
Stormwater Analysis & Report For Residential Definitive Subdivision at Massapoag Street Weymouth, MA

> April, 2020 Revised November 19, 2021 Revised January 11, 2022

Prepared for: Weathervane Massapoag, LLC. 190 Old Derby Street, Suite 311 Hingham, MA 02043

Prepared by: Crocker Design Group, LLC 2 Sharp Street, Unit A Hingham, MA 02043

TABLE OF CONTENTS

1. NARRATIVE

- 1.1 EXECUTIVE SUMMARY
- 1.2 OBJECTIVE OF CALCULATIONS
- 1.3 METHODOLOGY
- 1.4 SITE HYDROLOGY
- 1.5 STORMWATER MANAGEMENT
- 1.6 BEST MANAGEMENT PRACTICES
- 1.7 PIPE SIZING
- 1.8 CONCLUSION
- 1.9 FIGURES

FIG 1 SITE LOCUS USGS MAP FIG 2 SITE LOCUS ORTHOGRAPHIC MAP FIG 3 NHESP HABITAT MAP FIG 4 FEMA FLOODPLAIN MAP FIG 5 MASSDEP WETLANDS MAP

2. STORMWATER CHECKLIST

3. STORMWATER HYDROLOGY MODEL

- 3.1 EXISTING HYDROLOGY
- 3.2 PROPOSED HYDROLOGY

4. STORMWATER MANAGEMENT CALCULATIONS

- 4.1 RECHARGE CALCULATIONS
- 4.2 DRAWDOWN CALCULATIONS
- 4.3 WATER QUALITY CALCULATIONS
- 4.4 RIP RAP SPLASH PAD CALCULATIONS
- 4.5 TSS REMOVAL
- 4.6 SWALE CAPACITY CALCULATIONS

5. LONG-TERM POLLUTION PREVENTION AND OPERATION & MAINTENANCE PLAN

OPERATION & MAINTENANCE NARRATIVE MAINTENANCE MATRIX MANUFACTURER'S RECOMMENDATIONS

6. SOILS TESTING DATA

- 6.1 TEST PIT LOGS DATED 12/28/2021
- 6.2 TEST PIT LOGS 2018
- 7. HYDRAULIC PIPE ANALYSIS & SIZING
- 8. PROJECT PLANS (Under Separate Cover)
- 9. Draft NPDES SWPPP (To be Prepared Prior to Construction)

SECTION 1 - NARRATIVE

1.1 EXECUTIVE SUMMARY

In accordance with the provisions of the Rules and Regulations of the Planning Board of Weymouth, Massachusetts Governing the Subdivision of Land, the Applicant, Weathervane Massapoag, LLC proposes to develop a residential subdivision consisting of seven (7) single family lots as an extension to the existing Massapoag Street, a private-way.

The site is bounded by existing residential properties to the east and south, woods and wetlands to the north and west. The site topography ranges from a high of approximately 206' in front of the existing house and then slopes down toward the existing wetlands along the north, west and south sides, to an approximate low elevation of 162 to the north, 167 to the west and 183 to the south and to Massapoag Street at 190 +/- to the east. The Braintree town line exists along the western edge of the property. The site is mostly wooded and includes an existing single-family residential house with existing driveway and shed. The extension of Massapoag Street, including the roundabout has been constructed along with utilities within the road right of way. Please refer to the Definitive Subdivision Plans revised 2/11/22.

The property consists of 5.4 +/- acres in total in Weymouth and approximately 0.08 acres in Braintree (note the Braintree land is not counted toward the required subdivision and/or zoning requirements in Weymouth). The property is Zoned Residence R-1 and is located within the Watershed Protection District. **The wetland to the north of the project is tributary to the Mill River which is and Outstanding Resource Water and a critical area under the MA DEP Stormwater Standards.** The site is entirely outside of the FEMA 100year floodplain and is not located within any NHESP Estimated or Priority Habitat areas. Please refer to Section 1.9 - Figures for the accompanying figures.

The proposed project consists of subdividing the property into seven (7) single-family residential parcels meeting the requirements of the Residence R-1 district and Watershed Protection District as well as the subdivision roadway extension and associated drainage and utility infrastructure. The project is considered a new development and has been designed to comply with the Massachusetts Stormwater Regulations. The Applicant is seeking several subdivision design waivers as you'll see on the plans and accompanying Planning Board Application submittal.

1.2 OBJECTIVE OF CALCULATIONS

The purpose of this stormwater analysis is to examine the stormwater runoff from the proposed site based upon the Massachusetts Department of Environmental Protection Stormwater Management Standards and the applicable provisions of the Town of Weymouth subdivision requirements.

The goal of the stormwater management system design on this project is to provide improved water quality, match/reduce post-development peak runoff rates below predevelopment peak flow rates, minimize total area of land disturbance needed, maximize the opportunities for recharge and infiltration, and protect the surrounding area from any potential flooding and/or environmental impacts associated with the unmitigated condition. The following stormwater hydrology calculations were performed using the 2year, 10-year, 25-year, and 100-year frequency, **NOAA-14 precipitation data** and were compared for both pre-development and post-development conditions.

1.3 METHODOLOGY

We utilized the latest version of Hydro CAD for the overall stormwater hydrology/routing analysis to assess and compare peak rates of runoff at the various discharge points from the subject property. We then utilized the Hydraflow Storm Sewers Extension Pack through AutoCAD Civil 3d to analyze the pipe design and to select appropriate pipe sizing.

Refer to Section 1.3 – Hydrocad Model, which includes the detailed print-out of the HydroCAD Model Reports for the 2, 10, 25 and 100-year storms as well as Section 7 – Hydraulic Pipe Analysis / Sizing, which includes the Hydraflow reports for the 10 and 100-year storms for pipe capacity analysis and sizing.

1.4 SITE HYDROLOGY

Existing Conditions

Please refer to the attached Existing Conditions Watershed Analysis Plan in Section 3 of this report. The property has been divided into several subcatchment areas based on the existing site topography and flow paths. These subcatchments then combine where appropriate from an analysis standpoint where they discharge toward wetland resource areas and the existing Massapoag Street right-of-way. Each subcatchment area has been analyzed and assigned an appropriate Curve Number to represent the existing vegetative cover and underlying soils conditions. Times of concentration have been computed and the extent of pervious vs. impervious cover computed. This data was then input into HydroCAD to determine peak rates of runoff at the various design points (identified as "Points of Analysis") which provide the locations for which to compare existing versus proposed conditions to document compliance that the peak rates have been reduced in the regulatory storm events as required. A Summary table is provided in the Hydrology Model Results and Conclusions Section below.

Proposed Conditions

Please refer to the attached Proposed Conditions Watershed Analysis Plan in Section 3 of this report. The proposed subdivision has been divided several subcatchment areas and

the stormwater underground infiltration chambers and their respective outlets have been modeled. Appropriate Times of Concentration and Curve Numbers have been assigned for each catchment area. A Summary table is provided in the Hydrology Model Results and Conclusions Section below.

Hydrology Model Results and Conclusions

The goal of the stormwater design for the project is to fully comply with the Massachusetts Stormwater Standards and the Town of Weymouth regulations. This analysis confirms that the stormwater system is receiving proper treatment and peak rates of runoff have been matched or reduced to below pre-development rates using stormwater Best Management Practices including deep sump hooded catch basins, grass conveyance swales, water quality units, and two (2) underground infiltration chamber systems. The underground infiltration systems have been sized and designed to infiltrate the required recharge and provide peak flow attenuation. The water quality (CDS) unit has been properly sized in accordance with MADEP guidance for water quality flows. The results of the pre- and postdevelopment hydrology calculations provided in Section 3 are summarized in the following table:

Peak Rate Analysis								
Point of	2-Yr	10-Yr	25-Yr	100-Yr				
Analysis	(CFS)	(CFS)	(CFS)	(CFS)				
#1 Existing	0.00	0.01	0.06	0.39				
#1 Proposed	0.00	0.00	0.01	0.36				
#2 Existing	0.00	0.01	0.05	0.43				
#2 Proposed	0.00	0.01	0.05	0.29				
#3 Existing	0.00	0.05	0.16	0.48				
#3 Proposed	0.00	0.01	0.04	0.17				
#4 Existing	0.08	0.15	0.20	0.26				
#4 Proposed	0.00	0.00	0.00	0.00				

Point of	2-Yr	10-Yr	25-Yr	100-Yr
Analysis	(AcFt)	(AcFt)	(AcFt)	(AcFt)
#1 Existing	0.000	0.008	0.027	0.074
#1 Proposed	0.000	0.001	0.003	0.078
#2 Existing	0.000	0.006	0.030	0.095
#2 Proposed	0.000	0.005	0.016	0.083
#3 Existing	0.001	0.012	0.025	0.050
#3 Proposed	0.000	0.004	0.009	0.020
#4 Existing	0.006	0.011	0.015	0.020
#4 Proposed	0.000	0.000	0.000	0.000
Total Existing	0.007	0.037	0.097	0.239
Total Proposed	0.000	0.010	0.028	0.181

In all cases storm events, the proposed peak rates are less than or equal to the predevelopment peak rates. The project results in an overall decrease in stormwater volume discharge for all storm events. Collectively there is less volume discharging to the wetlands in the proposed condition compared to the existing.

As can be seen based on the above tables, the peak stormwater runoff rates **and volumes** generated by the development are the same or less in post development conditions versus the existing conditions in all cases. Refer to Section 3 for copies of the HydroCAD Analysis and pre and post development watershed plans.

1.5 STORMWATER MANAGEMENT

The following section describes each of the ten (10) Massachusetts Stormwater Management Standards and describes how the project complies with each.

<u>Standard 1: No New Untreated Discharges</u> – No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

All new stormwater system conveyances are treated prior to discharge. The drainage system has been designed to direct stormwater runoff from impervious areas through stormwater BMPs designed to capture, convey, treat, detain, recharge and infiltrate the runoff prior to discharge.

<u>Standard 2: Peak Rate Attenuation</u> – Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed predevelopment peak discharge rates.

The stormwater BMPs employed result in peak discharge rates not being exceeded from predevelopment conditions.

<u>Standard 3: Recharge</u> – Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The stormwater system has been designed to comply and exceed the minimum recharge volume requirements.

<u>Standard 4: Water Quality</u> – Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

The project utilizes deep sump hooded catch basins water quality units underground infiltration chambers to fully comply with the TSS requirements of 80% removal. The water quality are designed to treat the 1" water quality volume (WQV) for the impervious area captured on site due to the site being within a critical area. In addition, deep sump hooded catch basins are proposed. Calculations for water quality volume can be found in Section 4.3, and treatment train efficiency can be found in Section 4.4. A long-term Operation and Maintenance Manual for these systems can be found in Section 5.

<u>Standard 5: Land Uses with Higher Potential Pollutant Loads</u> – For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

The project is not considered a LUHPPL (Land Use with Higher Potential Pollutant Load).

<u>Standard 6: Critical Areas</u> – Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near

or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

The wetland to the north of the project is tributary to the Mill River which is and Outstanding Resource Water and a critical area under the MA DEP Stormwater Standards, therefore the project has been design to comply with all applicable Stormwater Standards and to treat 1-inch of water quality volume.

<u>Standard 7: Redevelopment and Other Projects Subject to the Standards only to the</u> <u>maximum extent practicable</u> – A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The project qualifies as a new development and has been designed to comply with the requirements as if it were entirely new development.

<u>Standard 8: Construction Period Pollution Prevention Plan and Erosion and</u> <u>Sedimentation Control</u> – A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

An Erosion and Sedimentation Controls Plan has been incorporated into the Site Plans.

<u>Standard 9: Operation and Maintenance Plan</u> – A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A long-term Operation and Maintenance Plan has been incorporated herein. See Section 5 of the Report.

<u>Standard 10: Prohibition of Illicit Discharges</u> – All illicit discharges to the stormwater management system are prohibited.

An Illicit Discharge Compliance Statement is included as required.

1.6 BEST MANAGEMENT PRACTICES (BMP'S)

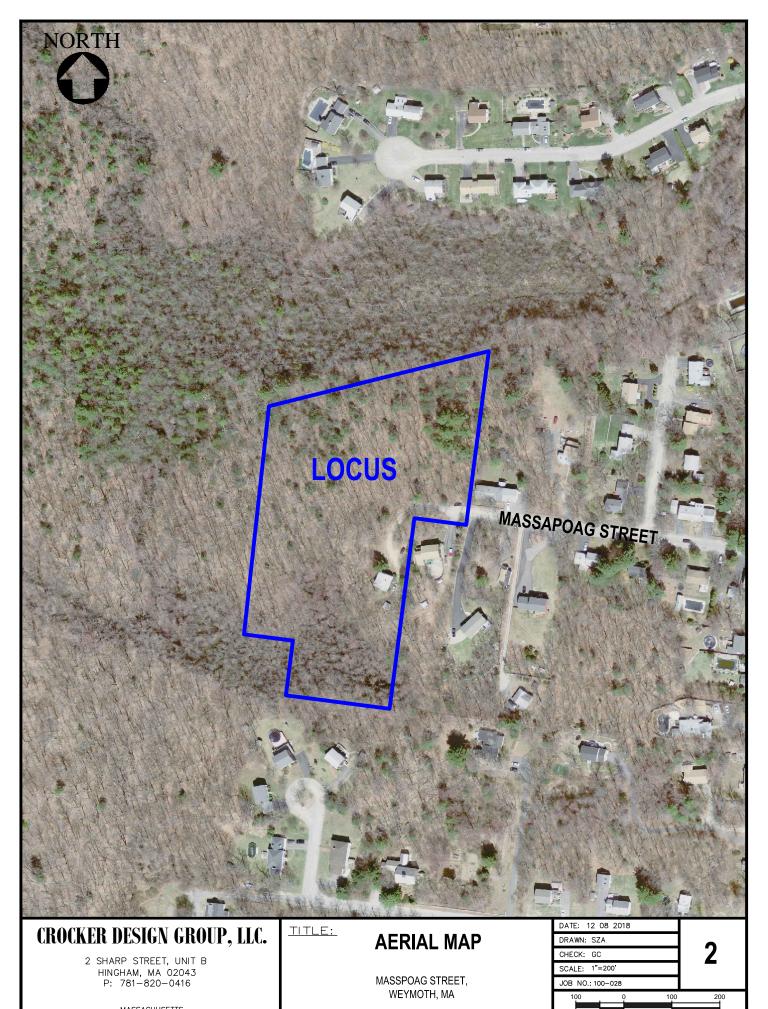
A system of deep sump hooded catch basins, and underground infiltration chambers will be used to treat stormwater runoff on the site. See Section 4.5: Total Suspended Solids (TSS) Calculations.

1.7 PIPE SIZING

Refer to Section 7 for the output results from the Hydraflow Sewer Storm Sewers Extension for AutoCAD Civil 3D. Hydraflow utilized the Rational Method. The tributary area for each inlet/subcatchment area has been computed along with pipe length, slope and friction coefficient. The Rational Method is then utilized to determine the hydraulic grade line. For design purposes, this approach was used to size the pipes such that the 10-year storm event is contained within the pipe. The 100-year storm was then checked to confirm the hydraulic grade line for the pipe network does not exceed the rim elevations of the drainage structures.

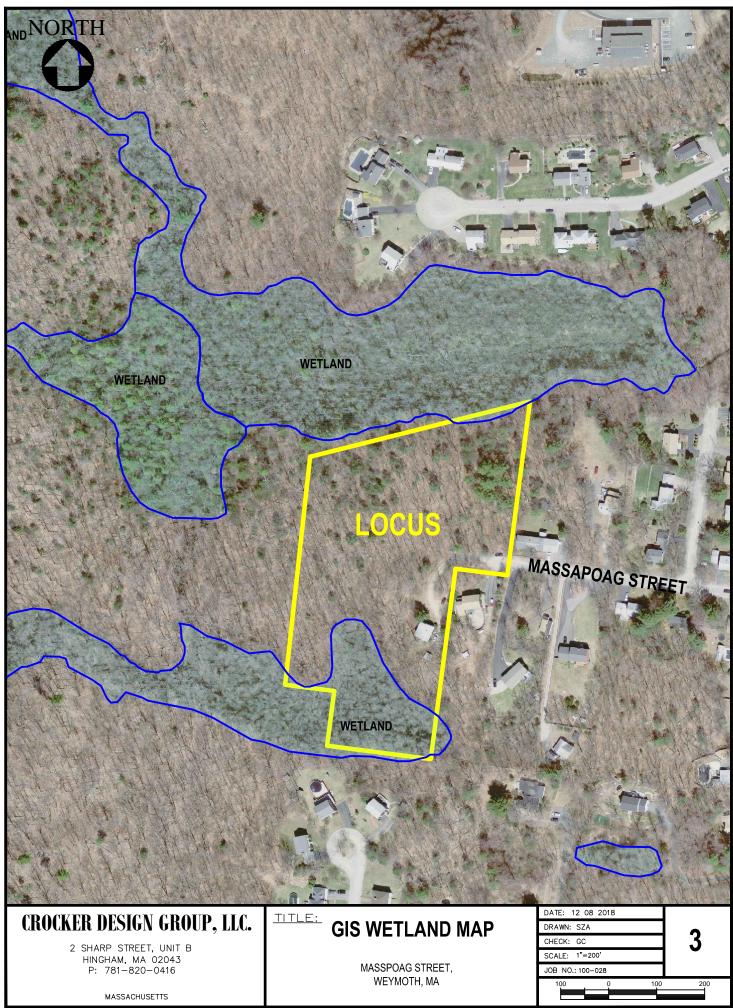

1.8 CONCLUSION

In conclusion, the project has been designed in accordance with the requirements of the MA Stormwater Management Regulations and in compliance with the Town of Weymouth Stormwater Management and Erosion Control By-Law.

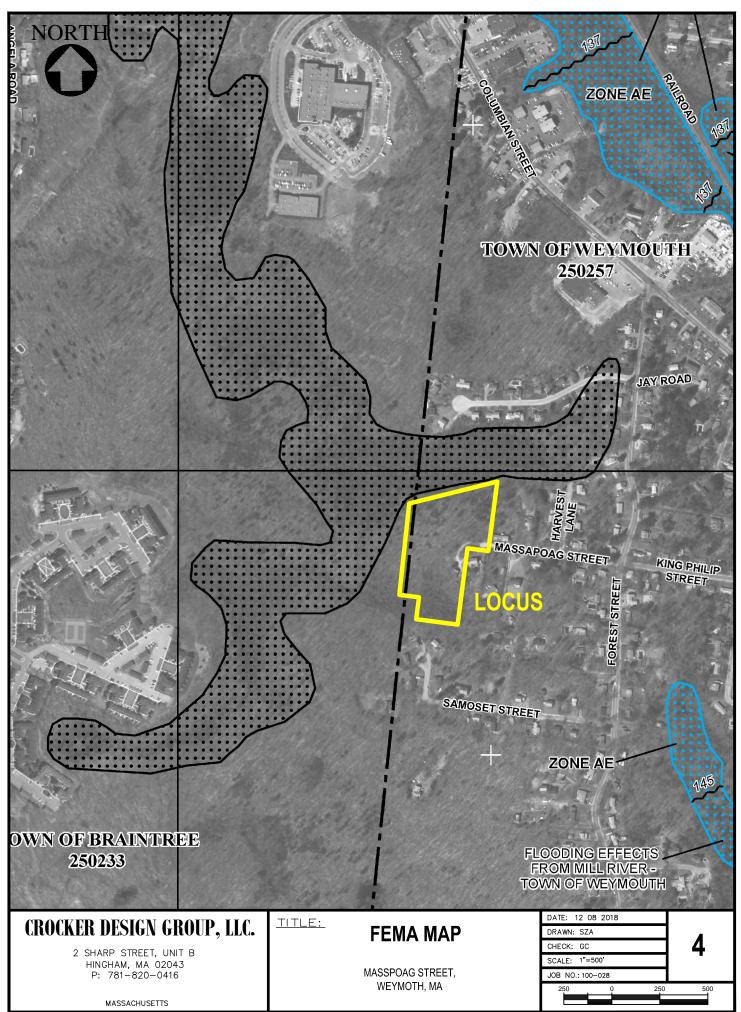

1.9 FIGURES

The following pages contain the following accompanying figures:

FIG 1 SITE LOCUS USGS MAP FIG 2 SITE LOCUS ORTHOGRAPHIC MAP FIG 3 NHESP HABITAT MAP FIG 4 FEMA FLOODPLAIN MAP FIG 5 MASSDEP WETLANDS MAP



C:\Users\alex\OneDrive\Projects\100-028 Massapaag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, USGS MAP.dwg, Layout1, Dec 08, 2018 16:24



MASSACHUSETTS

C:\Users\alex\OneDrive\Projects\100-028 Massapag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, AERIAL MAP.dwg, Layout1, Dec 08, 2018 15:35

C:\Users\alex\OneDrive\Projects\100-028 Masssapoag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, WETLAND.dwg, Layout1, Dec 08, 2018 16:41

C:\Users\alex\OneDrive\Projects\100-028 Massapaag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\ FEMA MAP.dwg, Layout1, Dec 08, 2018 16:16

C:\Users\alex\OneDrive\Projects\100-028 Massapaag st, Weymouth\dwg\Plot sheets\8.5 x 11 exhibits\, NHESP.dwg, Layout1, Dec 08, 2018 17:03

SECTION 2 – STORMWATER CHECKLIST

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

1/13/2022 Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\square	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🛛 Static	Simple Dynamic
----------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)
The BMP is sized (and calculations provided) based on:
\boxtimes The $\frac{1}{2}$ " or 1" Water Quality Volume or
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prio</i> <i>to</i> the discharge of stormwater to the post-construction stormwater BMPs.
The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
All exposure has been eliminated.
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Standard 6: Critical Aroas

Standard 6: Critical Areas

Checklist (continued)

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Proje	ect
---------------	-----

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

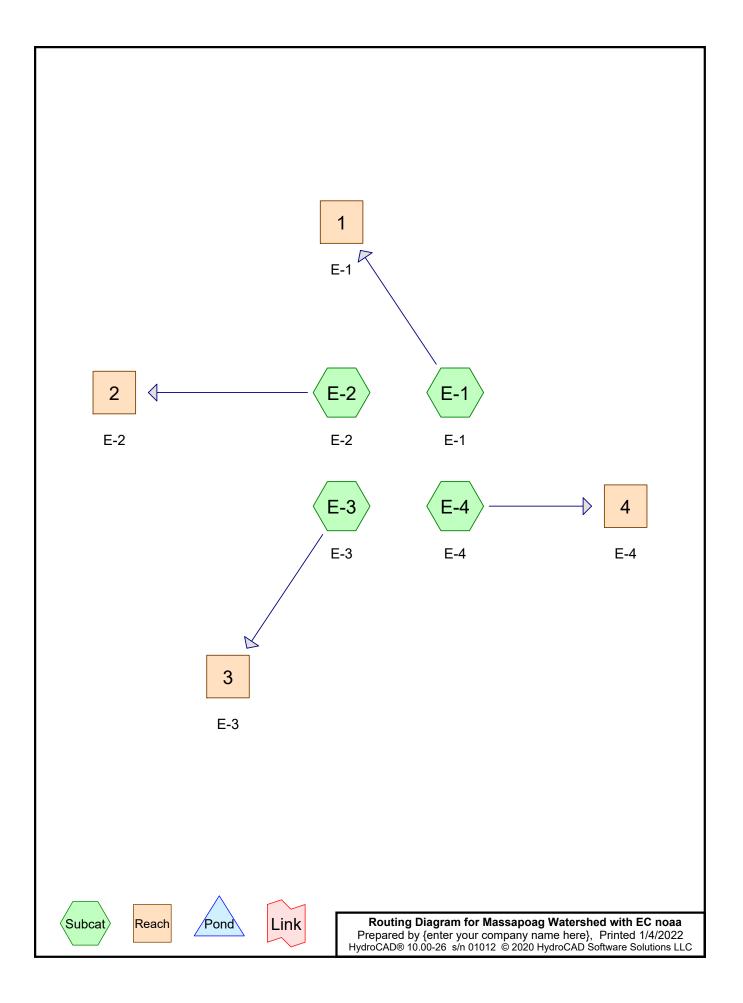
ILLICIT DISCHARGE COMPLIANCE STATEMENT

Standard 10: Massachusetts Stormwater Standards Handbook

Illicit discharges are defined as discharges into waters of the State or municipal separate stormwater system (MS4) that are not entirely comprised of stormwater. Exclusions for non-stormwater discharges into drainage systems include activities or facilities for firefighting, water line flushing, landscape irrigation, uncontaminated groundwater discharge, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, water used to clean residential buildings without detergents, water used for street washing, and flows from riparian habitats/wetlands. These exclusions are subject to change and are under the discretion of the local governing authority.

To the best of our knowledge and professional belief no illicit discharges to the stormwater system, surface waters, or wetland resource areas will remain on the site after construction. We will agree to implement a pollution prevention plan to prevent illicit discharges into the stormwater management system. The design of the site based on the plans entitled "DIVISION SUBDIVISION PLAN FOR MASSAPOAG STREET, WEYMOUTH, MA" prepared by Crocker Design Group, LLC, 2 Sharp Street, Unit A, Hingham, Massachusetts, show a separation and no direct connection between the stormwater management systems and the wastewater and/ or groundwater on the site. To the maximum extent practicable, the design prevents entry of illicit discharges into the stormwater management system.

Engineer's Name: Coche Crocher (please print)


Engineer's Signature:

Date: 1/11/2022

Company: Crocker Design Group, LLC.

SECTION 3 – STORMATER HYDROLOGY MODEL

3.1 EXISTING HYDROLOGY

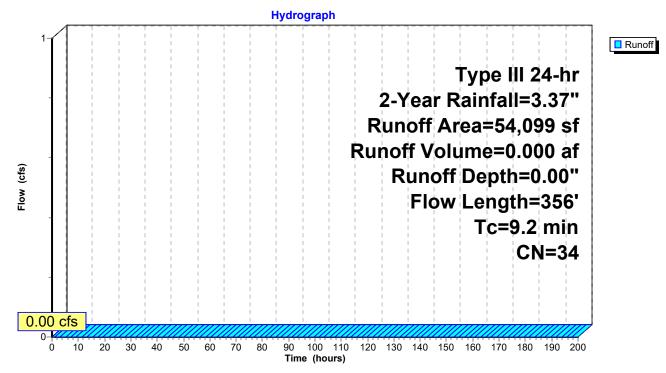
Massapoag Watershed with EC noaa Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

	Area	CN	Description
_	(acres)		(subcatchment-numbers)
	0.010	49	50-75% Grass cover, Fair, HSG A (E-4)
	0.141	98	Paved parking, HSG A (E-1, E-2, E-3, E-4)
	3.594	32	Woods/grass comb., Good, HSG A (E-1, E-2, E-3)

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-1: E-1


0.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff = 0.00 cfs @

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

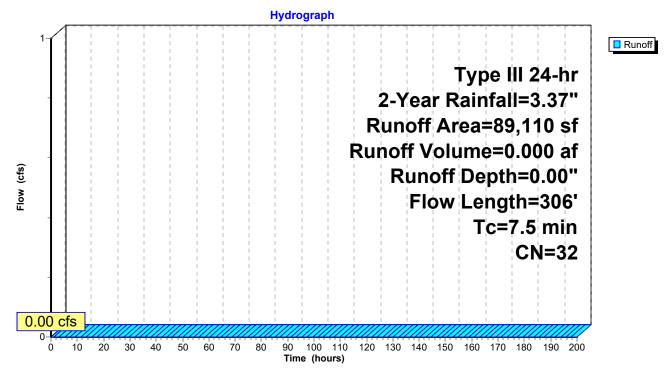
	A	rea (sf)	CN E	Description		
		52,183	32 V	Voods/gras	s comb., G	Good, HSG A
_		1,916	98 F	aved park	ing, HSG A	
		54,099	34 V	Veighted A	verage	
		52,183	9	6.46% Per	vious Area	
		1,916	3	.54% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.5	50	0.1000	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.7	306	0.1400	1.87		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	9.2	356	Total			

Total 356

Subcatchment E-1: E-1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-2: E-2

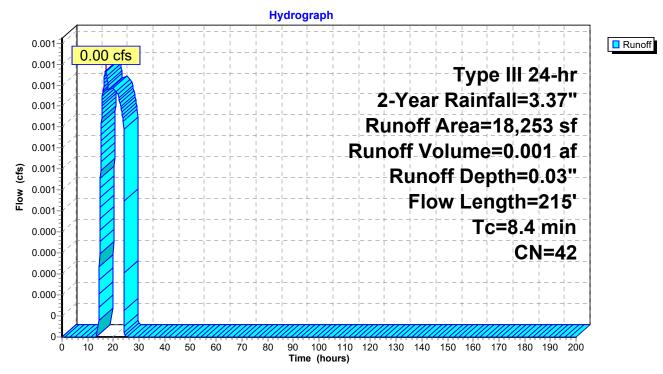

0.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff = 0.00 cfs @

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

_	A	rea (sf)	CN [Description		
		88,738	32 V	Voods/gras	ss comb., G	Good, HSG A
_		372	98 F	Paved park	ing, HSG A	
		89,110	32 V	Veighted A	verage	
		88,738	ç	9.58% Per	vious Area	
		372	C).42% Impe	ervious Area	а
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.9	50	0.2000	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.6	256	0.1100	1.66		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	75	206	Total			

7.5 306 Total

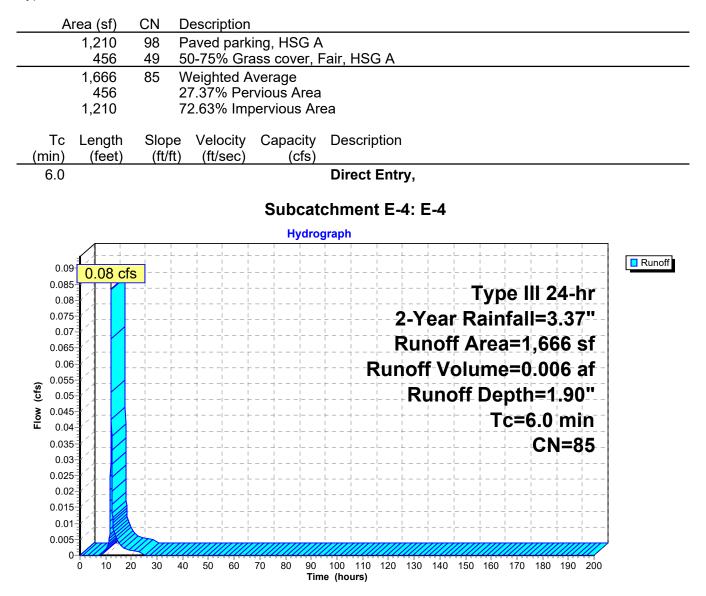
Subcatchment E-2: E-2


Summary for Subcatchment E-3: E-3

Runoff = 0.00 cfs @ 17.05 hrs, Volume= 0.001 af, Depth= 0.03"

