogged with sediment.

ON-GOING MAINTENANCE CONTRACT

The non-structural and structural approaches recommended below, as well as the required BMP maintenance, will be completed by Bristol Bros. Development Corp.'s contractor, JF Price Co. In Adequate personnel with appropriate training and access to proper equipment will be available to complete the tasks. Future responsible parties must be notified of their responsibility to operate and maintain the system in perpetuity.

MAINTENANCE LOG

The Responsible Party shall develop and maintain a log of inspections, maintenance, repairs, and disposal (including location of disposal) during the life of the project. Records will be maintained for at least 3 years and be made available to the Town of Weymouth in accordance with the provisions of the Massachusetts Stormwater Handbook. A sample of such a maintenance log is provided.

STORMWATER BMP MAINTENANCE

The proposed stormwater management system has been designed with appropriate BMPs aimed at reducing the pollutants discharge based upon the intended use of the property. All BMPs require regular maintenance to function as intended. Some management measures have simple maintenance requirements; others are more involved. The Responsible Party must have all BMPs regularly inspected to ensure they are operating properly on an as needed basis, including during runoff events exceeding 0.5 inches of rainfall.

A description of the non-structural and structural approaches to be incorporated is indicated below. The following best management practices are proposed to be incorporated into the stormwater management design to reduce source runoff and improve stormwater runoff discharge quality. The Responsible Party will regularly inspect all BMPs to ensure they are operating properly. If any deficiencies are identified during these inspections, action to resolve it will be initiated and documented on the maintenance log.

STRUCTURAL BMPs

Deep Sump Hooded Catch Basins/Yard Drains

On a regular basis the inlet pipe and outlet pipe shall be checked for debris and removed as necessary to ensure unobstructed flow of water. Inspections shall occur at least twice annually, once in the fall and then in the spring after the snow melts. Inspections shall verify the tees are secure and free flowing. Depth of sediment below water line. Basins are to be cleaned whenever sediment and hydrocarbons are observed. Basins shall be cleaned using a vacuum pump. All liquid shall be pumped from the sump of each basin at least once per year. All sediments and hydrocarbons should be properly handled and disposed of in accordance with local, state and federal guidelines and regulations.

Subsurface Infiltration System

The subsurface system (Stormtech ADS Isolator Row Plus, with an impermeable barrier) has been designed with a combination of standard manholes and inspection ports to aid in the removal of sediment and debris. Preventative maintenance shall be performed in accordance with manufacturer's instructions, which is enclosed in this section. Stormtech suggests a minimum of annual inspections and initially the isolator row should be inspected every 6 months for the first year of operation. Cleaning will take place at the completion of construction and as deemed necessary based on the annual inspections. Stormtech recommends using a JetVac to clean and maintain the isolator row. Refer to the enclosed "Stormtech Isolator Row O&M Manual."

NON-STRUCTURAL BMPs

Pavement Sweeping

As street sweeping is a BMP under DEP guidelines, this non-structural BMP is an effective removal of Total Suspended Solids (TSS) in a comprehensive stormwater management program. Litter and debris is to be regularly picked up and removed from the pavement. Paved areas are to be swept a minimum of two times per year, at least once during April and again in September. This BMP is not needed to meet the 80% TSS removal requirement.

Pervious Areas and Slopes

Wherever possible, runoff from paved areas and snowmelt shall be directed over vegetated areas to promote settlement of suspended solids before entering a wetland or resource area. Steep pervious slopes will be permanently vegetated to dissipate energy and reduce potential erosion. No constructed vegetated slopes should exceed 2H:1V. Slopes exceeding 2:1 shall be stabilized with rip-rap or other similar measures to minimize the potential for future erosion. Irrigation system(s) shall be designed and maintained such that water is not applied to/or allowed to run off onto any impervious surfaces. Although overspray or runoff may be unavoidable during periods of high winds. In the event of accidental damage to system components or other unusual circumstances the system components shall be promptly corrected. Maximum of 1 inch of irrigation water will be applied to irrigated areas per week.

Conveyance Swale

Inspect conveyance swales the first few months after construction to make sure that there is no rilling or gullying and that vegetation in the channels is adequate. Thereafter, inspect the channel twice a year for slope integrity, soil moisture, vegetative health, soil stability, soil compaction, soil erosion, ponding and sediment accumulation. Regular

maintenance tasks include mowing, fertilizing, liming, watering, prunin, weeding, and pest control. Mow at least once per year but do no cut the grass shorter than three to four inches. Keep grass height under 6 inches to maintain the design depth necessary to serve as a conveyance. Do not mow excessively, because it may increase the design flow velocity. Remove sediment and debris manually at least once per year. Reseed periodically to maintain the dense growth of grass vegetation.

Drainage Control Structures, Flared End Sections, Trash Racks, Riprap Pads, Swales, and/or Level Spreader Splash Pads

Basin control structures, flared end sections, trash racks, riprap pads and level spreader splash pads shall be inspected and any debris or growth surrounding or within these structures shall be removed. Any/all debris or vegetation encroaching on the control structures our outfall components shall be removed or appropriately trimmed back to maintain the designed control elevation and flow patterns/cross section without impediment. Inspection should occur twice annually, once in the fall and then in the spring after the snow melts. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections and manufacturer's requirements.

Fertilizers

Use of fertilizers shall follow the requirements of 330 CMR 31.0.

Waste Management

Solid waste and recycling will be contained in garbage cans maintained at each residence for routine and regular trash pickup. Waste deposition in the receptacles will be consistent with state and local regulations.

Snow Removal

There shall be no plowing of stockpiling of snow within any resource areas or buffers. Typically, a combination of plowing and/or snow blowing is utilized on the individual driveways and a snow blowing "bobcat" is used to clear the sidewalks. Deicing compounds must be stored or sheltered on impervious pads (i.e. in residential garages and the maintenance facility). Snow that is plowed from the paved driveway surfaces shall be plowed to the edges of the pavement. If capacity of these areas is exceeded, accumulated snow shall be removed.

Stormwater BMP Inspection and Maintenance Log

Facility Name	
Address	
Begin Date	End Date

Date	BMP ID#	BMP Description	Inspected by:	Cause for Inspection	Exceptions Noted	Comments and Actions Taken

Instructions: Record all inspections and maintenance for all treatment BMPs on this form. Use additional log sheets and/or attach extended comments or documentation as necessary. Submit a copy of the completed log with the annual independent inspectors' report to the municipality and start a new log at that time.

BMP ID# — Always use ID# from the Operation and Maintenance Manual.

Inspected by — Note all inspections and maintenance on this form, including the required independent annual inspection.

Cause for inspection — Note if the inspection is routine, pre-rainy-season, post-storm, annual, or in response to a noted problem or complaint.

Exceptions noted — Note any condition that requires correction or indicates a need for maintenance. Comments and actions taken — Describe any maintenance done and need for follow-up.

Stormwater BMP Inspection Matrix

Conventional & LID Best Management Practices	Inspection & Maintenance Frequency	Erosion& Scour	Obstructions	Trash & Debris	Sediment Build- Up Removal	Vegetation Cover	Remove/Reset Filter Fabric & Stone As Required	Vac Truck Sediment & Contaminants	Remove/Reset Riprap as Required
Catch Basins/Area & Yard Drains	Four times per year								
Pavement Sweeping	Four times per year								
Stone Trench	Twice- Annually (Spring and Fall)								
Subsurface Infiltration Chambers	Twice- Annually (Spring and Fall)								
Conveyance Swale	Twice- Annually (Spring and Fall)								
Outlets (FES, Rip Rap Pad, Level Spreaders)	Twice- Annually (Spring and Fall)								

Isolator® Row 0&M Manual

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS[™]

THE ISOLATOR® ROW

INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

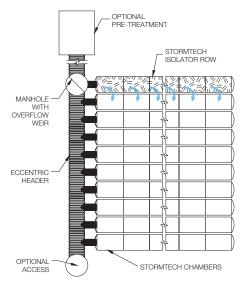
THE ISOLATOR ROW

The Isolator Row is a row of StormTech chambers, either SC-160LP, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-4500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC- 310-3 and SC-740 models) allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The non-woven fabric is not required over the SC-160LP, DC-780, MC-3500 or MC-4500 models as these chambers do not have perforated side walls.

The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.


Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

StormTech Isolator Row with Overflow Spillway (not to scale)

ISOLATOR ROW INSPECTION/MAINTENANCE

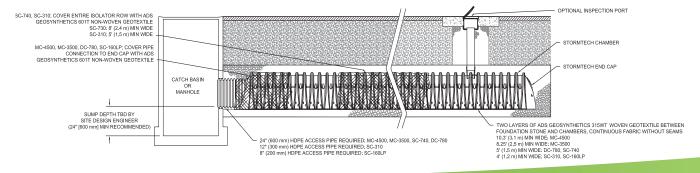
INSPECTION

The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.


MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-4500 chamber models and is not required over the entire Isolator Row.

ISOLATOR ROW STEP BY STEP MAINTENANCE PROCEDURES

STEP 1

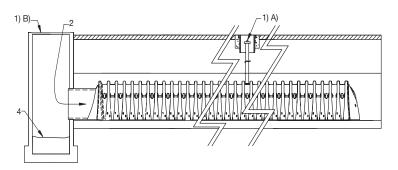
Inspect Isolator Row for sediment.

A) Inspection ports (if present)

- i. Remove lid from floor box frame
- ii. Remove cap from inspection riser
- iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
- iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.
- **B) All Isolator Rows**
 - i. Remove cover from manhole at upstream end of Isolator Row
 - ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
 - iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2. If not, proceed to Step 3.

STEP 2

Clean out Isolator Row using the JetVac process.


- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

STEP 3

Replace all caps, lids and covers, record observations and actions.

