DRAINAGE CALCULATIONS AND STORMWATER MANAGEMENT PLAN

For:

JACKSON SQUARE ASSESSORS PARCEL IDs 23-253-14, 16, 17 23-305-1,4,9,10,11 23-306-11

WEYMOUTH, MASSACHUSETTS

Located:

JACKSON SQUARE WEYMOUTH, MASSACHUSETTS

Submitted to:

TOWN OF WEYMOUTH

Prepared For:

IRAKIS N. PAPACHRISTOS, MANAGER 864, 909, 910 BROAD STREET LLCs AND 1409 COMMERCIAL STREET 1 FRANKLIN STREET BOSTON, MASSACHUSETTS 02110

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4,2023 Revised September 6, 2023

TABLE OF CONTENTS

1.	NAF	RATIVE	<u>Page</u>
	•	Project Summary	1
	•	Pre-Development Condition	1
	•	Post-Development Condition	2
	•	Stormwater Best Management Practices (BMP's)	3
	•	Erosion and Sedimentation Control	3
	•	Compliance with Stormwater Management Standards	3
	•	Figure 1 (USGS Locus Map)	8
	•	Figure 2 (FEMA Flood Map)	9
	•	Figure 3 (NRCS Soils Map)	10
	•	Figure 4 (NHESP Map)	11

2. APPENDICES

•	APPENDIX A:	Pre-Development Condition
•	APPENDIX B:	Post Development Condition
•	APPENDIX C:	Checklist for Stormwater Report
•	APPENDIX D:	Illicit Discharge Compliance Statement Supplemental BMP Calculations
•	APPENDIX E:	Soil Testing Data
	APPENDIX F:	Best Management Practices Operation & Maintenance Plans

Drainage Calculations and Stormwater Management Plan Jackson Square Weymouth, Massachusetts

Project Summary

The project proponent, Irakis N. Papachristos, Manager of 864, 909, 910 Broad Street LLcs and 1409 Commercial Street proposes to re-develop Jackson Square in Weymouth, Massachusetts comprising four sites A-D, as shown on the Weymouth Assessor's Map with the following Parcel Numbers, comprising approximately 1.90 acres.

Site	Assessor's Parcel Number
	APN
A	23-253-14
	23-253-16
В	23-253-17
С	23-305-1
	23-305-4
	23-305-9
	23-305-10
	23-305-11
D	23-306-11

The entire project site is located within the Jackson Square Overlay District, with sites A, C & D within the Lower Jackson Square (LJSD) subdistrict and Site B within the Upper Jackson Square (UJSD) sub-district.

The proposed redevelopment will consist of razing existing structures, constructing multistory mixed-use buildings, asphalt parking/access roadways, installing subsurface stormwater management systems, utilities, site grading, and landscaping.

This report contains stormwater runoff calculations for the pre-development and postdevelopment conditions and includes the sizing of the proposed stormwater best management practices (BMPs).

Refer to Figure 1- USGS Locus Map for the parcel's location.

Pre-Development Condition

Site A

The parcels are currently developed with a funeral parlor, law office, barber shop, and tanning salon with bituminous concrete parking areas. The site has frontage on Broad Street to the south. It is bordered by developed commercial property, The Congregational Church of East Weymouth to the west, Lovell Field to the north and east, and undeveloped woodlands at the rear of the parcel.

The existing topography ranges in elevation from approximately 42 feet. (Weymouth Vertical Datum) in the southwest portion of the site to an elevation of approximately 18 feet. (Weymouth Vertical Datum) in the northwest portion of the site. The parcel slopes northerly from its southwest boundary to an existing low point on-site and the abutting parcel to the west.

Site B

The parcel is currently developed with multi-use residential properties with gravel parking areas to the north. The site has frontage on Broad Street to the south, bordered by Lovell Field to the north and Herring Run Brook to the east.

The existing topography ranges in elevation from approximately 29 feet. (Weymouth Vertical Datum) in the southwest portion of the site to an elevation of approximately 22 feet. (Weymouth Vertical Datum) in the northeast portion of the site, which abuts Lovell Field and Herring Run Brook. The parcel slopes northeasterly from its southwest boundary to Lovell Field.

Site C

The parcels are currently developed with multi-use residential properties and a restaurant with bituminous concrete parking to the southwest. The site has frontage on Broad Street to the north and Commercial Street to the southwest and is bordered by commercial properties and Herring Run Brook and Herring Run Pool Park to the east.

The existing topography ranges in elevation from approximately 37 feet. (Weymouth Vertical Datum) in the site's western portion (Broad Street/Commercial Street intersection) to an elevation of approximately 27 feet. (Weymouth Vertical Datum) in the eastern part of the site, which abuts Herring Run Brook. The parcel slopes easterly from its western boundary to Herring Brook and north to Broad Street.

Site D

The site is currently developed with a dry cleaner and tailor retail store with bituminous concrete parking to the north. The site has frontage on Commercial Street to the north, bordered by the United States Post Office – East Weymouth location to the west and a single-family residence and Herring Run Brook to the east.

The existing topography ranges in elevation from approximately 47 feet. (Weymouth Vertical Datum) in the site's southern portion to an elevation of approximately 30 feet. (Weymouth Vertical Datum) in the northern part of the site, which abuts Commercial Street. The parcel slopes northernly from its southern boundary to Commercial Street.

Refer to Figure 1- USGS Locus Map for the Project's location (Sites A-D).

Wetland resource areas jurisdictional under the Massachusetts Wetlands Protection Act Regulations (WPA) (310 CMR 10.00) and Weymouth Wetlands Protection Ordinance (WWPO) include the inland bank resource area associated with Herring Run Brook to the east of Sites B, C, and D. The 200-ft. Riverfront Area extends onto all four (4) sites.

Herring Run Brook is a major tributary to the Weymouth Back River and is an active herring run. Herring begin their journey up the Back River through Herring Run Brook up to Whitman Pond. Herring rest at the Herring Run Pool Park before they start the next segment to Whitman Pond.

A review of available environmental databases such as MassGIS reveals that the site is not located within a mapped Natural Heritage Area, a Zone II Groundwater Recharge Area, the City of Weymouth Aquifer Protection District Zone, an Interim Wellhead Protection Area (IWPA). Herring Brook is classified as an ORW; therefore, the site is or a Contributing Watershed to Outstanding Resource Water (ORW).

A portion of the project site is located within LOMR Zone AE Special Flood Hazard Area (Elevation 26.63 Weymouth Datum) with the remaining portions located within Zone A 1% AEP and Zone X 0.2% AEP. Refer to Figure 2 – FEMA Flood Map.

The Natural Resources Conservation Service (NRCS) has identified the soil on the site as 103B, Charlton-Hollis-Rock outcrop complex, 3 to 8% slopes with hydrologic soil group (HSG) A, 602, Urban land, 0 to 15% slopes, 655, Udorthents, wet substratum and does not further categorize the soil in terms of permeability or presence of groundwater. Soil testing conducted by McKenzie Engineering Group, Inc. (MEG) on February 8, 2023, at Sites A & B identified the soils as sand and loamy sand. Refer to Figure 3 - Soil Map for the NRCS delineation of soil types and Appendix E – Soil Testing Results for supporting data.

The existing watershed for Sites A and B analyzed in this report is comprised of approximately 4.579 acres, including the subject parcel and offsite tributary areas to the east, west, north, and south. The watershed consists of one sub-catchment area, the existing swale located within Lovell Field.

The existing watershed for Site C analyzed in this report is comprised of approximately 0.611 acres, including the subject parcel and offsite tributary areas to the east. The watershed consists of two sub-catchment areas, the north property line with Broad Street and Herring Brook to the east.

The existing watershed for Site D analyzed in this report is comprised of approximately 0.393 acres, including the subject parcel and offsite tributary areas to the southwest. The watershed has one sub-catchment area, the north property line with Commercial Street.

Refer to the Pre-Development Watershed Plan WS-1 in Appendix A for delineating drainage sub-catchments for the pre-development design condition.

The SCS Technical Release 20 (TR-20) and Technical Release 55 (TR-55) methodbased program "HydroCAD" was employed to develop pre- and post-development peak flows. Drainage calculations were prepared for the pre-development condition for the 2, 10, 25, and 100-year Type III storm events. Refer to Appendix A for computer results, soil characteristics, cover descriptions, and times of concentrations for all subareas.

Post-Development Condition

Site A

The proposed redevelopment will consist of demolishing existing structures and constructing a five-story mixed-use building with 83,290 square feet of basement-level parking, 2,200 square feet of commercial space, and 64 residential units totaling 71,700 square feet on five stories. Access to the parking garage will be off the existing parking lot within Lovell Field. Construction includes installing a subsurface stormwater management system, utilities, retaining walls, site grading, and landscaping.

Site B

The proposed redevelopment will consist of demolishing existing structures and constructing a four-story mixed-use building with 4,300 square feet of restaurant space, 1,335 square feet of commercial space, and 42 residential units totaling 36,470 square feet on four stories. Construction includes installing a subsurface stormwater management system, utilities, site grading, and landscaping.

Site C

The proposed redevelopment will consist of demolishing existing structures and constructing a five-story mixed-use building with 11,505 square feet of ground-level parking, 1,625 square feet of restaurant space, 1,350 square feet of commercial space, and 63 residential units totaling 63,535 square feet on five stories. Access to the parking garage will be off Commercial Street. Construction includes installing a subsurface stormwater management system, utilities, retaining walls, site grading, and landscaping.

Site D

The proposed redevelopment will consist of demolishing existing structures and constructing a five-story mixed-use building with 5,170 square feet of ground-level parking, 490 square feet of commercial space, and 31 residential units totaling 25,370 square feet on five stories. Access to the parking garage will be off Commercial Street. Construction includes installing a subsurface stormwater management system, utilities, retaining walls, site grading, and landscaping.

Watershed areas were analyzed in the post-development condition to design low-impact stormwater management facilities to mitigate impacts resulting from re-developing the property. The objective in designing the proposed drainage facilities for the Project is to maintain existing drainage patterns to the extent practicable and to ensure that the postdevelopment rates of runoff are less than pre-development rates at the design points.

Refer to the Post-Development Watershed Plan WS-2 in Appendix B for a delineation of post-development drainage subareas. The design points for the post-development design conditions correspond to those analyzed for the pre-development design condition.

As required, parking within buildings will drain to oil/sediment traps before discharge into the municipal sewer system.

Refer to the site plans for the drainage system design. A comprehensive Construction Phase Pollution Prevention and Erosion Control Plan and Post-Development BMP Operation and Maintenance Plan shall support all BMPs.

Drainage calculations were prepared by employing the SCS TR-20 Methods for the 2, 10, 25 and 100-year, type III storm events. Refer to Appendix B for computer results.

Stormwater Best Management Practices (BMP's)

The treatment stream for the redevelopment shall consist of proprietary pretreatment units, subsurface infiltration tank and chamber systems, a bio-retention/rain garden, porous pavement to remove at least 80% of the total suspended solids (TSS) and mitigate the anticipated pollutant loading.

Refer to the TSS Removal Worksheets in Appendix D for TSS removal rates.

Erosion and Sedimentation Controls

Compost filter tube (Silt sock) erosion control barriers will be placed at the limit of work prior to the commencement of any construction activity. The integrity of the silt sock will be maintained by periodic inspection and replacement as necessary. The silt sock will remain in place until the first course of pavement has been placed, all side slopes have been loamed and seeded, and vegetation has been established. Refer to the Erosion Control details on the Site Development Plans and BMP Operation and Maintenance Plan for proposed erosion control measures to be employed for the Project.

Compliance with Stormwater Management Standards

Standard 1 – No New Untreated Discharges

The proposed redevelopment will not introduce any new untreated discharges to a wetland area or the Commonwealth of Massachusetts waters. All discharges from the project site will be treated through proposed stormwater quality controls such as pretreatment structures, subsurface infiltration tank and chamber systems and a bio-retention/rain garded, including establishing proper maintenance procedures.

Standard 2 – Peak Rate Attenuation

Drainage calculations were performed using SCS TR-20 methods for the 2, 10, 25, and 100-year Type III storm events. Refer to Appendix A and B for computer results. All drainage structures will be designed employing the Rational Method and the Mass. DPW Design Manual to accommodate peak flows generated by a minimum of a 25-year storm event or a 100-year storm event where applicable. The stormwater management systems were designed to accommodate peak flows generated by a 100-year storm event.