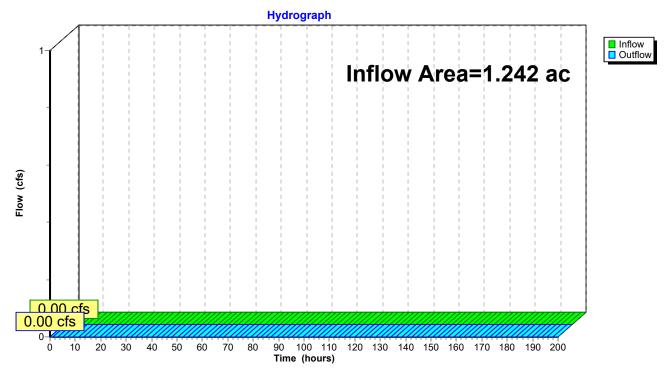
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

	A	rea (sf)	CN E	Description		
		15,616	32 V	Voods/gras	ss comb., G	Good, HSG A
		2,637	98 F	Paved park	ing, HSG A	۱
		18,253	42 V	Veighted A	verage	
		15,616	8	5.55% Per	vious Area	
		2,637	1	4.45% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.2	50	0.1100	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.2	165	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	8.4	215	Total			


Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 1.90"

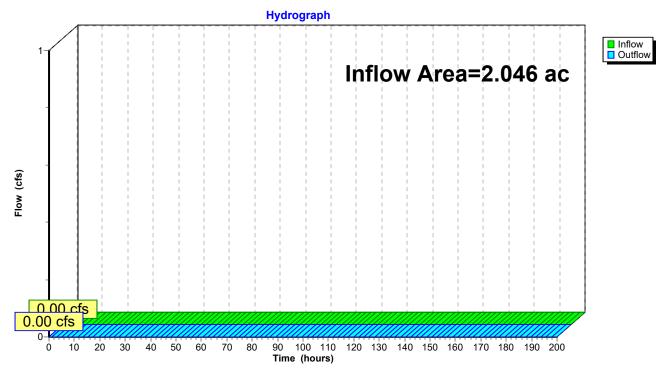

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Inflow Area =	1.242 ac,	3.54% Impervious, Inflow	Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 1: E-1

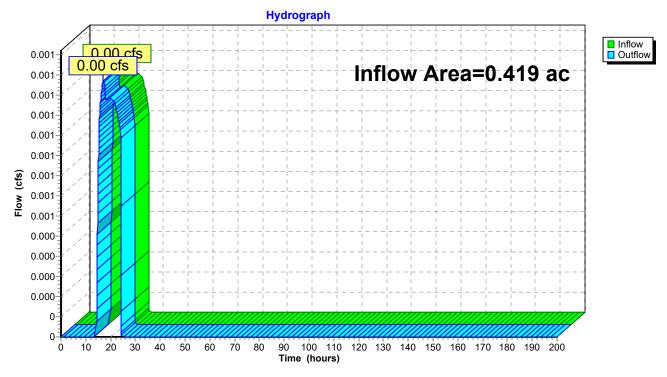

Massapoag Watershed with EC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 2: E-2

Inflow Area	=	2.046 ac,	0.42% Impervious, In	nflow Depth = 0.00"	for 2-Year event
Inflow =	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow =	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

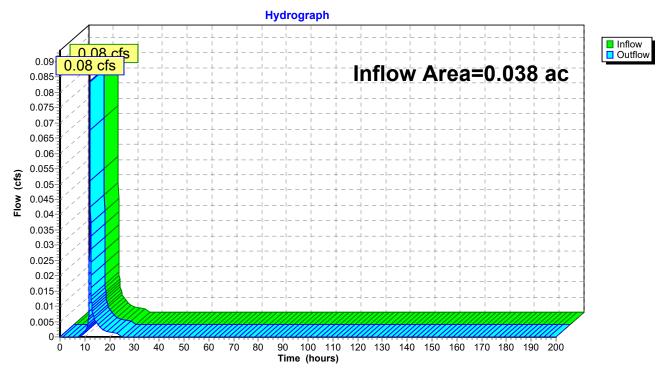


Reach 2: E-2

Summary for Reach 3: E-3

Inflow Area =	0.419 ac, 14.45% Impervious, Inflow E	Depth = 0.03"	for 2-Year event
Inflow =	0.00 cfs @ 17.05 hrs, Volume=	0.001 af	
Outflow =	0.00 cfs @ 17.05 hrs, Volume=	0.001 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 3: E-3

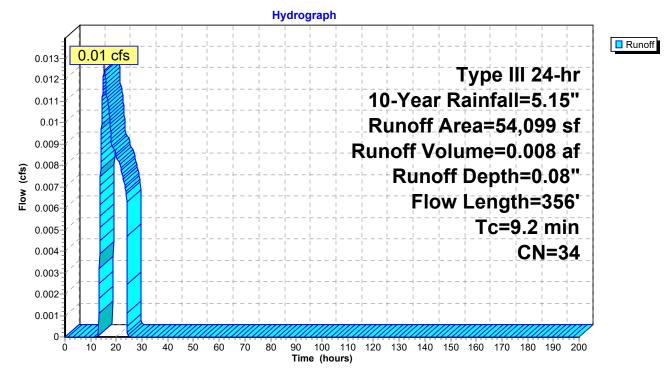
Massapoag Watershed with EC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 4: E-4

Inflow Area	a =	0.038 ac, 72.63% Impervious, Inflow Depth = 1.90" for 2-Year event
Inflow	=	0.08 cfs @ 12.09 hrs, Volume= 0.006 af
Outflow	=	$0.08 \text{ cfs} \ (a) = 0.09 \text{ hrs}, \text{ Volume} = 0.006 \text{ af}, \text{ Atten} = 0\%, \text{ Lag} = 0.0 \text{ min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 4: E-4

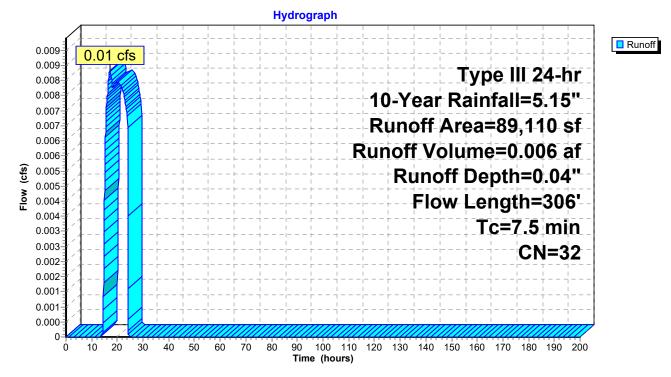

Summary for Subcatchment E-1: E-1

Runoff = 0.01 cfs @ 15.30 hrs, Volume= 0.008 af, Depth= 0.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

_	A	rea (sf)	CN E	Description				
	52,183 32 Woods/grass comb., Good, HSG A							
_		1,916	98 F	Paved park	ing, HSG A	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		
		54,099	34 V	Veighted A	verage			
	52,183 96.46% Pervious Area							
		1,916	3	.54% Impe	ervious Area	a		
	_				- ··			
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.5	50	0.1000	0.13		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	2.7	306	0.1400	1.87		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	9.2	356	Total					

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

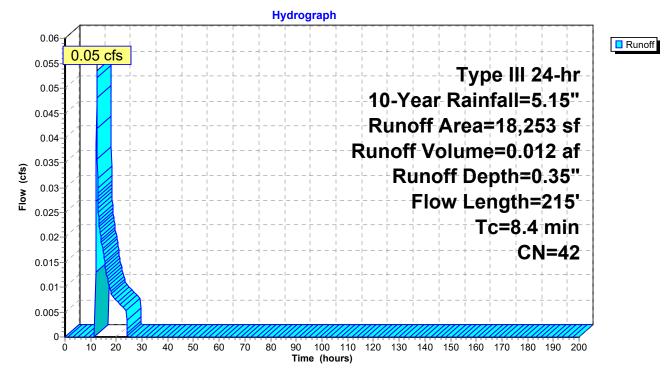
Runoff = 0.01 cfs @ 17.14 hrs, Volume= 0.006 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

A	vrea (sf)	CN E	Description		
	88,738	32 V	Voods/gras	s comb., G	Good, HSG A
	372	98 F	aved park	ing, HSG A	
	89,110	32 V	Veighted A	verage	
	88,738	g	9.58% Per	vious Area	
	372	0	.42% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.9	50	0.2000	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.6	256	0.1100	1.66		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
7.5	306	Total			

Subcatchment E-2: E-2

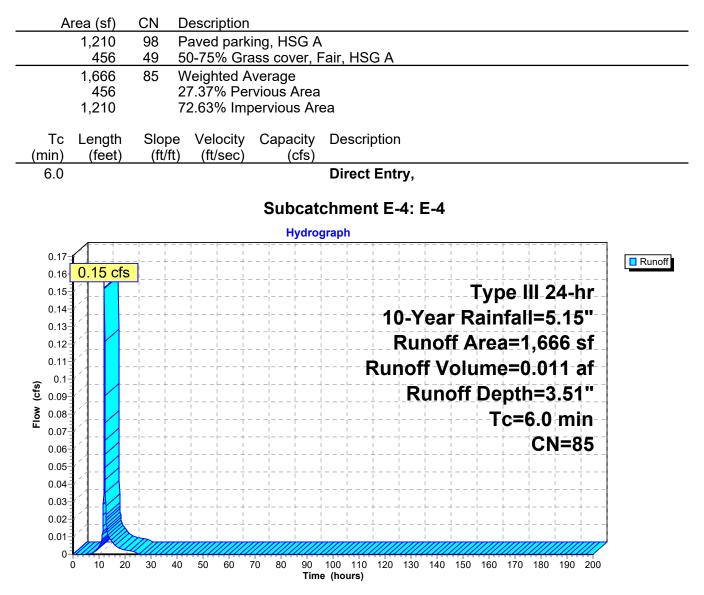
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment E-3: E-3

Runoff = 0.05 cfs @ 12.40 hrs, Volume= 0.012 af, Depth= 0.35"

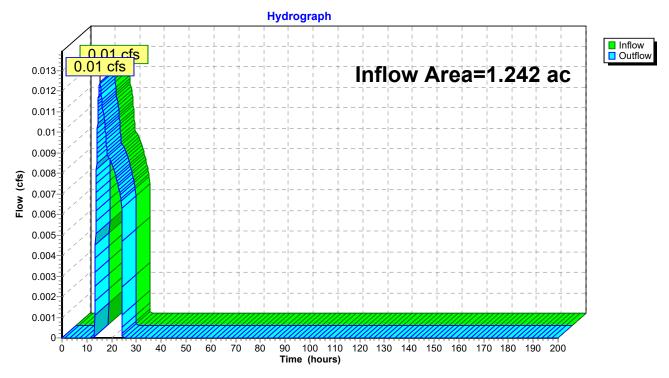
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

	A	rea (sf)	CN E	Description		
		15,616	32 V	Voods/gras	ss comb., G	Good, HSG A
		2,637	98 F	Paved park	ing, HSG A	۱
		18,253	42 V	Veighted A	verage	
		15,616	8	5.55% Per	vious Area	
		2,637	1	4.45% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.2	50	0.1100	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.2	165	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	8.4	215	Total			


Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

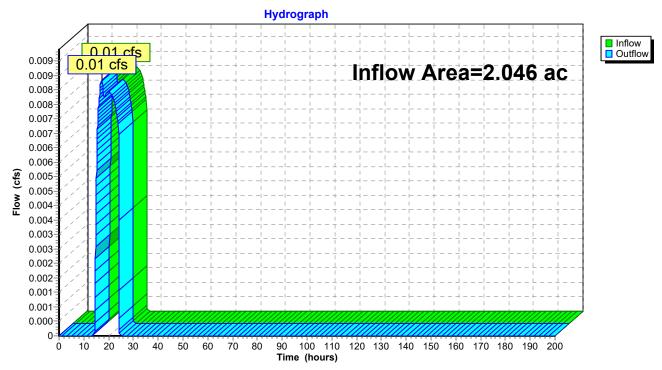
Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 3.51"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

Summary for Reach 1: E-1

Inflow Area =		1.242 ac,	3.54% Impervious,	Inflow Depth =	0.08"	for 10-Year event
Inflow	=	0.01 cfs @	15.30 hrs, Volume	= 0.008	af	
Outflow	=	0.01 cfs @	15.30 hrs, Volume	= 0.008	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

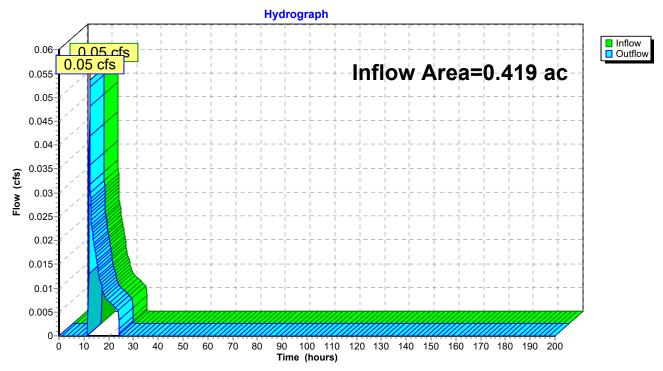

Reach 1: E-1

Type III 24-hr 10-Year Rainfall=5.15" Printed 1/4/2022 Page 16

Summary for Reach 2: E-2

Inflow Area =	2.046 ac,	0.42% Impervious, Inflo	ow Depth = 0.04"	for 10-Year event
Inflow =	0.01 cfs @	17.14 hrs, Volume=	0.006 af	
Outflow =	0.01 cfs @	17.14 hrs, Volume=	0.006 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

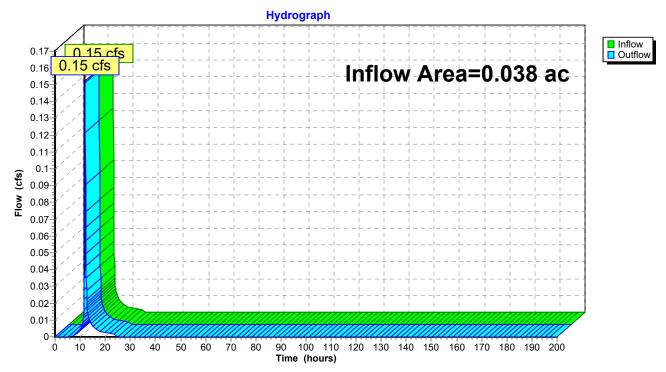


Reach 2: E-2

Summary for Reach 3: E-3

Inflow Area	a =	0.419 ac, 14.45% Impervious, Inflow Depth = 0.35" for 10-Year event	
Inflow	=	0.05 cfs @ 12.40 hrs, Volume= 0.012 af	
Outflow	=	0.05 cfs $ar{@}$ 12.40 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.0 mir	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



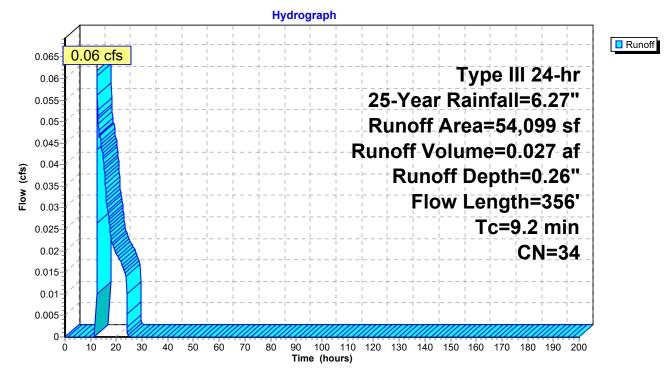
Reach 3: E-3

Summary for Reach 4: E-4

Inflow Area =	0.038 ac, 72.63% Impervious, Inflow D	epth = 3.51" for 10-Year event
Inflow =	0.15 cfs @ 12.09 hrs, Volume=	0.011 af
Outflow =	0.15 cfs @ 12.09 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 4: E-4

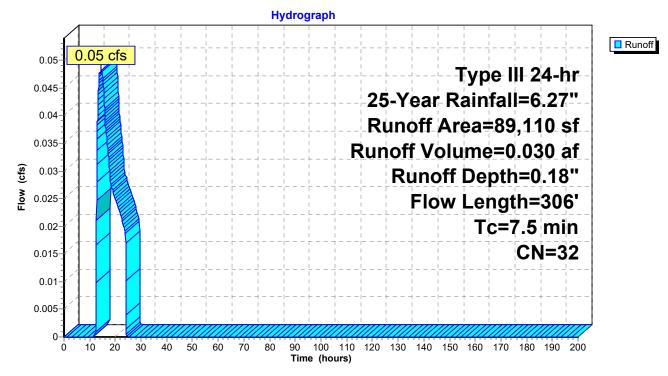

Summary for Subcatchment E-1: E-1

Runoff = 0.06 cfs @ 12.52 hrs, Volume= 0.027 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

	Area (sf)	CN E	Description		
	52,183	32 V	Voods/gras	s comb., G	Good, HSG A
	1,916	98 F	aved park	ing, HSG A	۱
	54,099	34 V	Veighted A	verage	
52,183 96.46% Pervious Area					
	1,916	3	.54% Impe	а	
To	5	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.5	50	0.1000	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.7	306	0.1400	1.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
9.2	356	Total			

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

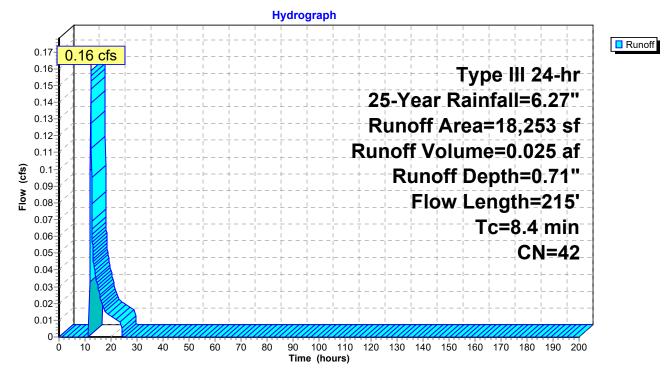
Runoff = 0.05 cfs @ 14.58 hrs, Volume= 0.030 af, Depth= 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

	Area (sf	f)	CN E	Description		
	88,738	8	32 V	Voods/gras	s comb., G	Good, HSG A
	372	2	98 F	aved park	ing, HSG A	
	89,110	0	32 V	Veighted A	verage	
	88,738	8	9	9.58% Per	vious Area	
	372	2	0	.42% Impe	ervious Area	а
Т	⁻ c Leng	lth	Slope	Velocity	Capacity	Description
(mir	n) (fee	et)	(ft/ft)	(ft/sec)	(cfs)	
4.	.9 5	50	0.2000	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
2.	.6 25	56	0.1100	1.66		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
7.	.5 30	06	Total			

Subcatchment E-2: E-2

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

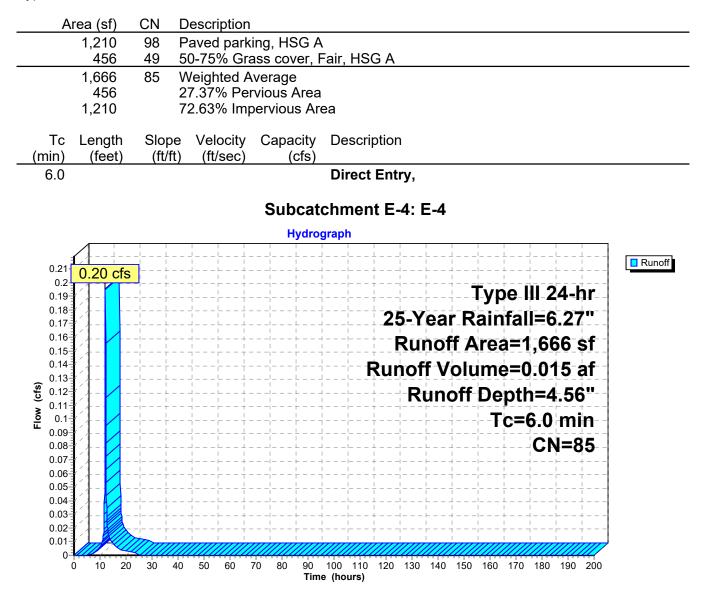

Summary for Subcatchment E-3: E-3

0.16 cfs @ 12.21 hrs, Volume= 0.025 af, Depth= 0.71" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

_	A	rea (sf)	CN E	Description				
	15,616 32 Woods/grass comb., Good, HSG A							
_		2,637	98 F	Paved park	ing, HSG A	۱		
		18,253	42 V	Veighted A	verage			
		15,616	8	85.55% Per	vious Area			
		2,637	1	4.45% Imp	pervious Are	ea		
	_				_			
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.2	50	0.1100	0.13		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	2.2	165	0.0600	1.22		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	8.4	215	Total					

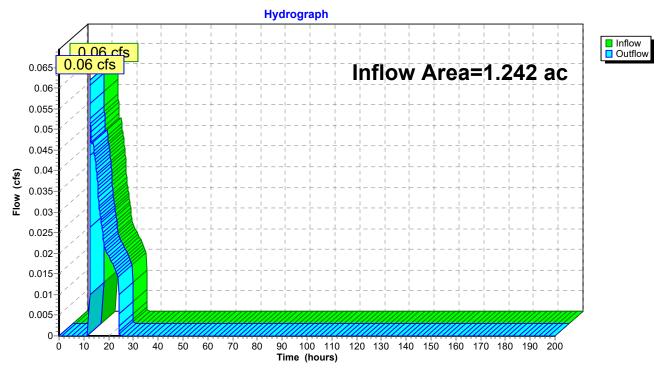
Subcatchment E-3: E-3



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-4: E-4

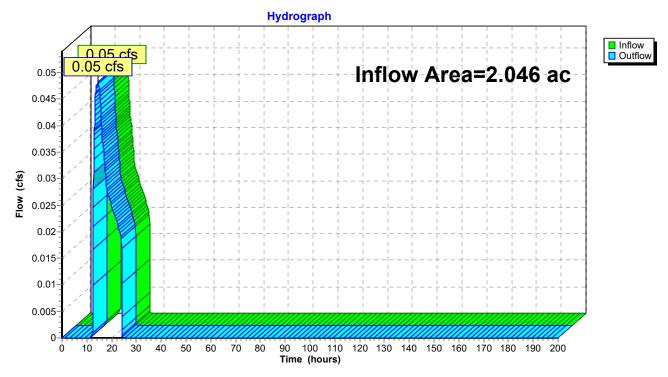
Runoff = 0.20 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 4.56"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

Summary for Reach 1: E-1

Inflow Area =	1.242 ac,	3.54% Impervious,	Inflow Depth = 0.26"	for 25-Year event
Inflow =	0.06 cfs @	12.52 hrs, Volume	= 0.027 af	
Outflow =	0.06 cfs @	12.52 hrs, Volume	= 0.027 af, At	tten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

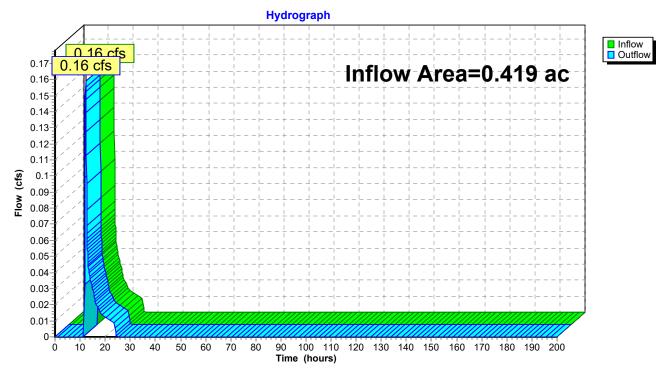


Reach 1: E-1

Summary for Reach 2: E-2

Inflow Area =	2.046 ac,	0.42% Impervious,	Inflow Depth = 0.18"	for 25-Year event
Inflow =	0.05 cfs @	14.58 hrs, Volume=	= 0.030 af	
Outflow =	0.05 cfs @	14.58 hrs, Volume=	= 0.030 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

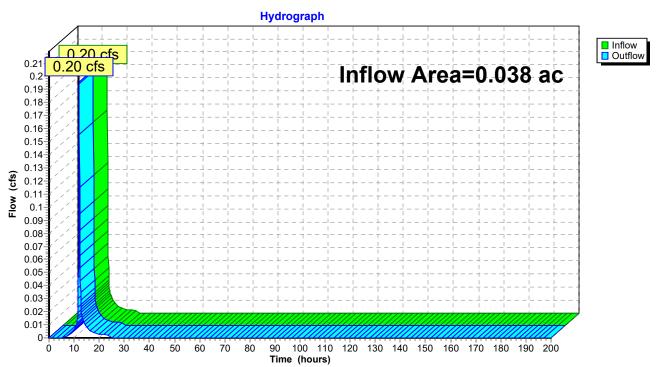


Reach 2: E-2

Summary for Reach 3: E-3

Inflow Area =	0.419 ac, 14.45% Impervious, Inflow	Depth = 0.71" for 25-Year event	
Inflow =	0.16 cfs @ 12.21 hrs, Volume=	0.025 af	
Outflow =	0.16 cfs @ 12.21 hrs, Volume=	0.025 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



Reach 3: E-3

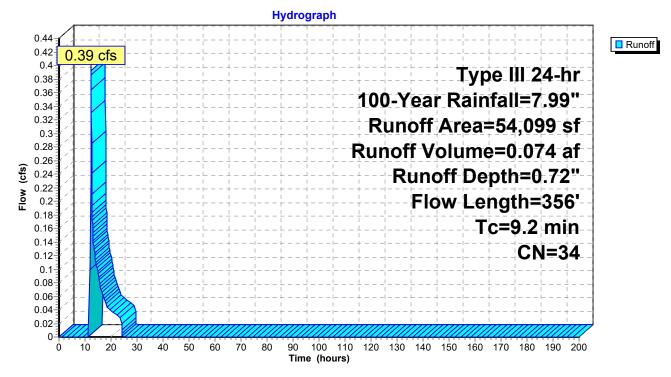
Summary for Reach 4: E-4

Inflow Area =	=	0.038 ac, 72.63% Impervious, Inflow Depth = 4.56" for 25-Ye	ear event
Inflow =	:	0.20 cfs @ 12.09 hrs, Volume= 0.015 af	
Outflow =	:	0.20 cfs $ ilde{@}$ 12.09 hrs, Volume= 0.015 af, Atten= 0%, La	ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 4: E-4

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment E-1: E-1

Runoff = 0.39 cfs @ 12.35 hrs, Volume= 0.074 af, Depth= 0.72"

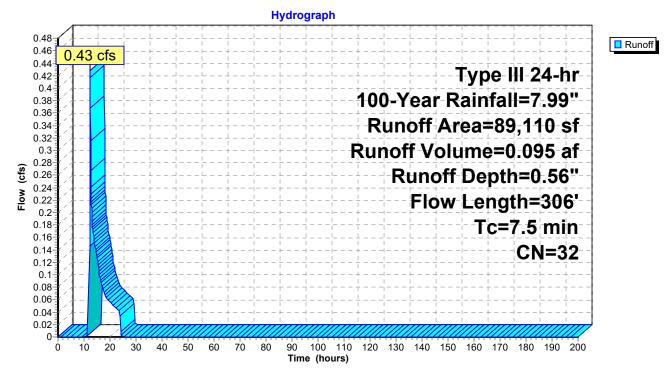
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	Area (sf)	CN E	Description		
	52,183	32 V	Voods/gras	s comb., G	Good, HSG A
	1,916	98 F	Paved park	ing, HSG A	
	54,099	34 V	Veighted A	verage	
	52,183	9	6.46% Per	vious Area	
	1,916	3	.54% Impe	ervious Area	а
Tc	5	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.5	50	0.1000	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
2.7	306	0.1400	1.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
9.2	356	Total			

Subcatchment E-1: E-1

Type III 24-hr 100-Year Rainfall=7.99" Printed 1/4/2022

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment E-2: E-2

0.43 cfs @ 12.38 hrs, Volume= 0.095 af, Depth= 0.56" Runoff =

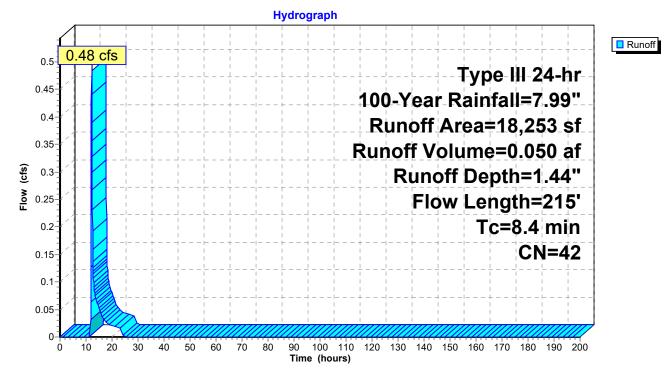
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	Area (sf	f)	CN E	Description		
	88,738	8	32 V	Voods/gras	s comb., G	Good, HSG A
	372	2	98 F	aved park	ing, HSG A	
	89,110	0	32 V	Veighted A	verage	
	88,738	8	9	9.58% Per	vious Area	
	372	2	0	.42% Impe	ervious Area	а
Т	⁻ c Leng	lth	Slope	Velocity	Capacity	Description
(mir	n) (fee	et)	(ft/ft)	(ft/sec)	(cfs)	
4.	.9 5	50	0.2000	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
2.	.6 25	56	0.1100	1.66		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
7.	.5 30	06	Total			

Subcatchment E-2: E-2

Type III 24-hr 100-Year Rainfall=7.99" Printed 1/4/2022

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment E-3: E-3

0.48 cfs @ 12.15 hrs, Volume= 0.050 af, Depth= 1.44" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

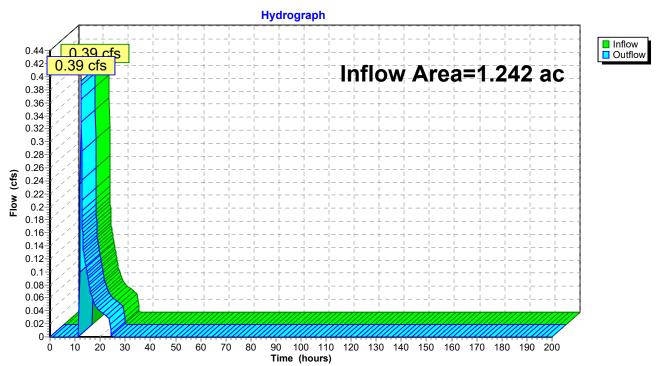
	A	rea (sf)	CN [Description		
		15,616	32 V	Voods/gras	s comb., G	Good, HSG A
_		2,637	98 F	Paved park	ing, HSG A	
		18,253	42 V	Veighted A	verage	
		15,616	8	85.55% Per	vious Area	
		2,637	1	4.45% Imp	pervious Ar	ea
	_		. .			
	TC	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.2	50	0.1100	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	2.2	165	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	8.4	215	Total			

Subcatchment E-3: E-3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-4: E-4

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af, Depth= 6.20"