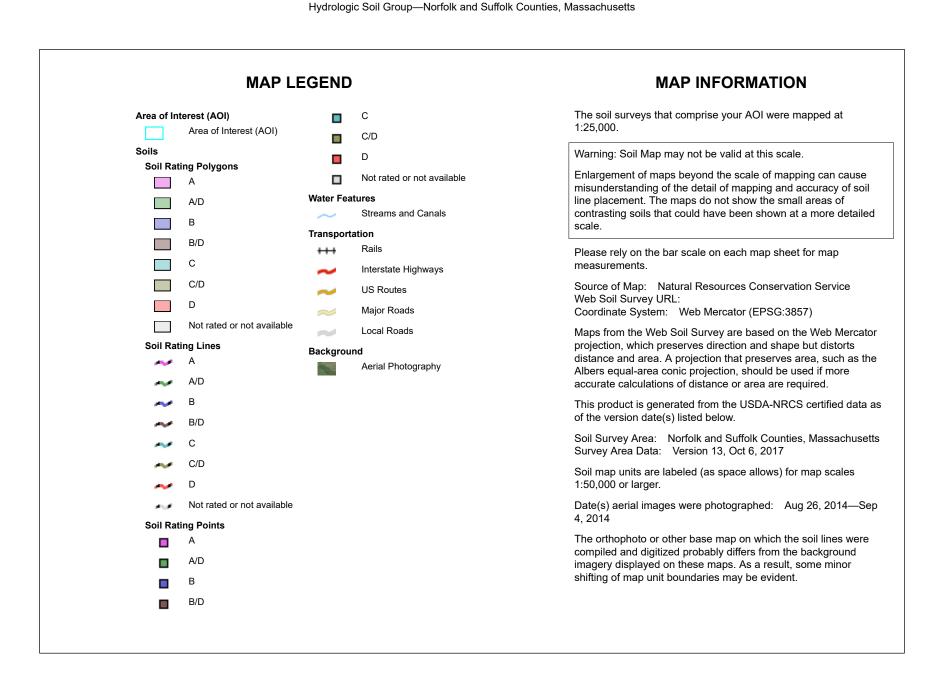
STEP 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

SAMPLE MAINTENANCE LOG

	Stadia Roo	d Readings	Sediment Depth		
Date	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)	(1)–(2)	Observations/Actions	Inspector
3/15/11	6.3 ft	none		New installation. Fixed point is CI frame at grade	MCG
9/24/11		6.2	0,1 ft	some grit felt	SM
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row, maintenance due	NV
7/7/13	6.3 ft		0	System jetted and vacuumed	DJM

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. Stormtech[®] and the Isolator[®] Row are registered trademarks of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #11011 03/17 CS



Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com SECTION 6 – SOILS TESTING DATA

USDA **Conservation Service**

Web Soil Survey National Cooperative Soil Survey

USDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
52	Freetown muck, 0 to 1 percent slopes	B/D	3.7	30.9%
424C	Canton fine sandy loam, 8 to 15 percent slopes, extremely bouldery	A	8.3	69.1%
Totals for Area of Inter	est	I	12.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

C. On-Site Review (continued)

Deep Observation Hole Number:

Ms 3-9

Depth (in.)	Soil Horizon/	107R272	Red	oximorphic Feat	ures	Soli Texture		Fragments Volume	Soil Structure	Soil Consistence	Other
Deptil (m.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	
331	À				-	Sagdylan	< <i>l</i> :	CIL	Blog	SAI	
3-201	в	10 4R 5/6				Saraf low	LIY	212	Mess	5012	
20%-101	С	10 YR 5/4	~		_	long San	4C	AX.	Masson	losce	

C. On-Site Review (continued)

Deep Observation Hole Number:

ms 3-)

Depth (in.)	Soil Horizon/	Soli Matrix: Color- Moist (Munseli)	Rec	loximorphic Fe	atures	Soli Texture		Fragments Volume	- Soil Structure	Soil Consistence (Moist)	Other
Depth (in.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones			
0.34	R	10 TR 2/2	-		~	Say lom	Lit.	LV.	Black	STH	
3-204	B	10 7R 5%			-	Sy fore	C.Y.	LIX.	Ma	SULY	
3-204	C	107R5K				loy Sm	5x.	24	Massin	louin	
							ļ				
					_						

C. On-Site Review (continued)

Deep Observation Hole Number:

MS 3-8

Depth (in.)	Soil Horizon/	10YR 2-2 105	Rede	oximorphic Fea	atures	Soli Texture (USDA)	Coarse % by	Fragments Volume		Soil e Consistence (Moist)	Other
Debru (ur.)	Layer		Depth	Color	Percent		Gravel	Cobbles & Stones			
6-3"	A		-			Lagged	-	14	Blure	541	
3 "-151.	ß	10 YR 5/6		-		4	110	24	Mun	5-61	
18-81	6	107R5/4		-	1	200 yeard	28	5X	Musin	lung	
					_			-			
	[0					

Sura Bulches

Ruha e. 81"

C. On-Site Review (continued)

Deep Observation Hole Number:

MS-3-6

Depth (In.)	Soil Horizon/	Soli Matrix: Color- Moist (Munsell)	Red	oximorphic Feat	ures	Soll Texture		Fragments Volume		Soil Consistence (Moist)	Other
Deptir (m.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Son Structure		
6-3	A	107R 2/2	E.			Sary loan	-	12	Block	foll	
3-20"	B	10YR 5/1		_	~	Say (om	<1X	26	Mour	Soli	
2011-74	с,	10YR 5/4		-	-	Say bon	ıX.	25.	Messon	5011	
				10							

All Accus han large Surfa Bouldy

C. On-Site Review (continued)

Deep Observation Hole Number:

M5 3-5

Depth (in.)	Soil Horizon/	/ Soil Matrix: Color- Moist (Munsell) / o YR 2/2	Redo	ximorphic Fea	itures	Soil Texture (USDA)	Coarse % by	Fragments Volume		Soil Consistence (Moist)	Other							
Depth (in.)	Layer		Depth	Color	Percent		Gravel	Cobbles & Stones										
031 A	10 YR 2/2		10 YR 2/2	10 YR 2/2	10 YR 2/2	10 YR 2/2	10 YR 2/2	10 YR 2/2	10 YR 2/2	10 YR 2/2	~	-	-	Say Com	_	1%	Block	SN
34-221	3	15725/6		•		Sey loan	-	_	Most	S-VY								
23-67	C	WYR5/4		-	-	Sanlo	2%	28										
						V												

3-4

MS

C. On-Site Review (continued)

Deep Observation Hole Number:

Depth (in.)	Soll Horizon/	Soil Matrix: Color-	Red	oximorphic Feat	Ures	Soll Texture		Fragments Volume	Soil Structure	Soli Consistence (Moist)	Other
Debru (ur.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones			0
0-34	A	10 413 2/12	-		_	long lan	-	(1%	Block	504	
31-184	B	104R4/6			-	Song /our	<i><1</i> !	211	Most	5 stile	
184764	C	107R5/4	~	· · · · · · · · · · · · · · · · · · ·		Say ban		ØX	Meso	Jose	
					<u> </u>						

Returned, In Bulche / Ledge water and modelly to not observed

t5form11.doc • rev: 8/15

C. On-Site Review (continued)

Deep Observation Hole Number:

MS 3-3

Depth (in.)	Soil Horizon/	Soli Matrix: Color- Moist (Munsell)	Red	foximorphic Feat	ures	Soll Texture (USDA)		Fragments Volume		Soil Consistence	Other
Deptir (m.)	Layer		Depth	Color	Percent		Gravel	Cobbles & Stones		(Moist)	
6-3"	A	10YR 2/2	<u> </u>	<u> </u>	-	Sandfloor	T	1%	Block	50-11	
3"-254	B	WYR4/6	-		-	Sant loan	21%	Cit	Mon	NIZ	
25 - 58	C1	107R 5/4	36K	10YR5/2	20%		22	L14.	Marr.L	fren	
11-84	62	104R 4/4	~	~		BOI	2%	2×	Massa	1005	

water @ 56 "

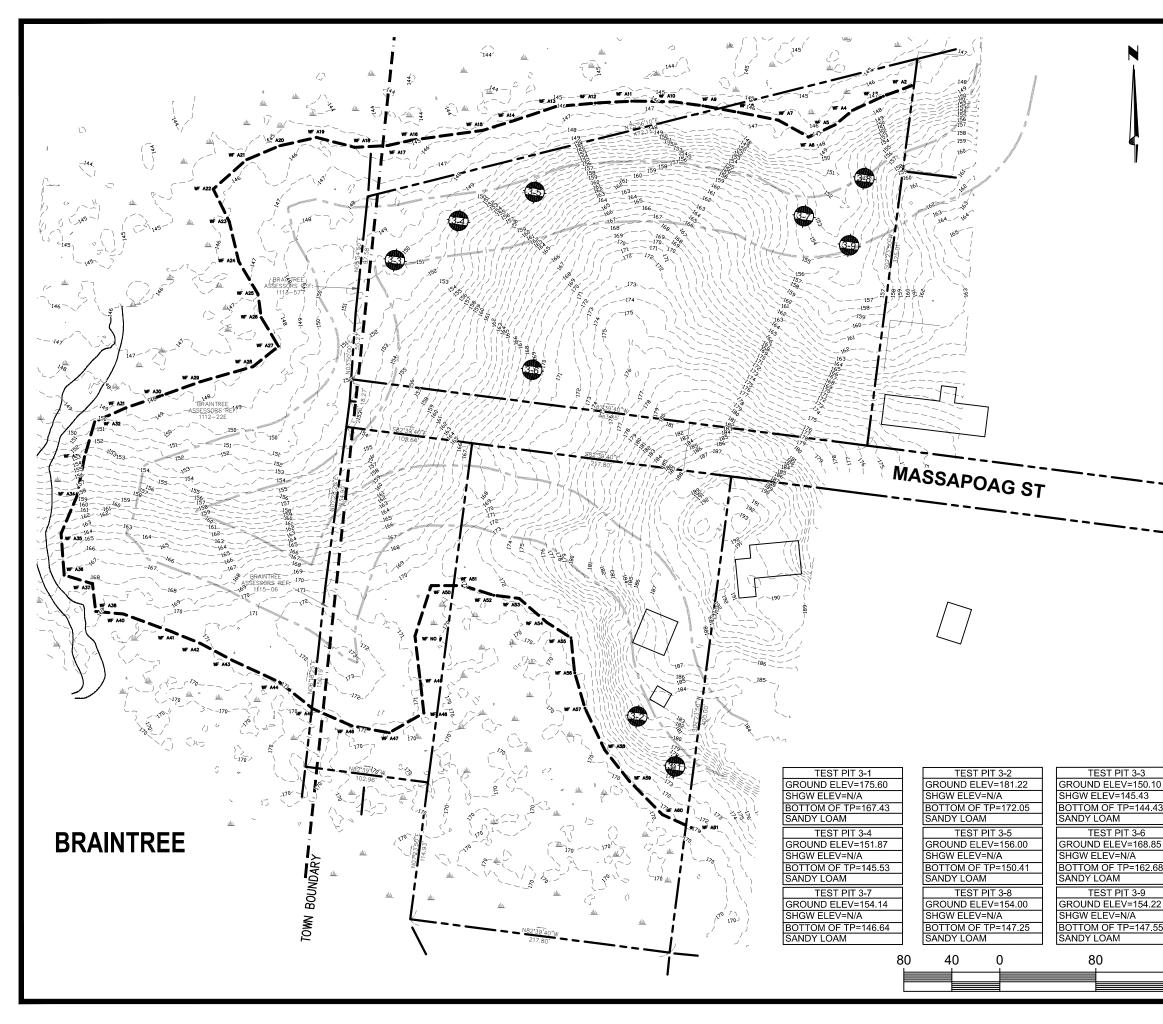
C. On-Site Review (continued)