The peak rates of runoff are as follows:

Sites A and B

Pre-Development vs. Post-Development Peak Rates of Runoff

Design Point	<u>2 Year S</u> (3.22 Inc		<u>10 Year (4.86 Inc</u>		25 Year Storm (6.15 Inches)		<u>100 Year Storm</u> (8.80 Inches)	
	Exist. (CFS)	Prop. (CFS)	Exist. (CFS)	Prop. (CFS)	Exist. (CFS)	Prop. (CFS)	Exist. (CFS)	Prop. (CFS)
Design Point 1	4.37	4.01	7.69	7.22	9.62	9.23	13.10	13.11

Site C

Pre-Development vs. Post-Development Peak Rates of Runoff

	<u>2 Year Storm</u>		10 Year Storm		25 Year Storm		100 Year Storm		
Design	(3.22 Inc	hes)	(4.86 Inches)		(6.15 Inches)		(8.80 Inches)		
Point									
	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	
	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	
Design									
Point 1	1.65	1.51	2.53	2.37	3.21	3.06	4.61	4.46	
Design									
Point 2	0.17	0.14	0.28	0.25	0.36	0.33	0.52	0.50	

Site D

Pre-Development vs. Post-Development Peak Rates of Runoff

Design Point	<u>2 Year S</u> (3.22 Inc		<u>10 Year (4.86 Inc</u>		<u>25 Year Storm</u> (6.15 Inches)		<u>100 Year Storm</u> (8.80 Inches)	
	Exist. (CFS)	Prop. (CFS)	Exist. (CFS)	Prop. (CFS)	Exist. (CFS)	Prop. (CFS)	Exist. (CFS)	Prop. (CFS)
Design Point 1	0.69	0.68	1.14	1.13	1.49	1.50	2.88	2.66

A comparison of the pre-development and post-development peak rates of runoff indicates that the peak rates of runoff for the post-development condition will be equal to or less than the pre-development condition for all storm events.

Sites A & B

Pre-Development vs. Post-Development Volumes of Runoff

Design	<u>2 Year S</u>		<u>10 Year Storm</u>		25 Year Storm		<u>100 Year Storm</u>	
Point	(3.22 Inc		(4.86 Inches)		(6.15 Inches)		(8.80 Inches)	
	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.
	(AC-	(AC-	(AC-	(AC-	(AC-	(AC-	(AC-	(AC-
	FT)	FT)	FT)	FT)	FT)	FT)	FT)	FT)
Design Point 1	0.349	0.393	0.643	0.717	0.894	0.989	1.441	1.653

<u></u>									
	2 Year Storm		10 Year	10 Year Storm		25 Year Storm		100 Year Storm	
Design	(3.22 In	ches)	(4.86 In	(4.86 Inches)		(6.15 Inches)		(8.80 Inches)	
Point									
	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	
	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	
Design									
Point 1	14.94	14.89	15.47	15.39	15.97	15.85	16.99	16.99	
Exist.									
Swale/Basin									

Pre-Development vs. Post-Development Peak Surface Elevations

Site C

Pre-Development vs. Post-Development Volumes of Runoff

Design Point	Design (3.22 Inches) (<u>10 Year Storm</u> (4.86 Inches)		25 Year Storm (6.15 Inches)		<u>100 Year Storm</u> (8.80 Inches)	
	Exist. (AC- FT)	Prop. (AC- FT)	Exist. (AC- FT)	Prop. (AC- FT)	Exist. (AC- FT)	Prop. (AC- FT)	Exist. (AC- FT)	Prop. (AC- FT)	
Design Point 1	0.131	0.123	0.206	0.196	0.265	0.253	0.372	0.372	
Design Point 2	0.013	0.011	0.021	0.018	0.028	0.025	0.042	0.038	

Site D

Pre-Development vs. Post-Development Volumes of Runoff

Design Point	2 Year Storm (3.22 Inches)		<u>10 Year Storm</u> (4.86 Inches)		25 Year Storm (6.15 Inches)		<u>100 Year Storm</u> (8.80 Inches)	
	Exist. (AC- FT)	Prop. (AC- FT)	Exist. (AC- FT)	Prop. (AC- FT)	Exist. (AC- FT)	Prop. (AC- FT)	Exist. (AC- FT)	Prop. (AC-FT)
Design Point 1	0.053	0.065	0.098	0.113	0.136	0.151	0.219	0.234

Standard 3 – Groundwater Recharge

Sites A and Site B

The runoff will be infiltrated by subsurface infiltration tanks and chambers, which will meet the Stormwater Guidelines for infiltration:

- Infiltration structures will be a minimum of two (2) feet above seasonal high groundwater.
- Utilize the "Static" method for sizing the storage volume, which assumes that there is no exfiltration until the entire recharge volume is filled to the elevation associated with the Required Recharge Volume.
- Hydraulic conductivity is based on soil data from the Geotechnical Report and values developed from Rawls, Brakensiek, and Saxton, 1982, Estimation of Soil Water Properties, *Transactions of the American Society of Agricultural Engineers*, vol.25, no. 5.
- Refer to Appendix D for infiltration and drawdown calculations and Appendix E for soil data.

Sites	Soil Type	Target Depth Factor (F) (in)	Total Impervious Area (sf)	Required Recharge Volume (cf) ¹	Provided Recharge Volume (cf) ²
A & B	А	0.60	11,378		
	С	0.25	34,078		
				1,279 (1,825 ADJ.)	3,707

Groundwater Recharge Volume

1. Required Recharge volume = Target Depth Factor x Impervious Area [Static Method] (Refer to supplemental calculations in Appendix D)

2. Provided recharge volume = volume Provided from Bottom of System to lowest invert elevation.

Per Standard 3, if stormwater runoff from less than 100% of the site's impervious cover is directed to the BMP intended to infiltrate the Required Recharge Volume, then the storage capacity of the infiltration BMP needs to be increased so that the BMP can capture more of the runoff from the impervious surfaces located with the contributing drainage area. The impervious cover directed towards the infiltration system is 70.06%; therefore, a capture area adjustment of 1.43 Is required. Refer to Appendix D for Capture Area Adjustment calculations.

The infiltration tank and chamber systems will provide both water quality treatment and recharge. Per Standard 4, Water Quality, the BMP must be sized to treat or hold the Target Volume, the larger of the Required Water Quality Volume, and the Required Recharge Volume. The Required Water Quality Volume is based on the one inch of runoff, and the Required Recharge Volume is based on 0.60-inches (Soil Type A) and 0.25-inches (Soil Type C); one inch is greater than 0.60 inches and 0.25 inches, therefore the Target Volume is the Required Water Quality Volume of 3,788 cubic feet. Refer to Appendix D for supplemental calculations.

The proposed subsurface infiltration systems have been designed to drain completely within 72 hours. The drawdown analysis is based on the required recharge volume exfiltrating at the Rawls Rates based on the soil textural analysis conducted at the proposed exfiltration location. Refer to Appendix D for calculations.

Sites C & D

Stormwater recharge is provided through the reduction of impervious areas. Therefore, the Project complies with Standard 3.

The impervious area for post-development conditions vs. existing conditions is as follows:

Site C - Existing vs Proposed Impervious Surfaces

	Exiting Conditions	Proposed Conditions
Impervious Area	22,298 SF	20,503 SF
Delta		-1,795 SF

Impervious areas- roofs, pavement, handicap ramp, walls

Site D - Existing vs Proposed Impervious Surfaces

	Exiting Conditions	Proposed Conditions
Impervious Area	7,639 SF	7,482 SF
Delta		-1,57 SF

Impervious areas- roofs, pavement, handicap ramp, walls

<u>Standard 4 – Water Quality</u>

A Long-Term Pollution Prevention Plan has been incorporated into the Post-Development Operation and Maintenance Plan. Refer to Appendix E for BMP Operation and Maintenance Plans.

All stormwater management systems for the site are designed to comply with the DEP Stormwater Management Policy.

Sites A & B

A treatment stream consisting of a proprietary pretreatment separator unit and a subsurface infiltration tank system will be employed to remove 80% of total suspended solids. Refer to the TSS Removal Worksheets in Appendix D for TSS removal rates.

Site C

A treatment stream consisting of bio-retention/rain garden with a sediment forebay will be employed to remove 80% of total suspended solids. Refer to the TSS Removal Worksheets in Appendix D for TSS removal rates.

Site D

A treatment stream consisting of a proprietary pretreatment separator unit will be employed to remove 80% of total suspended solids. Refer to the TSS Removal Worksheets in Appendix D for TSS removal rates.

Water Quality Treatment Volume

	Required	Proposed			
Site	WQ Volume (cf)	WQ Volume (cf)			
A & B	3,788		Subsurface infiltration system with pretreatment		
с	1,672		Bio-retention with sediment forebay		
D	588		Stormceptor STC 16000		

Standard 5 – Land Use with Higher Potential Pollutant Loads (LUHPPL)

The proposed Project does not include land uses with higher potential pollutant loads. Not Applicable.

Standard 6 – Critical Areas

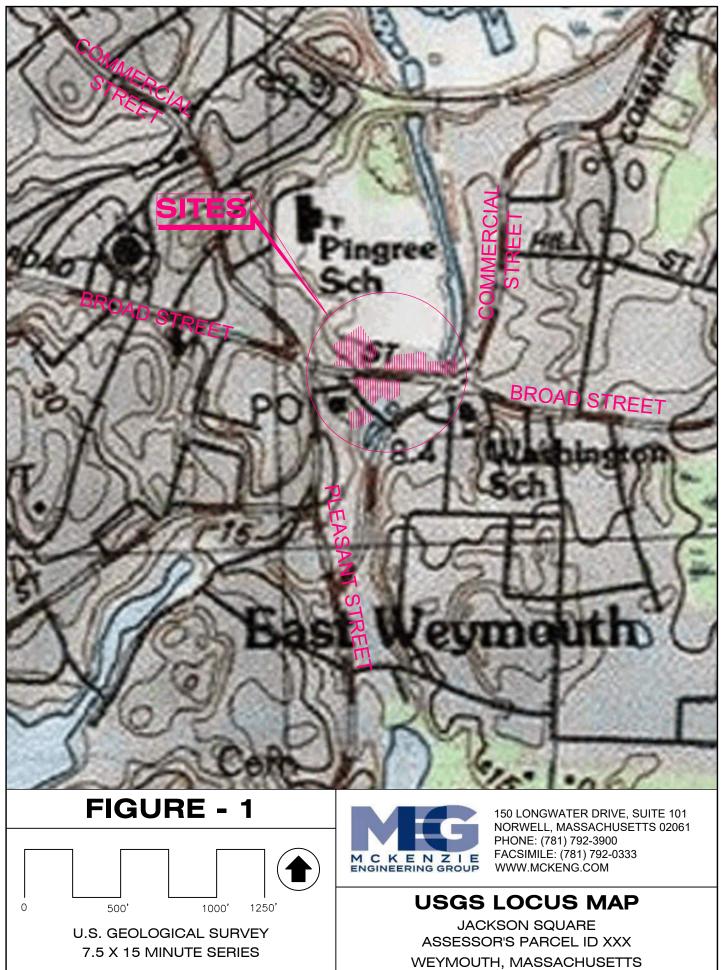
The site discharges to Outstanding Resource Waters which is considered a Critical Area under the Stormwater Management Standards. Stormwater discharges near or to any critical areas require specific source control and pollution prevention measures. The selected stormwater BMPs are consistent with Table CA 2: Standard 6 in the Stormwater Management Handbook. Stormwater infiltration BMPs are preceded by pretreatment BMPs which achieve a minimum of 44% TSS removal. In addition, the stormwater discharges are set back from the wetlands consistent with Table CA 2.

Standard 7 - Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

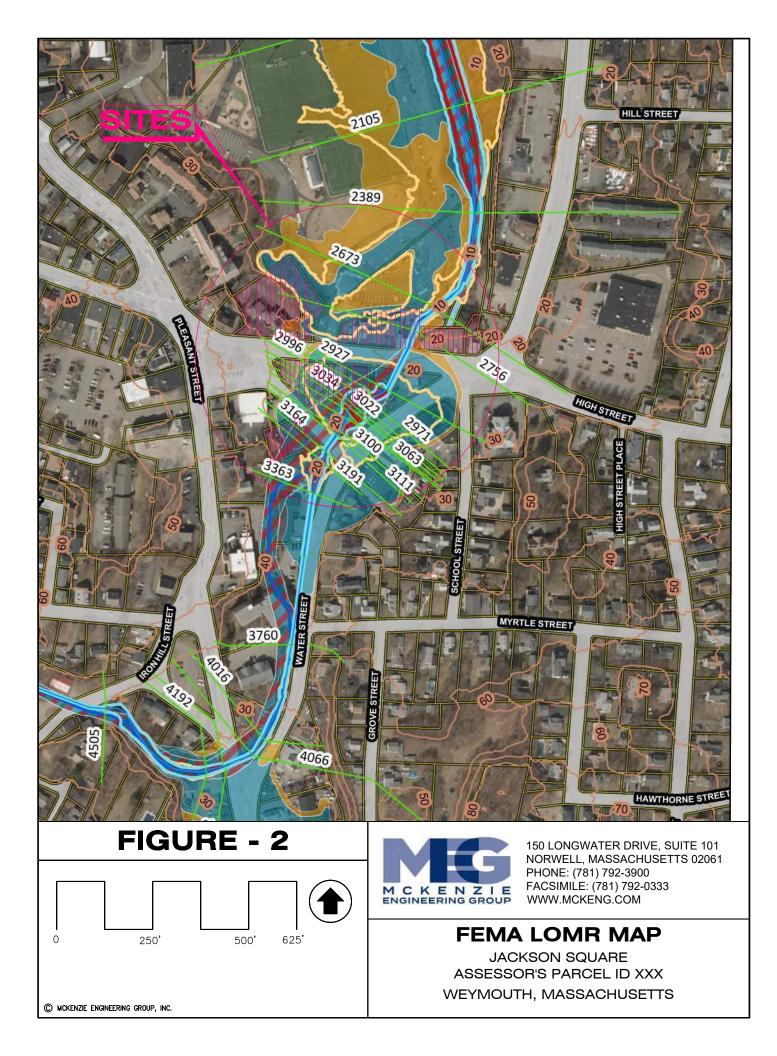
For sites C and D, the proposed Project can be considered a redevelopment project and meets the Stormwater Management Standards to the maximum extent practicable.