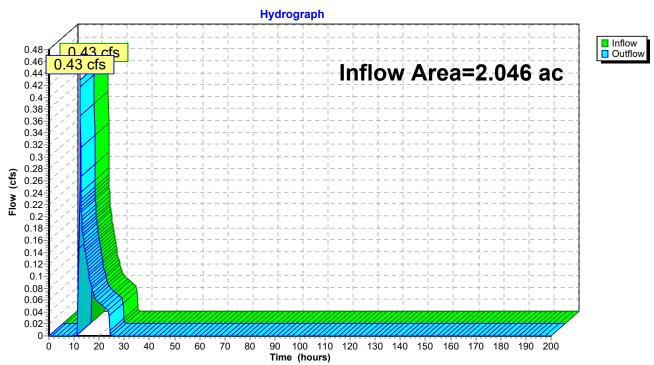

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

A	Area (sf)	CN	D	escr	iptior	n														
	1,2		98			l parl															
		56	49			% Gr				air,	HS	<u>G A</u>									
	1,6		85			ited /															
	4 1,2	56 10				% Pe % Im				~~											
	۲,۷	10		14	2.03	70 1111	per	viou		za											
Тс	Len	ngth	Slo	ре	Vel	ocity	С	apa	city	De	scrip	ptior	۱								
(min)	(fe	eet)	(ft	/ft)	(ft/	/sec)		(0	cfs)												
6.0										Dir	rect	Ent	ry,								
								Sub		. h n		+ E	<i>.</i>	= 1							
										-	-	ι ⊑•	4. [4							
	1				1			H	ydrog	graph	1										
	<u>1</u> -		 	<u> </u> 				$ _{1}^{1} \frac{1}{1}$				<u> </u> 	 			 	$\frac{1}{1}$			$\frac{1}{1}$	Runoff
0.28	0.20	6 cfs		 	 	 		 1 	י -			 	 	 	 	 	 		 	⊥ ⊥	
0.26	1.4-		_	 +	 	 +					 	 †	 	 				II 2			
0.24	1.4-		-¦ ·	 	 						 	100)-Y	ea	r-R	ain	fal	=7	<u>.9</u>	9"	
0.22	<u>2</u> - { }		_	 	 				 			1	1	1	1	1	1	,66	1	1	
0.2	1.4-		-i	, , 		, , , , , , , , , , , , , , , , , , , ,			, 												
0.18	コレオニ		_!	 					 			kur					<u>+</u>).02		<u>+</u>	
0.16 (cts) 0.14	j⊒ 		 -	i +	i -	i i -		 +	i 	!		 	R	uno	off_	De	pth	n=6	.2 ()"	
<u>8</u> 0.14	₩ 1.7-		_	 	, , 1	 +			י 			 †	 	 	 	T	c=(6.0	m	in-l	
0.12	2		 _!	 	 				ا لـ		 	 	 	 	 	 	 		1=8	1	
0.1			_	+				 +	 			 +	 	 	 	 	; +		4 — C ⊢	/J +	
30.0	3 - ` -			 	 				ו 		 	 	 	 		 	 	 	 		
0.06		/	i _!	 <u> </u>	i !	i i L		i i !	; ; 			 <u> </u>	 	 	!	 	i 	i 	- 	i 	
0.04	┫∕]_	_	 _	 +	 	।		 +	 -	 	 	 +	 	 ⊢ − − -	 	 	 +	 	 ⊢−−	 +	
0.02			-																	-	
C	0 10	0 20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	
	5 10					00				e (hou		120	100	115	100	100		100	100	200	

Summary for Reach 1: E-1

Inflow Area =	1.242 ac,	3.54% Impervious,	Inflow Depth = 0.72'	for 100-Year event
Inflow =	0.39 cfs @	12.35 hrs, Volume	= 0.074 af	
Outflow =	0.39 cfs @	12.35 hrs, Volume	= 0.074 af, A	tten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

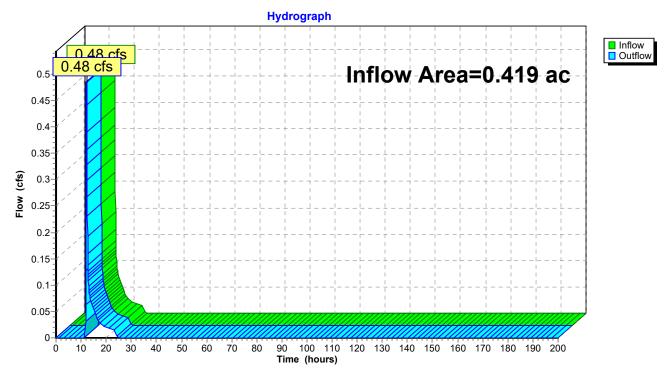


Reach 1: E-1

Summary for Reach 2: E-2

Inflow Area =	2.046 ac,	0.42% Impervious, Inflow D	epth = 0.56"	for 100-Year event
Inflow =	0.43 cfs @	12.38 hrs, Volume=	0.095 af	
Outflow =	0.43 cfs @	12.38 hrs, Volume=	0.095 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

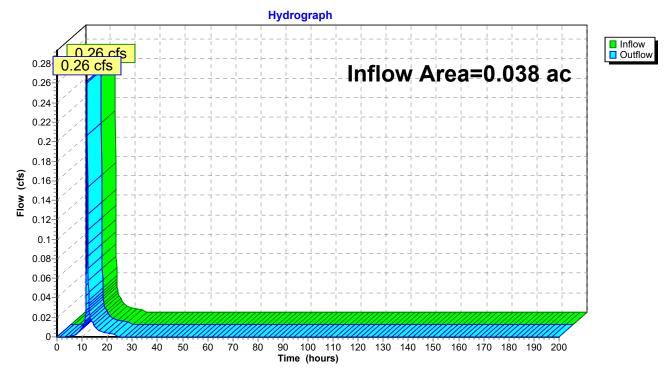


Reach 2: E-2

Summary for Reach 3: E-3

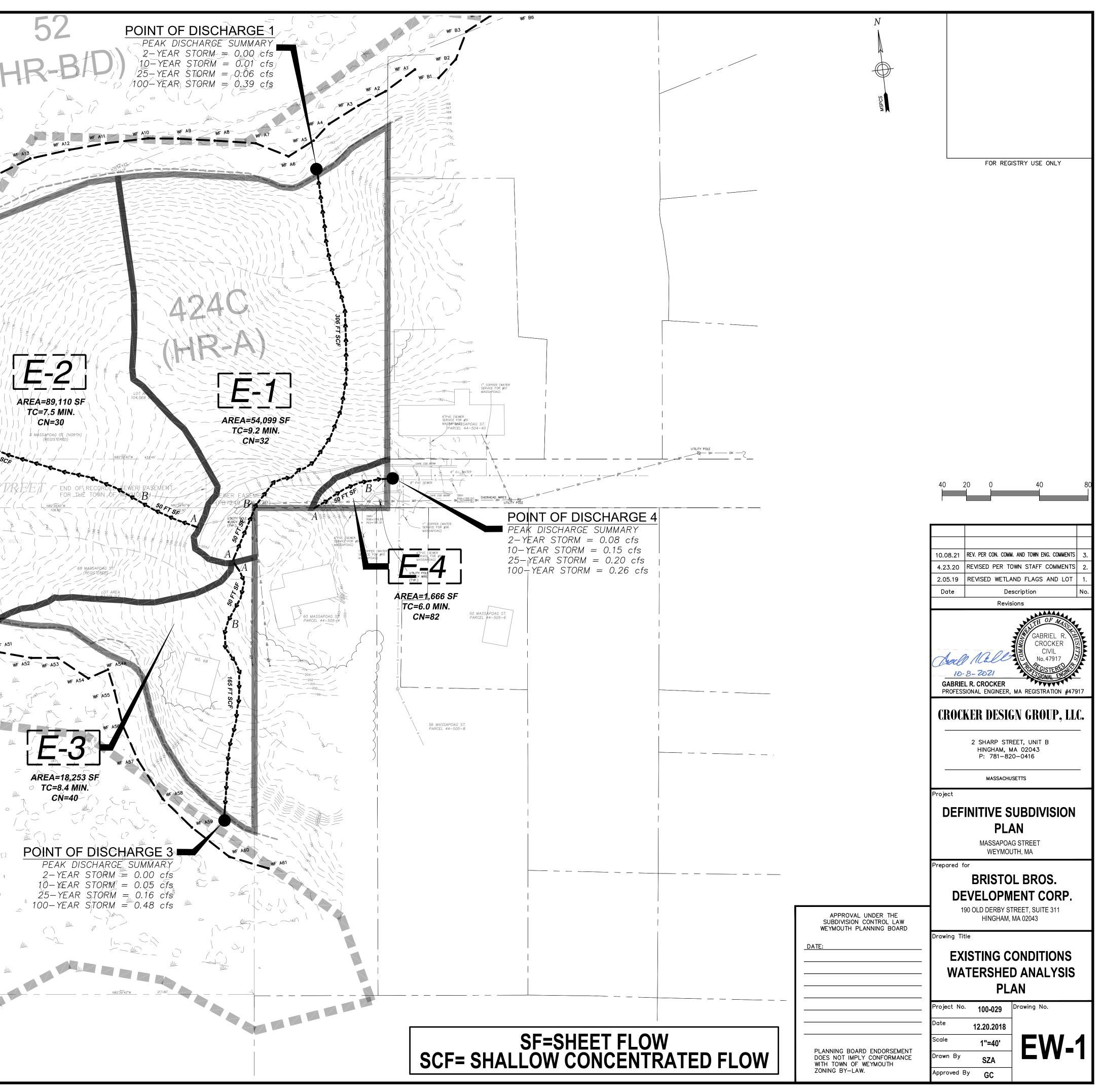
Inflow Area	a =	0.419 ac, 14.45% Impervious, Inflow Depth = 1.44" for 100-Year event	t
Inflow	=	0.48 cfs @ 12.15 hrs, Volume= 0.050 af	
Outflow	=	0.48 cfs $\overline{@}$ 12.15 hrs, Volume= 0.050 af, Atten= 0%, Lag= 0.0 m	iin

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

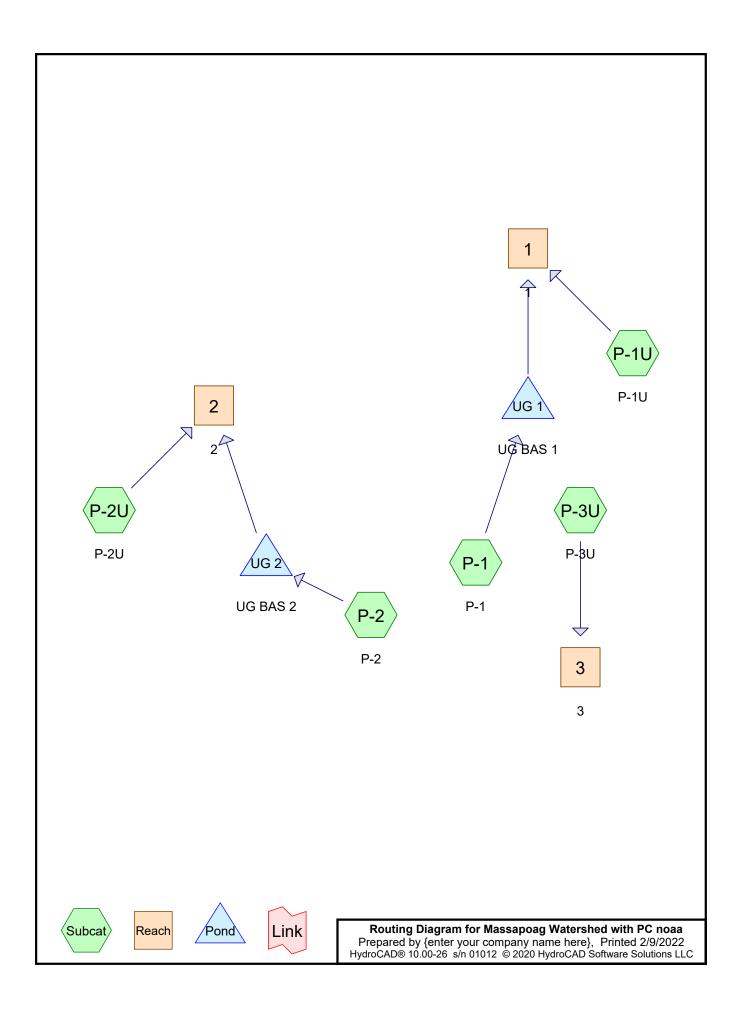


Reach 3: E-3

Summary for Reach 4: E-4


Inflow Area =	0.038 ac, 72.63% Impervious, Inflow	Depth = 6.20" for 100-Year event	
Inflow =	0.26 cfs @ 12.09 hrs, Volume=	0.020 af	
Outflow =	0.26 cfs @ 12.09 hrs, Volume=	0.020 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 4: E-4

POINT OF DISCH PEAK DISCHARGE 2-YEAR STORM =	SUMMARY = 0.00 cfs	WE A19 WE A18 A20 00 100 100 100 100 100 100 100 100 100	WF A16
	= 0.05 cfs $= 0.43 cfs$ $= 0.43 cfs$ $= 0.43 cfs$ $= 0.443 cfs$ $= 0.$	WF A27	ина SSA PO/AG/S
164 164 167 169 169 170 170 170 172 172 172 174 WF A34 WF A35 WF A36 WF A37		BRAINTREE ASSESSORS REF: 1115-06	1182 1182 1182 WF A50 29,941 E F WF NO #
	A3B WE A40 WF A42 WF A42	WF_AA3 WF_AA44 WF_AA44 KI KI KI KI KI KI KI KI KI KI KI KI KI	WF A49 WF
Map unit symbol Map unit name 52 Freetown muck, 0 to 1 percent slopes 424C Canton fine sandy loar			

SECTION 3 – STORMATER HYDROLOGY MODEL

3.2 PROPOSED HYDROLOGY

Prepared by {enter	your company name here}
HydroCAD® 10.00-26	s/n 01012 © 2020 HydroCAD Software Solutions LLC

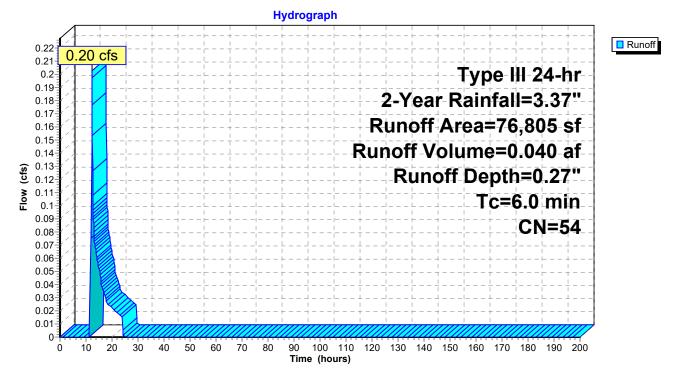
Area Listing (all nodes)

Area	CN	Description		
(acres)		(subcatchment-numbers)		
0.061	98	2 driveways (P-1)		
0.103	98	3 houses (P-2)		
0.207	98	4 houses (P-1)		
0.114	98	5 driveways (P-2)		
2.352	39	>75% Grass cover, Good, HSG A (P-1, P-1U, P-2)		
0.264	98	Massapoag road (P-1, P-2)		
0.029	98	POOL (P-1)		
0.912	32	Woods/grass comb., Good, HSG A (P-1U, P-2U, P-3U)		
0.020	98	ex house to remain (P-3U)		
0.031	98	ex. offsite driveways, HSG A (P-1)		
0.067	98	exist offsite houses, HSG A (P-1)		
0.005	55	rip rap (P-1U)		
0.096	55	rip rap, HSG A (P-2U)		

Summary for Subcatchment P-1: P-1

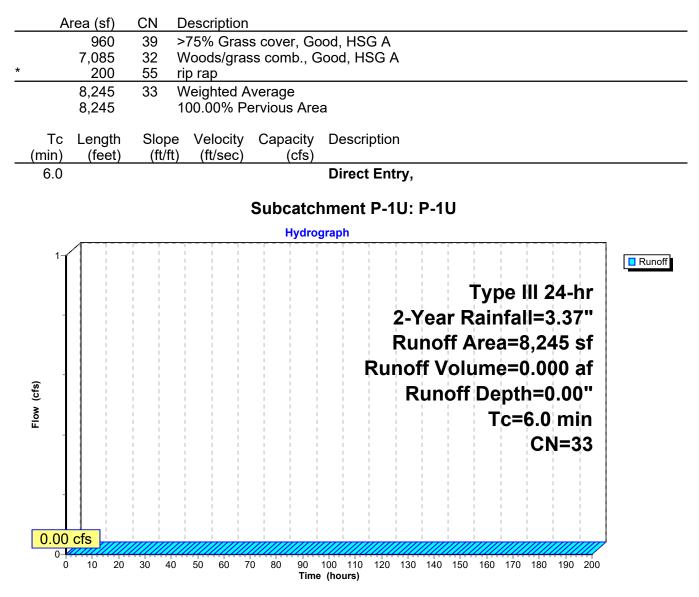
Runoff = 0.20 cfs @ 12.33 hrs, Volume= 0.040 af, Depth= 0.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"


	Area (sf)	CN	Description			
*	2,640	98	2 driveways			
	57,025	39	>75% Grass cover, Good, HSG A			
*	9,000	98	4 houses			
*	2,600	98	Massapoag road			
*	2,930	98	exist offsite houses, HSG A			
*	1,350	98	ex. offsite driveways, HSG A			
*	1,260	98	POOL			
	76,805	54	Weighted Average			
	57,025		74.25% Pervious Area			
	19,780		25.75% Impervious Area			
	Tc Length	Slop	be Velocity Capacity Description			

ec) (cfs)
•

Direct Entry,

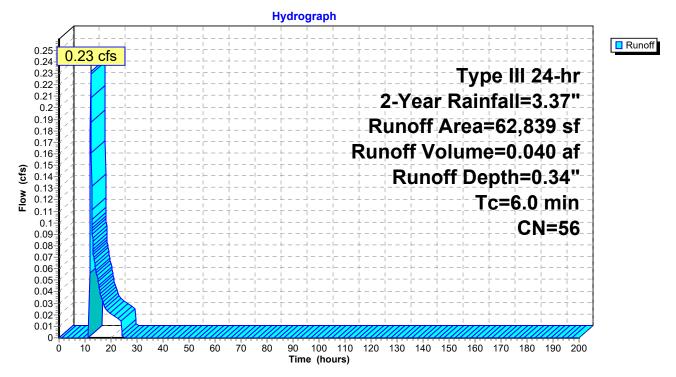

Subcatchment P-1: P-1

Summary for Subcatchment P-1U: P-1U

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-2: P-2

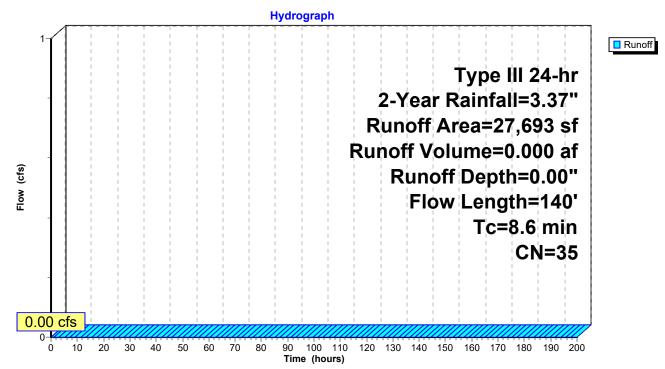
Runoff = 0.23 cfs @ 12.25 hrs, Volume= 0.040 af, Depth= 0.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

_	A	rea (sf)	CN	Description					
*		4,960	98	5 driveways	3				
		44,479	39	>75% Gras	s cover, Go	ood, HSG A			
*		8,900	98	Massapoag	Massapoag road				
*		4,500	98	3 houses					
		62,839	56	Weighted A	verage				
		44,479		70.78% Pervious Area					
		18,360		29.22% Impervious Area					
	Tc	Length	Slope		Capacity	1			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-2U: P-2U

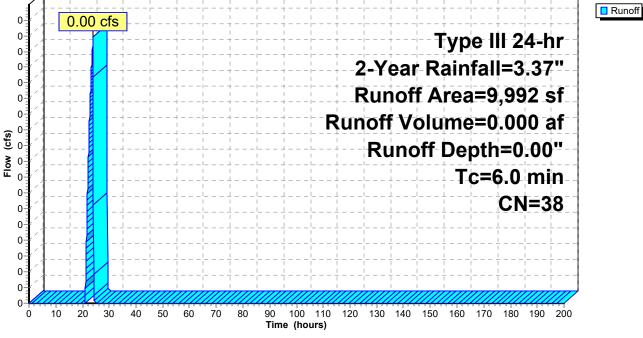

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"

	A	rea (sf)	CN E	Description		
		23,493				Good, HSG A
*		4,200	55 r	ip rap, HSC	Ξ A	
		27,693	35 V	Veighted A	verage	
		27,693	1	00.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.5	50	0.0700	0.11		Sheet Flow, AB
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.1	90	0.0800	1.41		Shallow Concentrated Flow, BC
						Woodland Kv= 5.0 fps
_	0.6	140	Total			

8.6 140 Total

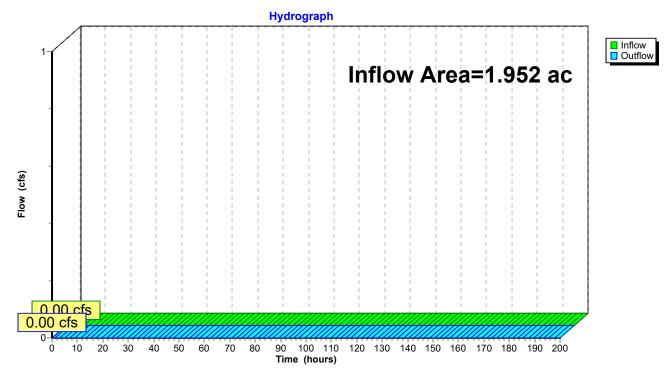
Subcatchment P-2U: P-2U



Summary for Subcatchment P-3U: P-3U

Runoff = 0.00 cfs @ 24.00 hrs, Volume= 0.000 af, Depth= 0.00"

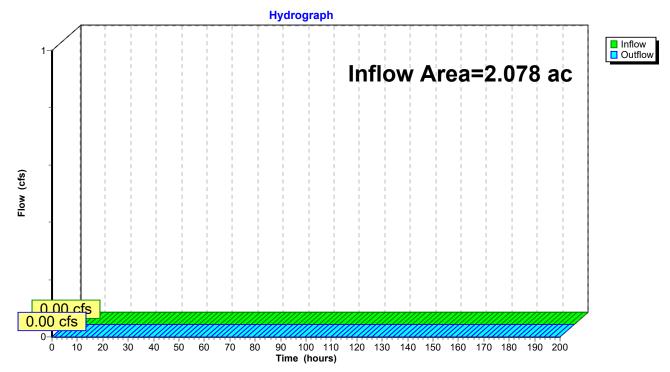
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.37"


	Α	rea (sf)	CN	Description						
		9,142	9,142 32 Woods/grass comb., Good, HSG A							
*		850	98	ex house to	remain					
		9,992	38	Weighted A	verage					
		9,142		91.49% Per	rvious Area					
		850		8.51% Impe	ervious Area	а				
	т.	1	01		0	Description				
	Tc	Length	Slop		Capacity	Description				
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
	6.0					Direct Entry	/,			
					Subcatch	nment P-3U	: P-3U			
	Hydrograph									
	0	- 0.00	cfs	· · · ·	- + + -	, , , , , , , , , , , , , , , , , , , ,	-+	· · · · · · · · · · · · · · · · · · ·	· - +	 Runoff

Summary for Reach 1: 1

Inflow Area	a =	1.952 ac, 23	3.26% Impervious,	Inflow Depth =	0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 :	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

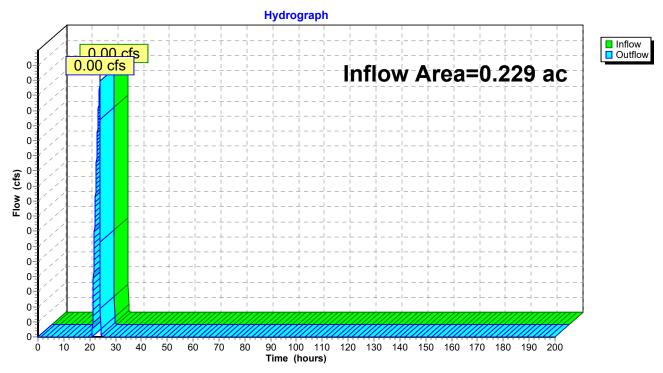


Reach 1:1

Summary for Reach 2: 2

Inflow Area	a =	2.078 ac, 20	0.28% Impervious,	Inflow Depth =	0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	e= 0.000	af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



Reach 2:2

Summary for Reach 3: 3

Inflow Area	a =	0.229 ac,	8.51% Impervious,	Inflow Depth =	0.00"	for 2-Year event
Inflow	=	0.00 cfs @	24.00 hrs, Volume	= 0.000	af	
Outflow	=	0.00 cfs @	24.00 hrs, Volume	= 0.000	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.763 ac, 25.75% Impervious, Inflow De	epth = 0.27" for 2-Year event
Inflow =	0.20 cfs @ 12.33 hrs, Volume=	0.040 af
Outflow =	0.19 cfs @ 12.40 hrs, Volume=	0.040 af, Atten= 5%, Lag= 4.7 min
Discarded =	0.19 cfs @ 12.40 hrs, Volume=	0.040 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 165.04' @ 12.40 hrs Surf.Area= 3,544 sf Storage= 52 cf

Plug-Flow detention time= 4.5 min calculated for 0.040 af (100% of inflow) Center-of-Mass det. time= 4.5 min (957.5 - 953.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 12.40 hrs HW=165.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge) 3=RCP_Round 12" (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

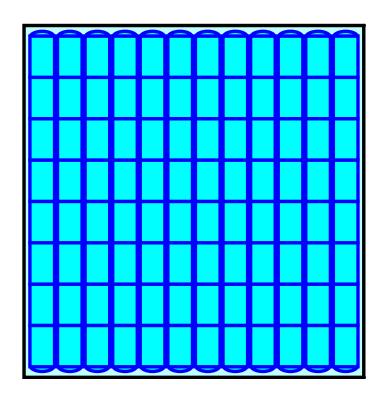
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

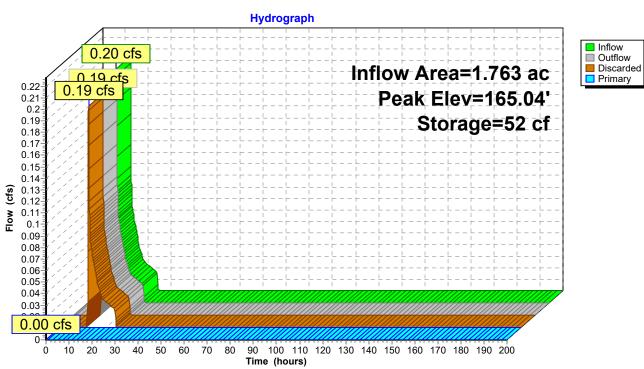
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage


Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 1: UG BAS 1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow De	epth = 0.34" for 2-Year event
Inflow =	0.23 cfs @ 12.25 hrs, Volume=	0.040 af
Outflow =	0.12 cfs @ 12.57 hrs, Volume=	0.040 af, Atten= 47%, Lag= 19.1 min
Discarded =	0.12 cfs @ 12.57 hrs, Volume=	0.040 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 165.19' @ 12.57 hrs Surf.Area= 2,179 sf Storage= 165 cf

Plug-Flow detention time= 9.6 min calculated for 0.040 af (100% of inflow) Center-of-Mass det. time= 9.6 min (947.4 - 937.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
Primary	167.14'	12.0" Round RCP_Round 12"
		L= 17.2' RCP, rounded edge headwall, Ke= 0.100
		Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
		n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
	Discarded Device 3	Discarded 165.00' Device 3 170.20'

Discarded OutFlow Max=0.12 cfs @ 12.57 hrs HW=165.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge)

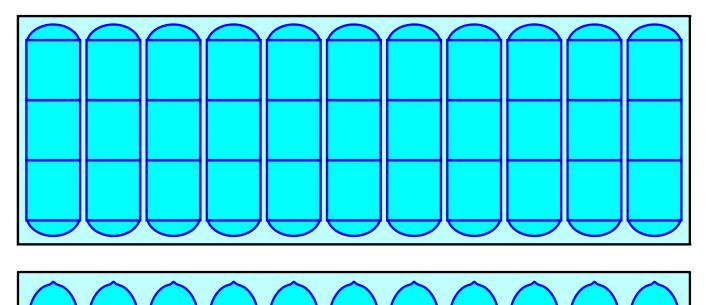
-3=RCP_Round 12" (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage

12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

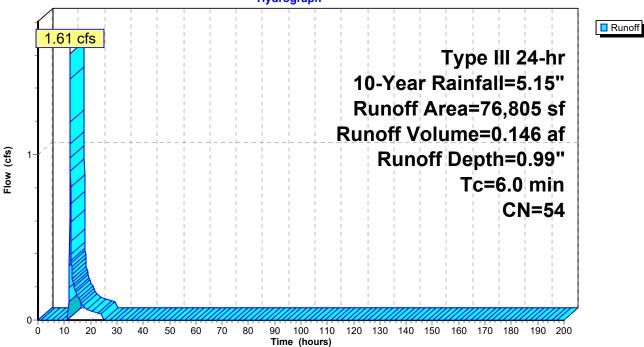
Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

0.00 cfs

Hydrograph InflowOutflow 0.23 cfs Discarded Inflow Area=1.443 ac Primary Peak Elev=165.19' 0.24 0.22 Storage=165 cf 0.2 0.18 0.12 cfs 0.12 cfs 0.16 **(sj**) 0.14 **0.12** 0.1 0.08 0.06 0.04

Pond UG 2: UG BAS 2

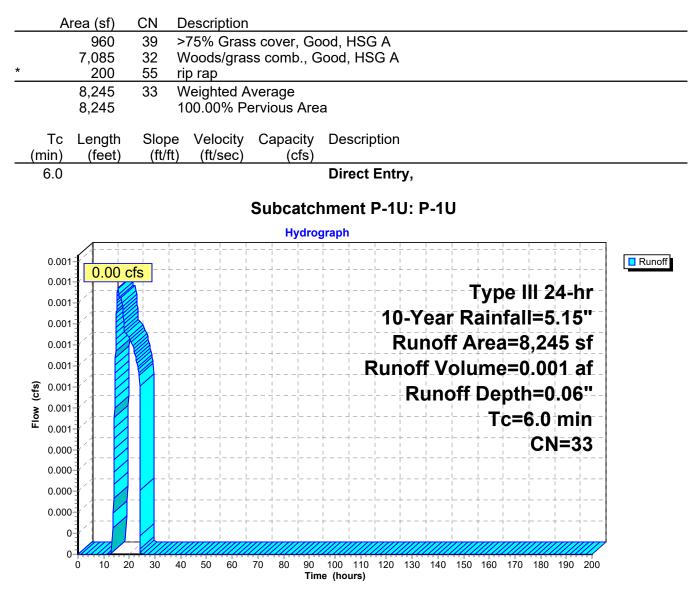

0-14 10 20 30 90 100 110 120 130 140 150 160 170 180 190 200 40 50 60 70 80 Time (hours)