Deep Observation Hole Number:

MS 3-2

Depth (in.)	Soll Horizon/	Soil Matrix: Color-	Red	ioximorphic Fea	tures	Soil Texture		Fragments Volume	Soil Structure	Soli	Other
Deput (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		Consistence (Moist)	Other
0-44	A	(0 YR3/2		<u> </u>	-	Sanglar		17.	Block	6011	
41-22	B~	10 YR4/6		<u> </u>	<u> </u>	Sal lon	28	58	then	GN	
22 "-110"	C	10 YR 5/4	-		-	Sandy low	54	157.	Misson	5.11	
						- 					

No well observe 110"


C. On-Site Review (continued)

Deep Observation Hole Number:

MP 3-1

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Red	oximorphic Feat	ures	Soli Texture		Fragments Volume	Soil Structure	Soil	Other
	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Molst)	Outer
6-53"	A	10YR 3/2	_	<u> </u>	~	barny los	12%	20x	Blacky	Soll	
534-87	ß	ISYR 4/1		-		Sard Lon	1.DX	29/	Block	Sort	
87-182	C	DYM TH	_	i	<u> </u>	Say Les	5%	10%	Mam	SORI	

Look, Likh Pill, Trash Deep in Alafer Band Cappear Naveral

	Date		escription	No.
	Dute		sions	110.
	PROFESS	XER DESIO	MA 02066	
		P: 781-82		
	MASSAC	HUSETTS MARYLA	ND FLORIDA RHODE ISL	AND
	Project Pl	RELIMIN	ARY PLAN	
		MASSAP WEYMO		
	15	BRISTO VELOPN 90 OLD DERBY S HINGHAM,	DL BROS. IENT CORP. TREET, SUITE 311 MA 02043	
3	Drawing Tit		IT PLAN	
3	Project No.	100-029	Drawing No.	
	Date	4.26.2018	1	
5	Scale	1"=80'	TP-1	
 160	Drawn By	SZA		
	Approved E	^{3y} gc	1	

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numb	er: TP-1	12/28/2	21	8 AM		OVE	RCAST			
•			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	al:										
					La	andform		Posi	tion on Landscap	be (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	fee	t	D	rainage W	ay	feet	We	tlands	feet
		I	Property Line	fee	t	Drinking	g Water W	/ell	feet	(Other	feet
4. Unsuita	able Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed S	Soil 🗌 I	Fill Material		Weathered/Fra	ctured Rock	🗌 Beo	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	No		If yes	s:	Depth Wee	ning from Pit		Depth S	tanding W	/ater in Hole
		_	—					ping nonrr it	-	Bopul o		
	Soil Horizon	Soil Toxturo	Soil Matrix: Color-	Redo	ximorphic Fea	-	Coarse F			Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent		Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0"-12"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
12"-126"	С	COARSE SAND	10YR 5/3	-	-	-	20-40%	-	SG	LOOSE		
											water	sweating @ 108"
Description of Location:												

Additional Notes:

WATER OBSERVED AT 9'

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	Hole Numb	er: TP-2	12/28/2	21	10 AN	Л	OVE	RCAST			
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	cation:										
2. Soil P	arent Materia	ıl:										
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body _	fee	t	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	fee	t	Drinking	g Water V	Vell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed S	Soil 🗌 I	Fill Materia	I 🗌 '	Neathered/Fra	ctured Rock	🗌 Beo	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	s 🗌 No		If ye	s:	Depth Wee	ping from Pit	_	Depth S	tanding W	/ater in Hole
						Soil Log						
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures		Fragments Volume		Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent		Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0"-64"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
64"-126"	С	COARSE SAND	10YR 5/3	-	-	-	10%	-	SG	LOOSE		ACK LAYER T 3" THICK
												R SWEATING/ PING AT 6'

Additional Notes:

WATER OBSERVED AT 6'

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	Hole Numb	er: TP-3	12/28/2	21	11 AN	Л	OVE	RCAST			
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	cation:										
2. Soil P	arent Materia	ıl:										
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body _	fee	t	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	fee	t	Drinking	g Water V	Vell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed \$	Soil 🗌 I	Fill Materia	I 🗌 '	Neathered/Fra	ctured Rock	🗌 Beo	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	s 🗌 No		If ye	s:	Depth Wee	ping from Pit	_	Depth S	tanding W	/ater in Hole
						Soil Log						
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures		Fragments Volume		Soil		0.1
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent		Cobbles & Stones	Soil Structure	(Moist)		Other
0"-64"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
64"-126"	С	COARSE SAND	10YR 5/3	-	-	-	10%	-	SG	LOOSE		ACK LAYER T 3" THICK
												R SWEATING/ PING AT 6'

Additional Notes:

WATER OBSERVED AT 6'

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

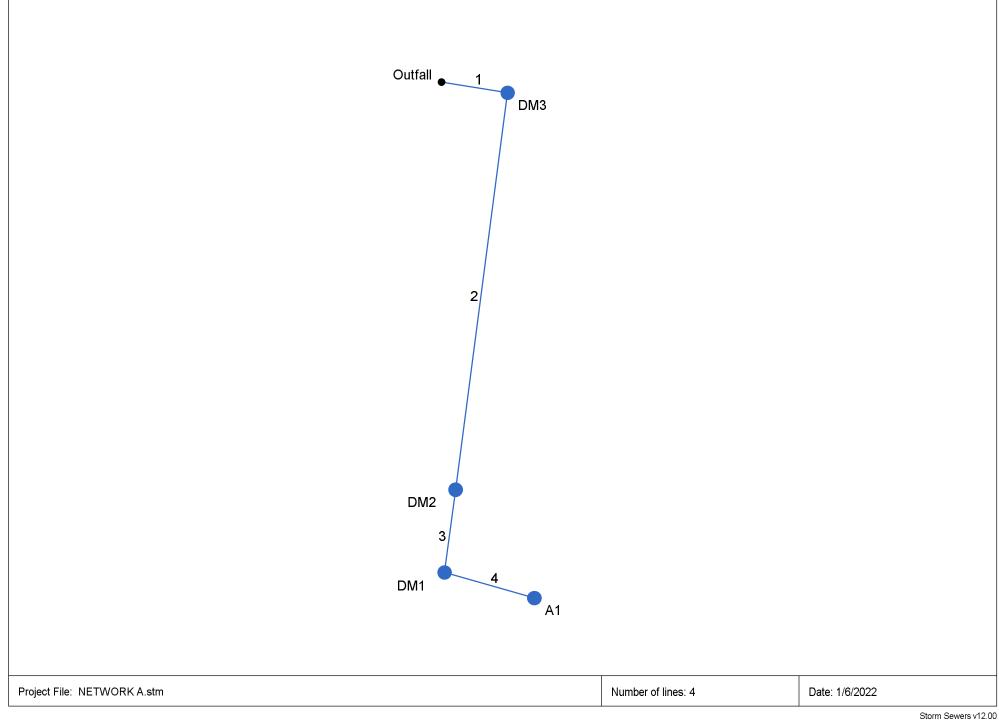
Deep	Observatior	Hole Numb	er: TP-4	12/28/2	21	3 PM		COLD	SUNNY			
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation		<u>-</u>	Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	cation:										
2. Soil P	arent Materia	d:										
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	fee	t	D	rainage W	′ay	feet	We	tlands	feet
		F	Property Line	fee	t	Drinking	g Water W	/ell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed \$	Soil 🗌 I	Fill Materia	· 🗆 ۱	Neathered/Fra	ctured Rock	🗌 Bee	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	🗌 No		If ye	s:	Depth Wee	ping from Pit	_	Depth S	tanding V	/ater in Hole
						Soil Log						
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures		Fragments Volume	Soil Structure	Soil		Other
Deptin (iii)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)		Other
0"-2"	O/A	LOAM	10YR 2/2	-	-	-	-	-	MASSIVE	FRIABLE		
2"-24"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
24"-132"	С	COARSE SAND	10YR 5/3	-	-	-	10%	-	SG	LOOSE		

Additional Notes:

Soil was wet @11' didn't observe any water weeping in

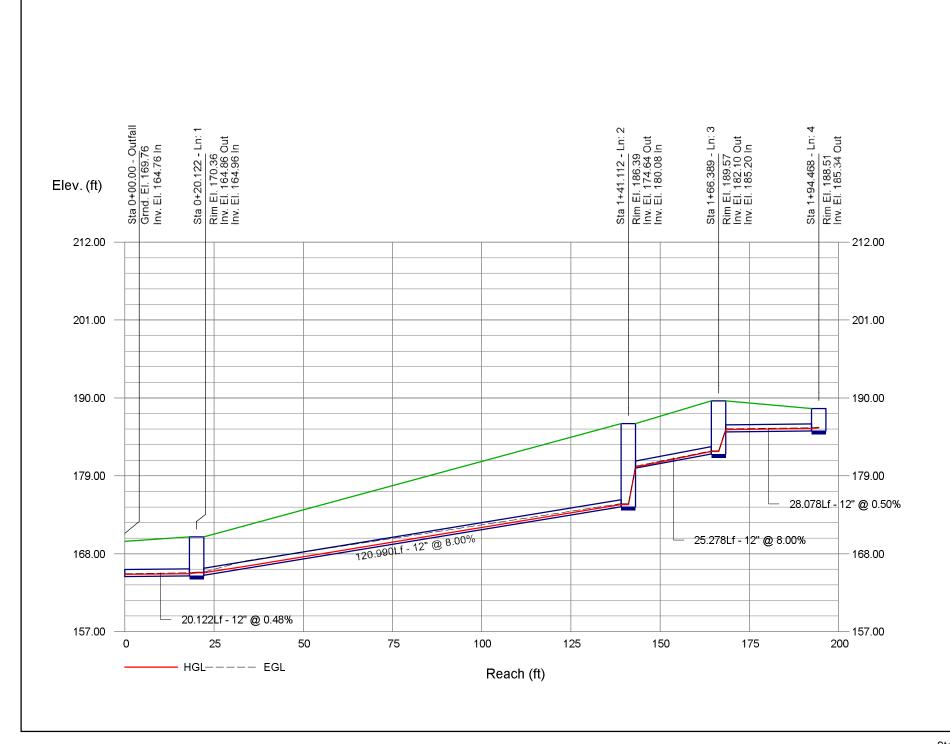
Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