<u>Standard 8 – Construction Period Pollution Prevention and Erosion and Sedimentation</u> <u>Control</u>

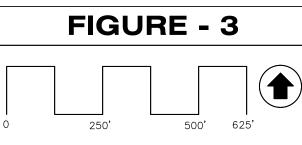
The Project will require an NPDES Construction General Permit, but the Stormwater Pollution Prevention Plan (SWPPP) has not been submitted. The SWPPP will be submitted before any proposed construction. A Construction Phase BMP Operation and Maintenance Plan will be provided as a basis for the SWPPP during the final design.


Standard 9 – Operation and Maintenance Plan

The Long-Term Operation and Maintenance Plan is provided in Appendix F.

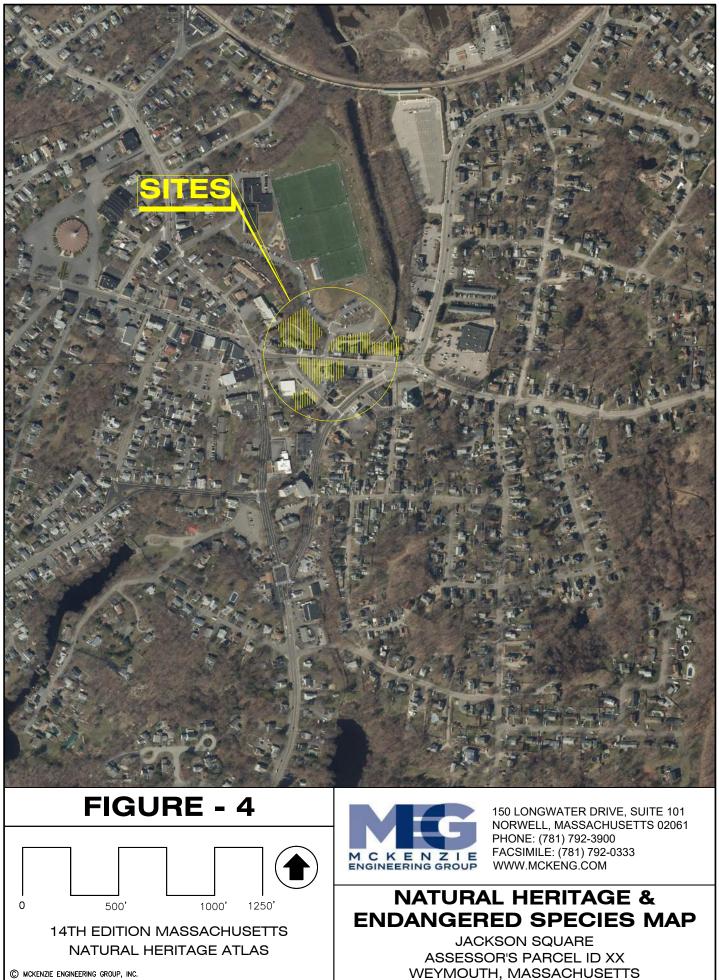

Standard 10 – Prohibition of Illicit Discharges

No illicit discharges are anticipated on site. An Illicit Discharge Compliance Statement will be submitted prior to the discharge of any stormwater to the post-construction best management practices. The Long-Term Pollution Prevention Plan will include measures to prevent illicit discharges.


C MCKENZIE ENGINEERING GROUP, INC.

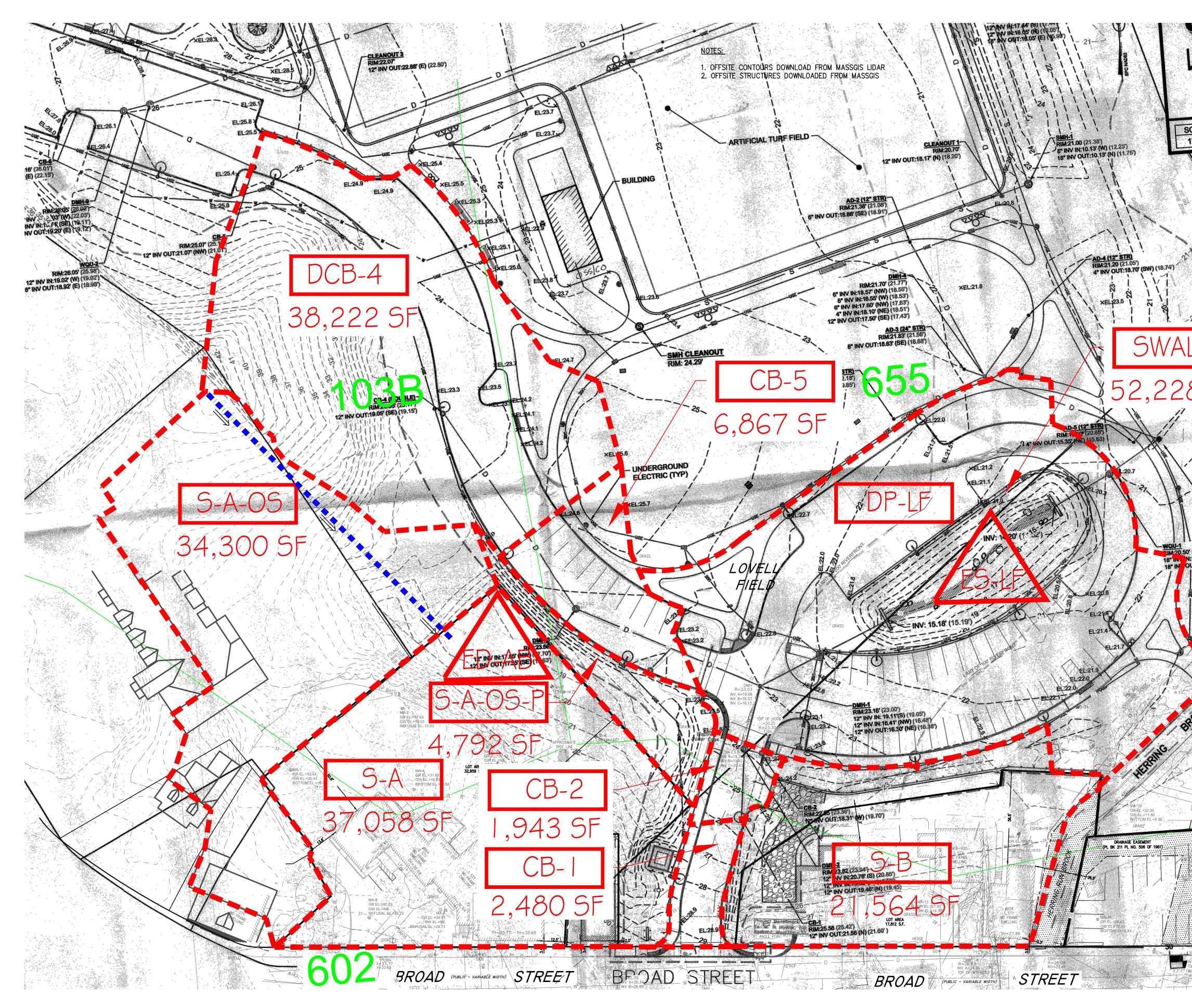
SOIL KEY

SOIL CLASSIFICATION	DESCRIPTION	HYDROLOGIC SOIL GROUP
103B	CHARLTON-HOLLIS-ROCK OUTCROP COMPLEX, 3 TO 8 PERCENT SLOPES	A
602	URBAN LAND, 0 TO 15 PERCENT SLOPES	ASSUMED C
626B	MERIMMAC-URBAN LAND COMPLEX, 0 TO 8 PERCENT SLOPES	A
628C	CANTON-URBAN LAND COMPLEX, 3 TO 15 PERCENT SLOPES	A
655	UDORTHENTS, WET SUBSTRATUM	ASSUMED C


NRCS SOIL SURVEY PLYMOUTH COUNTY

150 LONGWATER DRIVE, SUITE 101 NORWELL, MASSACHUSETTS 02061 PHONE: (781) 792-3900 FACSIMILE: (781) 792-0333 WWW.MCKENG.COM

NRCS SOILS MAP JACKSON SQUARE ASSESSOR'S PARCEL ID XX WEYMOUTH, MASSACHUSETTS


C MCKENZIE ENGINEERING GROUP, INC.

C MCKENZIE ENGINEERING GROUP, INC.

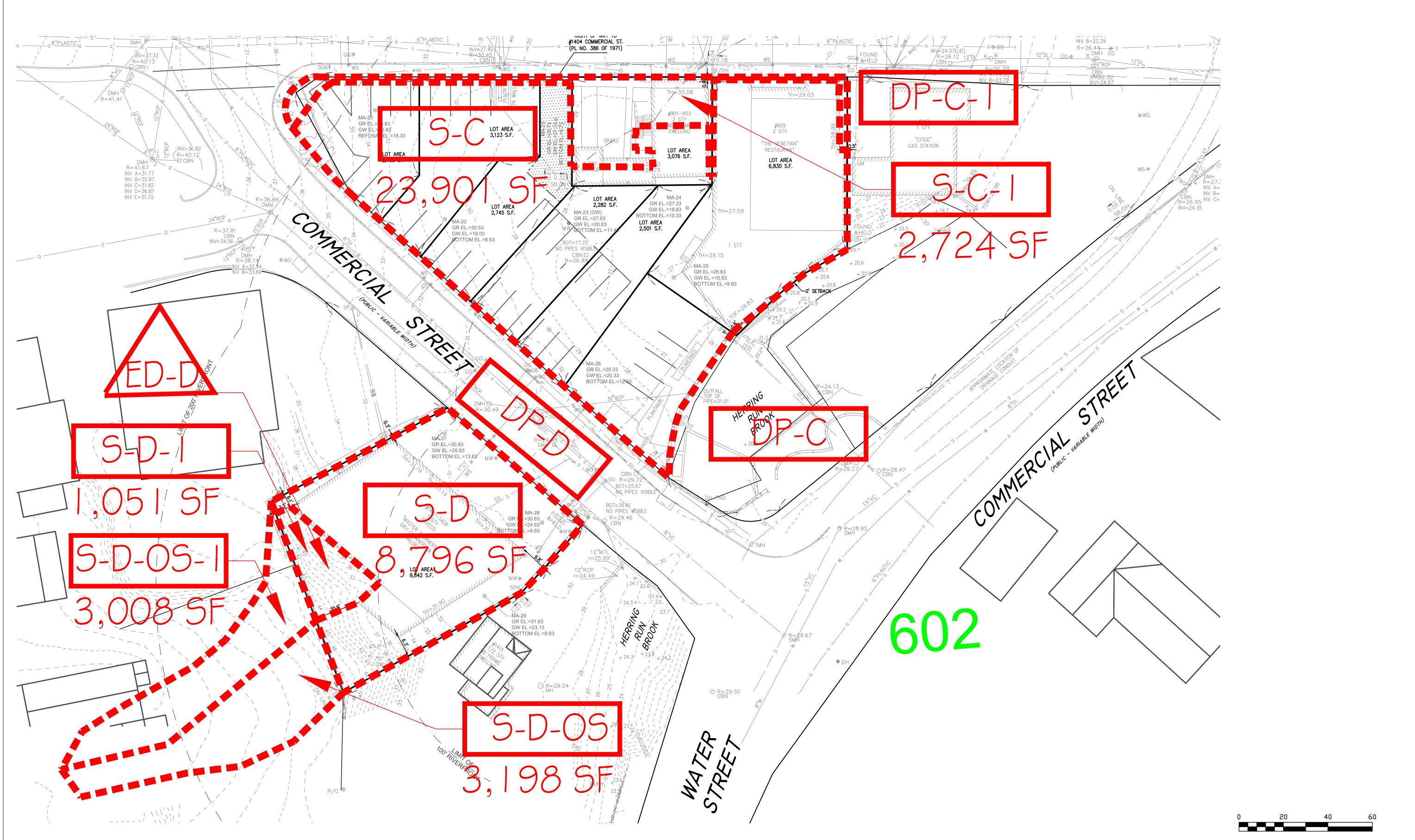
APPENDIX A

Pre-Development Condition

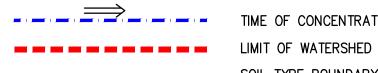
SOIL KEY

SOIL CLASSIFICATION	DESCRIPTION	HYDROLOGIC SOIL GROUP
103B	CHARLTON-HOLLIS-ROCK OUTCROP-COMPLEX, 3 TO 8 PERCENT SLOPES	А
602	URBAN LAND, 0 TO 15 PERCENT SLOPES	C ASSUMED
655	URDORTHENTS, WET SUBSTRATUM	C ASSUMED