Summary for Subcatchment P-1: P-1

Runoff = 1.61 cfs @ 12.11 hrs, Volume= 0.146 af, Depth= 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

	A	rea (sf)	CN	Description	l				
*		2,640	98	2 driveways	S				
		57,025	39	>75% Gras	s cover, Go	ood, HSG A			
*		9,000	98	4 houses					
*		2,600	98	Massapoag	g road				
*		2,930	98	exist offsite	houses, H	ISG A			
*		1,350	98	ex. offsite c	lriveways, ŀ	HSG A			
*		1,260	98	POOL	POOL				
		76,805	54	Weighted A	verage				
		57,025	7,025 74.25% Pervious Area						
		19,780		25.75% Im	pervious Ar	rea			
	Тс	Length	Slop	,	Capacity	Description			
	(min)	(feet)	(ft/ft	i) (ft/sec)	(cfs)				
	6.0					Direct Entry,			
					Subcat	tchment P-1: P-1			
	Hydrograph								



Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1U: P-1U

Runoff = 0.00 cfs @ 15.61 hrs, Volume= 0.001 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

Flow (cfs)

0

Ó

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-2: P-2

Runoff = 1.57 cfs @ 12.11 hrs, Volume= 0.135 af, Depth= 1.12"

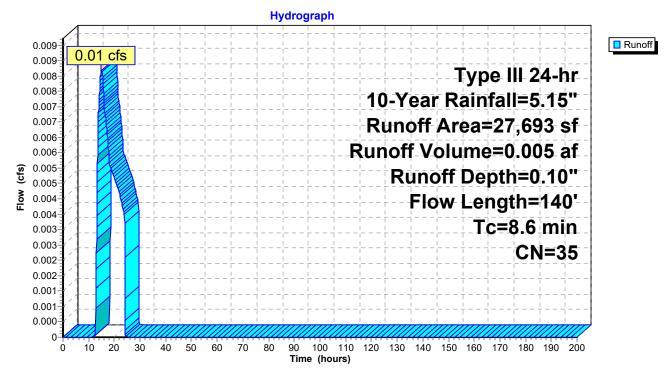
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

	A	rea (sf)	CN	Description							
*		4,960		5 driveways							
		44,479			s cover, Go	ood, HSG A	١				
*		8,900		Massapoag	l road						
*		4,500		3 houses							
		62,839		Weighted A							
		44,479			rvious Area						
		18,360	2	29.22% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description	on				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0					Direct Er	ntry,				
					Subcat	chment I	P-2: P-2				
					Hydro	graph					
	ſ								-		- Rupoff
	ſ	1.57 cfs							i I	 I I I I	Runoff
	Ĩ							Tvp	e III 2	4-hr	
								r Rainf	1	I I	
						I I	1 I I	I I I	1	I I	
	-		Runoff Area=62,839 sf								

Type III 24-hr 10-Year Rainfall=5.15" Runoff Area=62,839 sf Runoff Volume=0.135 af Runoff Depth=1.12" Tc=6.0 min CN=56

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Time (hours)

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-2U: P-2U

Runoff = 0.01 cfs @ 14.98 hrs, Volume= 0.005 af, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

	A	rea (sf)	CN [Description						
		23,493	32 \	32 Woods/grass comb., Good, HSG A						
*		4,200	55 r	ip rap, HSC	ĞΑ					
		27,693	35 \	35 Weighted Average						
	27,693 100.00% Pervious Area									
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.5	50	0.0700	0.11		Sheet Flow, AB				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	1.1	90	0.0800	1.41		Shallow Concentrated Flow, BC				
_						Woodland Kv= 5.0 fps				
	86	140	Total							

Subcatchment P-2U: P-2U

0.001 0.001 0.000

10 20 30 40 50

Ó

70 80

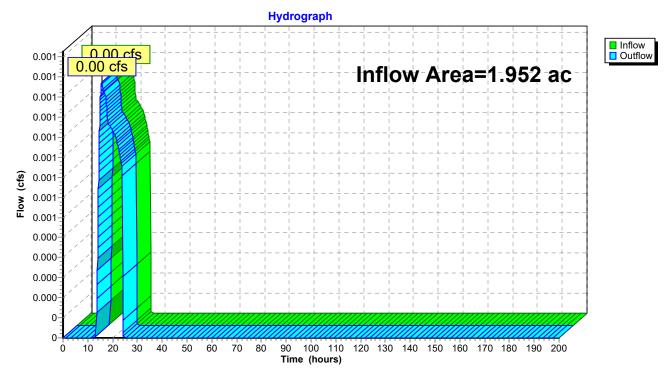
Time (hours)

60

Summary for Subcatchment P-3U: P-3U

Runoff = 0.01 cfs @ 12.49 hrs, Volume= 0.004 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.15"

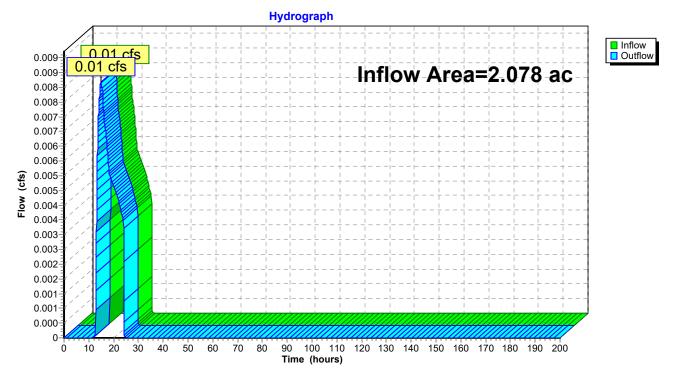

	Α	rea (sf)	CN	Description						
		9,142	32 Woods/grass comb., Good, HSG A							
*		850	98	ex house to	remain					
		9,992		Weighted A						
		9,142			rvious Area					
		850	i	3.51% Impe	ervious Are	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
(r	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				
					Cubaatal		D 211			
					Subcatci	hment P-3U:	P-30			
					Hydro	graph			٦	
	0.000		·	·		·			Runoff	
	0.008	0.01 cfs	<mark>s </mark> -	·	·	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$				
	0.007			- + +		+ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ -$		be III 24-hr	-	
	0.007		· _!		·	10-Y	'ear Rair	nfall=5.15"	-	
	0.006				·		¬т	a=9,992 sf	-	
	0.005				·				-	
	0.005					Runo	ff Volum	e=0.004 af	-	
(cfs)	0.004			· - +	·		unoff De	epth=0.20"	-	
Flow (cfs)	0.004			I I I 	ı i	ı ı i i		c=6.0 min	-	
Ē	0.003				 	· · · · · · · · ·	· · · · · I		-	
	0.003			· - + +	· +	· · · · · · · · · · · · · · · · · · ·		CN=38	_	
	0.002	} │		 	 				-	
	0.002	∄ ´↓₋,		· · · · · · · · · · · · · · · · · · ·	·	· · · · · ·		, , , , , ,		

90 100 110 120 130 140 150 160 170 180 190 200

Summary for Reach 1: 1

Inflow Area	a =	1.952 ac, 23.26% Impervious, Inflow Depth = 0.01" for 10-Year event	
Inflow	=	0.00 cfs @ 15.61 hrs, Volume= 0.001 af	
Outflow	=	0.00 cfs $\overline{@}$ 15.61 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0 mi	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

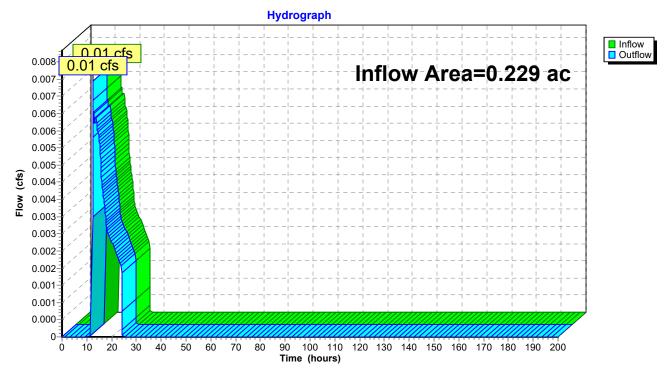

Reach 1: 1

Massapoag Watershed with PC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26s/n 01012© 2020 HydroCAD Software Solutions LLC

Summary for Reach 2: 2

Inflow Area =	2.078 a	c, 20.28% Impervious,	Inflow Depth = 0	0.03" for 10-Year event
Inflow =	0.01 cfs	@ 14.98 hrs, Volume	e= 0.005 at	f
Outflow =	0.01 cfs	@ 14.98 hrs, Volume	e= 0.005 at	f, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 2: 2

Massapoag Watershed with PC noaaTypePrepared by {enter your company name here}HydroCAD® 10.00-26s/n 01012© 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: 3

Inflow Area	a =	0.229 ac,	8.51% Impervious,	Inflow Depth =	0.20"	for 10-Year event
Inflow	=	0.01 cfs @	12.49 hrs, Volume	= 0.004	af	
Outflow	=	0.01 cfs @	12.49 hrs, Volume	= 0.004	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.763 ac, 25.75% Impervious, Inflow De	epth = 0.99" for 10-Year event
Inflow =	1.61 cfs @ 12.11 hrs, Volume=	0.146 af
Outflow =	0.20 cfs @ 12.00 hrs, Volume=	0.146 af, Atten= 88%, Lag= 0.0 min
Discarded =	0.20 cfs @ 12.00 hrs, Volume=	0.146 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 165.94' @ 13.84 hrs Surf.Area= 3,544 sf Storage= 1,999 cf

Plug-Flow detention time= 98.6 min calculated for 0.146 af (100% of inflow) Center-of-Mass det. time= 98.5 min (992.2 - 893.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 12.00 hrs HW=165.07' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge) 3=RCP_Round 12" (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

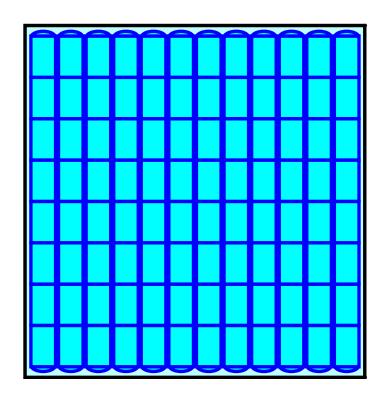
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage

Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Hydrograph InflowOutflow 1.61 cfs Inflow Area=1.763 ac Discarded Primary Peak Elev=165.94' Storage=1,999 cf Flow (cfs) 0.20 cfs 0.20 cfs 0.00 cfs 0-44 10 20 30 90 100 110 120 130 140 150 160 170 180 190 200 40 50 60 70 80 Time (hours)

Pond UG 1: UG BAS 1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow D	epth = 1.12" for 10-Year event
Inflow =	1.57 cfs @ 12.11 hrs, Volume=	0.135 af
Outflow =	0.14 cfs @ 14.71 hrs, Volume=	0.135 af, Atten= 91%, Lag= 155.9 min
Discarded =	0.14 cfs @ 14.71 hrs, Volume=	0.135 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 166.69' @ 14.71 hrs Surf.Area= 2,179 sf Storage= 2,290 cf

Plug-Flow detention time= 177.0 min calculated for 0.135 af (100% of inflow) Center-of-Mass det. time= 177.0 min (1,063.2 - 886.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
Primary	167.14'	12.0" Round RCP_Round 12"
		L= 17.2' RCP, rounded edge headwall, Ke= 0.100
		Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
		n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
	Discarded Device 3	Discarded 165.00' Device 3 170.20'

Discarded OutFlow Max=0.14 cfs @ 14.71 hrs HW=166.69' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge)

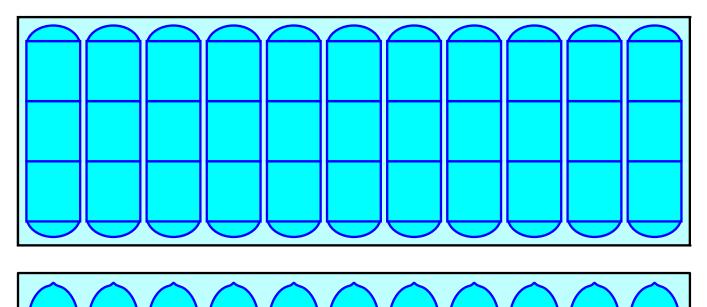
-3=RCP_Round 12" (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

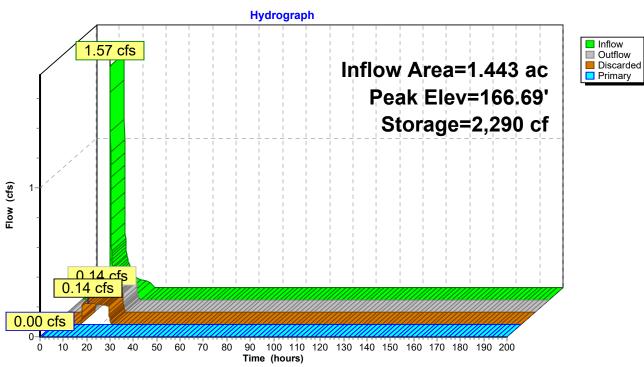
Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

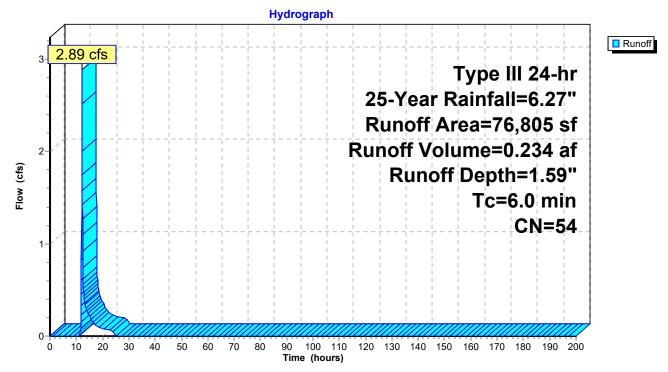
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 2: UG BAS 2

Summary for Subcatchment P-1: P-1

2.89 cfs @ 12.10 hrs, Volume= Runoff 0.234 af, Depth= 1.59" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"


	Area (sf)	CN	Description
*	2,640	98	2 driveways
	57,025	39	>75% Grass cover, Good, HSG A
*	9,000	98	4 houses
*	2,600	98	Massapoag road
*	2,930	98	exist offsite houses, HSG A
*	1,350	98	ex. offsite driveways, HSG A
*	1,260	98	POOL
	76,805	54	Weighted Average
	57,025		74.25% Pervious Area
	19,780		25.75% Impervious Area
	Tc Length	Slop	be Velocity Capacity Description

TC.	Lengin	Siope	velocity	Capacity	Descript
min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	

Direct Entry,

Subcatchment P-1: P-1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1U: P-1U

Runoff = 0.01 cfs @ 13.65 hrs, Volume= 0.003 af, Depth= 0.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

	Area (sf)	CN	Descrip	otion														
*	960 7,085 200	39 32 55	 39 >75% Grass cover, Good, HSG A 32 Woods/grass comb., Good, HSG A 															
	8,245	33	Weight			A	_											
	8,245		100.00	% PE	ervious	Area	a											
	C Length n) (feet				Capa	city cfs)	Desc	cripti	on									
<u>(mi</u> 6	.0) (171	(1/5	sec)	((<u>(15)</u>	Dire	ct E	ntrv									
Ū	•									-								
					Subca	atch	mer	nt P	-10:	: P-	1U							
	4				H	/drog	raph											
								-	<u> </u> -				 		' 	' 		Runoff
	0.006 0.01		; ; ; ;	<u> </u>		 		-	i <u> </u> -	·		- -	vn	⊼-1	11 2	 / _	hr-	
	0.005		; ; ;						25-	Va	 					1	1	
	0.005		 	-		 		، ا _				Ī				1	1	
C	0.004		 	 				 		uno		÷						
	0.004		 	<u> </u>		 		Rı	unc			+						
Š	0.003		i i 	<u> </u>						Rur	10	ff [Del	pth	1=0	.22	2"	
E O	.003		 	 		 			<u> </u> -		I	, 	T	c=6	5.0	mi	in_	
C	0.002		i i -	 				-	<u> </u> -		-	 	 		CN	1=3	33	
C	.002		 					 -	 -	 	[[
	0.001			-		 		<mark> </mark> -			-	 	 		 	 	 	
C	.001							-	 -		i -	 	י ו ר – –		 	 	 	
C	.000				-								 					
	0 10	20 30	40 50	60	70 80	90 Time	100 1 e (hour		20 1;	30 14	40	150	160	170	180	190	200	

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

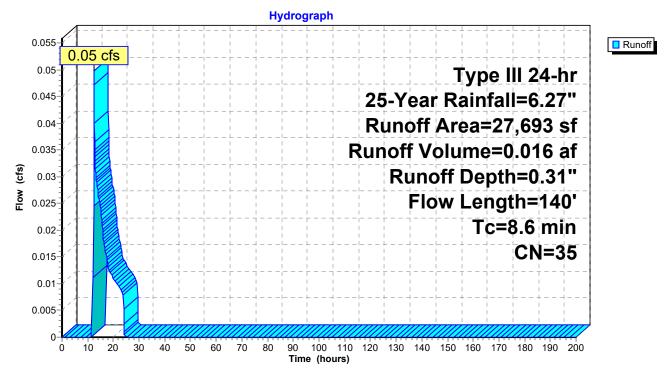
Summary for Subcatchment P-2: P-2

Runoff = 2.68 cfs @ 12.10 hrs, Volume= 0.211 af, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

	Area (sf)	CN E	Description	n						
*	4,960		5 driveway							
	44,479	39 >	>75% Gras	ss cover, Go	ood, HSC	GΑ				
*	8,900		Massapoa	g road						
	4,500		3 houses							
	62,839 44,479		Neighted A	verage rvious Area						
	18,360			pervious Area						
	,	-								
Т		Slope	Velocity		Descri	ption				
(min		(ft/ft)	(ft/sec)	(cfs)						
6.0	0				Direct	Entry,				
				Subcat	chmon	+ D_2. D	2_2			
						ILF-2.F	-2			
	/+	+	+	Hydro	graph	+		++-		I
3	3-1									Runoff
	2.68 cfs	l i								
								Type III	24-hr	
						25-Y	ear R	ainfall	=6.27"	
						Rund	off_∆_r	ea=62,	830 ef -	
2	2-1					1 1		· · · · ·	1 1	
-					l l	kunof	t Volu	ıme=0.	211 af	
Flow (cfs)						Rı	unoff	Depth=	=1.76"	
Ň								1 I I	.0 min	
Ē										
1	1-1 - 1 - 1	н — т — т — т — т — т			-				CN=56	
							l l			
C										l
	0 10 20	30 40	50 60	70 80 90 Time	100 110 e (hours)	120 130	140 150	160 170 1	80 190 200	

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-2U: P-2U

Runoff = 0.05 cfs @ 12.47 hrs, Volume= 0.016 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

_	A	rea (sf)	CN I	Description										
*		23,493		Voods/grass comb., Good, HSG A										
_		4,200	55 r	<u>rip rap, HSC</u>	A									
		27,693	35 \	Neighted A	verage									
		27,693		100.00% Pe		a								
		21,000		100.00701		u								
	Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)											
	7.5	50	0.0700	0.11		Sheet Flow, AB								
	1.1	90	0.0800	-		Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, BC Woodland Kv= 5.0 fps								
_	8.6	140	Total											

Subcatchment P-2U: P-2U

0-

Ó

20 30

10

40 50

60

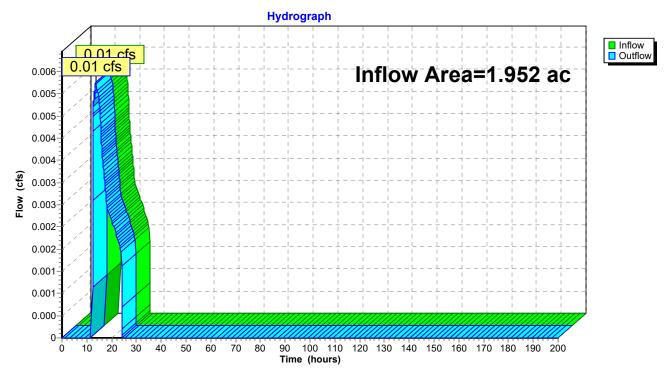
70 80

Summary for Subcatchment P-3U: P-3U

Runoff = 0.04 cfs @ 12.34 hrs, Volume= 0.009 af, Depth= 0.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.27"

A	Area (sf)	CN De	escription					
	9,142	32 W	oods/gras	s comb., G	Good, HSG A			
*	850		house to		, –			
	9,992	38 W	eighted A	verage				
	9,142			vious Area				
	850	8.5	51% Impe	ervious Area	а			
Tc	Length		Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry	',		
				Subcatch	nment P-3U	: P-3U		
				Hydrog	aranh			
				i i yaio	giapii			
0.04								Runoff
0.04		S						
0.04	- / 1		+ +		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array}$		ype III 24-h	r
0.0 0.03	- / /		+ + L		25 .	Voar Ra	infall=6.27	 U
0.03	6 7		 + +		+++	+		
0.03 0.03			++		R	unott Ar	rea=9,992 s	F
0.03					Run	off Volur	ne=0.009 a	f -
	= / '	<mark> </mark> <u> </u>	$\frac{1}{1} \frac{1}{1} \frac{1}{1}$	$ \frac{1}{1}$ $ \frac{1}{1}$ $ -$				
້ອງ 0.02 0.02			+l			Runoff L	Depth=0.47'	·
0.02 0.02 0.02 0.02			· · · · · ·				Tc=6.0 mir	- -
- 0.0	- / .		+ - 			+		
0.01 0.01		,	т — — — — — — — Г 4 — — — I — — — L				CN=38	5 -
0.01			++		$\stackrel{l}{\vdash}\stackrel{l}{\dashv}\stackrel{l}{\dashv}\stackrel{l}{\vdash}$	+		
0.01			<u> </u>					
0.0 0.00	- / 1		+ - -			+		
0.00	6				$\frac{1}{1}$			
0.00	= / -		+ +	+		+		
0.00		VIIIIII		///////////////////////////////////////				

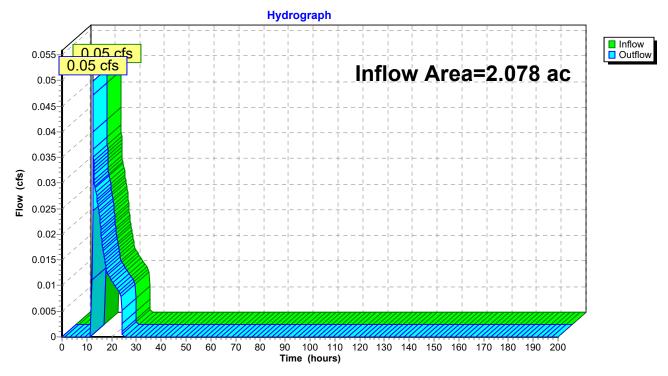

Time (hours)

90 100 110 120 130 140 150 160 170 180 190 200

Summary for Reach 1: 1

Inflow Area	a =	1.952 ac, 23.26% Impervious, Inflow Depth = 0.02" for 25-Year eve	nt
Inflow	=	0.01 cfs @ 13.65 hrs, Volume= 0.003 af	
Outflow	=	0.01 cfs $\hat{@}$ 13.65 hrs, Volume= 0.003 af, Atten= 0%, Lag= 0.0) min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs



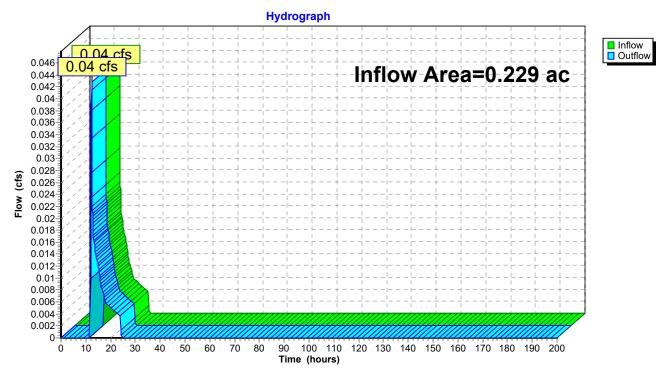
Reach 1: 1

Summary for Reach 2: 2

Inflow Area =	2.078 ac, 20.28% Impervious, Inflow	v Depth = 0.09"	for 25-Year event
Inflow =	0.05 cfs @ 12.47 hrs, Volume=	0.016 af	
Outflow =	0.05 cfs @ 12.47 hrs, Volume=	0.016 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 2: 2


Massapoag Watershed with PC noaa Prepared by {enter your company name here}

HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: 3

Inflow Area =	0.229 ac,	8.51% Impervious, I	Inflow Depth = 0.47"	for 25-Year event
Inflow =	0.04 cfs @	12.34 hrs, Volume=	= 0.009 af	
Outflow =	0.04 cfs @	12.34 hrs, Volume=	= 0.009 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.763 ac, 25.75% Impervious, Inflow De	epth = 1.59" for 25-Year event
Inflow =	2.89 cfs @ 12.10 hrs, Volume=	0.234 af
Outflow =	0.20 cfs @ 11.80 hrs, Volume=	0.234 af, Atten= 93%, Lag= 0.0 min
Discarded =	0.20 cfs @ 11.80 hrs, Volume=	0.234 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 166.89' @ 15.36 hrs Surf.Area= 3,544 sf Storage= 4,591 cf

Plug-Flow detention time= 253.7 min calculated for 0.234 af (100% of inflow) Center-of-Mass det. time= 253.7 min (1,130.5 - 876.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 11.80 hrs HW=165.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge) 3=RCP_Round 12" (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

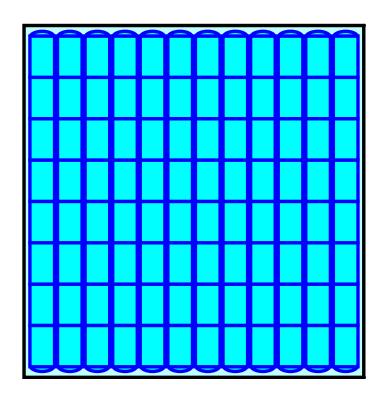
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

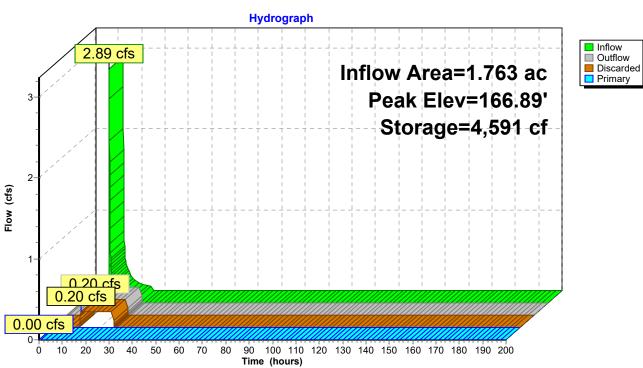
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage


Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 1: UG BAS 1

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow De	epth = 1.76" for 25-Year event
Inflow =	2.68 cfs @ 12.10 hrs, Volume=	0.211 af
Outflow =	0.16 cfs @ 15.62 hrs, Volume=	0.211 af, Atten= 94%, Lag= 211.1 min
Discarded =	0.16 cfs @ 15.62 hrs, Volume=	0.211 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 168.09' @ 15.62 hrs Surf.Area= 2,179 sf Storage= 4,567 cf

Plug-Flow detention time= 332.2 min calculated for 0.211 af (100% of inflow) Center-of-Mass det. time= 332.2 min (1,203.1 - 870.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
Primary	167.14'	12.0" Round RCP_Round 12"
		L= 17.2' RCP, rounded edge headwall, Ke= 0.100
		Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
		n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
	Discarded Device 3	Discarded 165.00' Device 3 170.20'

Discarded OutFlow Max=0.16 cfs @ 15.62 hrs HW=168.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=165.00' (Free Discharge)

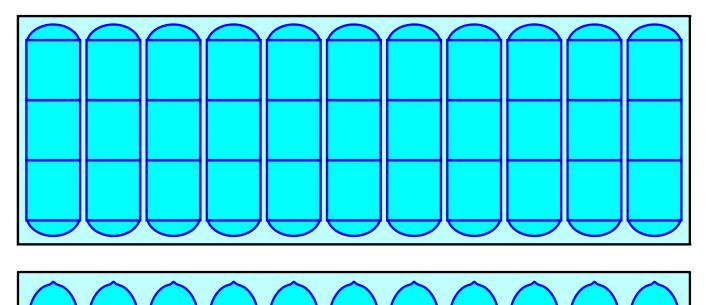
-3=RCP_Round 12" (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

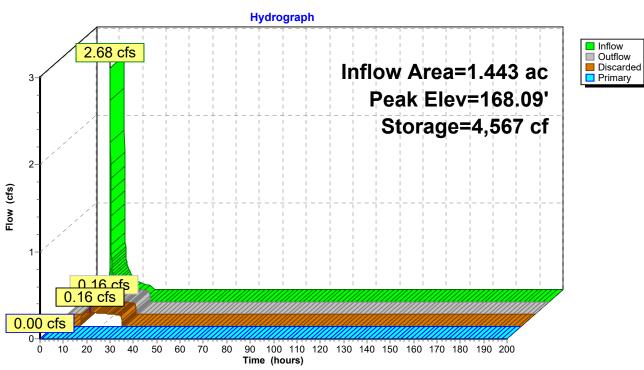
Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

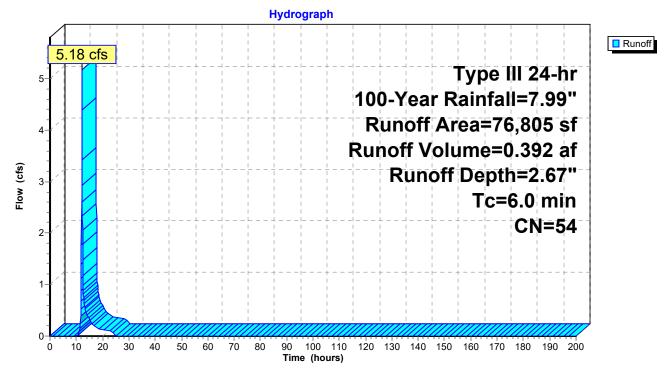
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 2: UG BAS 2

Summary for Subcatchment P-1: P-1

Runoff = 5.18 cfs @ 12.10 hrs, Volume= 0.392 af, Depth= 2.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"


	Area (sf)	CN	Description					
*	2,640	98	2 driveways					
	57,025	39	>75% Grass cover, Good, HSG A					
*	9,000	98	4 houses					
*	2,600	98	Massapoag road					
*	2,930	98	exist offsite houses, HSG A					
*	1,350	98	ex. offsite driveways, HSG A					
*	1,260	98	POOL					
	76,805	54	Weighted Average					
	57,025		74.25% Pervious Area					
	19,780		25.75% Impervious Area					
	Tc Length	Slop	be Velocity Capacity Description					