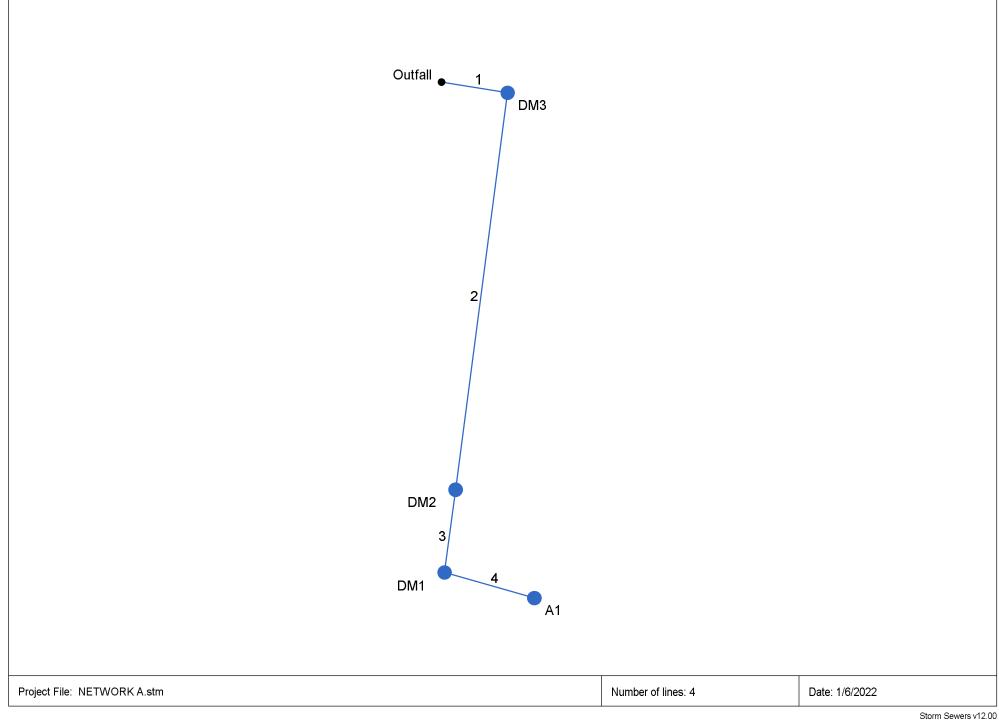

Deep	Observation	Hole Numb	er: TP-5	12/28/2	21	4 PM		COLD	SUNNY			
•			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	d:										
					La	Indform		Posi	tion on Landscap	be (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body _	fee	t	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	fee	t	Drinking	g Water W	/ell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed S	Soil 🗌 I	Fill Material	I 🗌 '	Neathered/Fra	ctured Rock	🗌 Beo	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	No		If yes	s:	_ Depth Wee	ping from Pit	_	Depth S	tanding W	/ater in Hole
						Soil Log						
Donth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures		Fragments Volume	Soil Structure	Soil		Other
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)		Other
0"-18"	А	LOAM	10YR 2/2	-	-	-	-	-	MASSIVE	FRIABLE		
18"-24"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
24"-72"	С	COARSE SAND	10YR 5/3	-	-	-	-	-	SG	LOOSE		FINES & SILTS ER AT 6'

Additional Notes:

6' WATER WEEPING IN, STANDING WATER AT 5'

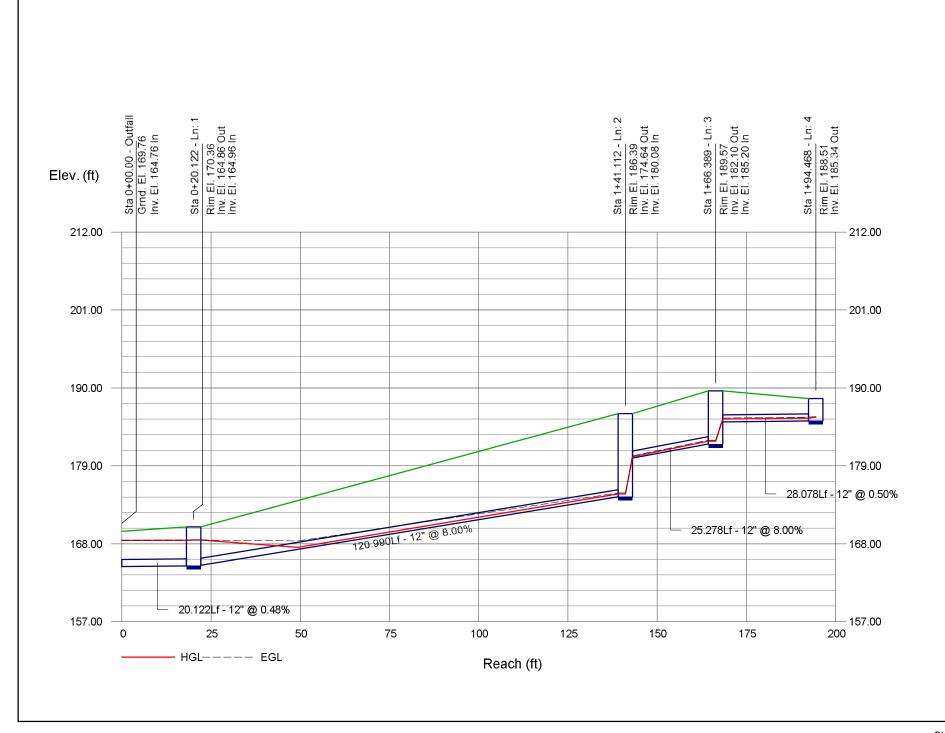

SECTION 7 – HYDRAULIC PIPE SIZING

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

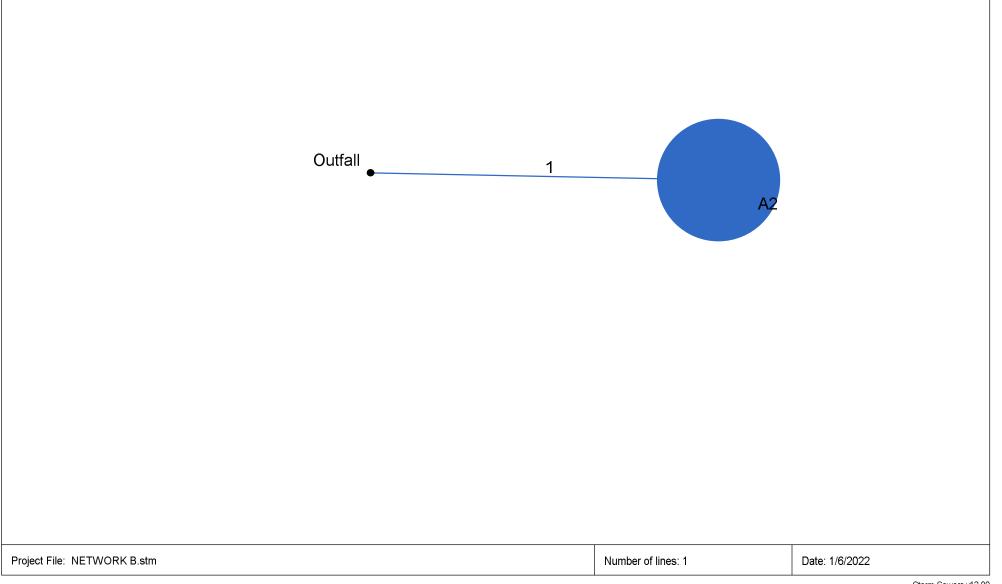


Storm Sewer Tabulation

Statio	n	Len	Drng A	Area	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	fulİ		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	20.122	0.00	0.21	0.00	0.00	0.11	0.0	7.0	5.3	0.58	2.47	2.60	12	0.48	164.76	164.86	165.08	165.20	0.00	170.36	Pipe - (433)
2		120.990		0.21	0.00	0.00	0.11	0.0	6.3	5.5	0.60	10.07	2.68	12	8.00	164.96	174.64	165.29	174.96	170.36	186.39	Pipe - (461)
3		25.278		0.21	0.00	0.00	0.11	0.0	6.2	5.5	0.61	10.07	4.90	12	8.00	180.08	182.10	180.24	182.42	186.39	189.57	Pipe - (461) (2)
4		28.078		0.21	0.52	0.11	0.11	6.0	6.0	5.6	0.61	2.51	2.63	12	0.50	185.20	185.34	185.54	185.68	189.57	188.51	Pipe - (434)
Proje	ect File:	NETWO	DRK A.s	stm		•	•	•	•		•			•	•	Number	of lines: 4			Run Dat	te: 1/6/202	2
NOT	ES:Inte	nsity = 5	9.21 / (li	nlet time	+ 12.50)	^ 0.81 ;	Return	period =`	Yrs. 10	; c = cir	e = ellir	b = box	(I				1		