LEGEND


LIMIT OF WATERSHED

SOIL TYPE BOUNDARY


ANDSCAPE & CON CO. UNC SI MALBONE SI LAKEVILLE, MA PHONE (508) 823-6699 FA www.greenacree	ARCHITECT EMBBARCS S80 HARRISON AVE, SUITE 2W BOSTON, MA 02118 O: 617.765.8000 www.embarcdesign.com OWNER IRAKLIS N PAPACHRISTOS, MANAGER OF 864, 909, 910 BROAD ST LLCS AND 109 COMMERCIAL ST LLC I FRANKLIN STREET, UNIT 2308 BOSTON, MA 02110 202.230.1693 CONSULTANTS CONSULTANTS CONSULTANTS CONSULTANTS LANDSCAPE MDLA 840 SUMMER STREET SUITE #201A BOSTON, MA 02127
20 E B B B B B B B B B B B B B	ACKSON SQUARE JACKSON SQUARE WEYMOUTH, MA NOI PLAN REVIEW
APPROXIMATE JOCATION PEPPROXIMATE JOCATION PEPPROXIMATE JOCATION DETAILS	Image: Drawing information Drawing information issue: NOI PLAN REVIEW Date: SEPTEMBER 6, 2023 PROJECT #: 22034 SCALE: DRAWING TITLE PRE-DEVELOPMENT WATERSHED PLANS BUILDINGS A&B DRAWING NUMBER Image: I

SOIL KEY

SOIL CLASSIFICATION	DESCRIPTION	HYDROLOGIC SOIL GROUP
103B	CHARLTON-HOLLIS-ROCK OUTCROP-COMPLEX, 3 TO 8 PERCENT SLOPES	A
602	URBAN LAND, 0 TO 15 PERCENT SLOPES	C ASSUMED
655	URDORTHENTS, WET SUBSTRATUM	C ASSUMED

LEGEND

TIME OF CONCENTRATION FLOW PATH SOIL TYPE BOUNDARY

| ARCHITECT EMBARC 580 HARRISON AVE, SUITE 21

BOSTON, MA 02118 O: 617.765.8000 www.embarcdesign.com

OWNER IRAKLIS N PAPACHRISTOS, MANAGER OF 864, 909, 910 BROAD ST LLCs AND 1409 COMMERCIAL ST LLC 1 FRANKLIN STREET, UNIT 2308 BOSTON, MA 02110 202.230.1693

CONSULTANTS

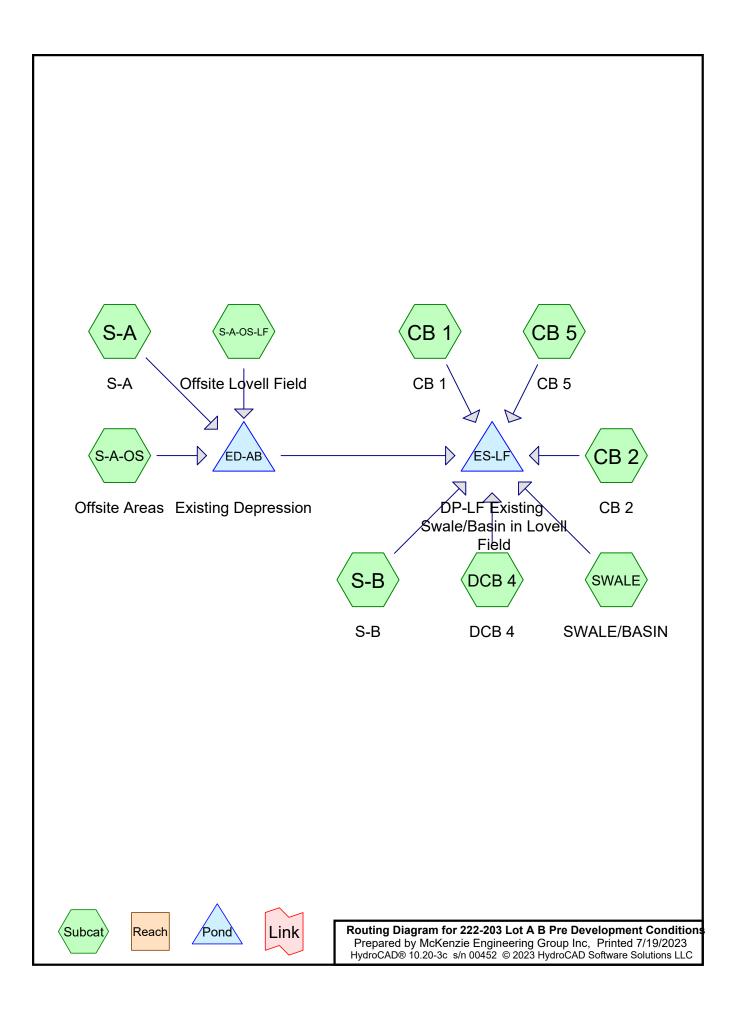
CIVIL MCKENZIE ENGINEERING GROUP 150 LONGWATER DRIVE, SUITE 101 NORWELL, MA 02061 781.792.3900

LANDSCAPE MDLA 840 SUMMER STREET SUITE #201A BOSTON, MA 02127

ш

SQUARI

MA


REVIEW AN Ц

JACKSON WEYMOUTH, ŌZ REVISIONS MARK

DRAWING INFORMATION NOI PLAN REVIEW ISSUE: SEPTEMBER 6, 2023 DATE: PROJECT #: 22034 SCALE: DRAWING TITLE PRE-DEVELOPMENT WATERSHED PLANS BUILDINGS C&D DRAWING NUMBER

WS-2 copyright: EMBARC INC.

SITES A & B

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-Year	Type III 24-hr		Default	24.00	1	3.22	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.86	2
3	25-Year	Type III 24-hr		Default	24.00	1	6.15	2
4	100-Year	Type III 24-hr		Default	24.00	1	8.80	2

Rainfall Events Listing

222-203 Lot A B Pre Development Conditions

Prepared by McKenzie Engineering Group Inc						
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC						

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.008	39	>75% Grass cover, Good, HSG A (S-A)
0.272	39	>75% Grass cover, Good, HSG A (OFFSITE) (S-A-OS, S-A-OS-LF)
0.845	74	>75% Grass cover, Good, HSG C (CB 5, S-A, S-A-OS-LF, S-B, SWALE)
0.134	74	>75% Grass cover, Good, HSG C (OFFSITE) (S-A, S-B)
0.095	98	Bottom Basin, HSG A (S-A)
0.079	96	Gravel surface, HSG C (S-B)
0.004	96	Gravel surface, HSG C (OFFSITE) (S-A)
0.032	96	Gravel, HSG C (OFFSITE) (S-B)
0.442	98	Impervious surfaces, HSG A (DCB 4, S-A)
1.159	98	Impervious surfaces, HSG C (CB 1, CB 2, CB 5, S-A, S-B, SWALE)
0.041	98	Impervious surfaces, HSG C (OFFSITE) (S-A, S-A-OS, S-A-OS-LF, S-B)
0.001	98	Roofs, HSG A (S-A)
0.130	98	Roofs, HSG A (OFFSITE) (S-A-OS)
0.199	98	Roofs, HSG C (S-A, S-B)
0.608	30	Woods, Good, HSG A (DCB 4, S-A)
0.366	30	Woods, Good, HSG A (OFFSITE) (S-A-OS)
0.136	70	Woods, Good, HSG C (S-A)
0.027	70	Woods, Good, HSG C (OFFSITE) (S-A-OS-LF)
4.579	74	TOTAL AREA

Soil Listing (all nodes)

	Area	Soil	Subcatchment
(a	icres)	Group	Numbers
	1.923	HSG A	DCB 4, S-A, S-A-OS, S-A-OS-LF
(0.000	HSG B	
:	2.656	HSG C	CB 1, CB 2, CB 5, S-A, S-A-OS, S-A-OS-LF, S-B, SWALE
(0.000	HSG D	
(0.000	Other	
	4.579		TOTAL AREA

222-203 Lot A B Pre Development Conditions

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LL	<u>C</u>

Printed 7/19/2023 Page 5

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.280	0.000	0.979	0.000	0.000	(acres) 1.259	>75% Grass cover, Good	CB 5,
0.200	0.000	0.979	0.000	0.000	1.209		СБ 5, S-A,
							S-A, S-A-OS,
							S-A-OS, S-A-OS-
							З-А-03- LF, S-B,
							SWALE
0.095	0.000	0.000	0.000	0.000	0.095	Bottom Basin	SWALL S-A
0.000	0.000	0.000	0.000	0.000	0.032	Gravel	S-A S-B
0.000	0.000	0.032	0.000	0.000	0.032	Gravel surface	S-B S-A, S-B
0.442	0.000	1.200	0.000	0.000	1.643	Impervious surfaces	СВ 1,
0.442	0.000	1.200	0.000	0.000	1.040		CB 2,
							CB 5,
							DCB 4,
							S-A,
							S-A-OS,
							S-A-OS-
							LF, S-B,
							SWALE
0.132	0.000	0.199	0.000	0.000	0.330	Roofs	S-A,
0.102	0.000	0.100	0.000	0.000	0.000		S-A-OS,
							S-B
0.974	0.000	0.163	0.000	0.000	1.137	Woods, Good	DCB 4,
0.071	0.000	0.100	0.000	0.000		moode, oood	S-A,
							S-A-OS,
							S-A-OS-
							LF
1.923	0.000	2.656	0.000	0.000	4.579	TOTAL AREA	

Ground Covers (all nodes)

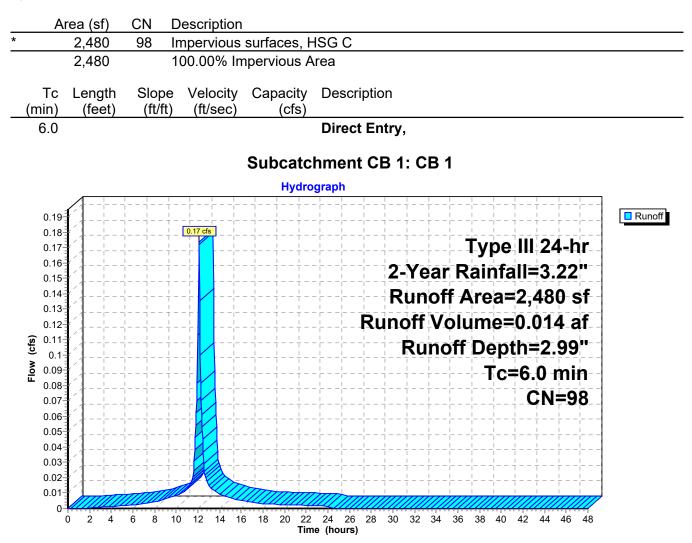
222-203 Lot A B Pre Development Conditions	
Prepared by McKenzie Engineering Group Inc	Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	Page 6
Pipe Listing (all nodes)	

Pipe Listing	(all nodes)	
--------------	-------------	--

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill	Node
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)	Name
 1	ES-LF	13.87	13.45	39.0	0.0108	0.013	0.0	18.0	0.0	

222-203 Lot A B Pre Development Conditions	ype III 24-hr	2-Year Rainfall=3.22"
Prepared by McKenzie Engineering Group Inc		Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LL	_C	Page 7

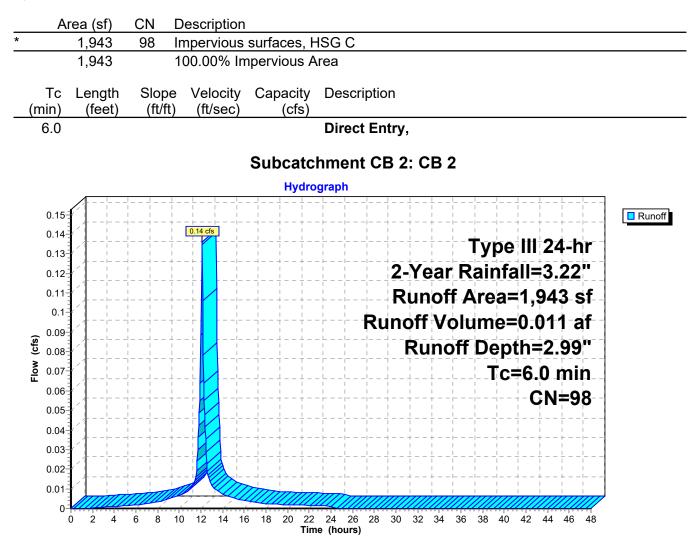
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method


SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.011 af
SubcatchmentCB 5: CB 5 Flow Length=195'	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=2.56" Slope=0.1230 '/' Tc=7.4 min CN=94 Runoff=0.43 cfs 0.034 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=0.26" Tc=6.0 min CN=55 Runoff=0.09 cfs 0.019 af
SubcatchmentS-A: S-A Flow Length=195'	Runoff Area=37,076 sf 61.01% Impervious Runoff Depth=1.77" Slope=0.1230 '/' Tc=7.4 min CN=85 Runoff=1.67 cfs 0.126 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=0.08" Flow Length=213' Tc=9.4 min CN=47 Runoff=0.01 cfs 0.005 af
SubcatchmentS-A-OS-LF: Offsite Lovell	Runoff Area=4,792 sf 2.98% Impervious Runoff Depth=0.74" Tc=6.0 min CN=68 Runoff=0.08 cfs 0.007 af
SubcatchmentS-B: S-B	Runoff Area=21,564 sf 22.87% Impervious Runoff Depth=1.70" Tc=6.0 min CN=84 Runoff=0.97 cfs 0.070 af
SubcatchmentSWALE: SWALE/BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=2.01" Tc=6.0 min CN=88 Runoff=2.76 cfs 0.201 af
Pond ED-AB: Existing Depression	Peak Elev=20.00' Storage=5,997 cf Inflow=1.75 cfs 0.138 af Outflow=0.00 cfs 0.000 af
Pond ES-LF: DP-LF Existing Swale/Basin i 18.0" Round	in Peak Elev=14.94' Storage=219 cf Inflow=4.49 cfs 0.349 af Culvert n=0.013 L=39.0' S=0.0108 '/' Outflow=4.37 cfs 0.349 af

Total Runoff Area = 4.579 ac Runoff Volume = 0.487 af Average Runoff Depth = 1.28" 54.84% Pervious = 2.511 ac 45.16% Impervious = 2.068 ac

Summary for Subcatchment CB 1: CB 1

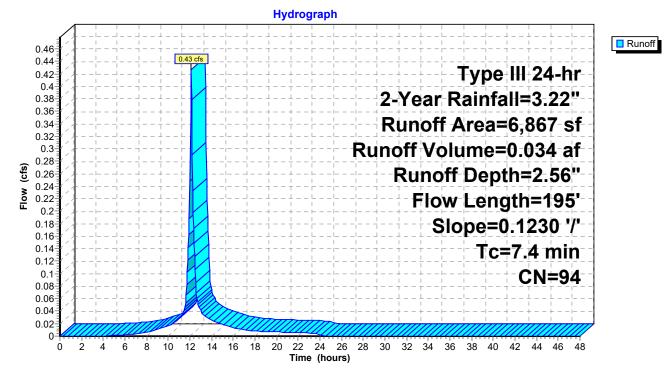
Runoff = 0.17 cfs @ 12.09 hrs, Volume= 0.014 af, Depth= 2.99" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

Summary for Subcatchment CB 2: CB 2

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 2.99" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

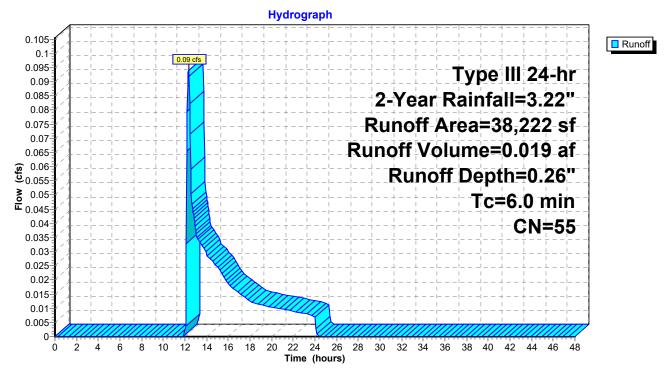

Summary for Subcatchment CB 5: CB 5

Runoff = 0.43 cfs @ 12.10 hrs, Volume= 0.034 af, Depth= 2.56" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN [Description									
*		5,683	98 I	mpervious	ipervious surfaces, HSG C								
		1,184	74 >	>75% Gras	5% Grass cover, Good, HSG C								
		6,867	94 \	Veighted A	eighted Average								
		1,184		17.24% Pei	rvious Area								
		5,683	8	32.76% Imp	pervious Ar	ea							
	Тс	Length	Slope	,	Capacity	Description							
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	6.0	50	0.1230	0.14		Sheet Flow, 1							
						Woods: Light underbrush n= 0.400 P2= 3.20"							
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2							
_						Woodland Kv= 5.0 fps							
	7.4	195	Total										

Subcatchment CB 5: CB 5


Summary for Subcatchment DCB 4: DCB 4

Runoff = 0.09 cfs @ 12.33 hrs, Volume= 0.019 af, Depth= 0.26" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

_	A	rea (sf)	CN	Description						
*		14,030	98	Impervious surfaces, HSG A						
_		24,192	30	Woods, Go	Voods, Good, HSG A					
		38,222	55	Weighted A	verage					
		24,192		63.29% Per	rvious Area	3				
		14,030		36.71% Imp	pervious Ar	rea				
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description				
	6.0					Direct Entry,				

Subcatchment DCB 4: DCB 4

Summary for Subcatchment S-A: S-A

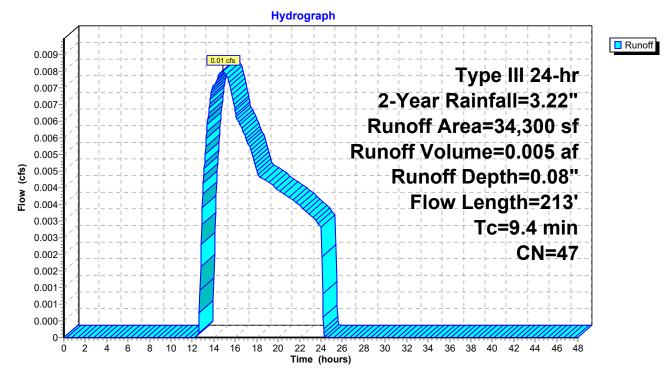
Runoff = 1.67 cfs @ 12.11 hrs, Volume= 0.126 af, Depth= 1.77" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN I	Description								
*		4,142	98 I	Bottom Basin, HSG A								
*		5,243	98 I	mpervious surfaces, HSG A								
*		329	39 :	>75% Gras	s cover, Go	bod, HSG A						
*		2,305	30	Noods, Go	od, HSG A							
*		65		Roofs, HSG								
*		4,816		Roofs, HSG								
*		8,343		mpervious								
*		3,814			,	bod, HSG C						
*		5,909		Noods, Go								
*		157				C (OFFSITE)						
*		10				ISG C (OFFSITE)						
*		1,943				bod, HSG C (OFFSITE)						
		37,076		Neighted A								
		14,457		38.99% Pei								
		22,619	(61.01% Imp	pervious Ar	ea						
	-				O							
	Tc	Length	Slope			Description						
	(min)	(feet)	(ft/ft)		(cfs)							
	6.0	50	0.1230	0.14		Sheet Flow, 1						
						Woods: Light underbrush n= 0.400 P2= 3.20"						
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2						
						Woodland Kv= 5.0 fps						
	7.4	195	Total									

Hydrograph Runoff 1.67 cfs Type III 24-hr 2-Year Rainfall=3.22" Runoff Area=37,076 sf Runoff Volume=0.126 af Flow (cfs) Runoff Depth=1.77" Flow Length=195' Slope=0.1230 '/' Tc=7.4 min **CN=85** 0-2 10 12 14 16 22 24 26 4 6 8 18 20 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Subcatchment S-A: S-A

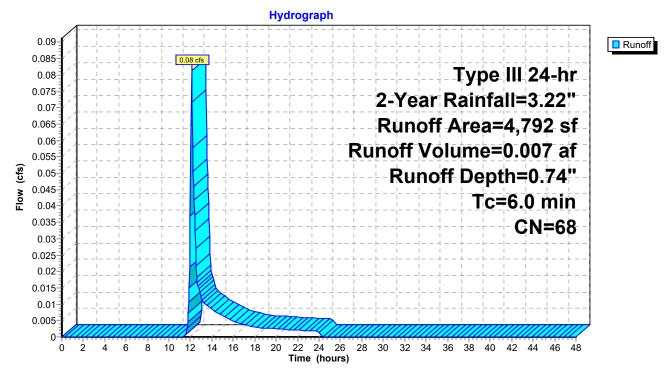

Summary for Subcatchment S-A-OS: Offsite Areas

Runoff	=	0.01 cfs @	14.80 hrs,	Volume=	0.005 a	f, Depth= 0.08"
Routed	d to Pon	d ED-AB : Exi	isting Depre	ssion		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

_	A	rea (sf)	CN E	Description								
*		15,938	30 V	30 Woods, Good, HSG A (OFFSITE)								
*		11,097	39 >									
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)						
*		1,600	98 I	mpervious	surfaces, H	ISG C (OFFSITE)						
		34,300	47 V	47 Weighted Average								
		27,035	7	′8.82% Pei	rvious Area							
		7,265	2	21.18% Imp	pervious Ar	ea						
	Тс	Length	Slope	Velocity	Capacity	Description						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
		•	•			Sheet Flow, 1						
	(min)	(feet)	(ft/ft)	(ft/sec)								
	(min)	(feet) 50	(ft/ft)	(ft/sec)		Sheet Flow, 1						
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"						

Subcatchment S-A-OS: Offsite Areas

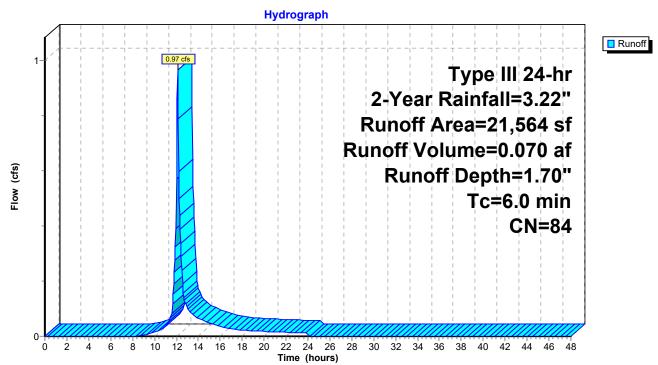

Summary for Subcatchment S-A-OS-LF: Offsite Lovell Field

Runoff	=	0.08 cfs @	12.11 hrs,	Volume=	0.007 af,	Depth= 0.74"
Route	d to Pon	d ED-AB : Ĕx	isting Depre	ession		·

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Α	rea (sf)	CN	Description						
*		772	39	>75% Grass cover, Good, HSG A (OFFSITE)						
		2,699	74	>75% Grass cover, Good, HSG C						
*		1,178	70	Woods, Good, HSG C (OFFSITE)						
*		143	98	Impervious surfaces, HSG C (OFFSITE)						
		4,792 68 Weighted Average								
		4,649		97.02% Pervious Area						
		143		2.98% Impe	ervious Are	а				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment S-A-OS-LF: Offsite Lovell Field

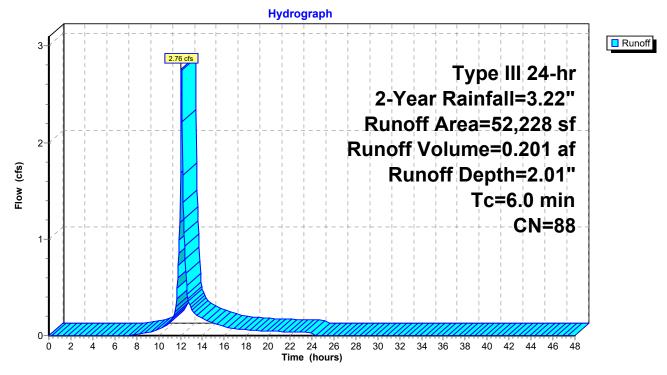

Summary for Subcatchment S-B: S-B

Runoff = 0.97 cfs @ 12.09 hrs, Volume= 0.070 af, Depth= 1.70" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Area	a (sf)	CN	Description				
	3	3,849	98	3 Roofs, HSG C				
*	1	1,038	98	Impervious surfaces, HSG C				
	7	7,880	74	>75% Grass cover, Good, HSG C				
	3	3,460	96	Gravel surface, HSG C				
*		44	98	Impervious surfaces, HSG C (OFFSITE)				
*	3	3,893	74	>75% Grass cover, Good, HSG C (OFFSITE)				
*	1	1,400	96	Gravel, HSG C (OFFSITE)				
	21	1,564	84	84 Weighted Average				
	16,633 77.13% Pervious Area				1			
	4	1,931	22.87% Impervious Area					
	Tc L	.ength	Slop	e Velocity	Capacity	Description		
((min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment S-B: S-B