IC	Lengu	i Siope	e velocity	/ Capacity	/ Description
(min)	(feet)) (ft/ft)) (ft/sec)) (cfs))

Direct Entry,

Subcatchment P-1: P-1

Type III 24-hr 100-Year Rainfall=7.99" Printed 2/9/2022

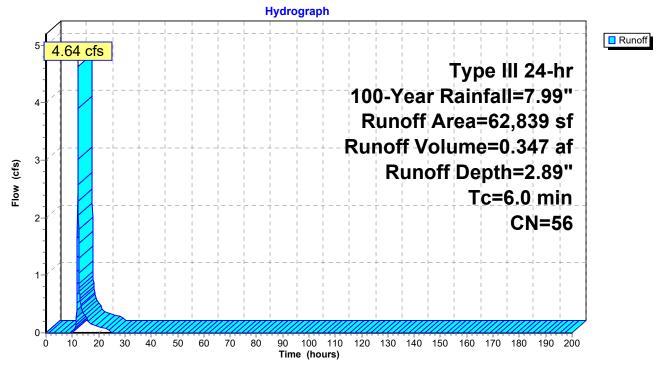
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1U: P-1U

Runoff 0.05 cfs @ 12.33 hrs, Volume= 0.010 af, Depth= 0.64" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

ļ	Area (sf)	CN	Descri	ption														
*	960 7,085 200	32 Woods/grass comb., Good, HSG A																
	8,245 8,245																	
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)																
6.0 Direct Entry,																		
Subcatchment P-1U: P-1U																		
						Hydro	graph	1										
0.05	0.05 cf					 l			 	 	 	 	 	 	 	 + +		Runoff
0.0)5						 			 	 	T	Ţyŗ	e l	II 2	4- ł	hr	
0.04	0.045 100-Year Rainfall=7.9													.99)"			
0.0)4	Runoff Area=8,245 sf																
0.03	35	╢╷╫╺ <mark>╷╴</mark> ╸┽╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴ <u>╶</u> ╧╴╴┼╴ _┲ ╧╌╴┾╴┲╧╤╤┾╶╴┼╴╴┼╴╶╧╴ <u>┲</u> ╧╶╧╶																
0.0 (cts) 0.0 <u>L</u> IOM	0.03 Runoff Depth=0.64"																	
0.02	25-1				<u> </u> - 	 !			·	<u> </u> !	<u> </u> 	I I I	T	c=(6.0	mi	n	
0.0	02						 	 	 · 	 	 	 	 	 	CN	1=3	3	
0.0	15-1					 			 	L 	 	 	L 	 	. <u>L</u> 	⊥ 	J 	
0.0							 !	1	· 	 	i I I	· 	+ 	 		+ 	1 	
0.00)5				 	! 	 		 		 	 	 	 	 	 	 	
	0 10 2	0 30	40 50	60	70 8		100 100 100 (ho		120	130	140	150	160	170	180	190	200	


Massapoag Watershed with PC noaa

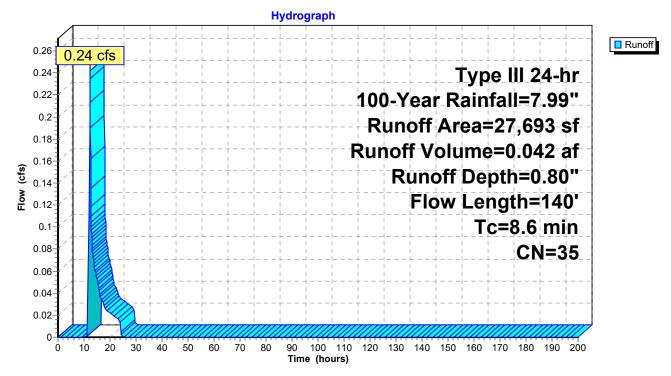
Summary for Subcatchment P-2: P-2

Runoff = 4.64 cfs @ 12.10 hrs, Volume= 0.347 af, Depth= 2.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

	Area (sf)	CN	Description			
*	4,960	98	5 driveways	3		
	44,479	39	>75% Gras	s cover, Go	bod, HSG A	
*	8,900	98	Massapoag	j road		
*	4,500	98	3 houses			
	62,839 56 Weighted Average					
	44,479 70.78% Pervious Area					
	18,360 29.22% Impervious Area					
	Tc Length	Slop		Capacity	Description	
(m	nin) (feet)	(ft/f	t) (ft/sec)	(cfs)		
	6.0 Direct Entry,					
	Subcatchment P-2: P-2					

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

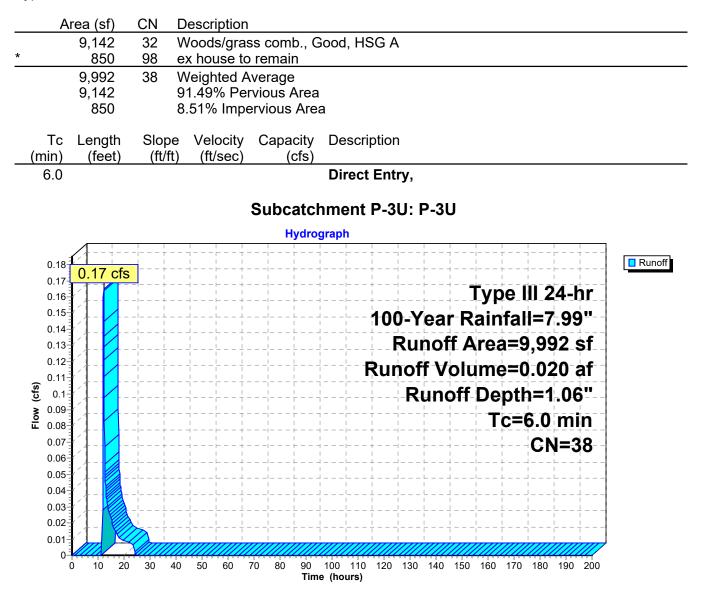

Summary for Subcatchment P-2U: P-2U

Runoff = 0.24 cfs @ 12.31 hrs, Volume= 0.042 af, Depth= 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

_	A	rea (sf)	CN	Description					
*		23,493 4,200			Noods/grass comb., Good, HSG A ip rap, HSG A				
_	27,69335Weighted Average27,693100.00% Pervious Area								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)				Description					
	7.5	50	0.0700	0.11		Sheet Flow, AB			
	1.1	90	0.0800	1.41		Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, BC Woodland Kv= 5.0 fps			
	8.6	140	Total						

Subcatchment P-2U: P-2U

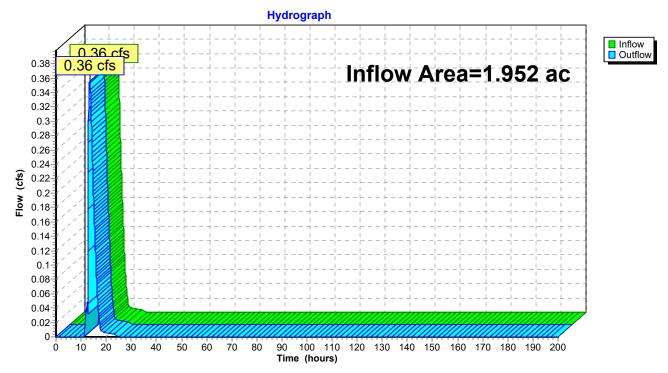


Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-3U: P-3U

Runoff = 0.17 cfs @ 12.13 hrs, Volume= 0.020 af, Depth= 1.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

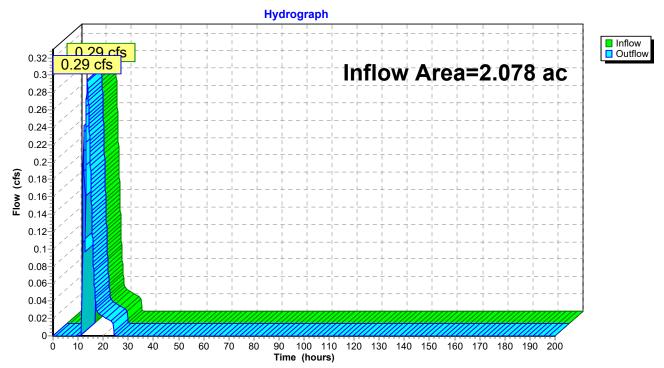


Massapoag Watershed with PC noaaType IIPrepared by {enter your company name here}HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 1: 1

Inflow Area	a =	1.952 ac, 23.26% Impervious, Inflow Depth = 0.48" for 100-Year e	vent
Inflow	=	0.36 cfs @ 13.36 hrs, Volume= 0.078 af	
Outflow	=	0.36 cfs $\overline{@}$ 13.36 hrs, Volume= 0.078 af, Atten= 0%, Lag= 0.	.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

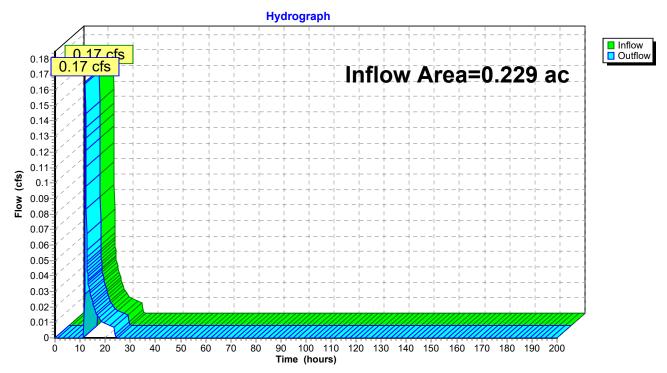


Reach 1:1

Summary for Reach 2: 2

Inflow Area =	2.078 ac, 20.28% Impervious, Inflow D	epth = 0.48" for 100-Year event
Inflow =	0.29 cfs @ 13.65 hrs, Volume=	0.083 af
Outflow =	0.29 cfs @ 13.65 hrs, Volume=	0.083 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs


Reach 2: 2

Massapoag Watershed with PC noaaType IIPrepared by {enter your company name here}HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 3: 3

Inflow Area =	0.229 ac,	8.51% Impervious, II	nflow Depth = 1.06"	for 100-Year event
Inflow =	0.17 cfs @	12.13 hrs, Volume=	0.020 af	
Outflow =	0.17 cfs @	12.13 hrs, Volume=	0.020 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Reach 3: 3

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 1: UG BAS 1

Inflow Area =	1.763 ac, 25.75% Impervious, Inflow De	epth = 2.67" for 100-Year event
Inflow =	5.18 cfs @ 12.10 hrs, Volume=	0.392 af
Outflow =	0.54 cfs @ 13.37 hrs, Volume=	0.392 af, Atten= 90%, Lag= 76.2 min
Discarded =	0.20 cfs @ 11.60 hrs, Volume=	0.325 af
Primary =	0.34 cfs @ 13.37 hrs, Volume=	0.068 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 168.43' @ 13.37 hrs Surf.Area= 3,544 sf Storage= 7,513 cf

Plug-Flow detention time= 337.1 min calculated for 0.392 af (100% of inflow) Center-of-Mass det. time= 337.2 min (1,197.4 - 860.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,197 cf	58.50'W x 60.58'L x 3.50'H Field A
			12,403 cf Overall - 4,410 cf Embedded = 7,993 cf x 40.0% Voids
#2A	165.50'	4,410 cf	ADS_StormTech SC-740 +Cap x 96 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			96 Chambers in 12 Rows
		7 607 cf	Total Available Storage

7,607 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Horizontal area
#2	Device 3	167.96'	5.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.78'	12.0" Round RCP_Round 12"
	-		L= 17.7' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.78' / 167.60' S= 0.0102 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 11.60 hrs HW=165.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.34 cfs @ 13.37 hrs HW=168.43' (Free Discharge) 3=RCP_Round 12" (Passes 0.34 cfs of 1.43 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.34 cfs @ 2.48 fps)

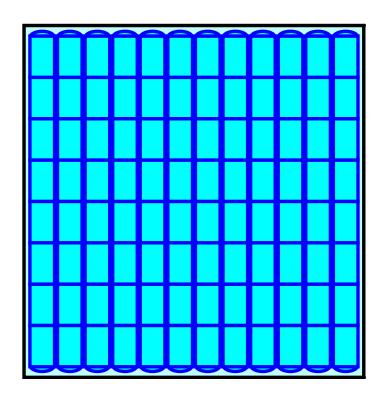
Pond UG 1: UG BAS 1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

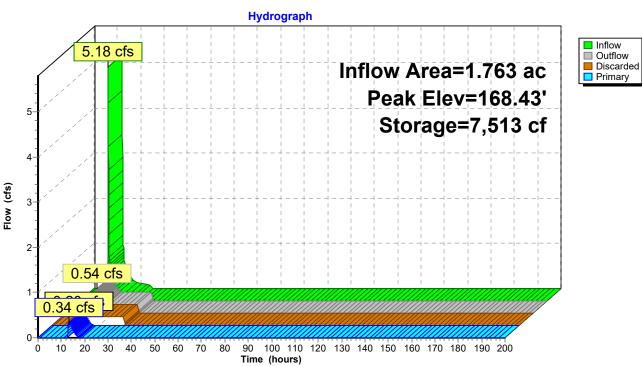
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width


6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

96 Chambers x 45.9 cf = 4,410.2 cf Chamber Storage

12,403.1 cf Field - 4,410.2 cf Chambers = 7,992.8 cf Stone x 40.0% Voids = 3,197.1 cf Stone Storage


Chamber Storage + Stone Storage = 7,607.4 cf = 0.175 af Overall Storage Efficiency = 61.3%Overall System Size = $60.58' \times 58.50' \times 3.50'$

96 Chambers 459.4 cy Field 296.0 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 1: UG BAS 1

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG 2: UG BAS 2

Inflow Area =	1.443 ac, 29.22% Impervious, Inflow De	epth = 2.89" for 100-Year event
Inflow =	4.64 cfs @ 12.10 hrs, Volume=	0.347 af
Outflow =	0.41 cfs @ 13.71 hrs, Volume=	0.347 af, Atten= 91%, Lag= 96.6 min
Discarded =	0.19 cfs @ 13.71 hrs, Volume=	0.306 af
Primary =	0.22 cfs @13.71 hrs, Volume=	0.041 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 170.65' @ 13.71 hrs Surf.Area= 2,179 sf Storage= 7,300 cf

Plug-Flow detention time= 405.9 min calculated for 0.347 af (100% of inflow) Center-of-Mass det. time= 406.0 min (1,261.4 - 855.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	165.00'	3,357 cf	80.08'W x 27.21'L x 5.67'H Field A
			12,348 cf Overall - 3,956 cf Embedded = 8,392 cf x 40.0% Voids
#2A	165.75'	3,956 cf	ADS_StormTech MC-3500 d +Cap x 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			33 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		7,313 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	165.00'	2.410 in/hr Exfiltration over Wetted area
#2	Device 3	170.20'	4.0" Vert. Orifice/Grate C= 0.600
#3	Primary	167.14'	12.0" Round RCP_Round 12"
			L= 17.2' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 167.14' / 166.80' S= 0.0198 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Discarded OutFlow Max=0.19 cfs @ 13.71 hrs HW=170.65' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

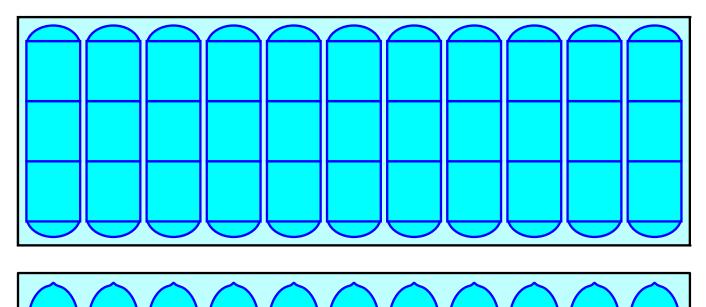
Primary OutFlow Max=0.22 cfs @ 13.71 hrs HW=170.65' (Free Discharge) -3=RCP_Round 12" (Passes 0.22 cfs of 8.52 cfs potential flow) -2=Orifice/Grate (Orifice Controls 0.22 cfs @ 2.57 fps)

Pond UG 2: UG BAS 2 - Chamber Wizard Field A

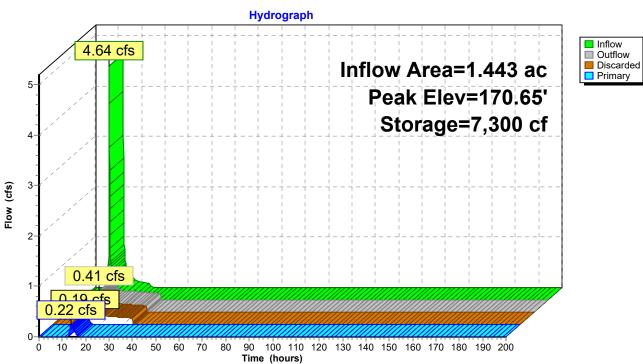
Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech®MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


3 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 25.21' Row Length +12.0" End Stone x 2 = 27.21' Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 14.0" Cover = 5.67' Field Height

33 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 3,956.2 cf Chamber Storage


12,348.0 cf Field - 3,956.2 cf Chambers = 8,391.8 cf Stone x 40.0% Voids = 3,356.7 cf Stone Storage

Chamber Storage + Stone Storage = 7,312.9 cf = 0.168 afOverall Storage Efficiency = 59.2%Overall System Size = $27.21' \times 80.08' \times 5.67'$

33 Chambers 457.3 cy Field 310.8 cy Stone

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG 2: UG BAS 2

SECTION 4 – STORMWATER MANAGEMENT CALCS

4.1 RECHARGE CALCULATIONS

The <u>Required Recharge Volume</u> is computed using the equation provided in the 2008 Massachusetts Stormwater Handbook. The volume is computed as an equivalent depth of rainfall over the proposed impervious areas in accordance with a Target Depth Factor based on the soil classifications. The Calculations is as follows:

- Rv = F x impervious area (Equation 1) Volume 3, Ch 1, page 15
- *Rv* = *Required Recharge Volume*, expressed in cubic feet, cubic yards, or acre-feet
- *F* = Target Depth Factor associated with each Hydrologic Soil Group (HSG)
- Impervious Area = new pavement and new rooftop area
- The Target Depth Factor "F" per Table 2.3.2, Volume 3, Chapter 1 for each soil classification is as follows:
 - A soils = 0.60 inches
 - B soils = 0.35 inches
 - C soils = 0.25 inches
 - D soils = 0.10 inches

Based on the above formula, the required recharge volume for the site is as follows:

Recharge Within "A" Soils:

- Impervious Area = 33,890 SF
- 0.6 inches x 1/12 feet x 33,890 SF = 1,695 CUBIC FEET

TOTAL RECHARGE VOLUME REQUIRED = 1,632 CUBIC FEET

Capture Area Adjustment:

Not required. All impervious area associated with the overall development is conveyed to the recharge BMP's.

TOTAL RECHARGE VOLUME PROVIDED = 7,179 CUBIC FEET (see below)

Recharge Volume BMP Table

Infiltration BMP	Infiltration Rate (in/hr) k	Storage (Recharge) Volume (c.f.) Rv
BAS 1	2.41	4,356
BAS 2	2.41	2,823
Totals		7,179

The Storage Recharge volume numbers provided in the table above have been derived utilizing the HydroCAD output for stage storage. The following pages provide a copy of those printouts and the cumulative stage-storage up to the controlling invert elevation has been highlighted.

Conclusion:

The recharge provided by the proposed underground systems greatly exceeds the required recharge by 4.40 times. The project satisfies Standard 3 of the Massachusetts DEP Stormwater Regulations accordingly.

4.2 DRAWDOWN TIME

Below are the drawdown time calculations for the infiltration BMPs proposed on the site. The calculation uses estimated hydraulic conductivity values "K" in accordance with the Rawls Rates table. The formula below utilized the recommended formula per the MA Stormwater Handbook as follows:

- Drawdown Time = Rv / ((K/12)*Bottom Area)
- Rv = Storage Volume (cf)
- K Saturated Hydraulic Conductivity per Rawls Rate Table
- Bottom Area = Area of Bottom of Proposed Recharge Structure

Below is a summary table of the drawdown calculations:

BASIN DRAWDOWN CALCULATIONS										
Infiltration BMP	Infiltration Rate (in/hr) k	Storage (Recharge) Volume (c.f.) Rv	Bottom Area (s.f.)	Draw Down Time(hours)						
BAS 1	2.41	4,356	3,544	6.12						
BAS 2	2.41	2,829	2179	6.46						
Totals		7,179		12.58						
-	k = saturated hydraulic conductivity (in/hr)									
Rv = storage volume (c.f.)										
Bottom Area (s.f.	Bottom Area (s.f.)									
Volume 3, Chapt	er 1 of the MA Storn	nwater Handbo	ook							

Conclusion:

The calculations show that the infiltration BMP draws down in 12.58 hours which is less than the required 72 hours.

Massapoag Watershed with PC noaa

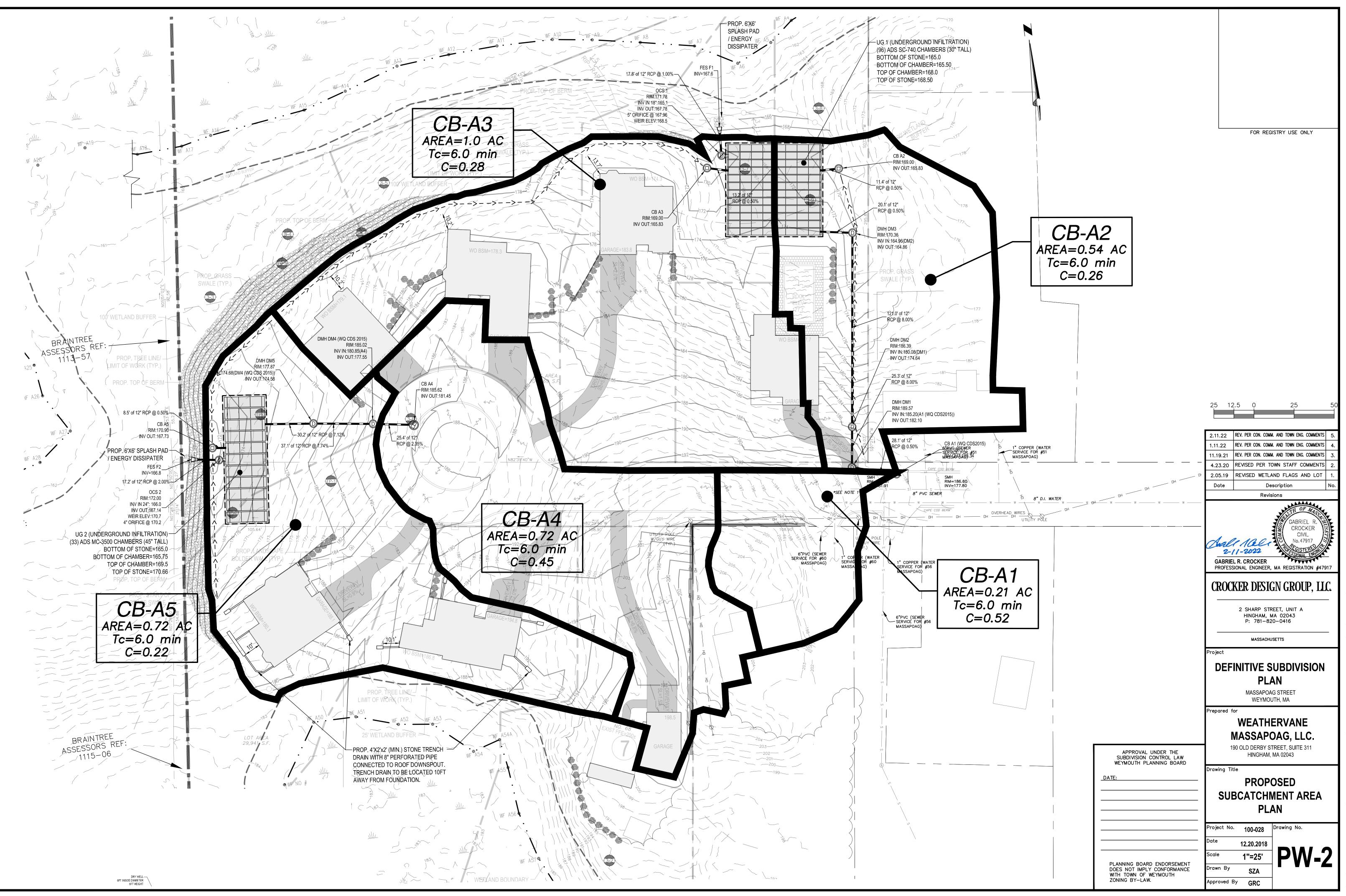
Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Elevation Storage Elevation Horizontal Horizontal Storage (feet) (cubic-feet) (feet) (sq-ft) (cubic-feet) (sq-ft) 165.00 3,544 167.65 3,544 6,329 0 3,544 165.05 3,544 71 167.70 6,423 165.10 3,544 142 3,544 6,512 167.75 165.15 3,544 213 167.80 3,544 6,596 3,544 283 167.85 3,544 6,676 165.20 165.25 3,544 354 167.90 3,544 6,752 165.30 3,544 425 167.95 3,544 6,827 165.35 3,544 496 168.00 3,544 6,899 165.40 6,970 3,544 567 168.05 3,544 165.45 3,544 638 168.10 3,544 7,040 165.50 3,544 709 168.15 3,544 7,111 7,182 165.55 3,544 856 168.20 3,544 165.60 3,544 1.003 168.25 3,544 7,253 165.65 3,544 1,150 168.30 3,544 7,324 165.70 3,544 1,296 168.35 3,544 7,395 3,544 1,442 168.40 3,544 7,466 165.75 165.80 3,544 1,588 168.45 3,544 7,536 165.85 3,544 1,733 168.50 3,544 7,607 165.90 3,544 1,877 168.55 3,544 7,607 165.95 3,544 2,021 168.60 3,544 7,607 166.00 3,544 2,165 168.65 3,544 7,607 166.05 3,544 2,307 168.70 3,544 7,607 3,544 2,449 3,544 7,607 166.10 168.75 2,591 166.15 3,544 166.20 3,544 2,732 166.25 3,544 2,872 166.30 3,544 3,011 166.35 3,544 3,150 166.40 3,544 3,287 166.45 3,544 3.424 166.50 3,544 3,560 166.55 3,544 3,696 3,830 166.60 3,544 166.65 3,544 3,963 166.70 3,544 4.095 166.75 3,544 4,226 166.80 3,544 4,356 166.85 3,544 4,485 166.90 3,544 4,613 166.95 3,544 4,739 167.00 3,544 4,864 167.05 3,544 4,988 167.10 3.544 5,111 167.15 3,544 5,231 167.20 3,544 5,350 167.25 3,544 5,468 5,583 167.30 3,544 3,544 167.35 5,696 3,544 5,808 167.40 167.45 3,544 5,917 167.50 3,544 6,024 167.55 3,544 6,129 167.60 3,544 6,231

Stage-Area-Storage for Pond UG 1: UG BAS 1

Massapoag Watershed with PC noaa

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC


Elevation Wetted Storage Elevation Wetted Storage (feet) (cubic-feet) (feet) (sq-ft) (cubic-feet) (sq-ft) 165.00 2,179 170.30 3,316 6,993 0 3,338 165.10 2,201 87 170.40 7,081 165.20 2,222 174 170.50 3,359 7,168 165.30 2,243 261 170.60 3,381 7,255 165.40 2,265 349 165.50 2,286 436 165.60 2,308 523 165.70 2,329 610 165.80 2,351 743 165.90 2,372 920 166.00 2,394 1,097 166.10 2,415 1,273 166.20 2,437 1,449 166.30 2,458 1,623 166.40 2,479 1,797 166.50 1,971 2,501 166.60 2,522 2,143 166.70 2,544 2,314 166.80 2,565 2,485 166.90 2,587 2,654 167.00 2,608 2,823 167.10 2,630 2,990 167.20 3,156 2,651 167.30 2,673 3,321 167.40 3,484 2,694 3,646 167.50 2,716 167.60 2,737 3,806 167.70 3,964 2,758 167.80 2,780 4,121 2,801 167.90 4,276 4,429 168.00 2,823 168.10 2,844 4,580 2,866 168.20 4,728 168.30 2,887 4,874 168.40 2,909 5,017 168.50 2,930 5,157 168.60 2,952 5,294 168.70 5,428 2,973 168.80 5,557 2,994 168.90 5,683 3,016 169.00 3,037 5,802 169.10 3.059 5,914 169.20 3.080 6,018 169.30 3,102 6,114 169.40 3,123 6,207 169.50 3,145 6,296 6,383 169.60 3,166 6,470 169.70 3,188 3,209 6,558 169.80 6,645 169.90 3,231 170.00 3,252 6,732 170.10 3,273 6,819 6,906 170.20 3,295

Stage-Area-Storage for Pond UG 2: UG BAS 2

4.3 WATER QUALITY

This site qualifies for the treatment of 1.0" of Rainfall under the MA Stormwater Regulations because the wetland to the North of the project is tributary to Mill River which is and Outstanding Resource Water. Therefore, the wetland the project is discharging to qualifies as a Critical Area. A table has been provided below that provides the sizing of the CDS Water Quality Units.

Water Quality Unit Sizing Using Equivalent Flow from 1" Rainfall Depth									
Basin Tributary Area Tributary Area % Impervious CN Value WQV Tc gu WQF = gu A Q Unit									
Dasin	Thoutary Area	Tributary Area	76 impervious		(Watershed	-	qu	WQF - QUAQ	Onic
	(acres)	(sq miles)		(Estimated)	Inches)	(min)	(csm/in)	(cfs)	
CBA1- WQU	0.21	0.0003	37%	0.52	1.00	5	795	0.26	CDS2015
DMH DM4- WQU	0.72	0.0011	57%	0.45	1.00	5	795	0.89	CDS2015

particle re-suspension. In order to not restrict the Owner's ability to maintain the SWTD, the minimum dimension providing access from the ground surface to the sump chamber shall be 20 inches in diameter.

2. The SWTD shall be designed to capture and retain Total Petroleum Hydrocarbons generated by wet-weather flow and dry-weather gross spills. The minimum storage capacity provided by the SWTD shall be in accordance with the volume listed in Table 1 below.