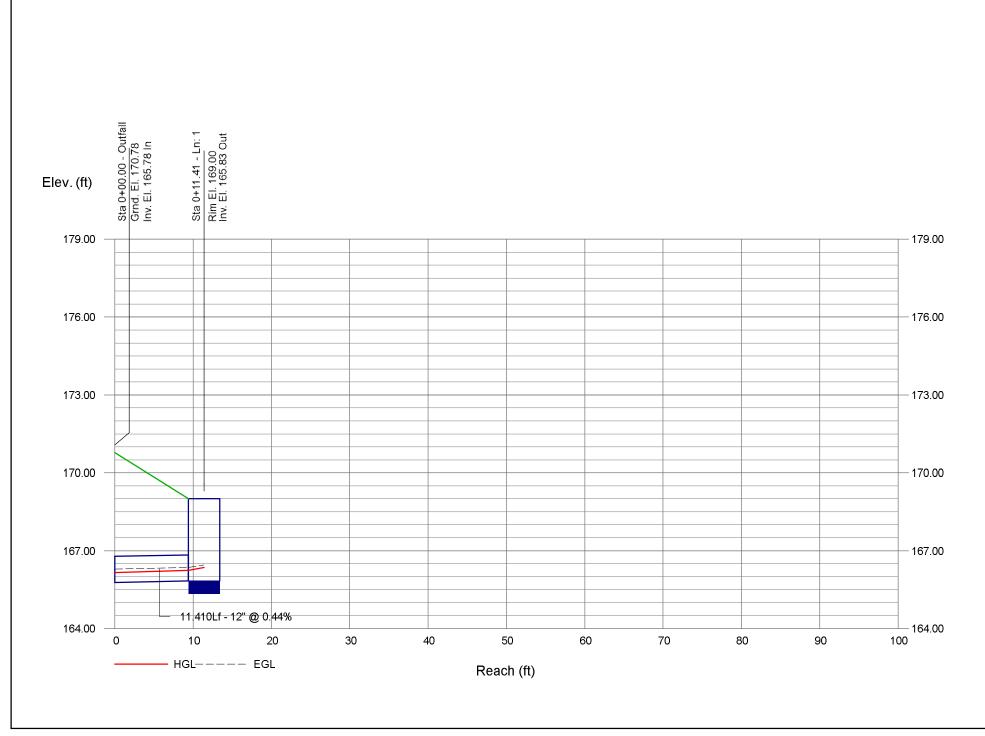


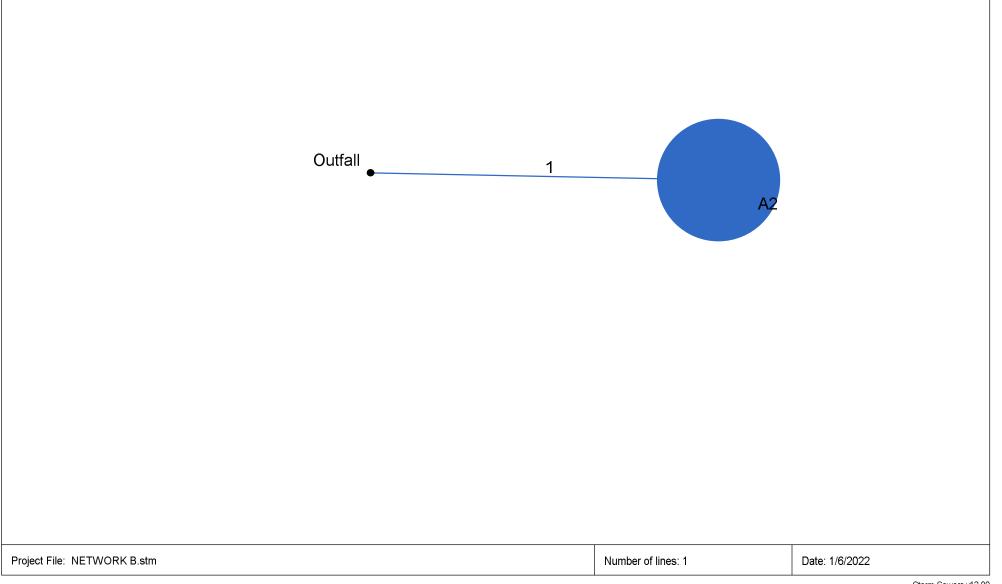
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan



Storm Sewer Tabulation

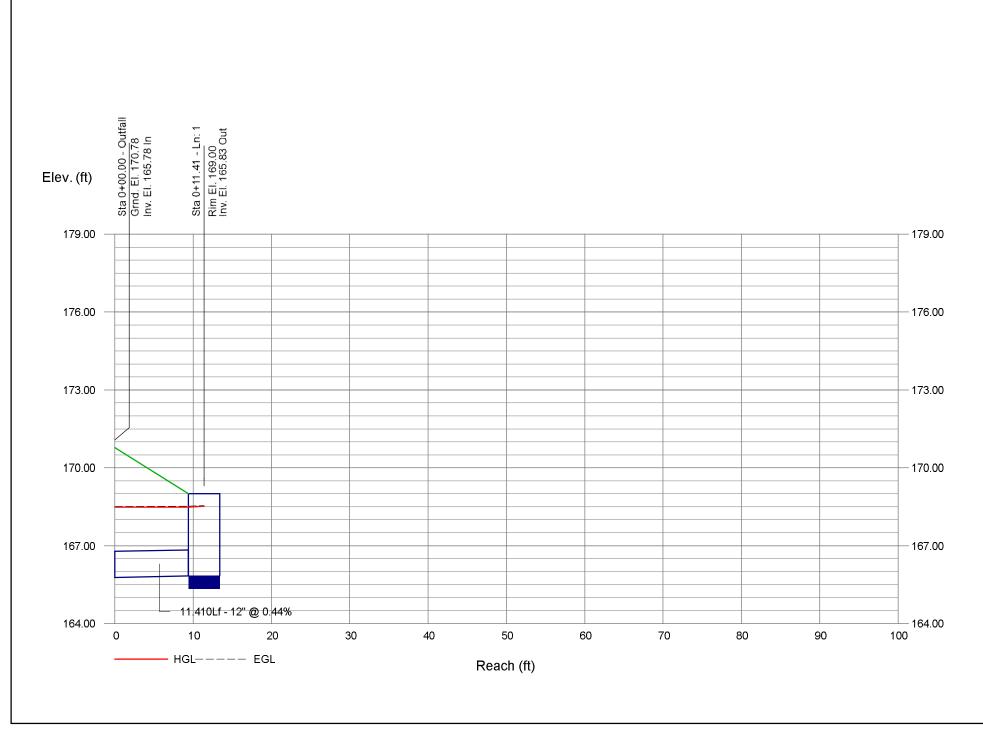
	Inlet Syst	(I) (in/hr) 7.2 7.5 7.5 7.5 7.5		fuli (cfs) 2.47 10.07			Slope (%) 0.48		•	(ft)	Up (ft)	Dn (ft)	Up (ft)	
00 0.00 0.11 00 0.00 0.11 00 0.00 0.11 00 0.00 0.11	0.0 7.2 0.0 6.2 0.0 6.2	7.2 7.5 7.5	0.79 0.82	2.47 10.07	1.00								(ft)	
00 0.00 0.11 00 0.00 0.11	0.0 6.2 0.0 6.2	7.5 7.5	0.82	10.07		12	0.48	164 76	164 86					
00 0.00 0.11	0.0 6.2	7.5			2.02			104.70	104.00	168.48	168.49	0.00	170.36	Pipe - (433)
			0.82		2.02	12	8.00	164.96	174.64	168.51	175.01	170.36	186.39	Pipe - (461)
52 0.11 0.11	6.0 6.0	7.5		10.07	5.36	12	8.00	180.08	182.10	180.27	182.48	186.39	189.57	Pipe - (461) (2)
			0.82	2.51	2.86	12	0.50	185.20	185.34	185.59	185.73	189.57	188.51	Pipe - (434)
								Number	of lines: 4			Run Date	e: 1/6/202	2
	0) ^ 0.98 ; Return	0) ^ 0.98 : Return period =Yrs. 100		0) ^ 0.98 ; Return period =Yrs. 100 ; c = cir e = e						Image: Second				