Summary for Subcatchment SWALE: SWALE/BASIN

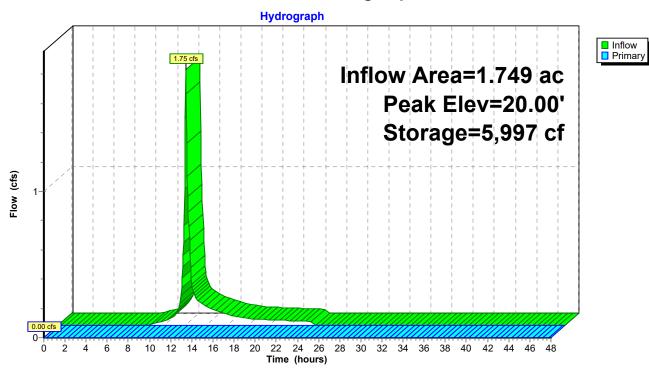
Runoff = 2.76 cfs @ 12.09 hrs, Volume= 0.201 af, Depth= 2.01" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

_	A	rea (sf)	CN	Description							
*		30,996	98	Impervious	Impervious surfaces, HSG C						
_		21,232	74	>75% Gras	>75% Grass cover, Good, HSG C						
		52,228	88	Weighted Average							
		21,232		40.65% Pervious Area							
		30,996		59.35% Imp	pervious Ar	ea					
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
	6.0					Direct Entry,					

Subcatchment SWALE: SWALE/BASIN

Summary for Pond ED-AB: Existing Depression


Inflow Are	a =	1.749 ac, 3	9.42% Impervious, Infl	ow Depth = 0.94" for 2-Year event
Inflow	=	1.75 cfs @	12.11 hrs, Volume=	0.138 af
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Routed	l to Pone	d ES-LF : DP-	LF Existing Swale/Basi	n in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 20.00' @ 24.55 hrs Surf.Area= 6,325 sf Storage= 5,997 cf

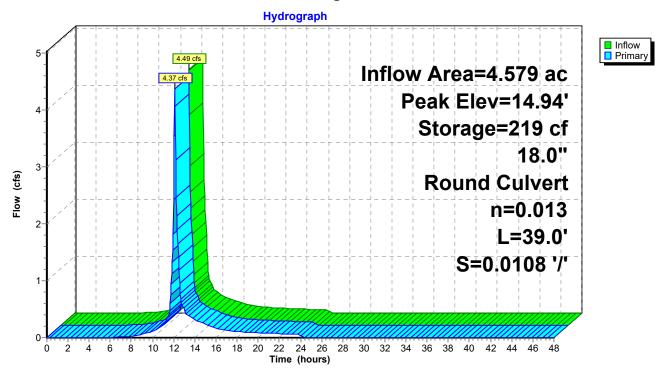
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume Invert Avail.		rt Avail.Sto	rage Storage	Description	
#1	18.0	0' 48,98	39 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
18.00		313	0	0	
19.00		2,684	1,499	1,499	
20.00		6,330	4,507	6,006	
21.00		10,192	8,261	14,267	
22.00		12,649	11,421	25,687	
23.00		15,970	14,310	39,997	
23.50		20,000	8,993	48,989	
Device F	Routing	Invert	Outlet Device	es	
#1 F	Primary	23.43'	Head (feet) (2.50 3.00 3.	0.20 0.40 0.60 50 h) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=18.00' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond ED-AB: Existing Depression

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Are	a =	4.579 ac, 45.16% Impervious, Inflow Depth = 0.91" for 2-Year event						
Inflow	=	4.49 cfs @ 12.09 hrs, Volume= 0.349 af						
Outflow	=	4.37 cfs @12.11 hrs, Volume=0.349 af, Atten= 3%, Lag= 1.1 n	nin					
Primary	=	4.37 cfs @ 12.11 hrs, Volume= 0.349 af						
Routed to nonexistent node 1R								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 14.94' @ 12.11 hrs Surf.Area= 461 sf Storage= 219 cf

Plug-Flow detention time= 0.4 min calculated for 0.349 af (100% of inflow) Center-of-Mass det. time= 0.4 min (818.8 - 818.4)

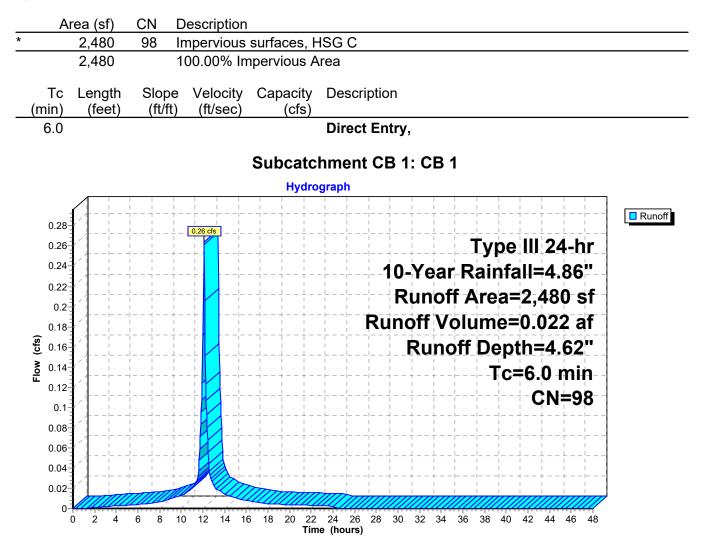
Volume	Ir	vert Av	/ail.Stor	rage	e Storage Description		
#1	13	3.87'	17,54	l6 cf	Custom	Stage Data (F	Prismatic)Listed below (Recalc)
Flave ti		Current Ame	_	lu a	01	Ourse Otherse	
	Elevation Surf.Area				.Store	Cum.Store	
(fee	et)	(sq-f	:)	(cubio	c-feet)	(cubic-feet)	
13.8	37		0		0	0	
14.0	00		3		0	0	
15.00		48	8		246	246	
16.0	00	1,76	4		1,126	1,372	
17.0	00	2,848		2,306		3,678	
18.0	00	3,993		3,421		7,098	
19.0	00	5,217			4,605	11,703	
20.0	00	6,468			5,843	17,546	
Device	Routin	g	Invert	Outle	et Device	s	
#1	#1 Primary 13.87'		18.0" Round Culvert				
				L= 3	9.0' CPF	^D , square edge	headwall, Ke= 0.500
						, I O	13.45' S= 0.0108 '/' Cc= 0.900
							nooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=4.27 cfs @ 12.11 hrs HW=14.93' (Free Discharge) **1=Culvert** (Barrel Controls 4.27 cfs @ 4.50 fps)

Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field

222-203 Lot A B Pre Development Conditions	Type III 24-hr	10-Year Rainfall=4.86"
Prepared by McKenzie Engineering Group Inc		Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solution	s LLC	Page 22
		-

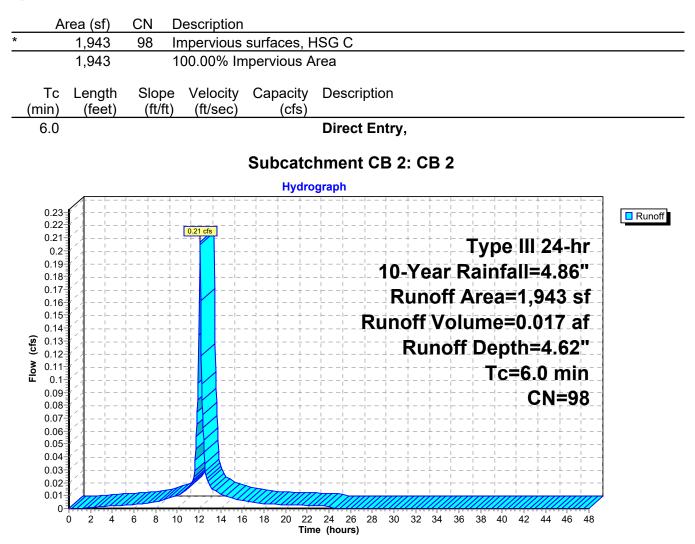
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method


SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.022 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.21 cfs 0.017 af
SubcatchmentCB 5: CB 5 Flow Length=195'	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=4.17" Slope=0.1230 '/' Tc=7.4 min CN=94 Runoff=0.68 cfs 0.055 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=0.91" Tc=6.0 min CN=55 Runoff=0.72 cfs 0.067 af
SubcatchmentS-A: S-A Flow Length=195'	Runoff Area=37,076 sf 61.01% Impervious Runoff Depth=3.24" Slope=0.1230 '/' Tc=7.4 min CN=85 Runoff=3.02 cfs 0.230 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=0.49" Flow Length=213' Tc=9.4 min CN=47 Runoff=0.18 cfs 0.032 af
SubcatchmentS-A-OS-LF: Offsite Lovell	Runoff Area=4,792 sf 2.98% Impervious Runoff Depth=1.78" Tc=6.0 min CN=68 Runoff=0.22 cfs 0.016 af
SubcatchmentS-B: S-B	Runoff Area=21,564 sf 22.87% Impervious Runoff Depth=3.14" Tc=6.0 min CN=84 Runoff=1.77 cfs 0.130 af
SubcatchmentSWALE: SWALE/BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=3.54" Tc=6.0 min CN=88 Runoff=4.76 cfs 0.353 af
Pond ED-AB: Existing Depression	Peak Elev=20.78' Storage=12,115 cf Inflow=3.31 cfs 0.278 af Outflow=0.00 cfs 0.000 af
Pond ES-LF: DP-LF Existing Swale/Basin i 18.0" Round	n Peak Elev=15.47' Storage=614 cf Inflow=8.37 cfs 0.643 af Culvert n=0.013 L=39.0' S=0.0108 '/' Outflow=7.69 cfs 0.643 af

Total Runoff Area = 4.579 ac Runoff Volume = 0.922 af Average Runoff Depth = 2.42" 54.84% Pervious = 2.511 ac 45.16% Impervious = 2.068 ac

Summary for Subcatchment CB 1: CB 1

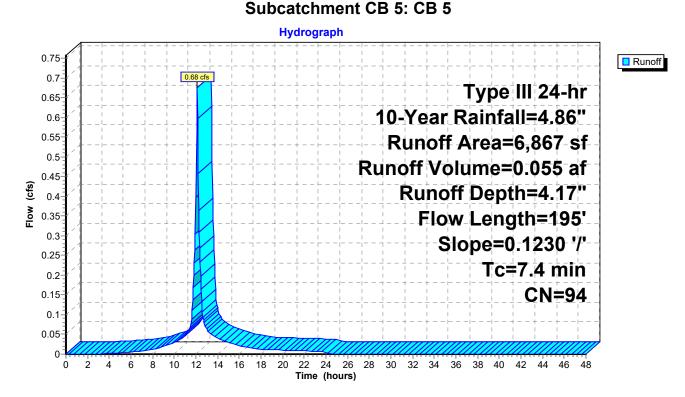
Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 4.62" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

Summary for Subcatchment CB 2: CB 2

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 4.62" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

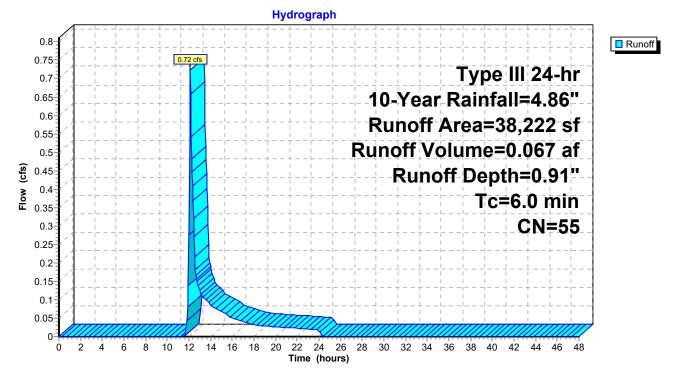

Summary for Subcatchment CB 5: CB 5

Runoff = 0.68 cfs @ 12.10 hrs, Volume= 0.055 af, Depth= 4.17" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN [Description							
*		5,683	98 I	mpervious surfaces, HSG C							
		1,184	74 >	•75% Gras	75% Grass cover, Good, HSG C						
		6,867	94 \	Veighted A	/eighted Average						
		1,184		17.24% Pervious Area							
		5,683	8	82.76% Impervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0	50	0.1230	0.14		Sheet Flow, 1					
						Woods: Light underbrush n= 0.400 P2= 3.20"					
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2					
_						Woodland Kv= 5.0 fps					
	7.4	195	Total								

Subsetebreast CD


Summary for Subcatchment DCB 4: DCB 4

Runoff = 0.72 cfs @ 12.11 hrs, Volume= 0.067 af, Depth= 0.91" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

_	A	rea (sf)	CN	Description						
*		14,030	98	Impervious surfaces, HSG A						
		24,192	30	Woods, Good, HSG A						
		38,222	55	Weighted Average						
		24,192		63.29% Pervious Area						
		14,030		36.71% Imp	pervious Ar	ea				
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
	6.0					Direct Entry,				