TABLE 1

	Transformerst	Minimum Sump	
	Treatment	Storage Capacity	Minimum Oil
CDS Model	Capacity (cfs)/(L/s)	$(yd^3)/(m^3)$	Storage Capacity (gal)/(L)
CDS2015-G	0.7 (19.8)	0.5 (0.4)	70 (265)
CDS2015-4	0.7 (19.8)	0.5 (1.4)	70 (265)
CDS2015	0.7(19.8)	1.3 (1.0)	92 (348)
CDS2020	1.1 (31.2)	1.3 (1.0)	131 (496)
CDS2025	1.6 (45.3)	1.3 (1.0)	143 (541)
CDS3020	2.0 (56.6)	2.1 (1.6)	146 (552)
CDS3030	3.0 (85.0)	2.1 (1.6)	205 (776)
CDS3035	3.8 (106.2)	2.1 (1.6)	234 (885)
CDS4030	4.5 (127.4)	5.6 (4.3)	407 (1540)
CDS4040	6.0 (169.9)	5.6 (4.3)	492 (1862)
CDS4045	7.5 (212.4)	5.6 (4.3)	534 (2012)
CDS2020-D	1.1 (31.2)	1.3 (1.0)	131 (495)
CDS3020-D	2.0 (56.6)	2.1 (1.6)	146 (552)
CDS3030-D	3.0 (85.0)	2.1 (1.6)	205 (776)
CDS3035-D	3.8 (106.2)	2.1 (1.6)	234 (885)
CDS4030-D	4.5 (127.4)	4.3 (3.3)	328 (1241)
CDS4040-D	6.0 (169.9)	4.3 (3.3)	396 (1499)
CDS4045-D	7.5 (212.4)	4.3 (3.3)	430 (1627)
CDS5640-D	9.0 (254.9)	5.6 (4.3)	490 (1854)
CDS5653-D	14.0 (396.5)	5.6 (4.3)	599 (2267)
CDS5668-D	19.0 (538.1)	5.6 (4.3)	733 (2774)
CDS5678-D	25.0 (708.0)	5.6 (4.3)	814 (3081)
CDS3030-DV	3.0 (85.0)	2.1 (1.6)	205 (776)
CDS5042-DV	9.0 (254.9)	1.9 (1.5)	294 (1112)
CDS5050-DV	11.0 (311.5)	1.9 (1.5)	367 (1389)
CDS7070-DV	26.0 (736.3)	3.3 (2.5)	914 (3459)
CDS10060-DV	30.0 (849.6)	5.0 (3.8)	792 (2997)
CDS10080-DV	50.0 (1416.0)	5.0 (3.8)	1057 (4000)
CDS100100-DV	64.0 (1812.5)	5.0 (3.8)	1320 (4996)

D. Alternate Treatment Technologies and Sizing Criteria

The sizing criteria for treatment systems must conform to the recommended loading rate and 3rd party testing data requirements as mentioned below:

- CDS Screening Systems designed for full treatment of the runoff rate at a loading rate not to exceed the critical flow in the inlet, in order to achieve 80% TSS removal efficiency. (80% TSS removal based on a average particles size of 63 micron)
- Vortex separation systems designed for full treatment of the runoff rate at a loading rate not to exceeding 24 gpm/ft2, in order to achieve 80% TSS removal efficiency. The hydraulic capacity should not exceed a loading rate of 100 gpm/ft2 to prevent scouring of previously captured particles. 80% TSS removal based on a average particles size of 63 micron)
- 3. Gravity systems designed for full treatment of the runoff rate at a loading rate not to exceeding 10 gpm/ft2, in order to achieve 80% TSS removal efficiency. The gravity units will not exceed luminar flow condition parameters in the treatment unit but will provide a bypass system to prevent turbulence from accruing in the system. (See "Stokes Law" for gravity settling requirements of particles. 80% TSS removal based on a average particles size of 63 micron)

Additionally, the performance of the unit must be evaluated by a third party and verified in a program that allows a more-or-less direct comparison to other technologies. Performance should be third party verified, and removal efficiencies across the spectrum of particle sizes reported, at a range of hydraulic loading rates varying over a range of at least 25 to 125% of the manufacturer's advertised 'water treatment' loading rate.

2.3 MANUFACTURER

The manufacturer of the SWTD shall be one that is regularly engaged in the engineering design and production of systems deployed for the treatment of storm water runoff for at least five (5) years and which have a history of successful production, acceptable to the Engineer. In accordance with the Drawings, the SWTD(s) shall be a CDS[®] device manufactured by:

Contech Engineered Solutions 9025 Centre Pointe Dr., Suite 400 West Chester, OH 45069 (800) 338-1122

4.4 RIP RAP SPLASH PAD

Rip rap splash pads are designed to dissipate energy, prevent scour at the stormwater outlet, and minimize the potential for downstream erosion. A riprap splash pad was sized for each of the outlets of the drainage system. The calculations below are in accordance with the methodology of the "2002 Connecticut Guidelines for Soil Erosion and Sediment Control" produced by The Connecticut Council on Soil and Water Conservation.

Rip-Rap Outlet Sizing Calculations									
	Q Do TW La W d5								
	(cfs)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(in.)		
FES F1	0.54	1.00	0.30	8.92	11.92	0.03	0.35		
FES F2	0.41	1.00	0.30	8.70	11.70	0.02	0.24		

Conclusion:

As identified above, the discharge points have been designed to accommodate and exceed the required minimum rip-rap stone sizing.

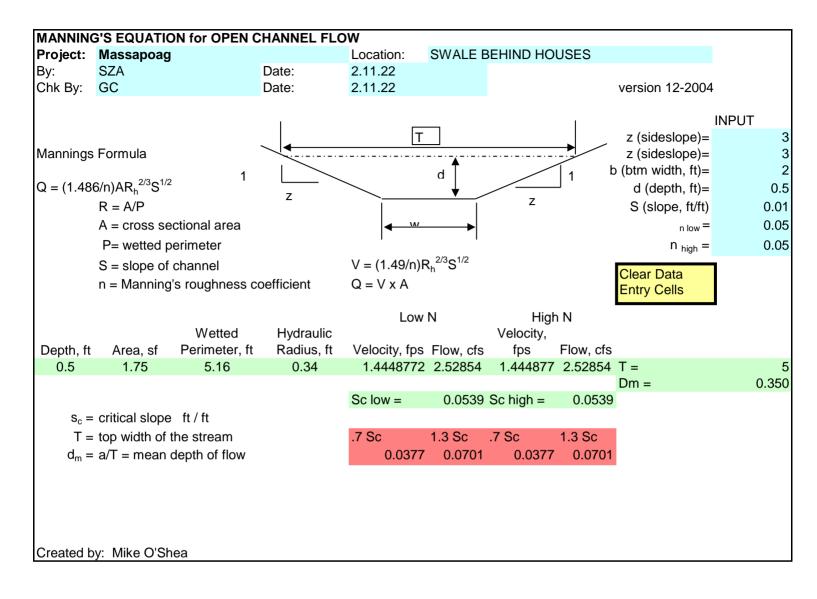
4.5 TSS REMOVAL

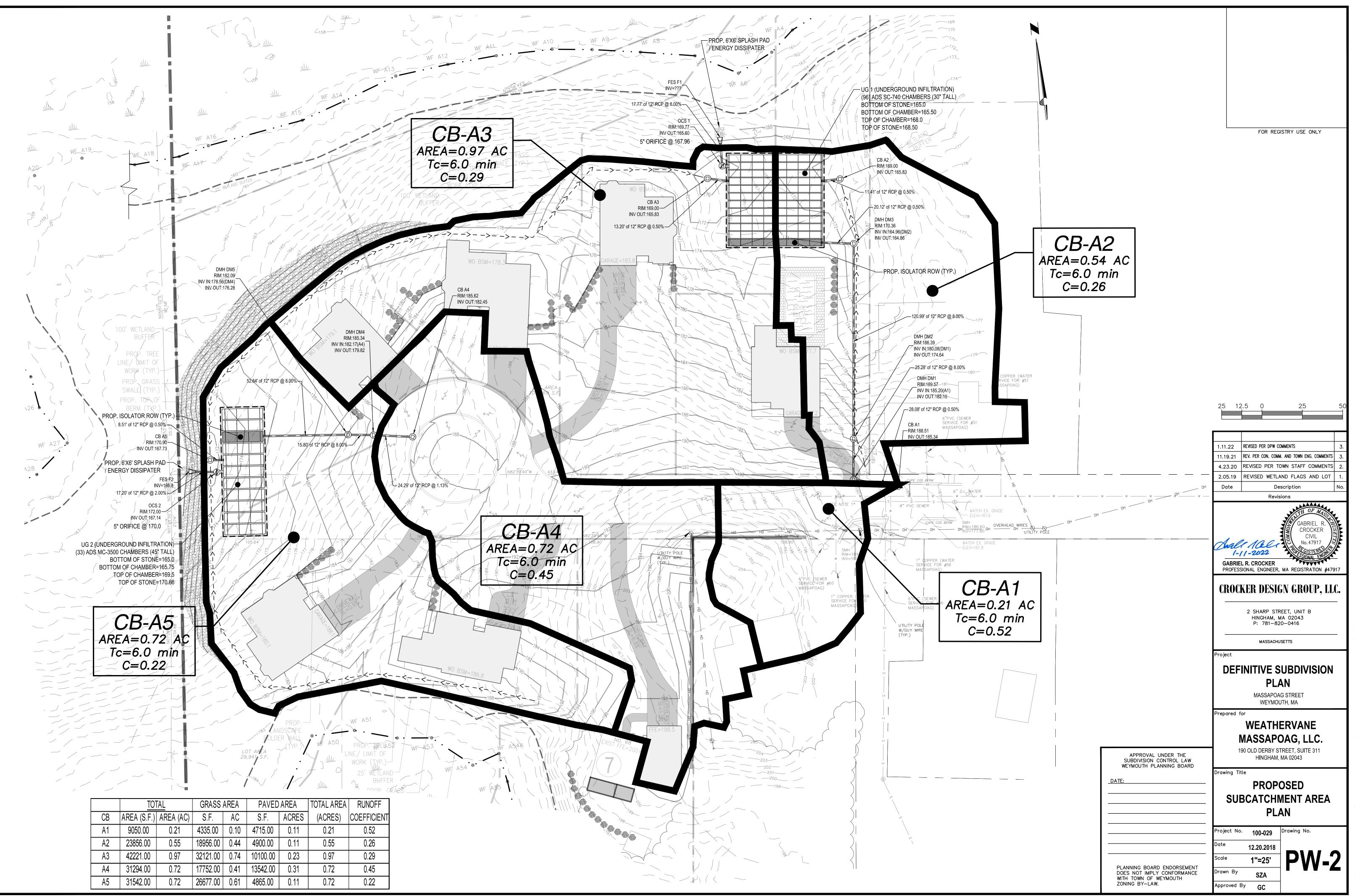
The project has been designed to comply with the required 80% TSS (minimum) removal per the Massachusetts Stormwater Regulations. Various combinations of stormwater BMPs including deep sump hooded catch basins, proprietary water quality units and an infiltration basin.

Please refer to the attached TSS calculation sheets that follow:

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table


2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings


3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	CB A1, WQU, UG-1				
	А	В	С	D	E	
	1	TSS Removal	Starting TSS	Amount	Remaining	
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)	
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75	
alcul	CDS Water Quality Unit	0.80	0.75	0.60	0.15	
oval C	CDS Water Quality Unit Underground Infiltration Chambers	0.80	0.15	0.12	0.03	
Re	ž	0.00	0.03	0.00	0.00	
TSS		0.00	0.03	0.00	0.00	
			rss Removal =	97%	Separate Form Needs to be Completed for Each Outlet or BMP Train	
		Massapoag, Weymouth				
	Prepared By:			*Equals remaining load from	n previous BMP (E)	
	Date:	Revised 2/11/22		which enters the BMP		

SECTION 5 – LONG TERM OPERATION & MAINTENANCE

LONG-TERM STORMWATER OPERATION & MAINTENANCE PLAN MASSAPOAG STREET – DEFINITIVE SUBDIVISION

12/21/2018 Revised 1/5/2022 Revised 2/11/2022

PROJECT OVERVIEW:

The proposed project consists of construction of a seven (7) lot residential subdivision. The project has been designed to comply with the Massachusetts Stormwater Management Regulations.

Appended to this document is a sample maintenance form and a chart describing the anticipated frequency of tasks.

OWNER AND RESPONSIBLE PARTY:

Applicant/Developer

Bristol Bros. Development Corp 190 Old Derby Street, Suite 311 Hingham, MA 02043

Bristol Bros. Development Corp. plans on creating a Homeowners Association which will include personnel who will be responsible for maintenance of the stormwater management system. For any service beyond their service ability, they subcontract to the appropriate vendors such as street sweeping and catch basin and water quality cleaning, etc.

CONSTRUCTION MANAGEMENT:

A construction manager with adequate knowledge and experience on projects of similar size and scope shall be employed to oversee all site work related construction. The contractor shall incorporate the appropriate techniques to control sediment and erosion pollution during construction in accordance with the *Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas* and any conditions of approval from the local conservation commission.

Care should be taken when constructing stormwater control structures. Light earth-moving equipment shall be used to excavate in the vicinity of the infiltration areas. Use of heavy-equipment causes excessive compaction of the soils beneath the basin resulting in reduced infiltration capacity. At no time shall temporary infiltration areas or settling basins be

constructed in the vicinity of the proposed infiltration basins in order to prevent the soils from becoming clogged with sediment.

ON-GOING MAINTENANCE CONTRACT

The non-structural and structural approaches recommended below, as well as the required BMP maintenance, will be completed by Bristol Bros. Development Corp.'s contractor, JF Price Co. In Adequate personnel with appropriate training and access to proper equipment will be available to complete the tasks. Future responsible parties must be notified of their responsibility to operate and maintain the system in perpetuity.

MAINTENANCE LOG

The Responsible Party shall develop and maintain a log of inspections, maintenance, repairs, and disposal (including location of disposal) during the life of the project. Records will be maintained for at least 3 years and be made available to the Town of Weymouth in accordance with the provisions of the Massachusetts Stormwater Handbook. A sample of such a maintenance log is provided.

STORMWATER BMP MAINTENANCE

The proposed stormwater management system has been designed with appropriate BMPs aimed at reducing the pollutants discharge based upon the intended use of the property. All BMPs require regular maintenance to function as intended. Some management measures have simple maintenance requirements; others are more involved. The Responsible Party must have all BMPs regularly inspected to ensure they are operating properly on an as needed basis, including during runoff events exceeding 0.5 inches of rainfall.

A description of the non-structural and structural approaches to be incorporated is indicated below. The following best management practices are proposed to be incorporated into the stormwater management design to reduce source runoff and improve stormwater runoff discharge quality. The Responsible Party will regularly inspect all BMPs to ensure they are operating properly. If any deficiencies are identified during these inspections, action to resolve it will be initiated and documented on the maintenance log.

STRUCTURAL BMPs

Deep Sump Hooded Catch Basins/Yard Drains

On a regular basis the inlet pipe and outlet pipe shall be checked for debris and removed as necessary to ensure unobstructed flow of water. Inspections shall occur at least twice annually, once in the fall and then in the spring after the snow melts. Inspections shall verify the tees are secure and free flowing. Depth of sediment below water line. Basins are to be cleaned whenever sediment and hydrocarbons are observed. Basins shall be cleaned using a vacuum pump. All liquid shall be pumped from the sump of each basin at least once per year. All sediments and hydrocarbons should be properly handled and disposed of in accordance with local, state and federal guidelines and regulations.

Proprietary Water Quality Units

Hydrodynamic Separators shall be maintained in accordance with the manufacturer's recommendations. Refer to the enclosed "CDS Inspection and Maintenance Guide". Typically, a vacuum truck removes accumulated sediment and oil most efficiently. See maintenance documentation from the manufacturer. Inspection should occur at least twice annually, once in the fall and then in the spring after the snow melts. All sediment and hydrocarbons should be properly handled and disposed of in accordance with local, state and federal guidelines and regulations. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections and manufacturer's requirements.

Subsurface Infiltration System

The subsurface systems (Stormtech ADS SC-740 Chambers) have been designed with riser structures at grade to aid the removal of sediment and debris accumulating in the structure. Preventative maintenance shall be performed in accordance with manufacturer's instructions. Inspection should occur twice annually, once in the fall and then in the spring after the snow melts. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections.

Stone/Pipe Trenches

Inspect and remove debris every 6 months and after every major storm.

NON-STRUCTURAL BMPs

Pavement Sweeping

As street sweeping is a BMP under DEP guidelines, this non-structural BMP is an effective removal of Total Suspended Solids (TSS) in a comprehensive stormwater management program. Litter and debris is to be regularly picked up and removed from the pavement. Paved areas are to be swept a minimum of two times per year, at least once during April and again in September. This BMP is not needed to meet the 80% TSS removal requirement.

Pervious Areas and Slopes

Wherever possible, runoff from paved areas and snowmelt shall be directed over vegetated areas to promote settlement of suspended solids before entering a wetland or resource area. Steep pervious slopes will be permanently vegetated to dissipate energy and reduce potential erosion. No constructed vegetated slopes should exceed 2H:1V. Slopes exceeding 2:1 shall be stabilized with rip-rap or other similar measures to minimize

the potential for future erosion. Irrigation system(s) shall be designed and maintained such that water is not applied to/or allowed to run off onto any impervious surfaces. Although overspray or runoff may be unavoidable during periods of high winds. In the event of accidental damage to system components or other unusual circumstances the system components shall be promptly corrected. Maximum of 1 inch of irrigation water will be applied to irrigated areas per week.

Conveyance Swale

Inspect conveyance swales the first few months after construction to make sure that there is no rilling or gullying and that vegetation in the channels is adequate. Thereafter, inspect the channel twice a year for slope integrity, soil moisture, vegetative health, soil stability, soil compaction, soil erosion, ponding and sediment accumulation. Regular maintenance tasks include mowing, fertilizing, liming, watering, prunin, weeding, and pest control. Mow at least once per year but do no cut the grass shorter than three to four inches. Keep grass height under 6 inches to maintain the design depth necessary to serve as a conveyance. Do not mow excessively, because it may increase the design flow velocity. Remove sediment and debris manually at least once per year. Reseed periodically to maintain the dense growth of grass vegetation.

Drainage Control Structures, Flared End Sections, Trash Racks, Riprap Pads, Swales, and/or Level Spreader Splash Pads

Basin control structures, flared end sections, trash racks, riprap pads and level spreader splash pads shall be inspected and any debris or growth surrounding or within these structures shall be removed. Any/all debris or vegetation encroaching on the control structures our outfall components shall be removed or appropriately trimmed back to maintain the designed control elevation and flow patterns/cross section without impediment. Inspection should occur twice annually, once in the fall and then in the spring after the snow melts. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections and manufacturer's requirements.

<u>Fertilizers</u>

Use of fertilizers shall follow the requirements of 330 CMR 31.0.

Waste Management

Solid waste and recycling will be contained in garbage cans maintained at each residence for routine and regular trash pickup. Waste deposition in the receptacles will be consistent with state and local regulations.

Snow Removal

There shall be no plowing of stockpiling of snow within any resource areas or buffers. Typically, a combination of plowing and/or snow blowing is utilized on the individual driveways and a snow blowing "bobcat" is used to clear the sidewalks. Deicing compounds must be stored or sheltered on impervious pads (i.e. in residential garages and the maintenance facility). Snow that is plowed from the paved driveway surfaces shall be plowed to the edges of the pavement. If capacity of these areas is exceeded, accumulated snow shall be removed.

Stormwater BMP Inspection and Maintenance Log

Facility Name	
Address	
Begin Date	End Date

Date	BMP ID#	BMP Description	Inspected by:	Cause for Inspection	Exceptions Noted	Comments and Actions Taken

Instructions: Record all inspections and maintenance for all treatment BMPs on this form. Use additional log sheets and/or attach extended comments or documentation as necessary. Submit a copy of the completed log with the annual independent inspectors' report to the municipality and start a new log at that time.

BMP ID# — Always use ID# from the Operation and Maintenance Manual.

Inspected by — Note all inspections and maintenance on this form, including the required independent annual inspection.

Cause for inspection — Note if the inspection is routine, pre-rainy-season, post-storm, annual, or in response to a noted problem or complaint.

Exceptions noted — Note any condition that requires correction or indicates a need for maintenance. Comments and actions taken — Describe any maintenance done and need for follow-up.

Stormwater BMP Inspection Matrix

Conventional & LID Best Management Practices	Inspection & Maintenance Frequency	Erosion& Scour	Obstructions	Trash & Debris	Sediment Build- Up Removal	Vegetation Cover	Remove/Reset Filter Fabric & Stone As Required	Vac Truck Sediment & Contaminants	Remove/Reset Riprap as Required
Catch Basins/Area & Yard Drains	Four times per year								
Pavement Sweeping	Four times per year								
Stone Trench	Twice- Annually (Spring and Fall)								
Subsurface Infiltration Chambers	Twice- Annually (Spring and Fall)								
Conveyance Swale	Twice- Annually (Spring and Fall)								
Proprietary Water Quality Separators	Twice- Annually (Spring and Fall)								
Outlets (FES, Rip Rap Pad, Level Spreaders)	Twice- Annually (Spring and Fall)								

CDS® Inspection and Maintenance Guide

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.

CDS Model	Dia	meter	Distance fror to Top of 3		rface Sedi ile Storage	ment Capacity
	ft	m	ft	m	yd3	m3
CDS2015-4	4	1.2	3.0	0.9	0.5	0.4
CDS2015	5	1.5	3.0	0.9	1.3	1.0
CDS2020	5	1.5	3.5	1.1	1.3	1.0
CDS2025	5	1.5	4.0	1.2	1.3	1.0
CDS3020	6	1.8	4.0	1.2	2.1	1.6
CDS3030	6	1.8	4.6	1.4	2.1	1.6
CDS3035	6	1.8	5.0	1.5	2.1	1.6
CDS4030	8	2.4	4.6	1.4	5.6	4.3
CDS4040	8	2.4	5.7	1.7	5.6	4.3
CDS4045	8	2.4	6.2	1.9	5.6	4.3

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Support

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.
- ©2010 CONTECH Stormwater Solutions

CONTECH Construction Products Inc. provides site solutions for the civil engineering industry. CONTECH's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other CONTECH division offerings, visit contech-cpi.com or call 800.338.1122

Nothing in this catalog should be construed as an expressed warranty or an implied warranty of merchantability or fitness for any particular purpose. See the CONTECH standard quotation or acknowledgement for applicable warranties and other terms and conditions of sale.

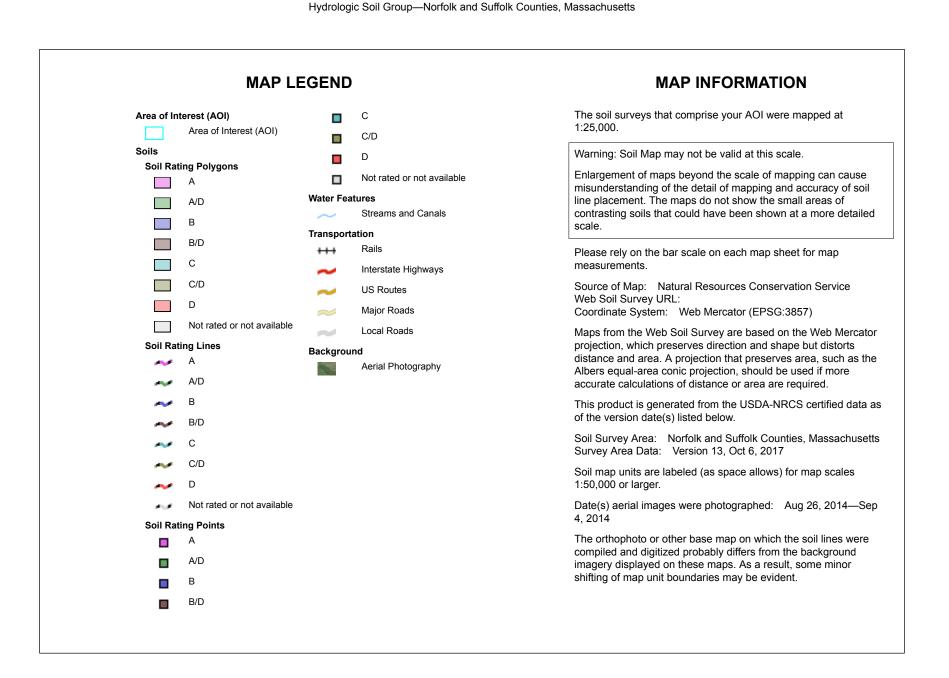
The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.

cdsMaintenance 01/10

800.925.5240 contechstormwater.com


CDS Inspection & Maintenance Log

CDS Mode	l:		Lo	ocation:	
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments


1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than eighteen inches the system should be cleaned out. Note: To avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SECTION 6 – SOILS TESTING DATA

Conservation Service

USDA

Hydrologic Soil Group

	1			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
52	Freetown muck, 0 to 1 percent slopes	B/D	3.7	30.9%
424C	Canton fine sandy loam, 8 to 15 percent slopes, extremely bouldery	A	8.3	69.1%
Totals for Area of Intere	st	•	12.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

C. On-Site Review (continued)

Deep Observation Hole Number:

Ms 3-9

Depth (in.)	Soil Horizon/	n/ Soll Matrix: Color-	RedoxImorphic Features			Soli Texture	Coarse Fragments % by Volume		Soil Structure	Soil Consistence	Other
Deptil (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
331	À	10 YR 2/2			-	Sagdylan	< <i>l</i> :	CIL	Blog	SAI	
3-201	в	10 4R 5/6				Saraf low	LIY	212	Mess	5012	
20%-101	С	10 YR 5/4	~		_	long San	4C	AX.	Masson	losce	

C. On-Site Review (continued)

Deep Observation Hole Number:

ms 3-)

Depth (in.)	Soil Horizon/	Soli Matrix: Color-	Redoximorphic Features			Soli Texture	Coarse Fragments % by Volume			Soil	Other
Depth (in.)	Layer	Moist (Munseli)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Soil Structure	(Moist)	ouner
0.34	R	(0 7R 2/2		~	Saylon	Cit.	LV.	Black	STH		
3-204	B	10 7R SK			-	Sy fore	C.Y.	LIX.	Ma	SULY	
3-204	C	10 TROK				loy Sm	5x.	24	Massin	louin	
							ļ				
					_						

C. On-Site Review (continued)

Deep Observation Hole Number:

MS 3-8

Depth (in.)	Soil Horizon/	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features			Soll Texture	Coarse % by	Fragments Volume		Soil	Other
Debru (ur.)	Layer	Moist (Munsell)	Depth	Color	Percent		Gravel	Cobbles & Stones	Soll Structure	(Moist)	Other
6-3"	A	10YR 2-1 118	-	-		Lapped	~	14	Blure	541	
3 "-151.	ß	10 YR 5/6		-		4	110	24	Mun	5-61	
18-81	6	107R5/4		-	1	200 yeard	28	5X	Musin	lung	
					_			-			
	[0					

Sura Bulches

Ruha e. 81"

C. On-Site Review (continued)

Deep Observation Hole Number:

MS-3-6

Depth (In.)	Soil Horizon/	Soli Matrix: Color-	Red	oximorphic Feat	ures	Soll Texture		Fragments Volume		Soll Consistence	Other
Deptir (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Son Structure	(Moist)	
6-3	A	107R 2/2	E.			Sary loan	-	12	Block	foll	
3-20"	B	10YR 5/1		_	~	Say (om	<1X	26	Mour	Soli	
2011-74	с,	10YR 5/4		-	-	Say bon	ıX.	25.	Messon	5011	
				10							

All Accus han large Surfa Bouldy

C. On-Site Review (continued)

Deep Observation Hole Number:

M5 3-5

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Redo	ximorphic Fea	itures	Soil Texture	Coarse % by	Fragments Volume		Soil Consistence	Other
Depth (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	
031	A		1%	Block	SN						
34-221	3	15725/6		•		Sey loan	-	_	Most	S.V.	
23-67	C	WYR5/4		-	-	Sanlo	2%	28			
						V					

3-4

MS

C. On-Site Review (continued)

Deep Observation Hole Number:

Depth (in.)	Soll Horizon/	Soil Matrix: Color-	Redoximorphic Features		Soll Texture		Fragments Volume	Soil Structure	Soli e Consistence	Other	
Debru (ur.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-34	A	10 413 2/12	-		_	long lan	-	(1%	Block	504	
31-184	B	104R4/6			-	Song /our	<i><1</i> !	211	Most	5 stile	
184764	C	107R5/4	~	· · · · · · · · · · · · · · · · · · ·		Say ban		ØX	Meso	Jose	
					<u> </u>						

Returned, In Bulche / Ledge Weter and modelly to not observed

t5form11.doc • rev: 8/15

C. On-Site Review (continued)

Deep Observation Hole Number:

MS 3-3

Depth (in.)	Soil Horizon/	izon/ Soli Matrix: Color-	Red	foximorphic Feat	ures	Soil Texture	Coarse Fragments % by Volume		Soil Structure	Soil	Other
Deptir (m.)	Layer	Moist (Munseil)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
6-3"	A	10YR 2/2	<u> </u>	<u> </u>	-	Sandfloor	T	1%	Block	50-11	
3"-254	B	WYR4/6	-		-	Sant loan	21%	Cit	Mon	NIZ	
25 - 58	C1	107R 5/4	36K	10YR5/2	20%		22	L14.	Marr.L	fren	
11-84	62	104R 4/4	~	~		BOI	2%	2×	Massa	1005	

water @ 56 "

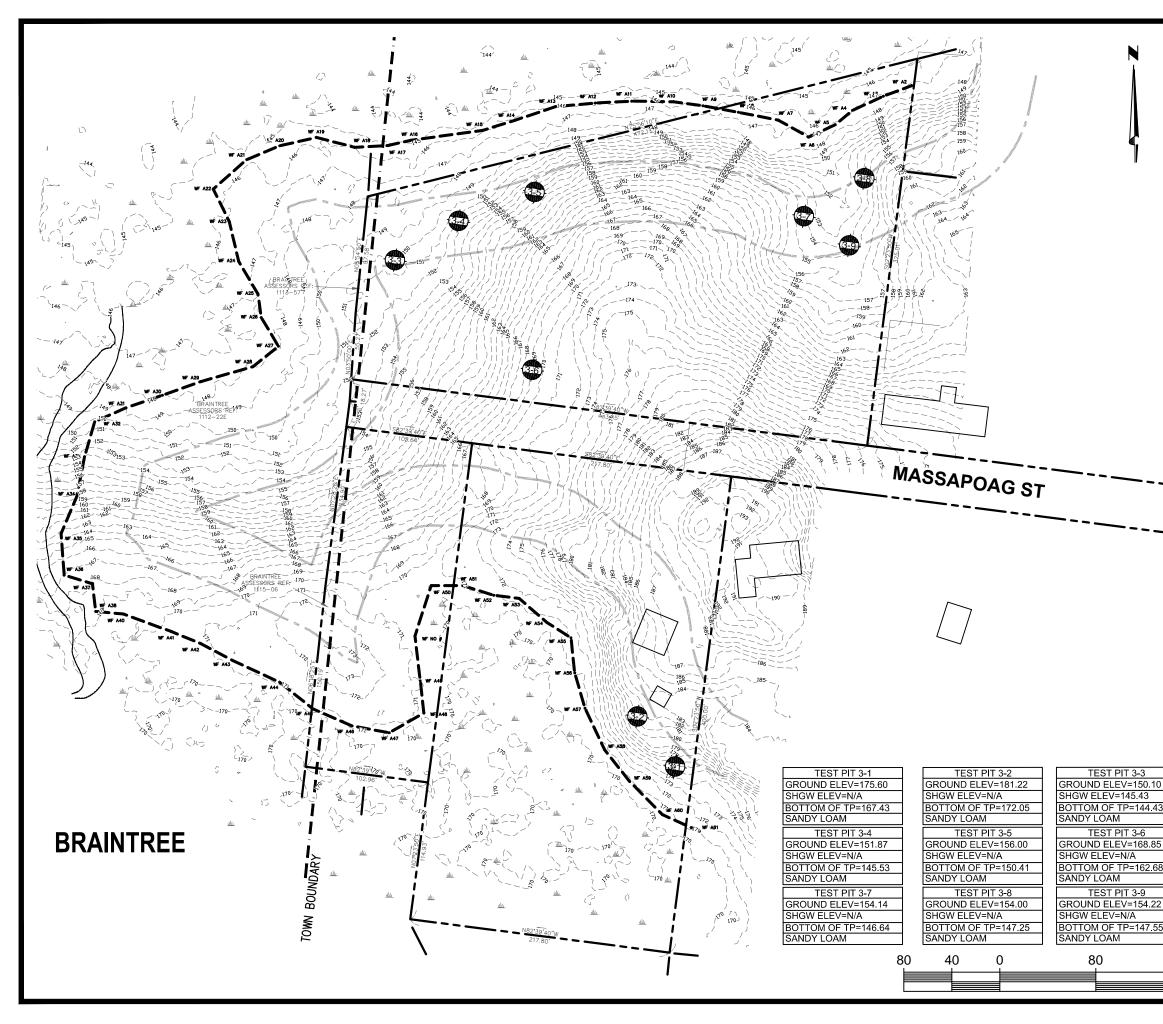
C. On-Site Review (continued)