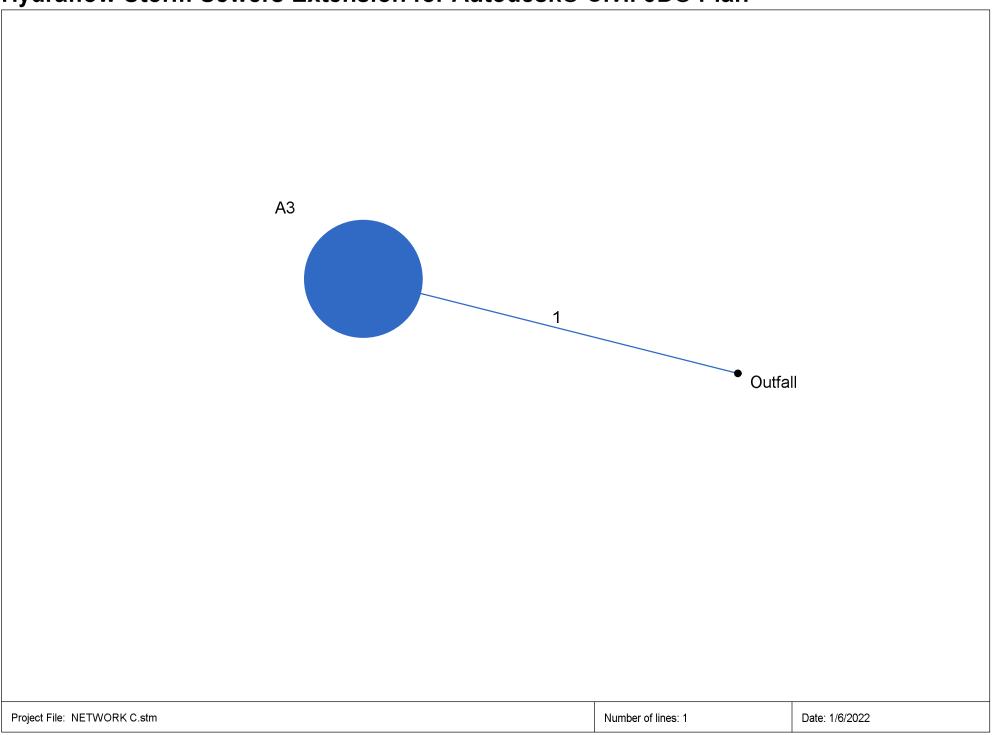

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan



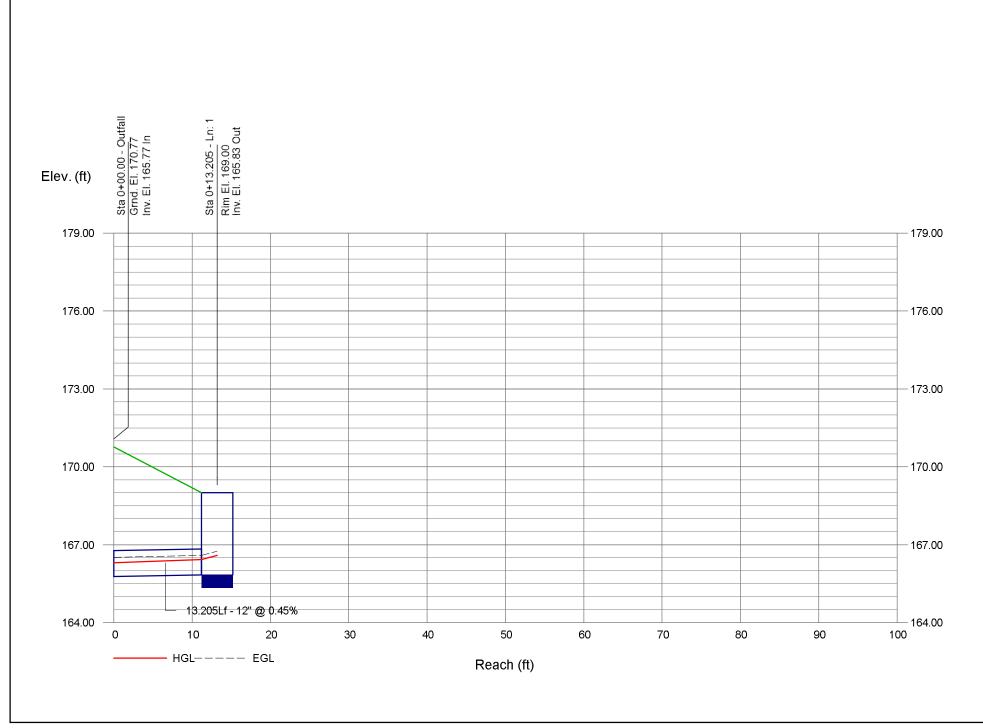
Statior	ı	Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Elev	v	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	11.410	0.55	0.55	0.26	0.14	0.14	6.0	6.0	5.6	0.80	2.36	2.81	12	0.44	165.78	165.83	166.15	166.24	0.00	169.00	Pipe - (434) (1) (1
Proje	ct File:	NETWO	DRK B.st	im	1	1	1	1	1	1	I	1	I	1	1	Number	of lines: 1	1	<u>.</u>	Run Dat	:e: 1/6/202	2
					+ 12.50)	^ 0 81 ·	Return	period =	rs 10	. c = cir	e = ellir) b = bo										

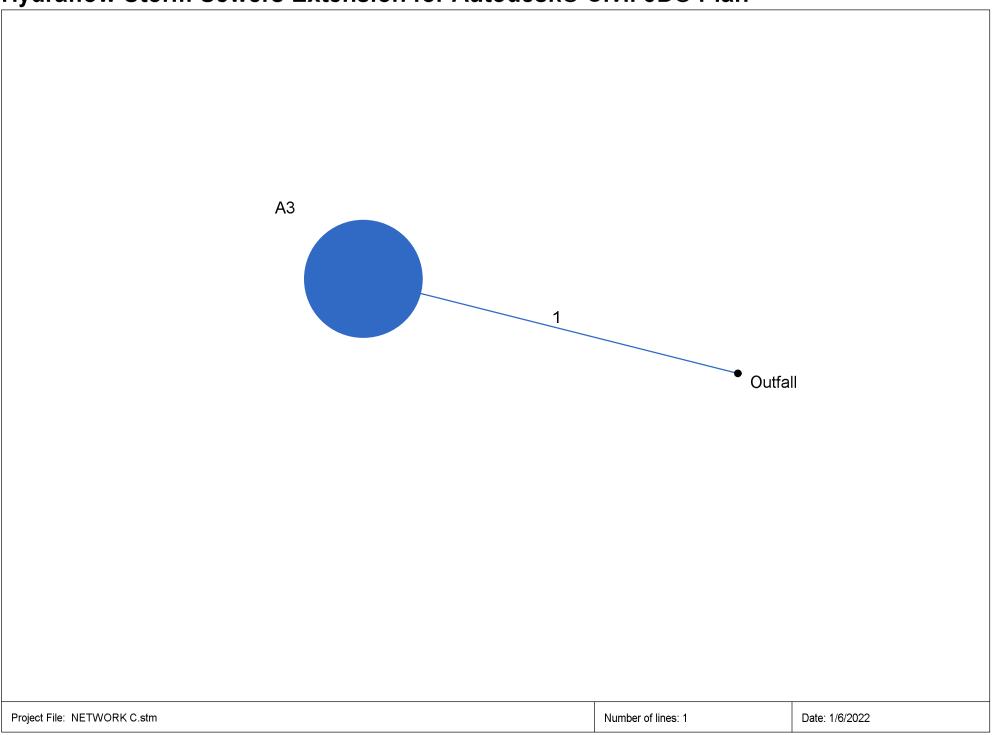
Storm Sewer Tabulation


Storm Sewer Profile

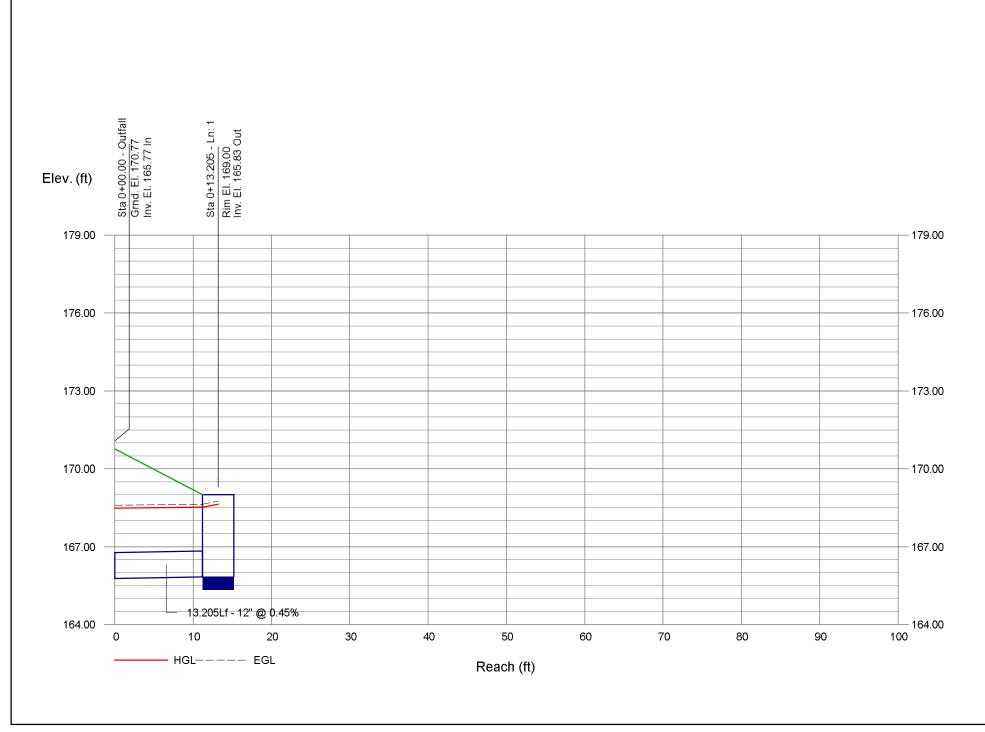


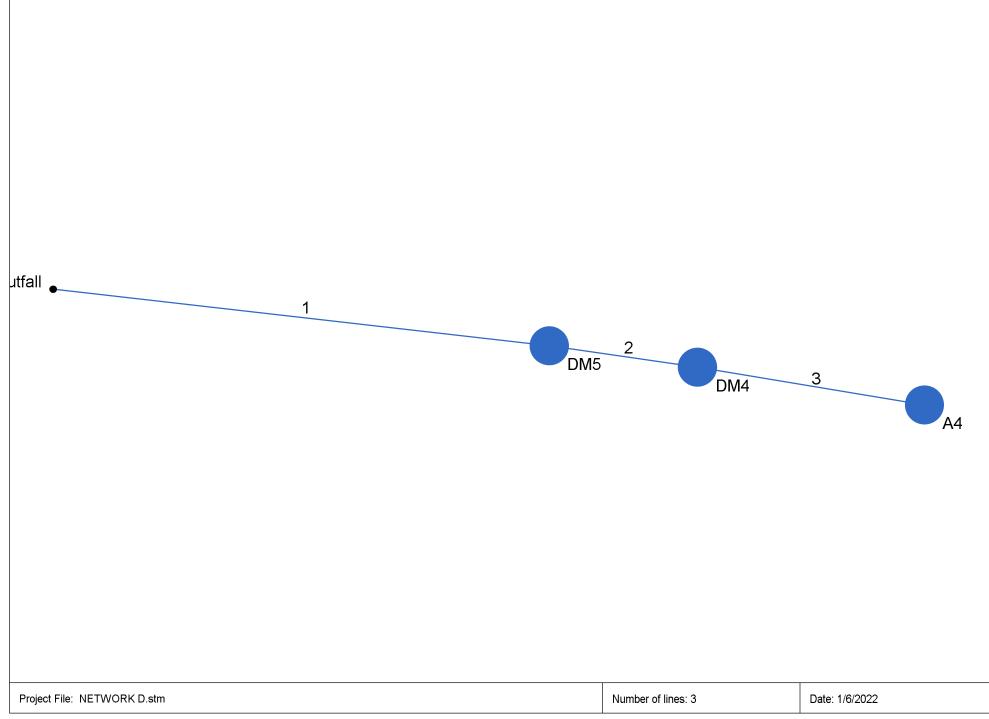
Station	1	Len	Drng A	rea	Rnoff	Area x	C	Tc		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Elev	/	Grnd / Ri	m Elev	Line ID
ine	To		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	iun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	11.410	0.55	0.55	0.26	0.14	0.14	6.0	6.0	7.5	1.08	2.36	1.37	12	0.44	165.78	165.83	168.48	168.49	0.00	169.00	Pipe - (434) (1) (1
Proje	ct File:	NETWO	DRK B.st	m	1	1	1	1	1	1	1	1	1	1	1	Number	of lines: 1	1	1	Run Dat	ie: 1/6/202	2