Deep Observation Hole Number:

MS 3-2

Depth (in.)	Soll Horizon/	Soil Matrix: Color-				Soil Texture		Fragments Volume	Soil Structure	Soli	Other
Deput (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		Consistence (Moist)	Other
0-44	A	(0 YR3/2		<u> </u>	-	Sanglar		17.	Block	Eost	
41-22	B~	10 YR4/6		<u> </u>	<u> </u>	Sal lon	28	58	then	GN	
22 "-110"	C	10 YR 5/4	-		-	Saraly low	54	157.	Missur	5.11	

No well observe 110"


C. On-Site Review (continued)

Deep Observation Hole Number:

MP 3-1

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Redoximorphic Features			Soli Texture	Coarse Fragments % by Volume		Soil Structure	Soil	Other
	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Molst)	Outer
6-53"	A	10YR 3/2	_	<u> </u>	~	barny los	12%	20x	Blacky	Soll	
534-82	ß	ISYR 4/1		-		Sard Lon	1.DX	29/	Block	Sort	
87-18°	C	107K 5/1	_	i	<u> </u>	Say Les	5%	10%	Mam	SORI	

Look, Likh Pill, Trash Deep in Alafer Band Cappear Naveral

	Date	De	scription	No.
	Dute	Revis	•	
	PROFESS		MA 02066	
	MASSAC	P: 781-82		 ND
	Project Pl		ARY PLAN	
		MASSAP WEYMOU		
	19	BRISTO VELOPN 90 OLD DERBY S' HINGHAM,	L BROS. IENT CORP. IREET, SUITE 311 MA 02043	
3	Drawing Tit		IT PLAN	
3	Project No.	100-029	Drawing No.	
	Date	4.26.2018		
5	Scale	1"=80'	TP-1	
	Drawn By	SZA		
	Approved E	^{3y} gc		

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numb	er: TP-1	12/28/2	21	8 AM		OVE	RCAST					
•			Hole #	Date		Time		Weather		Latitude		Longitude:		
1. Land	Land Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulders, etc.) Stope (%) Description of Location:													
Des	scription of Lo	ocation:												
2. Soil P	arent Materia	al:												
					La	ndform		Posi	tion on Landscap	be (SU, SH, BS,	FS, TS)			
3. Distar	nces from:	Oper	n Water Body	fee	t	D	rainage W	ay	feet	We	tlands	feet		
		I	Property Line	fee	t	Drinking	g Water W	'ell	feet	(Other	feet		
4. Unsuita	able Materials	s Present:] Yes 🗌 No	If Yes:	Disturbed S	Soil 🗌 I	Fill Material	□ '	Neathered/Fra	ctured Rock	🗌 Bed	drock		
5. Grour	ndwater Obse	erved: 🗌 Yes	No		If yes	6:	Depth Wee	oina from Pit		Depth S	tanding W	/ater in Hole		
		_	—						-		tanang t			
				Redo	ximorphic Fea		Coarse F			Soil				
Depth (in)					-	1	-		Soil Structure	Consistence		Other		
		(,	Depth	Color	Percent	Gravel			(Moist)				
0"-12"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE				
12"-126"	С		10YR 5/3	-	-	-	20-40%	-	SG	LOOSE				

Additional Notes:

WATER OBSERVED AT 9'

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numb	er: TP-2	12/28/2	21	10 AN	1	OVE	RCAST			
•			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	al:										
					La	andform		Posi	tion on Landscap	oe (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	fee	t	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	fee	t	Drinking	g Water W	/ell	feet	(Other	feet
4. Unsuita	able Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed	Soil 🗌 F	-ill Materia	I 🗌 '	Neathered/Fra	ctured Rock	🗌 Bec	lrock
5. Grour	ndwater Obse	erved: 🗌 Yes	No		lf ye	s:	Depth Wee	ping from Pit	_	Depth S	tanding W	ater in Hole
						Soil Log						
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures		Fragments Volume		Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0"-64"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
64"-126"	С	COARSE SAND	10YR 5/3	-	-	-	10%	-	SG	LOOSE		ACK LAYER T 3" THICK
												R SWEATING/ PING AT 6'

Additional Notes:

WATER OBSERVED AT 6'

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	Hole Numb	er: TP-3	12/28/2	21	11 AN	1	OVE	RCAST			
•			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	al:										
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	fee	t	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	feet	t	Drinking	g Water N	/ell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed \$	Soil 🗌 F	Fill Materia	I 🗌 '	Weathered/Fra	ctured Rock	🗌 Bec	Irock
5. Grour	ndwater Obse	erved: 🗌 Yes	No		lf ye	s:	Depth Wee	ping from Pit	-	Depth S	tanding W	ater in Hole
						Soil Log						
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures		Fragments Volume		Soil		.
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	(Moist)		Other
0"-64"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
64"-126"	С	COARSE SAND	10YR 5/3	-	-	-	10%	-	SG	LOOSE		ACK LAYER T 3" THICK
												R SWEATING/ PING AT 6'

Additional Notes:

WATER OBSERVED AT 6'

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

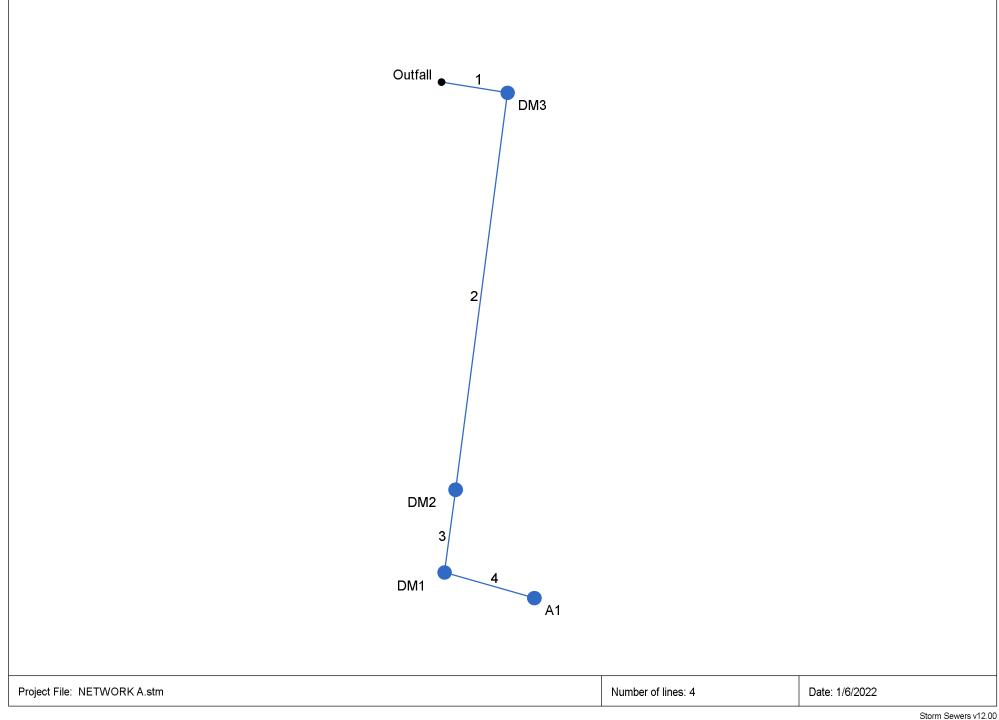
Deep	Observatior	Hole Numb	er: TP-4	12/28/2	21	3 PM		COLD	SUNNY			
-			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	al:										
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	fee	et	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	fee	t	Drinking	g Water W	/ell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	If Yes:	Disturbed \$	Soil 🗌 I	Fill Materia	I 🗆 '	Neathered/Fra	ctured Rock	🗌 Be	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	No		lf ye	s:	Depth Wee	ping from Pit	_	Depth S	tanding V	/ater in Hole
		_	_			Soil Log		,pg	-	2 optil 0	ianang i	
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fea		Coarse I	Fragments Volume		Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0"-2"	O/A	LOAM	10YR 2/2	-	-	-	-	-	MASSIVE	FRIABLE		
2"-24"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE		
24"-132"	С	COARSE SAND	10YR 5/3	-	-	-	10%	-	SG	LOOSE		

Additional Notes:

Soil was wet @11' didn't observe any water weeping in

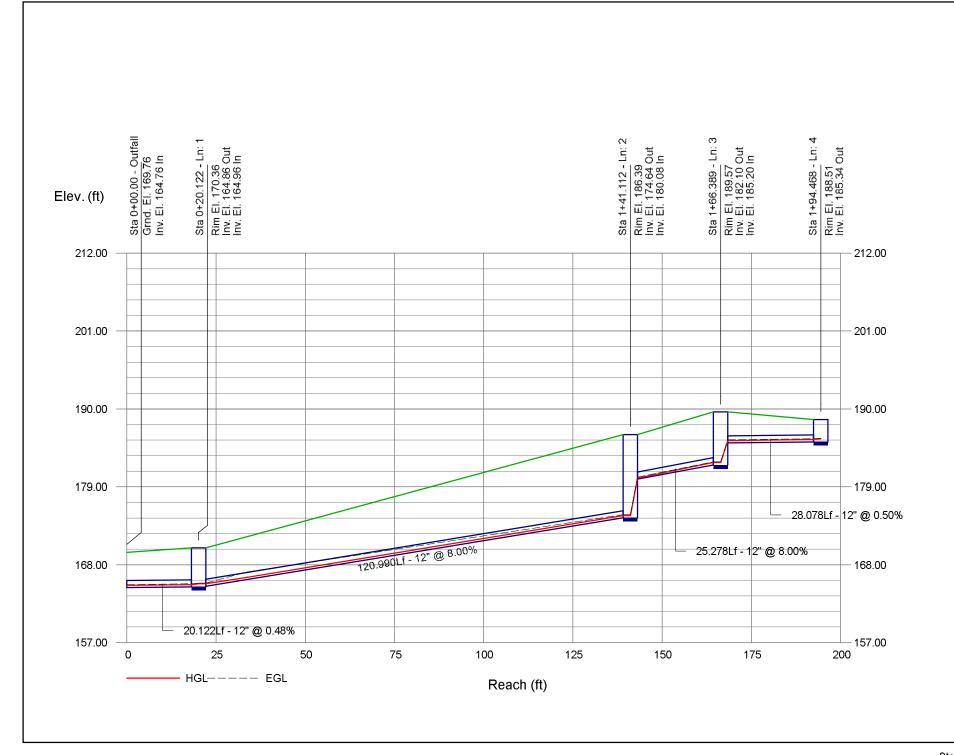
Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

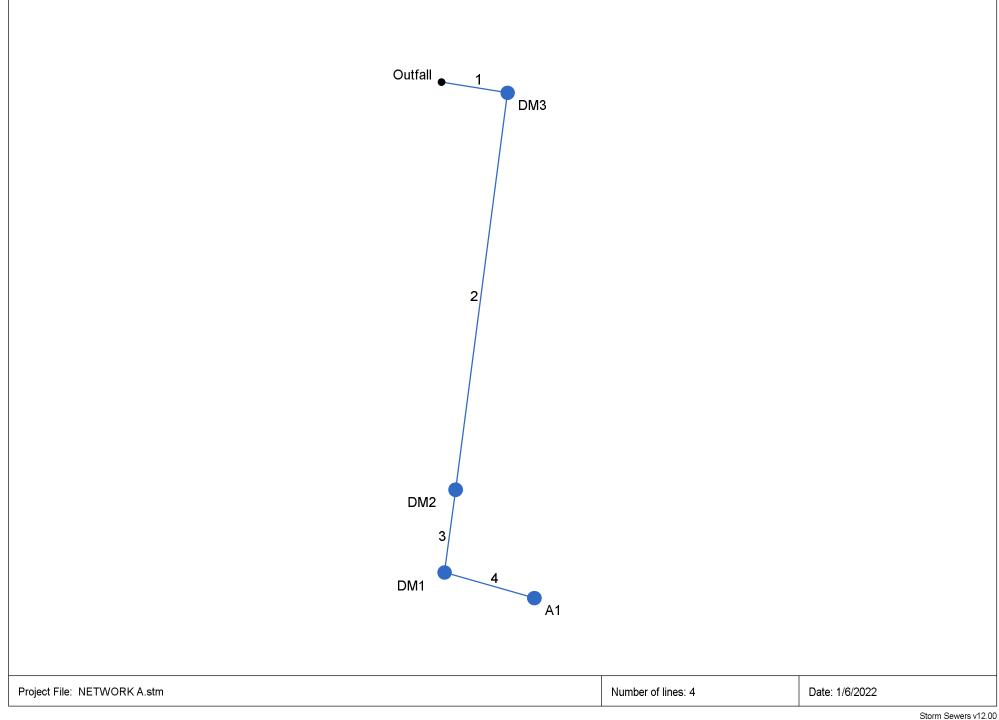

Deep	Observatior	Hole Numb	er: TP-5	12/28/2	21	4 PM		COLD	SUNNY				
-			Hole #	Date		Time		Weather		Latitude		Longitude:	
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)	
Des	scription of Lo	ocation:											
2. Soil P	arent Materia	d:											
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)		
3. Distar	nces from:	Oper	n Water Body	fee	t	D	rainage W	/ay	feet	Wet	tlands	feet	
		F	Property Line	fee	t	Drinking	g Water W	/ell	feet	(Other	feet	
4. Unsuita	able Materials	s Present:] Yes 🗌 No	If Yes:] Disturbed S	Soil 🗌 I	Fill Material		Weathered/Fra	ctured Rock	🗌 Beo	drock	
5. Grour	ndwater Obse	erved: 🗌 Yes	No		If ye	s:	Depth Wee	ping from Pit		Depth S	tanding W	/ater in Hole	
											-		
1. Land Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulders, etc.) Slope (%) Description of Location:													
Deptil (III)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel		Son Structure			Other	
0"-18"	А	LOAM	10YR 2/2	-	-	-	-	-	MASSIVE	FRIABLE			
18"-24"	В	LS	10YR 5/6	-	-	-	-	-	MASSIVE	FRIABLE			
24"-72"	С		10YR 5/3	-	-	-	-	-	SG	LOOSE			

Additional Notes:

6' WATER WEEPING IN, STANDING WATER AT 5'

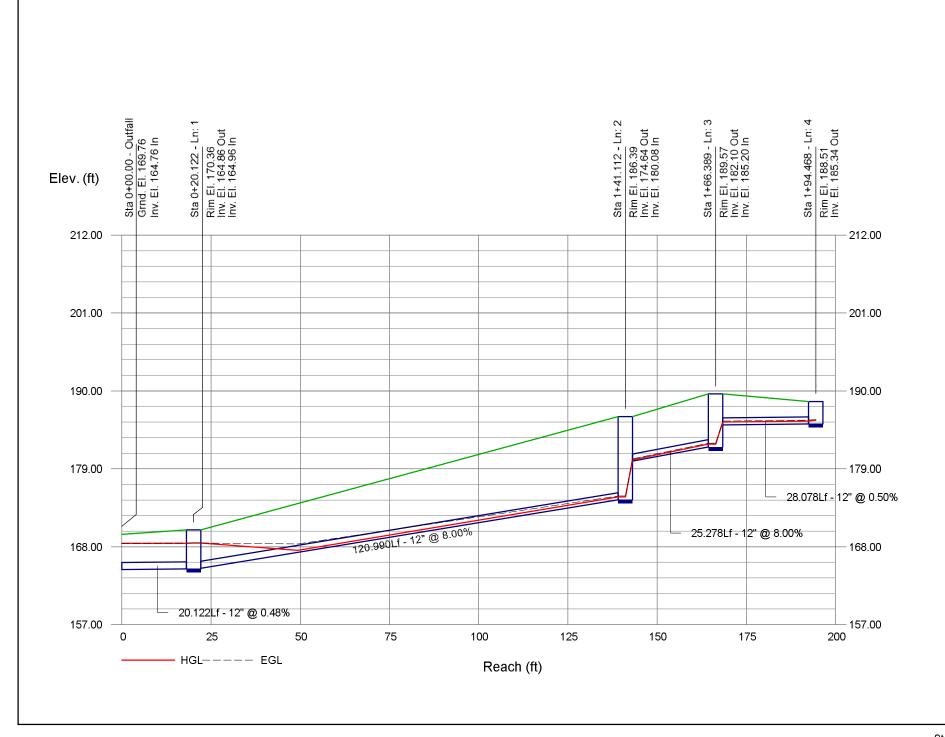

SECTION 7 – HYDRAULIC PIPE SIZING

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

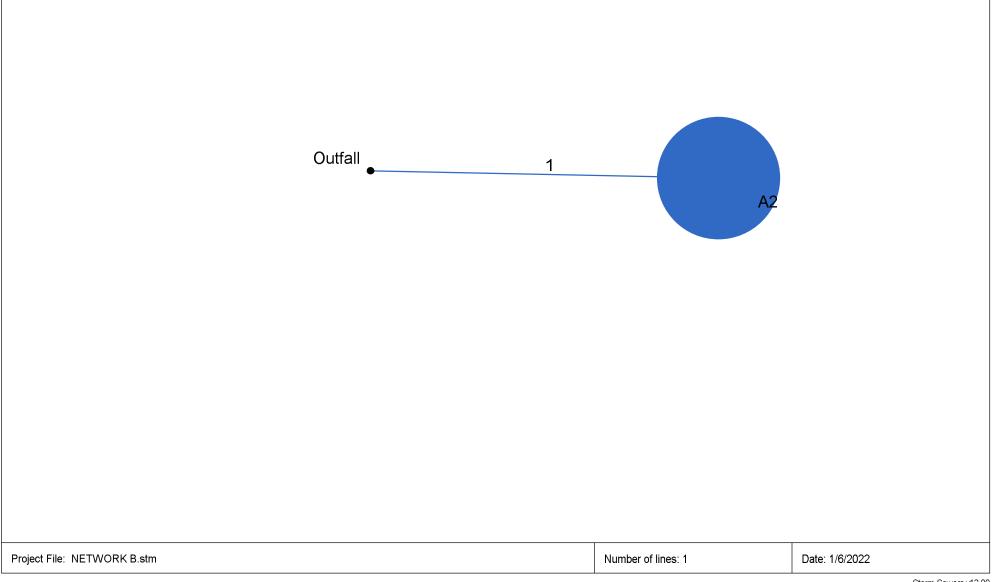


Storm Sewer Tabulation

Station Len Drng Area Rnoff coeff Area x C Tc Rain (I) Total flow Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line To Line Total Incr Total Inlet Syst Pipe Invert Elev HGL Elev Grnd / Rim Elev													im Elev	Line ID								
Line	To		Incr	Total		Incr	Total	Inlet	Syst	-(1)	TIOW	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	20.122	0.00	0.21	0.00	0.00	0.11	0.0	7.0	5.3	0.58	2.47	2.60	12	0.48	164.76	164.86	165.08	165.20	0.00	170.36	Pipe - (433)
2	1	120.990	0.00	0.21	0.00	0.00	0.11	0.0	6.3	5.5	0.60	10.07	2.68	12	8.00	164.96	174.64	165.29	174.96	170.36	186.39	Pipe - (461)
3	2	25.278	0.00	0.21	0.00	0.00	0.11	0.0	6.2	5.5	0.61	10.07	4.90	12	8.00	180.08	182.10	180.24	182.42	186.39	189.57	Pipe - (461) (2)
4	3	28.078	0.21	0.21	0.52	0.11	0.11	6.0	6.0	5.6	0.61	2.51	2.63	12	0.50	185.20	185.34	185.54	185.68	189.57	188.51	Pipe - (434)
Proje	ct File:	NETWO	DRK A.st	tm	I	ļ.	1	1	1	1	ļ.	1	1	1	1	Number	of lines: 4			Run Da	te: 1/6/202	22
					10 50	A O 04	Dot:	period =`	Vro. 40	·	o – alli-		,			I				<u> </u>		

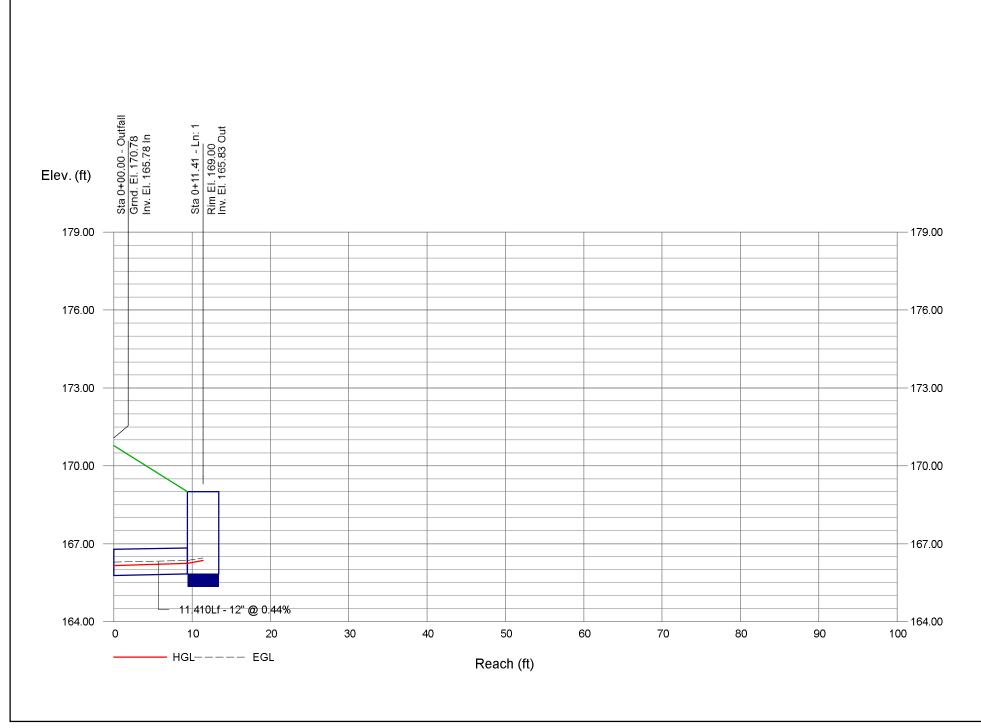


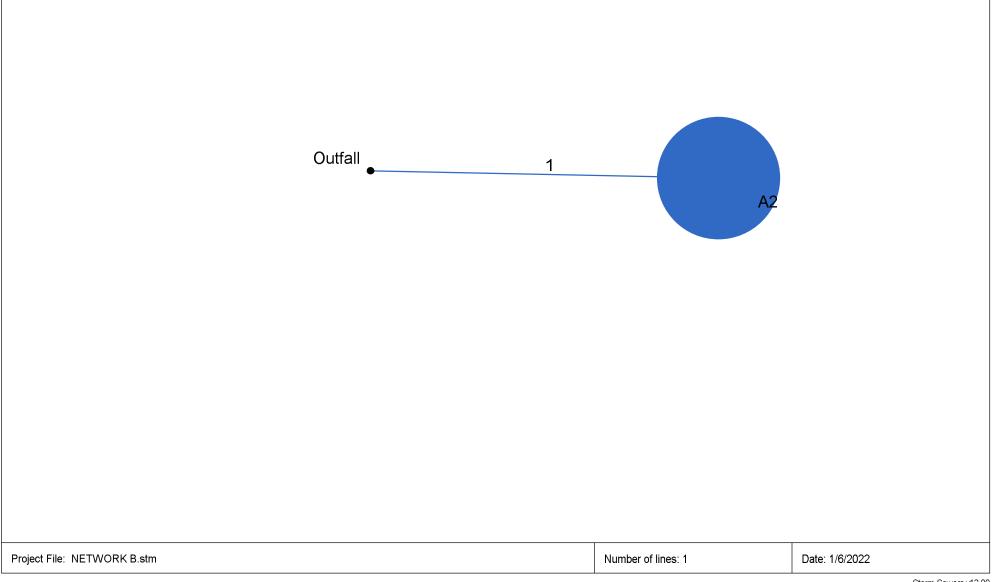
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan



Storm Sewer Tabulation

Statio	e To Line Coeff Coeff Incr Total Inlet Syst (I) flow full Size Slope														Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID	
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	20.122	0.00	0.21	0.00	0.00	0.11	0.0	7.2	7.2	0.79	2.47	1.00	12	0.48	164.76	164.86	168.48	168.49	0.00	170.36	Pipe - (433)
2	1	120.990	0.00	0.21	0.00	0.00	0.11	0.0	6.2	7.5	0.82	10.07	2.02	12	8.00	164.96	174.64	168.51	175.01	170.36	186.39	Pipe - (461)
3	2	25.278	0.00	0.21	0.00	0.00	0.11	0.0	6.2	7.5	0.82	10.07	5.36	12	8.00	180.08	182.10	180.27	182.48	186.39	189.57	Pipe - (461) (2)
4	3	28.078	0.21	0.21	0.52	0.11	0.11	6.0	6.0	7.5	0.82	2.51	2.86	12	0.50	185.20	185.34	185.59	185.73	189.57	188.51	Pipe - (434)
Proje	ct File:	NETWO	DRK A.st	tm			1		1			1	1	1	1	Number	of lines: 4			Run Dat	l te: 1/6/202	2
NOT	ES:Inter	nsity = 1	97.93 / (Inlet time	+ 22.50) ^ 0.98	; Returi	n period :	=Yrs. 100);c=	cire=e	ellip b =	box			I				1		

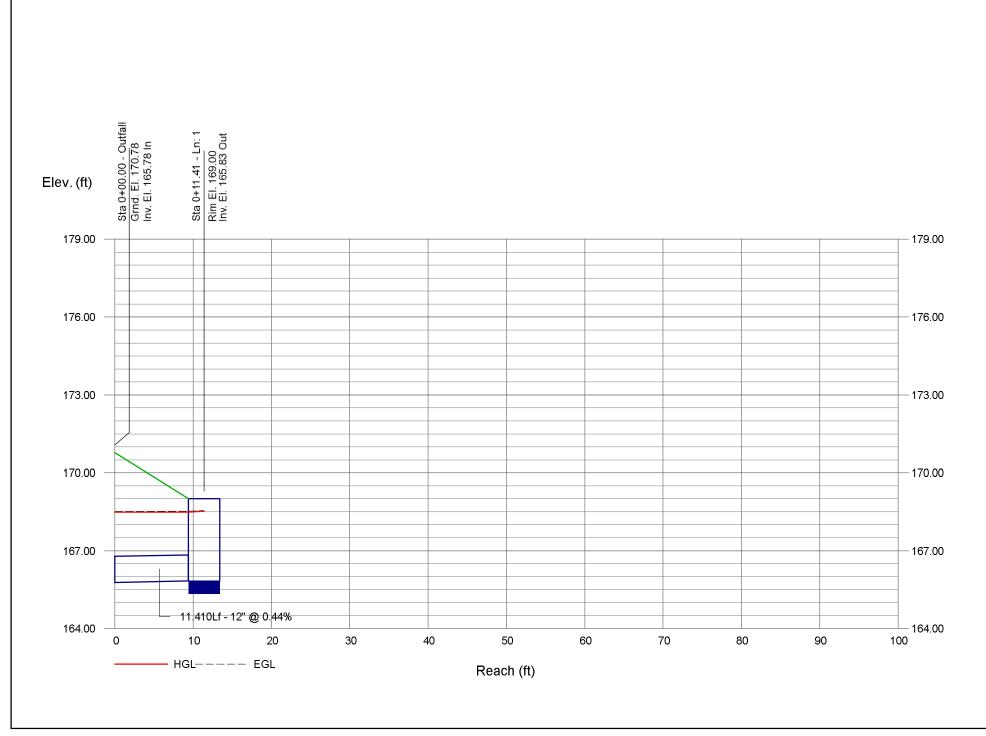

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan


Statio	n	Len	Drng A	rea	Rnoff coeff	Area x	С	Тс		Rain	Total flow	Cap full	Vel	Pipe		Invert Ele	ev	HGL Elev	v	Grnd / Ri	m Elev	Line ID
ine	To Line		Incr	Total	CUEII	Incr	Total	Inlet	Syst	(I)	110 W	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	11.410	0.55	0.55	0.26	0.14	0.14	6.0	6.0	5.6	0.80	2.36	2.81	12	0.44	165.78	165.83	166.15	166.24	0.00	169.00	Pipe - (434) (1) (1)
Proje	ct File:	NETWO	DRK B.st	tm	<u>.</u>	1		I						1	1	Number	of lines: 1	1	1	Run Dat	te: 1/6/202	2
	ES:Inter	nsitv = 5	9 21 / /lr	let time -	+ 12 50)	^ 0 81 ·	Return	period =`	/rs 10	· c = cir	e = ellir	h = hor	(1				I		

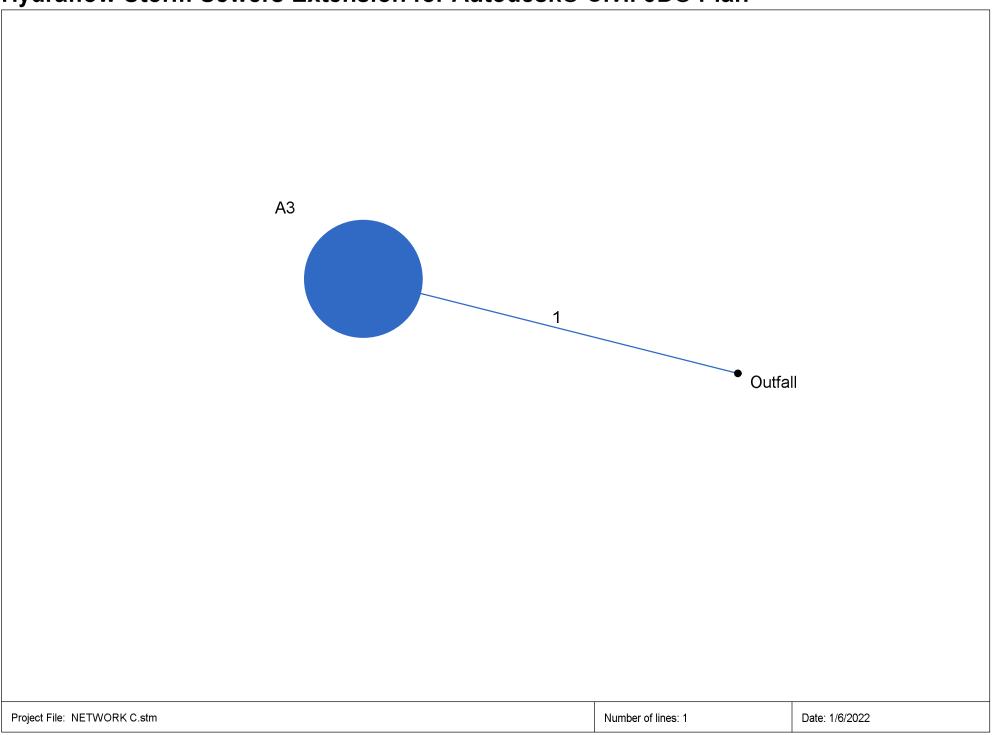
Storm Sewer Tabulation

Storm Sewer Profile

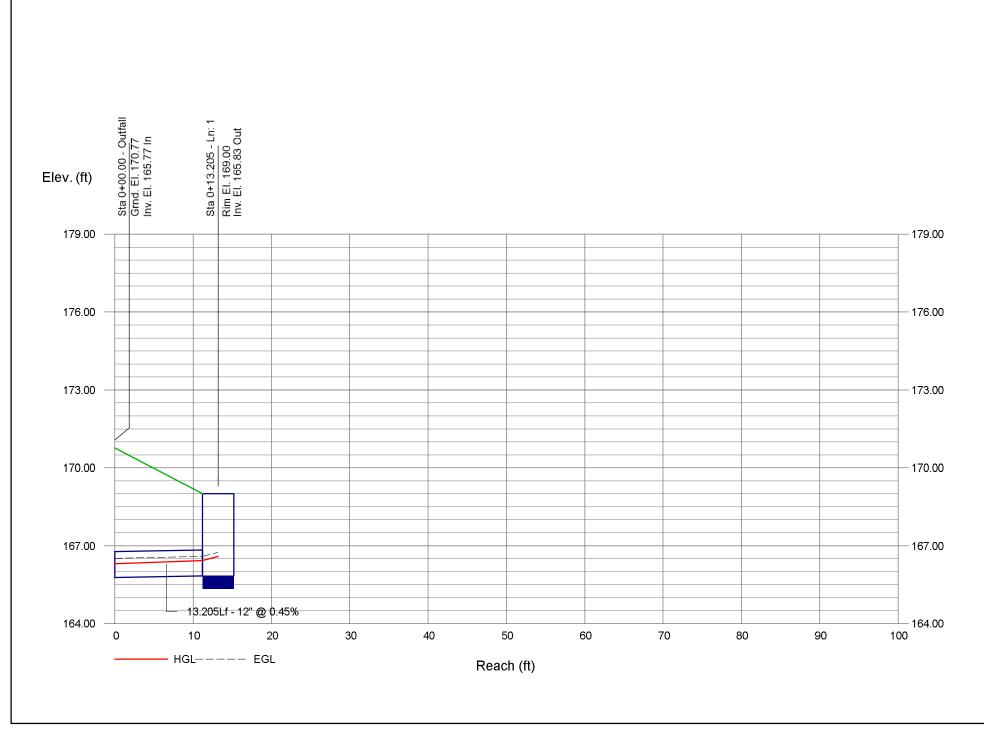
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

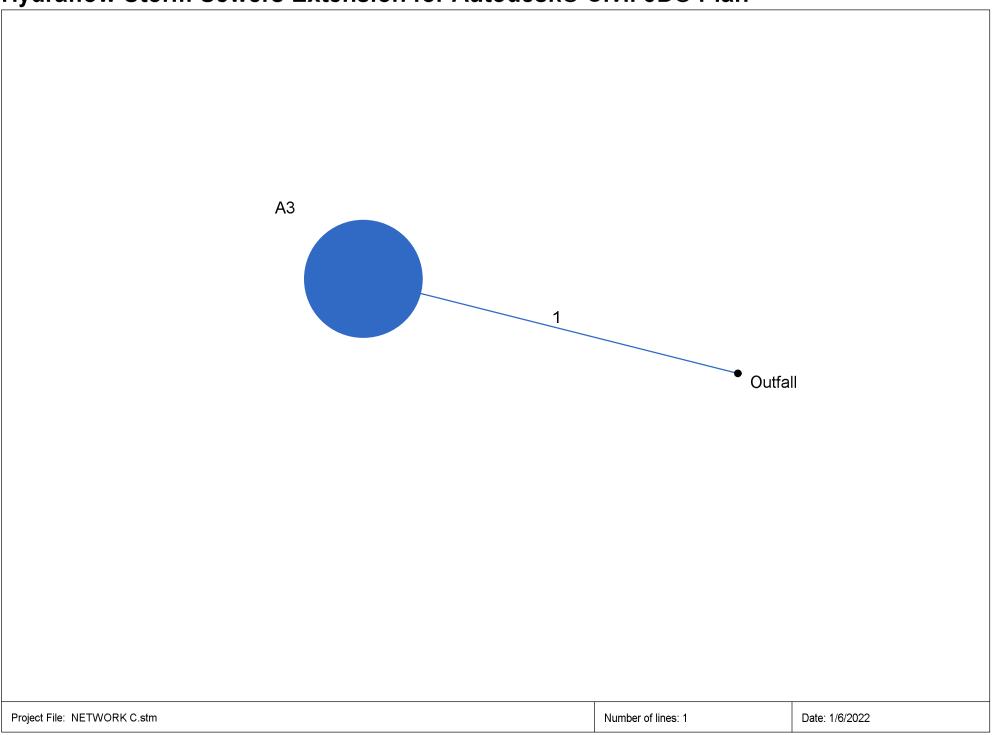


Statior	n	Len	Drng A	rea	Rnoff	Area x	С	Tc		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow			Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	11.410	0.55	0.55	0.26	0.14	0.14	6.0	6.0	7.5	1.08	2.36	1.37	12	0.44	165.78	165.83	168.48	168.49	0.00	169.00	Pipe - (434) (1) (1
Proie	ct File:	NETWO	DRK B.st	tm						1	l'	1			1	Number	of lines: 1		1	Run Dat	te: 1/6/202	2

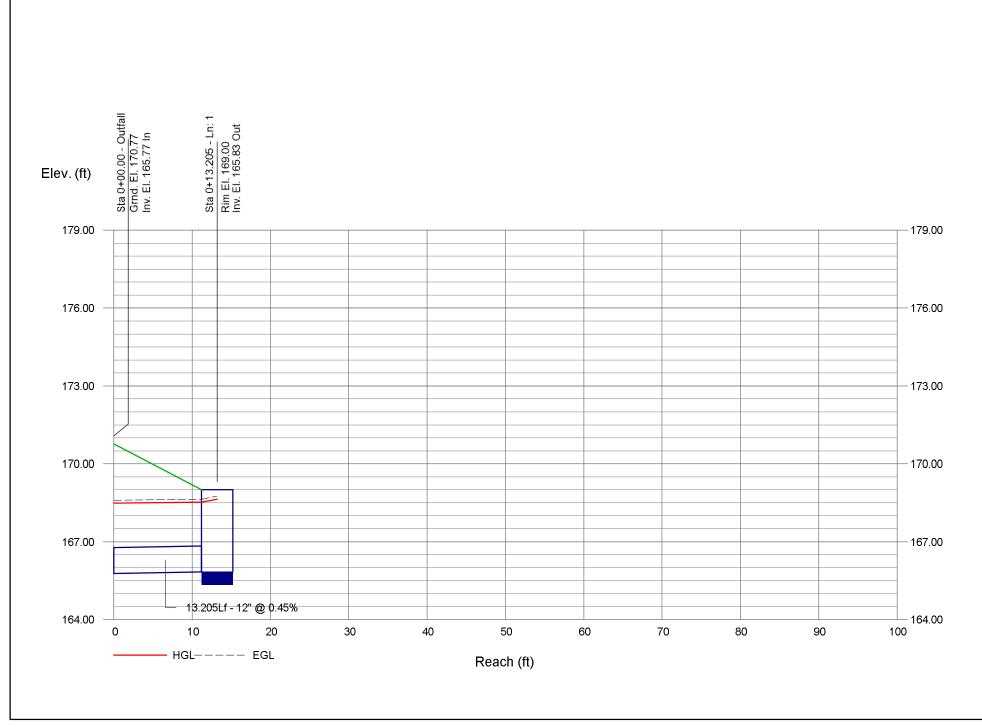

Storm Sewer Tabulation

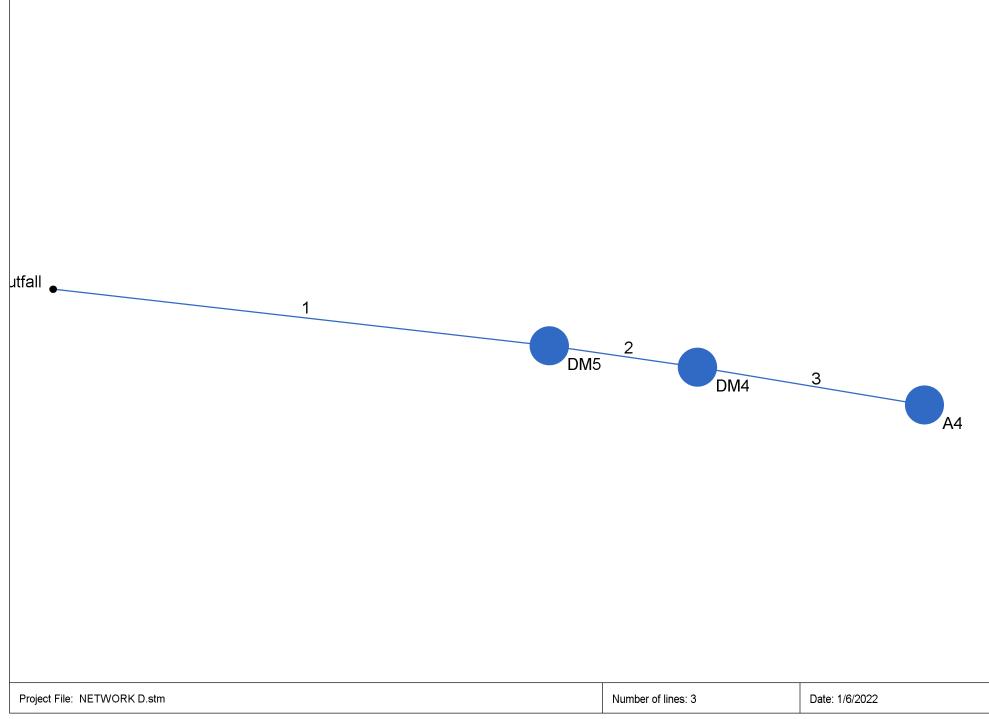
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

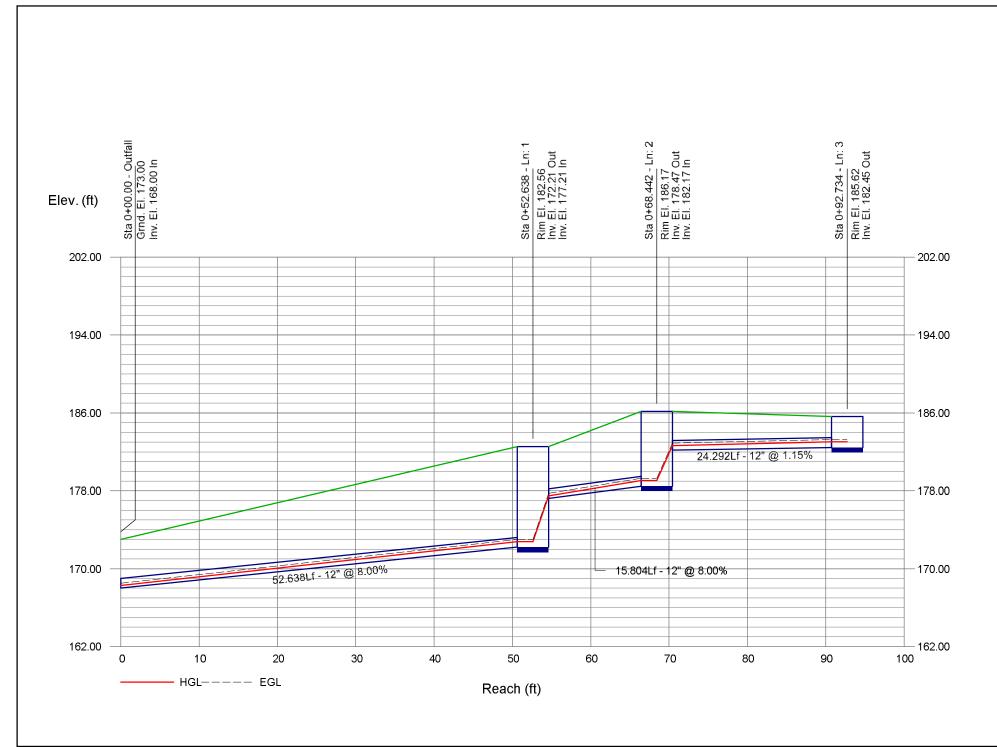

Storm Sewer Profile

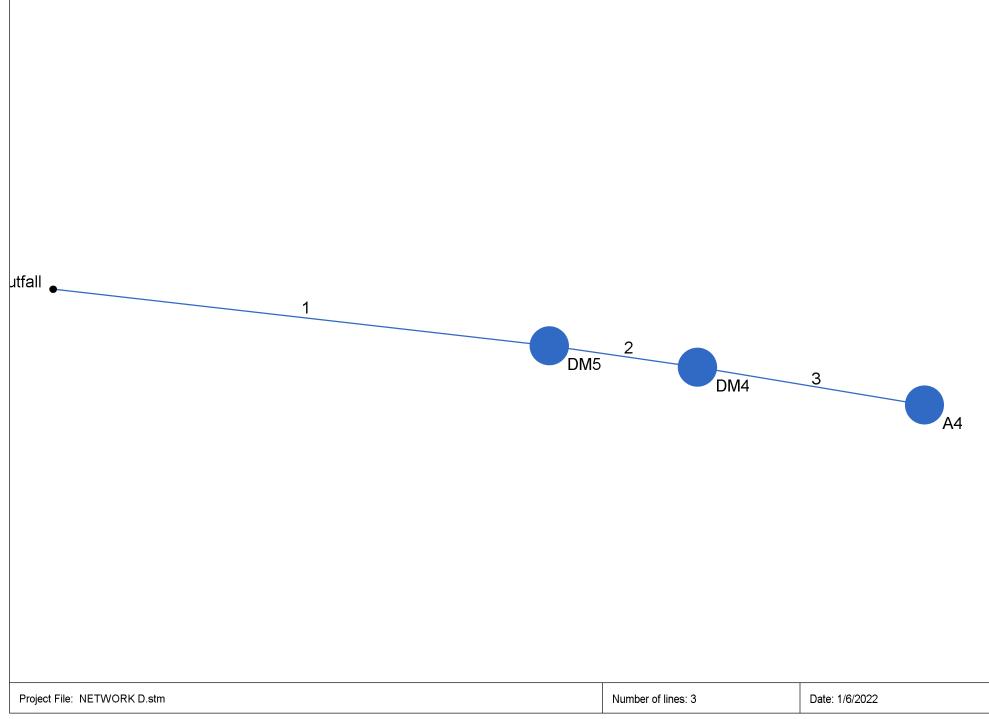


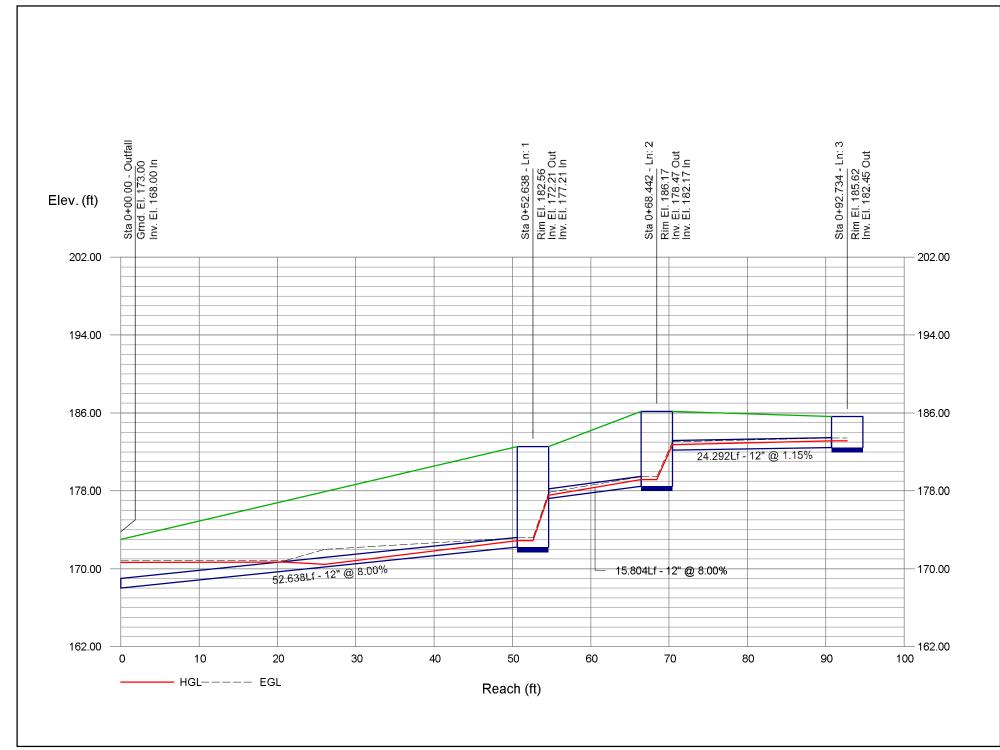
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

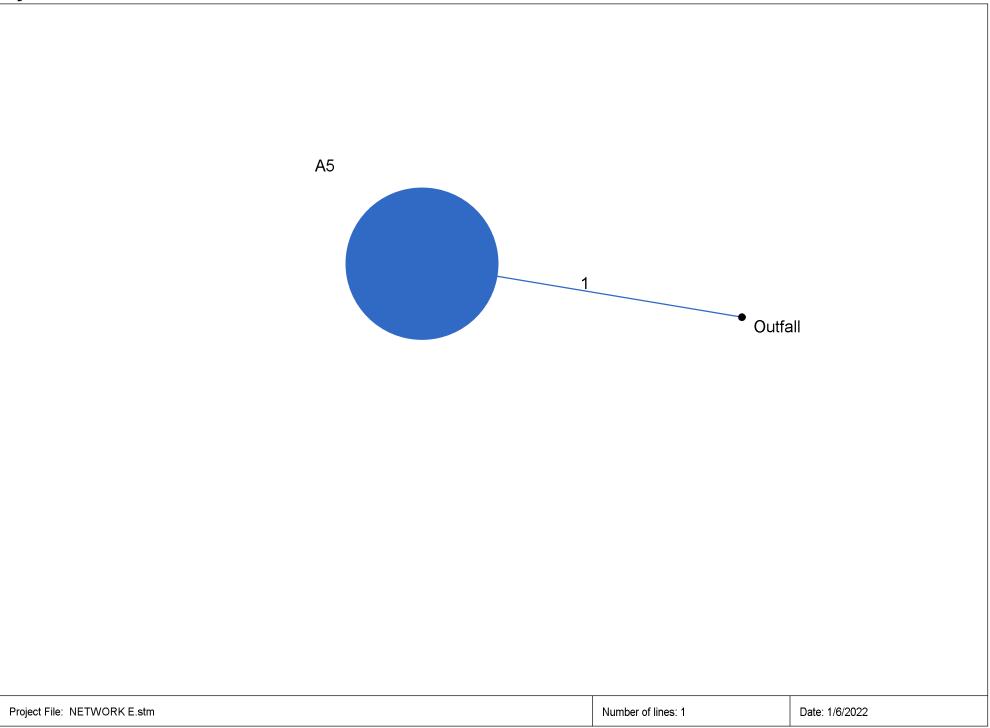

Statio	n	Len	Drng A	Area	Rnoff coeff	Area x	с	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	n Elev	Line ID
_ine	То		Incr	Total	coen	Incr	Total	Inlet	Syst	(1)	flow	fulİ		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	13.205	0.97	0.97	0.29	0.28	0.28	6.0	6.0	5.6	1.57	2.40	3.47	12	0.45	165.77	165.83	166.30	166.42	0.00	169.00	Pipe - (434) (1)
Proje	ct File:	NETWO	DRK C.s	stm												Number	of lines: 1			Run Dat	e: 1/6/202	2

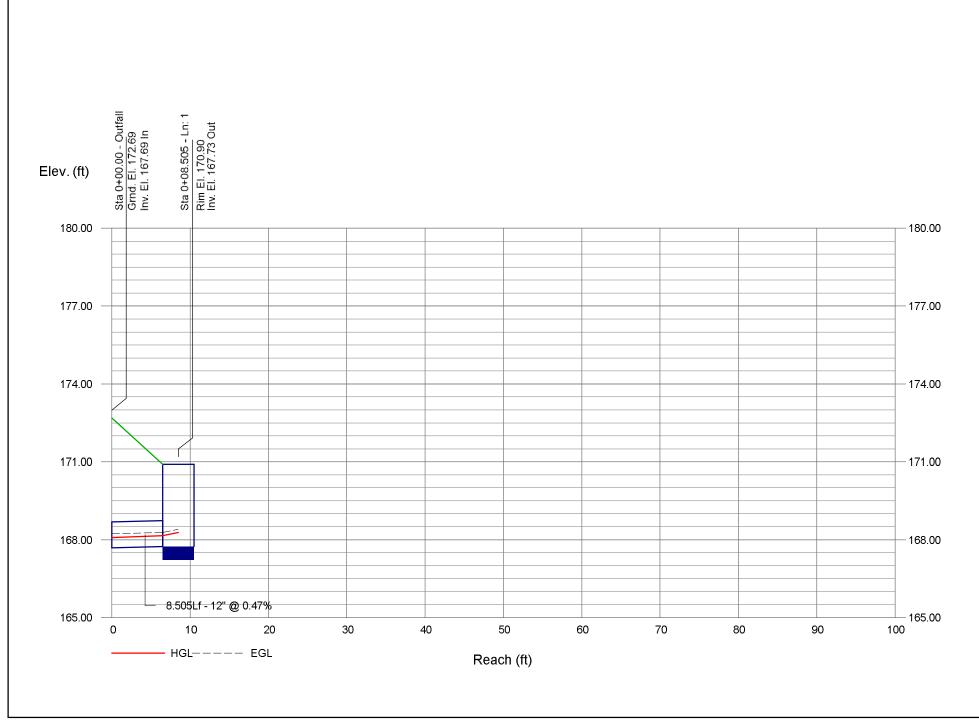


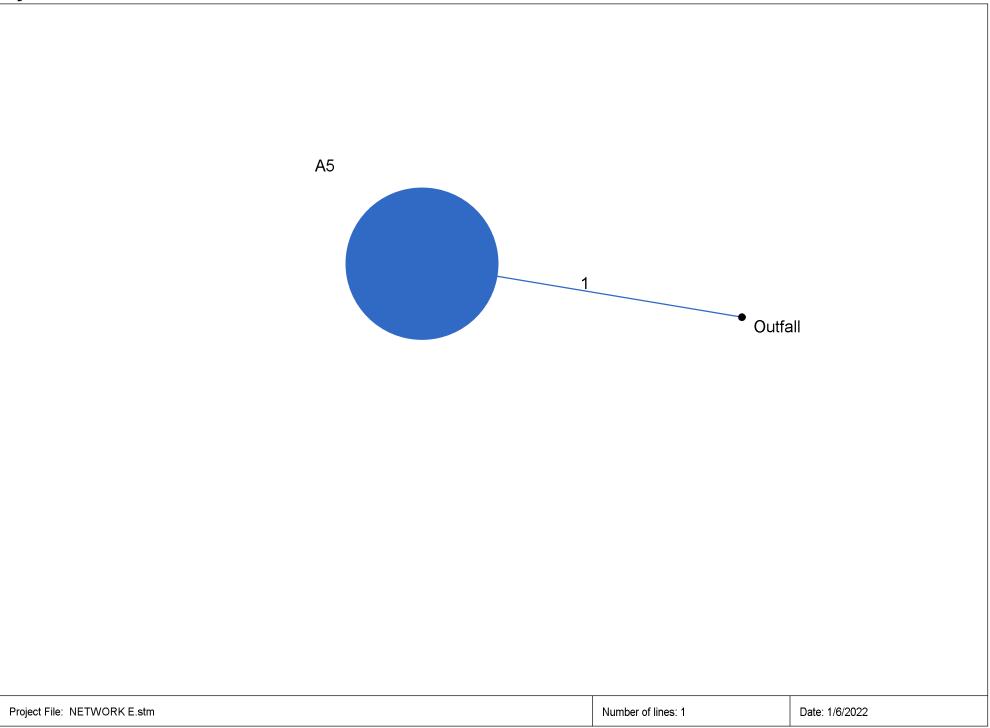

Statio	n	Len	Drng A	Area	Rnoff	Area x	С	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Rii	m Elev	Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	fulİ		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	13.205	0.97	0.97	0.29	0.28	0.28	6.0	6.0	7.5	2.12	2.40	2.70	12	0.45	165.77	165.83	168.48	168.53	0.00	169.00	Pipe - (434) (1)
Proie	ct File [.]	NETWO		stm												Number	of lines: 1			Run Dat	e: 1/6/202	2
				(Inlet time																	C. 110/202	<u> </u>

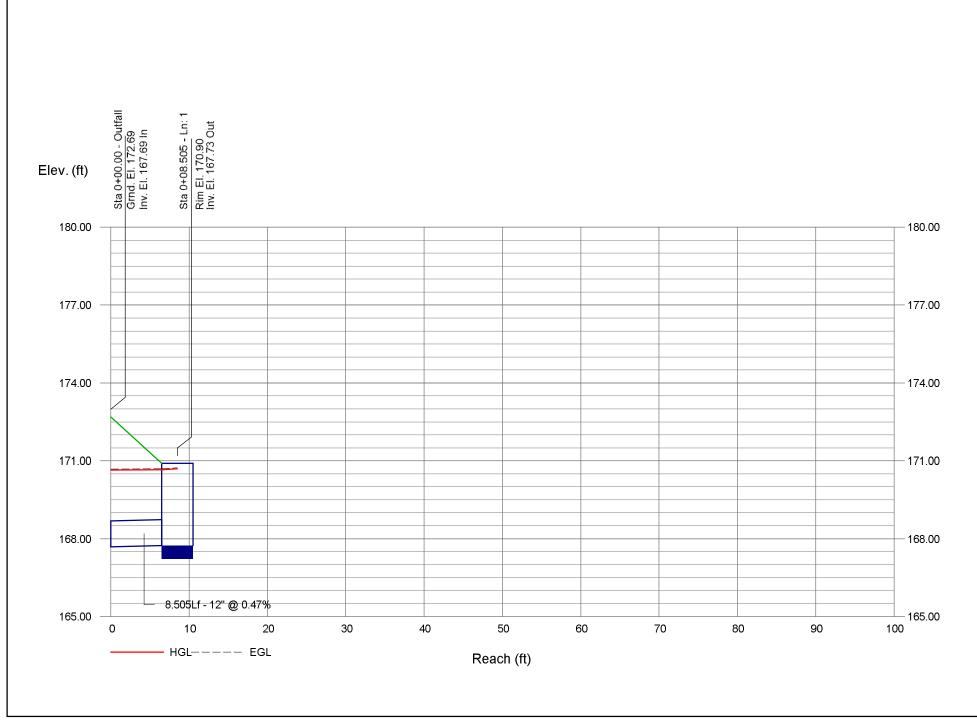

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)




Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
Line	To		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	52.638	0.00	0.72	0.00	0.00	0.32	0.0	6.1	5.6	1.80	10.07	6.79	12	8.00	168.00	172.21	168.29	172.78	0.00	182.56	Pipe - (430) (1)
2		15.804		0.72	0.00	0.00	0.32	0.0	6.1	5.6	1.80	10.07	6.79	12	8.00	177.21	178.47	177.50	179.05	182.56	186.17	Pipe - (430) (1) (1)
3		24.292		0.72	0.45	0.32	0.32	6.0	6.0	5.6	1.81	3.82		12	1.15	182.17	182.45	182.65	183.02	186.17		Pipe - (418)
Proie	ct File [.]	NETWO) DRK D st	l tm												Number	r of lines: 3			Run Da	te: 1/6/202	2
					40.75				Yrs. 10								51 11100. 0					




Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
Line	To		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	52.638	0.00	0.72	0.00	0.00	0.32	0.0	6.1	7.5	2.43	10.07	3.73	12	8.00	168.00	172.21	170.65	172.88	0.00	182.56	Pipe - (430) (1)
2	1	15.804		0.72	0.00	0.00	0.32	0.0	6.1	7.5	2.43	10.07	7.46	12	8.00	177.21	178.47	177.54	179.14	182.56	186.17	Pipe - (430) (1) (1)
3		24.292		0.72	0.45	0.32	0.32	6.0	6.0	7.5	2.44	3.82	4.77	12	1.15	182.17	182.45	182.75		186.17		Pipe - (418)
Proie	ct File [.]	NETWO		 tm												Number	of lines: 3			Run Dat	te: 1/6/202	 v2
									=Yrs. 10								or miles. J				IE. 1/0/202	.2


Line To Incr Total (ft) (ac) (ac) ((C)			let Sy: nin) (mi 5.0 6.0	rst iin) ((in/hr)		Cap full (cfs) 2.44					-		Up (ft)	Dn (ft)	Up (ft)	
(ft) (ac) (ac) (0.16										(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1 End 8.505 0.72 0.72	0.22	0.16	0.16 6	5.0 6.0	0	5.6	0.88	2.44	2.94	12								
										12	0.47	167.69	167.73	168.08	168.15	0.00	170.90	Pipe - (434) (1) (2
Project File: NETWORK E.stm	1	· ·	I	I	I	1		1	1	1	1	Number	of lines: 1	1	1	Run Dat	e: 1/6/202	2

Statior	n	Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total	Cap full	Vel	Pipe		Invert Ele	ev	HGL Elev	/	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	8.505	0.72	0.72	0.22	0.16	0.16	6.0	6.0	7.5	1.19	2.44	1.52	12	0.47	167.69	167.73	170.65	170.66	0.00	170.90	Pipe - (434) (1) (2)
Proje	ct File:	NETWO	DRK E.st	im	<u>I</u>	1		ļ	1	1	ļ	1	1	1	1	Number	of lines: 1		1	Run Dat	e: 1/6/202	2
			97.93 / (I		+ 22 50	1 1 0 08	· Doturn	period -	-Vre 100		oir e = e	llin h - k										

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

SECTION 8 – PROJECT PLANS (Under Separate Cover)