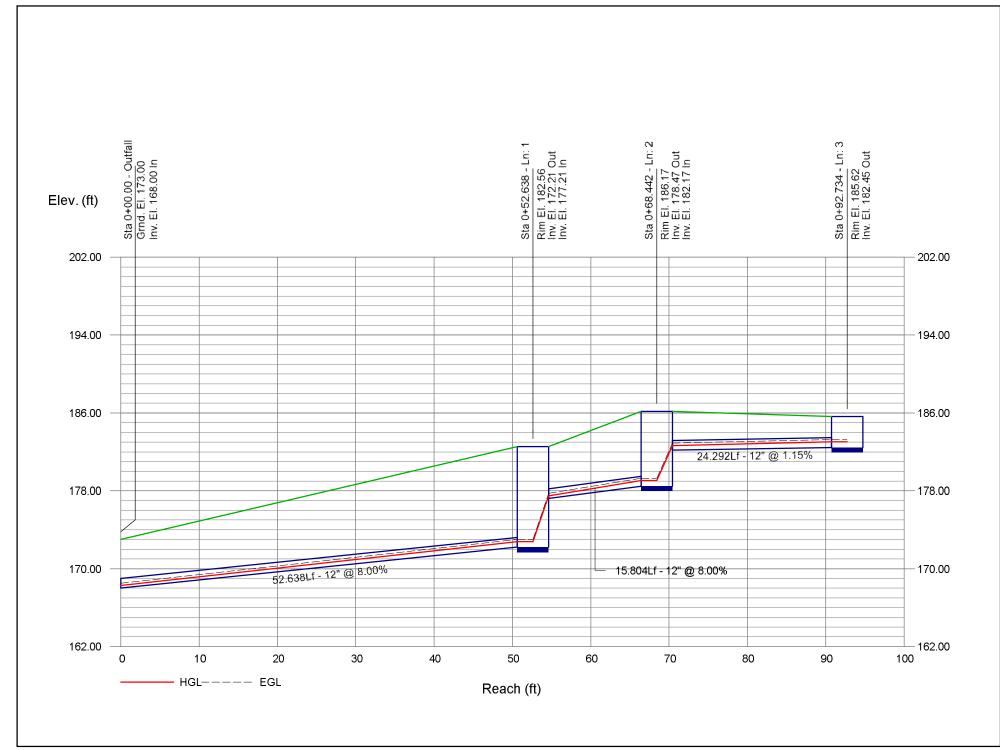

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

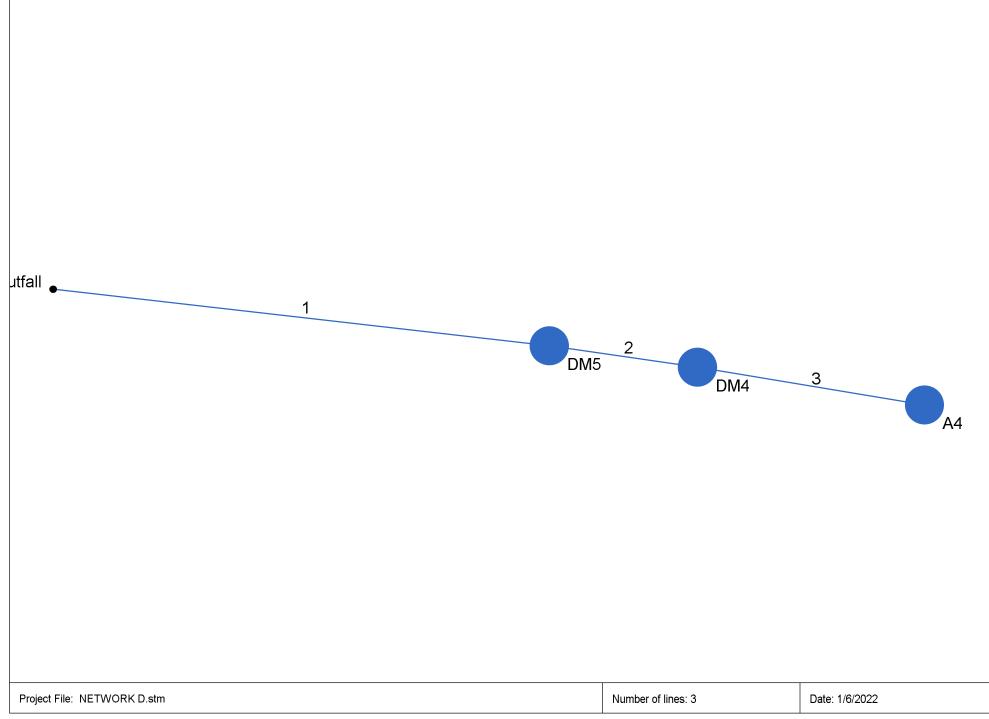


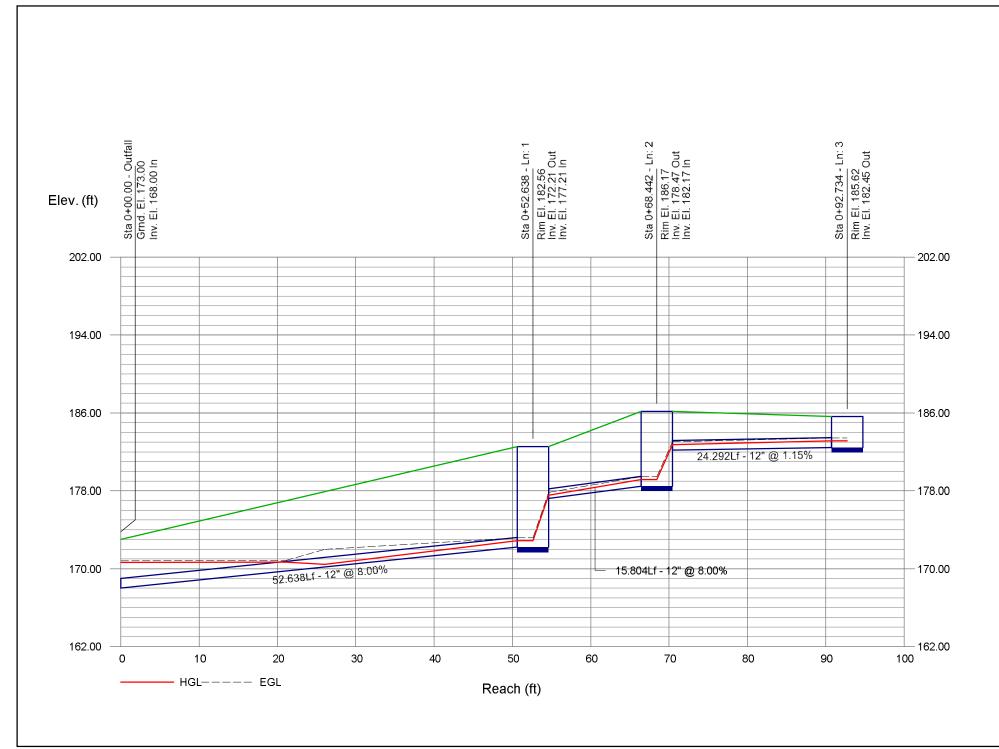
Statio	n	Len	Drng A	Area	Rnoff	Area x	С	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Rii	m Elev	Line ID
_ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	Iun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	13.205	0.97	0.97	0.29	0.28	0.28	6.0	6.0	5.6	1.57	2.40	3.47	12	0.45	165.77	165.83	166.30	166.42	0.00	169.00	Pipe - (434) (1)
Proje	ect File:	NETWO	DRK C.	stm	I			1	1	1		1				Number	of lines: 1	1	1	Run Dat	e: 1/6/202	2
ΝΟΤ	ES:Inte	nsity = 5	9.21 / (I	nlet time ·	+ 12.50)	^ 0.81 :	Return	period =`	/rs. 10	; c = cir	e = ellip) b = bo)	(1				1		

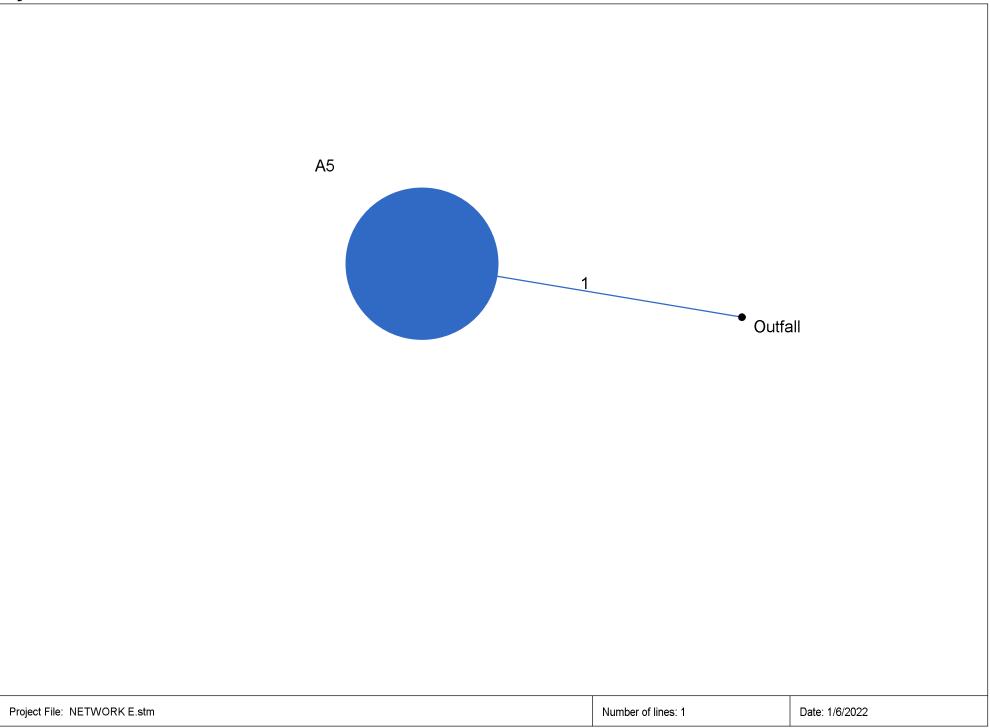

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

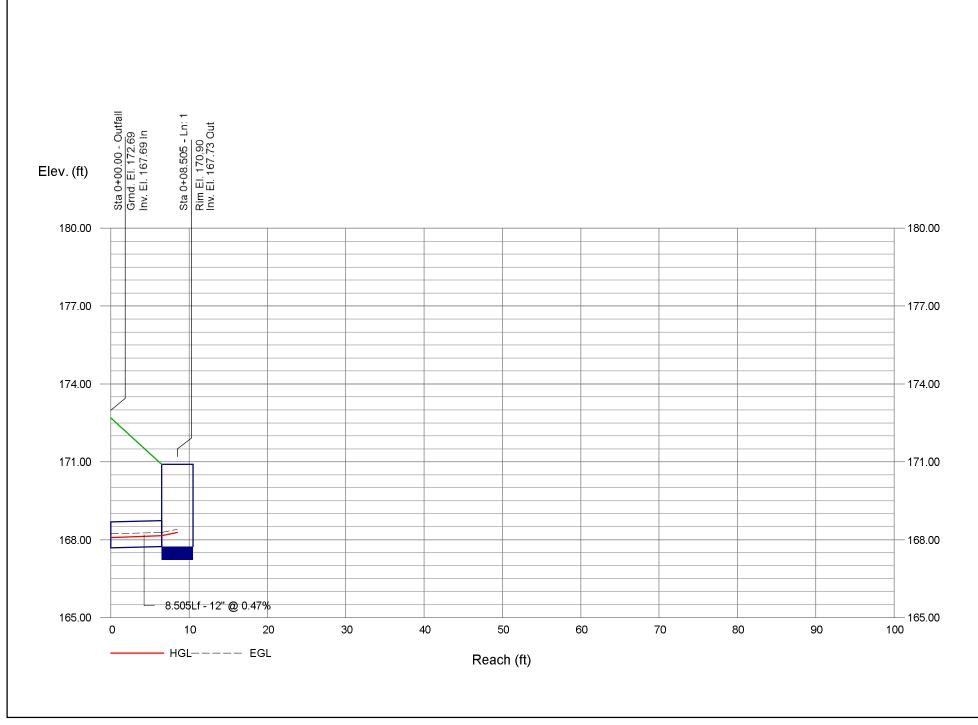


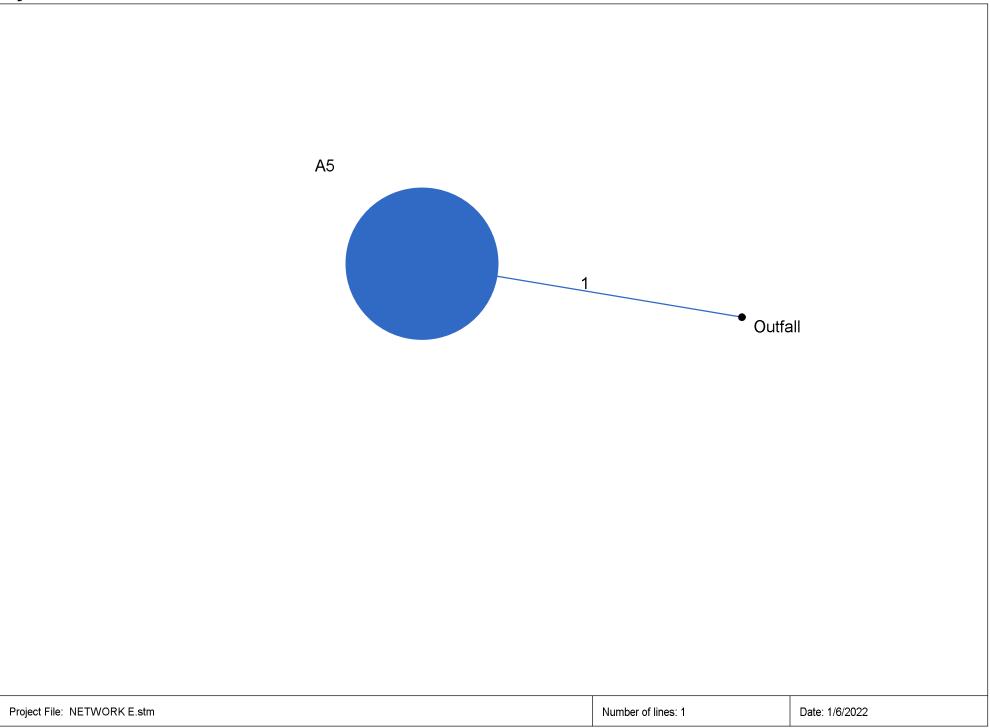

Statio	n	Len	Drng A	Area	Rnoff	Area x	С	Tc		Rain	Total	Cap	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	fulİ		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	13.205	0.97	0.97	0.29	0.28	0.28	6.0	6.0	7.5	2.12	2.40	2.70	12	0.45	165.77	165.83	168.48	168.53	0.00	169.00	Pipe - (434) (1)
Proje	ct File:	NETWO	DRK C.s	stm		<u>I</u>	1	1	1	<u>I</u>	1	1	1	1	1	Number	of lines: 1	1	I	Run Dat	e: 1/6/202	2

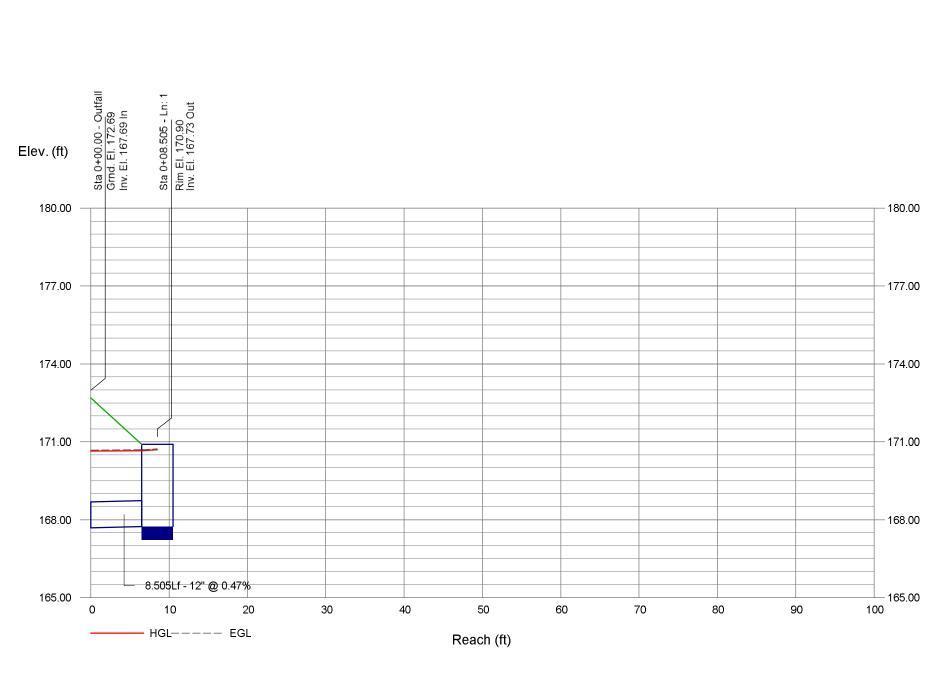

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)




Statio	า	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	Fnd	52.638	0.00	0.72	0.00	0.00	0.32	0.0	6.1	5.6	1.80	10.07	6.79	12	8.00	168.00	172.21	168.29	172.78	0.00	182.56	Pipe - (430) (1)
2		15.804		0.72	0.00	0.00	0.32	0.0	6.1	5.6	1.80	10.07		12	8.00	177.21	178.47	177.50	179.05	182.56	186.17	Pipe - (430) (1) (1)
3		24.292		0.72	0.45	0.32	0.32	6.0	6.0	5.6	1.81	3.82		12	1.15	182.17	182.45	182.65	183.02	186.17		Pipe - (418)
Proie	ct File [.]	NETWO	DRK D.st	l tm												Number	of lines: 3			Run Da	te: 1/6/202	2
					10.50	4 0 04	D = + · · ···	navia - 1	Yrs. 10	· • ·		. h ŀ-										




Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	fulİ		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	52.638	0.00	0.72	0.00	0.00	0.32	0.0	6.1	7.5	2.43	10.07	3.73	12	8.00	168.00	172.21	170.65	172.88	0.00	182.56	Pipe - (430) (1)
2		15.804		0.72	0.00	0.00	0.32	0.0	6.1	7.5	2.43	10.07	7.46	12	8.00	177.21	178.47	177.54	179.14	182.56	186.17	Pipe - (430) (1) (1)
3		24.292		0.72	0.45	0.32	0.32	6.0	6.0	7.5	2.44	3.82	4.77	12	1.15	182.17	182.45	182.75		186.17		Pipe - (418)
Proje	ct File:	NETWO	DRK D.s	tm			1	1		1	1	1	1	I	1	Number	of lines: 3	<u> </u>	<u> </u>	Run Da	te: 1/6/202	2
							. Detu:		=Yrs. 10	.		ullia la — l										



Station	Lei	n	Drng Aı	rea	Rnoff coeff	Area x	(C	Тс		Rain	Total flow	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line To			Incr	Total	coen	Incr	Total	Inlet	Syst	(I)	now	Iun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	(ft))	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1 En	nd 8.	505	0.72	0.72	0.22	0.16	0.16	6.0	6.0	5.6	0.88	2.44	2.94	12	0.47	167.69	167.73	168.08	168.15	0.00	170.90	Pipe - (434) (1) (2)
Project Fi	ile: NE	TWO	RK E.st	m			1									Number	of lines: 1		1	Run Dat	te: 1/6/202	2
Project Fi					+ 12.50)	^ 0.81 ;	; Return	period =`	Ýrs. 10	; c = cir	e = ellip) b = box	(Number	of lines: 1			Run Da	te: 1/6/202	2

Statior	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	8.505	0.72	0.72	0.22	0.16	0.16	6.0	6.0	7.5	1.19	2.44	1.52	12	0.47	167.69	167.73	170.65	170.66	0.00	170.90	Pipe - (434) (1) (2
Proje	ct File:	NETWO	DRK E.st	m												Number	of lines: 1			Run Dat	te: 1/6/202	2

SECTION 8 – PROJECT PLANS (Under Separate Cover)