Subcatchment DCB 4: DCB 4

Summary for Subcatchment S-A: S-A

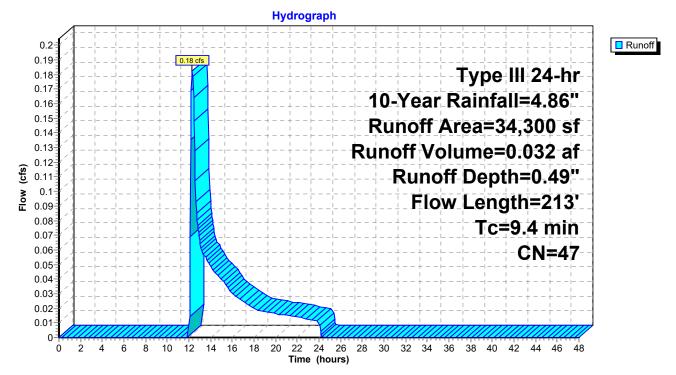
Runoff = 3.02 cfs @ 12.11 hrs, Volume= 0.230 af, Depth= 3.24" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN I	Description						
*		4,142	98 I	Bottom Basin, HSG A						
*		5,243	98 I	mpervious	mpervious surfaces, HSG A					
*		329	39 >	>75% Gras	s cover, Go	bod, HSG A				
*		2,305	30 \	Noods, Go	od, HSG A					
*		65		Roofs, HSC						
*		4,816		Roofs, HSG						
*		8,343		mpervious						
*		3,814				bod, HSG C				
*		5,909		Voods, Go	,					
*		157				C (OFFSITE)				
*		10				HSG C (OFFSITE)				
*		1,943				ood, HSG C (OFFSITE)				
		37,076		Veighted A						
		14,457		88.99% Pei						
		22,619	6	61.01% Imp	pervious Ar	ea				
	_				a <i>u</i>					
	Tc	Length	Slope	•		Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0	50	0.1230	0.14		Sheet Flow, 1				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2				
						Woodland Kv= 5.0 fps				
	7.4	195	Total							

Hydrograph Runoff 3.02 Type III 24-hr 3 10-Year Rainfall=4.86" Runoff Area=37,076 sf Runoff Volume=0.230 af 2 Flow (cfs) Runoff Depth=3.24" Flow Length=195' Slope=0.1230 '/' Tc=7.4 min 1 **CN=85** 0 2 10 12 14 16 22 24 26 4 6 8 18 20 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Subcatchment S-A: S-A

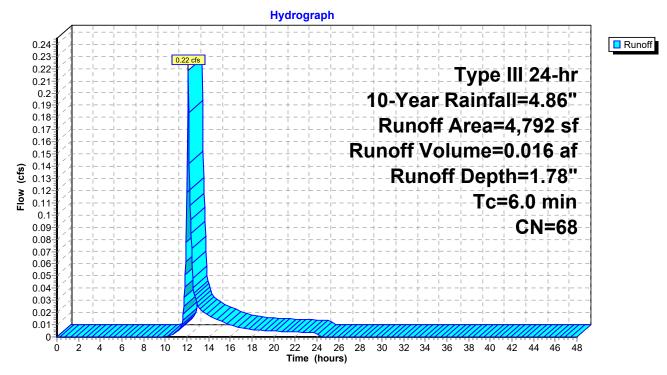

Summary for Subcatchment S-A-OS: Offsite Areas

Runoff = 0.18 cfs @ 12.32 hrs, Volume= 0.032 af, Depth= 0.49" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

_	A	rea (sf)	CN E	CN Description						
*		15,938	30 V	30 Woods, Good, HSG A (OFFSITE)						
*		11,097	39 >	75% Gras	s cover, Go	bod, HSG Á (OFFSITE)				
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)				
*		1,600	98 I	mpervious	surfaces, H	ISG C (OFFSITE)				
		34,300	47 V	47 Weighted Average						
		27,035	7	′8.82% Pei	rvious Area					
		7,265	2	21.18% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
		•	•			Sheet Flow, 1				
	(min)	(feet)	(ft/ft)	(ft/sec)						
	(min)	(feet) 50	(ft/ft)	(ft/sec)		Sheet Flow, 1				
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"				

Subcatchment S-A-OS: Offsite Areas

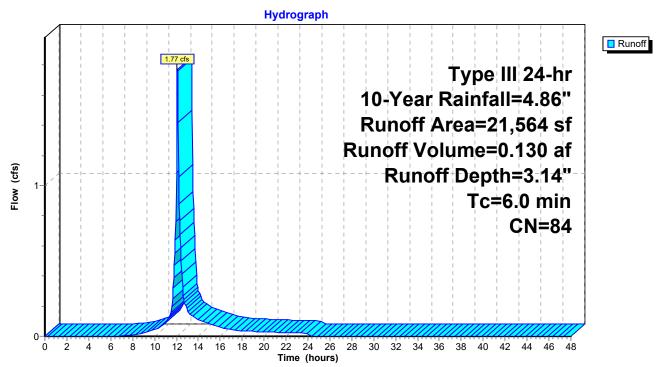

Summary for Subcatchment S-A-OS-LF: Offsite Lovell Field

Runoff = 0.22 cfs @ 12.10 hrs, Volume= 0.016 af, Depth= 1.78" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description						
*		772	39	>75% Gras	s cover, Go	bod, HSG A (OFFSITE)				
		2,699	74	>75% Gras	>75% Grass cover, Good, HSG C					
*		1,178	70	Woods, Go	od, HSG C	(OFFSITE)				
*		143	98	Impervious	Impervious surfaces, HSG C (OFFSITE)					
		4,792	92 68 Weighted Average							
		4,649		97.02% Pe	rvious Area	l de la constante d				
		143		2.98% Impe	ervious Area	а				
	Тс	Length	Slope	,	Capacity	Description				
(r	min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment S-A-OS-LF: Offsite Lovell Field

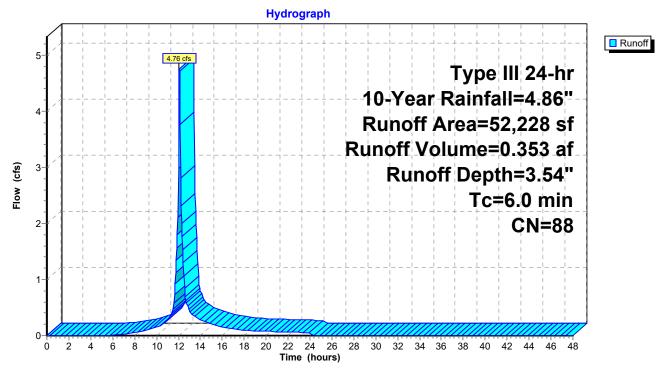

Summary for Subcatchment S-B: S-B

Runoff = 1.77 cfs @ 12.09 hrs, Volume= 0.130 af, Depth= 3.14" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description		
		3,849	98	Roofs, HSC	G C	
*		1,038	98	Impervious	surfaces, H	HSG C
		7,880	74	>75% Gras	s cover, Go	bod, HSG C
		3,460	96	Gravel surfa	ace, HSG (2
*		44	98	Impervious	surfaces, H	HSG C (OFFSITE)
*		3,893	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)
*		1,400	96	Gravel, HS	G C (OFFS	iITE)
		21,564	84	Weighted A	verage	
		16,633		77.13% Pe	vious Area	l
		4,931		22.87% Imp	pervious Ar	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment S-B: S-B


Summary for Subcatchment SWALE: SWALE/BASIN

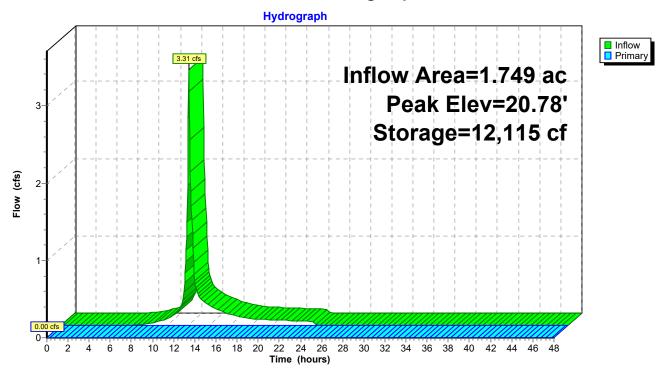
Runoff = 4.76 cfs @ 12.09 hrs, Volume= 0.353 af, Depth= 3.54" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description		
*		30,996	98	Impervious	surfaces, H	HSG C
		21,232	74	>75% Gras	s cover, Go	ood, HSG C
		52,228	88	Weighted A	verage	
		21,232		40.65% Per	vious Area	а
		30,996		59.35% Imp	pervious Ar	rea
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment SWALE: SWALE/BASIN

Summary for Pond ED-AB: Existing Depression


Inflow Are	a =	1.749 ac, 3	9.42% Impervious, Inflo	w Depth = 1.91" for 10-Year event
Inflow	=	3.31 cfs @	12.11 hrs, Volume=	0.278 af
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Routed	l to Pone	d ES-LF : DP-	LF Existing Swale/Basin	in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 20.78' @ 24.55 hrs Surf.Area= 9,341 sf Storage= 12,115 cf

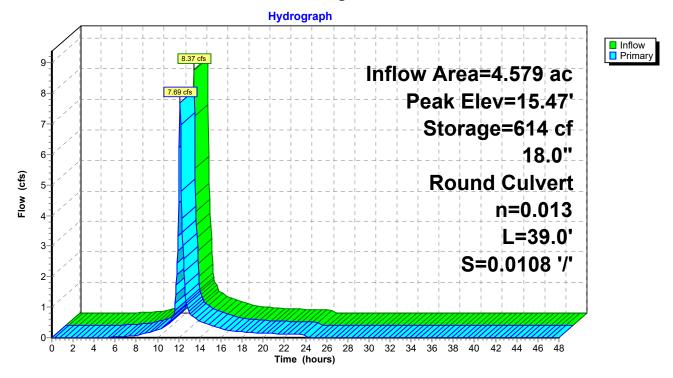
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	In	vert Avail.St	orage Storage	e Description	
#1	18	.00' 48,9	989 cf Custor	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
18.0)0	313	0	0	
19.0	00	2,684	1,499	1,499	
20.0	00	6,330	4,507	6,006	
21.0	00	10,192	8,261	14,267	
22.0	00	12,649	11,421	25,687	
23.0	00	15,970	14,310	39,997	
23.5	50	20,000	8,993	48,989	
Device	Routing	g Inver	Outlet Devic	es	
#1	Primary	y 23.43	Head (feet) 2.50 3.00 3	0.20 0.40 0.60 .50 sh) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=18.00' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond ED-AB: Existing Depression

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Area	a =	4.579 ac, 45.16% Impervious, Inflow Depth = 1.69"	for 10-Year event
Inflow	=	8.37 cfs @ 12.09 hrs, Volume= 0.643 af	
Outflow	=	7.69 cfs @ 12.13 hrs, Volume= 0.643 af, Atte	en= 8%, Lag= 2.0 min
Primary	=	7.69 cfs @ 12.13 hrs, Volume= 0.643 af	-
Routed	to none	xistent node 1R	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 15.47' @ 12.13 hrs Surf.Area= 1,085 sf Storage= 614 cf

Plug-Flow detention time= 0.5 min calculated for 0.643 af (100% of inflow) Center-of-Mass det. time= 0.5 min (807.0 - 806.4)

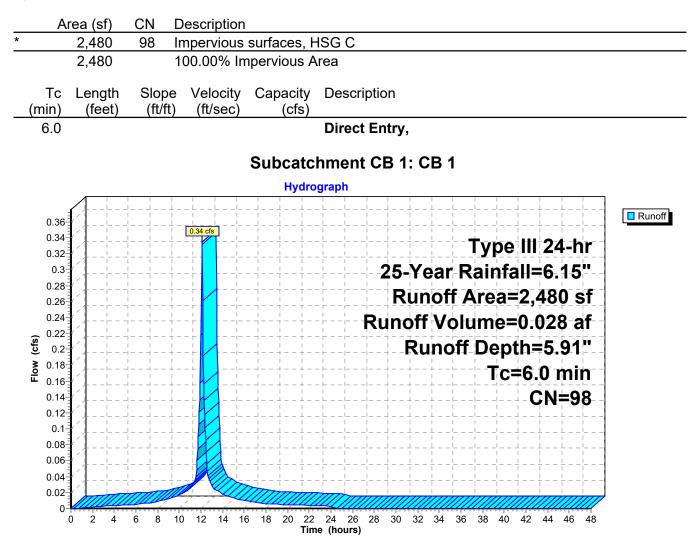
Volume	I	nvert	Avail.Sto	rage	Storage	Description	
#1	1	3.87'	17,54	l6 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Su	rf.Area		Store	Cum.Store	
(fee	et)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
13.8	87		0		0	0	
14.(00		3		0	0	
15.0	00		488		246	246	
16.0	00		1,764		1,126	1,372	
17.0	00		2,848		2,306	3,678	
18.0	00		3,993		3,421	7,098	
19.0	00		5,217		4,605	11,703	
20.0	00		6,468		5,843	17,546	
Device	Routi	na	Invert	Outl	et Device	c	
		0		-			
#1	Prima	iry	13.87'		Round		
							headwall, Ke= 0.500
							3.45' S= 0.0108 '/' Cc= 0.900
				n= 0	.013 Cor	rugated PE, sm	ooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=7.54 cfs @ 12.13 hrs HW=15.44' (Free Discharge) **1=Culvert** (Barrel Controls 7.54 cfs @ 5.05 fps)

Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field

222-203 Lot A B Pre Development Conditions	Type III 24-hr	25-Year Rainfall=6.15"
Prepared by McKenzie Engineering Group Inc		Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solution	s LLC	Page 37
		-

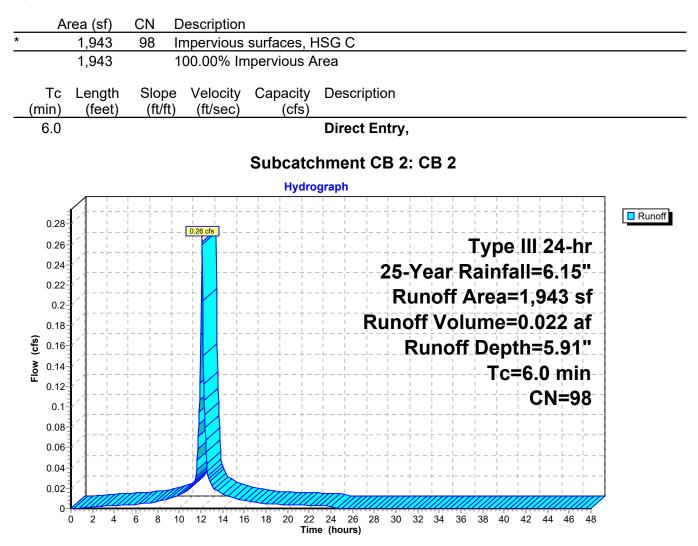
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method


SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.028 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.022 af
SubcatchmentCB 5: CB 5 Flow Length=195'	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=5.45" Slope=0.1230 '/' Tc=7.4 min CN=94 Runoff=0.87 cfs 0.072 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=1.60" Tc=6.0 min CN=55 Runoff=1.46 cfs 0.117 af
SubcatchmentS-A: S-A Flow Length=195'	Runoff Area=37,076 sf 61.01% Impervious Runoff Depth=4.44" Slope=0.1230 '/' Tc=7.4 min CN=85 Runoff=4.09 cfs 0.315 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=1.00" Flow Length=213' Tc=9.4 min CN=47 Runoff=0.58 cfs 0.066 af
SubcatchmentS-A-OS-LF: Offsite Lovell	Runoff Area=4,792 sf 2.98% Impervious Runoff Depth=2.74" Tc=6.0 min CN=68 Runoff=0.34 cfs 0.025 af
SubcatchmentS-B: S-B	Runoff Area=21,564 sf 22.87% Impervious Runoff Depth=4.34" Tc=6.0 min CN=84 Runoff=2.42 cfs 0.179 af
SubcatchmentSWALE: SWALE/BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=4.77" Tc=6.0 min CN=88 Runoff=6.32 cfs 0.477 af
Pond ED-AB: Existing Depression	Peak Elev=21.32' Storage=17,682 cf Inflow=4.90 cfs 0.406 af Outflow=0.00 cfs 0.000 af
	n Peak Elev=15.97' Storage=1,317 cf Inflow=11.65 cfs 0.894 af Culvert n=0.013 L=39.0' S=0.0108 '/' Outflow=9.62 cfs 0.894 af

Total Runoff Area = 4.579 ac Runoff Volume = 1.300 af Average Runoff Depth = 3.41" 54.84% Pervious = 2.511 ac 45.16% Impervious = 2.068 ac

Summary for Subcatchment CB 1: CB 1

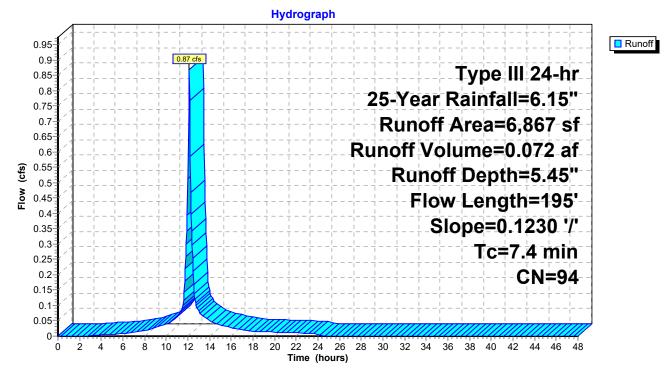
Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af, Depth= 5.91" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

Summary for Subcatchment CB 2: CB 2

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 5.91" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"


Summary for Subcatchment CB 5: CB 5

Runoff = 0.87 cfs @ 12.10 hrs, Volume= 0.072 af, Depth= 5.45" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

_	Α	rea (sf)	CN [Description						
*		5,683	98 I	mpervious	pervious surfaces, HSG C					
_		1,184	74 >	>75% Gras	s cover, Go	ood, HSG C				
		6,867	94 \	Veighted A	eighted Average					
		1,184		17.24% Pei	rvious Area					
		5,683	8	32.76% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0	50	0.1230	0.14		Sheet Flow, 1				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2				
_						Woodland Kv= 5.0 fps				
	7.4	195	Total							

Subcatchment CB 5: CB 5

Summary for Subcatchment DCB 4: DCB 4

Runoff = 1.46 cfs @ 12.10 hrs, Volume= 0.117 af, Depth= 1.60" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

A	rea (sf)	CN	Description							
*	14,030		Impervious		ISG A					
	24,192		Woods, Go							
	38,222		Weighted A							
	24,192		63.29% Pei							
	14,030		36.71% Imp	ervious Ar	ea					
Tc	Length	Slope	Velocity	Capacity	Descri	ption				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		-				
6.0					Direct	Entry	',			
			9	ubcatch	mont [Л		
					graph	- 00	+. DOD	-		
										7
-										Runoff
			1.46 cfs					Type	e III 24-hr	
-										
						25	-Year	Raint	all=6.15"	
-						Ru	inoff A	\rea=	38,222 sf	
1-					+ + 1		1 1	1 1	=0.117 af	
Flow (cfs)							Runo	прер	oth=1.60"	
Flow								Tc	=6.0 min	
_									CN=55	
		i i I I								
-										
-										
				Thin						
0-	2 4	6 8 1	0 12 14 16	18 20 22	24 26	28 30	32 34 3	36 38 40	42 44 46 48	
0	Z 4	0 0 1	U IZ 14 10		24 20 e (hours)	20 30	JZ J4 J	0 00 40	72 99 90 40	

Summary for Subcatchment S-A: S-A

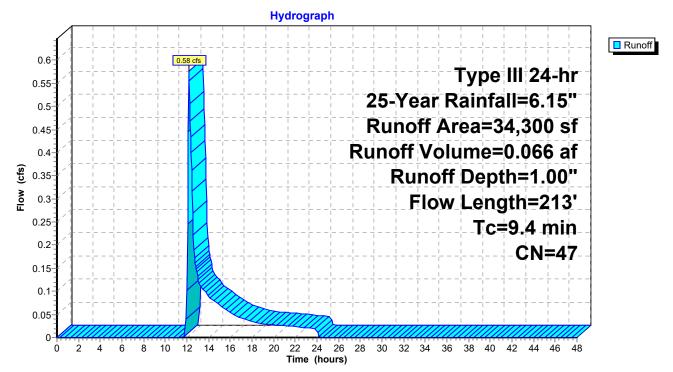
Runoff = 4.09 cfs @ 12.11 hrs, Volume= 0.315 af, Depth= 4.44" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN I	Description				
*		4,142	98 I	Bottom Basin, HSG A				
*		5,243	98 I	Impervious surfaces, HSG A				
*		329	39 :	>75% Gras	s cover, Go	bod, HSG A		
*		2,305	30	Noods, Go	od, HSG A			
*		65		Roofs, HSG				
*		4,816		Roofs, HSG C				
*		8,343		mpervious surfaces, HSG C				
*		3,814			,	bod, HSG C		
*		5,909		Noods, Go				
*		157				C (OFFSITE)		
*		10		Impervious surfaces, HSG C (OFFSITE)				
*		1,943				bod, HSG C (OFFSITE)		
		37,076		Neighted A				
		14,457		38.99% Pei				
		22,619	(61.01% Imp	pervious Ar	ea		
	-				O			
	Tc	Length	Slope			Description		
	(min)	(feet)	(ft/ft)		(cfs)			
	6.0	50	0.1230	0.14		Sheet Flow, 1		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2		
						Woodland Kv= 5.0 fps		
	7.4	195	Total					

Hydrograph Runoff 4.09 cfs Type III 24-hr 4 25-Year Rainfall=6.15" Runoff Area=37,076 sf 3-Runoff Volume=0.315 af Flow (cfs) Runoff Depth=4.44" Flow Length=195' 2 Slope=0.1230 '/' Tc=7.4 min **CN=85** 1 0 2 4 10 12 14 16 22 24 26 6 8 18 20 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Subcatchment S-A: S-A


Summary for Subcatchment S-A-OS: Offsite Areas

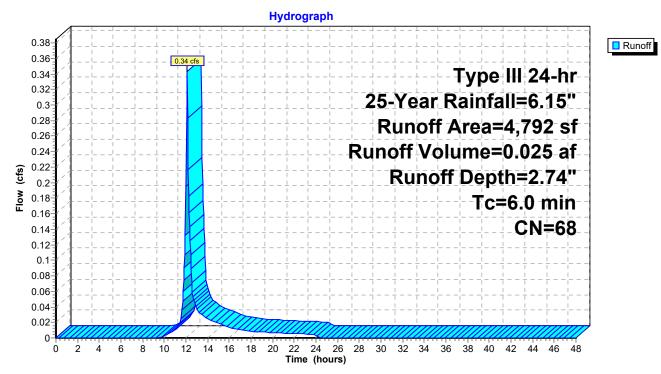
Runoff = 0.58 cfs @ 12.17 hrs, Volume= 0.066 af, Depth= 1.00" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

_	A	rea (sf)	CN E	Description			
*		15,938	30 V	Voods, Go	od, HSG A	(OFFSITE)	
*		11,097	39 >	75% Gras	s cover, Go	bod, HSG Á (OFFSITE)	
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)	
*		1,600	98 I	3 Impervious surfaces, HSG C (OFFSITE)			
		34,300	47 V	Veighted A	verage		
		27,035	7	′8.82% Pei	rvious Area		
		7,265	2	21.18% Imp	pervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
		•	•			Sheet Flow, 1	
	(min)	(feet)	(ft/ft)	(ft/sec)			
	(min)	(feet) 50	(ft/ft)	(ft/sec)		Sheet Flow, 1	
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"	

Subcatchment S-A-OS: Offsite Areas

0.025 af, Depth= 2.74"

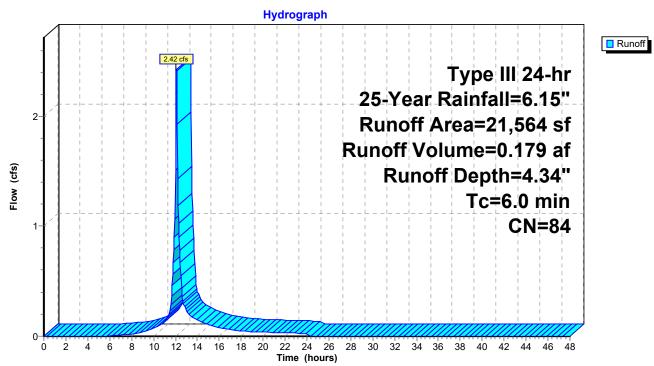

Summary for Subcatchment S-A-OS-LF: Offsite Lovell Field

Runoff	=	0.34 cfs @	12.10 hrs,	Volume=
Route	d to Pone	d ED-AB : Ēxi	sting Depre	ession

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description				
*		772	39	>75% Gras	s cover, Go	bod, HSG A (OFFSITE)		
		2,699	74	>75% Gras	s cover, Go	bod, HSG C		
*		1,178	70	Woods, Go	od, HSG C	(OFFSITE)		
*		143	98	Impervious	surfaces, H	ISG C (OFFSITE)		
		4,792	68	Weighted Average				
		4,649		97.02% Pervious Area				
		143		2.98% Impervious Area				
	Тс	Length	Slope	e Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment S-A-OS-LF: Offsite Lovell Field

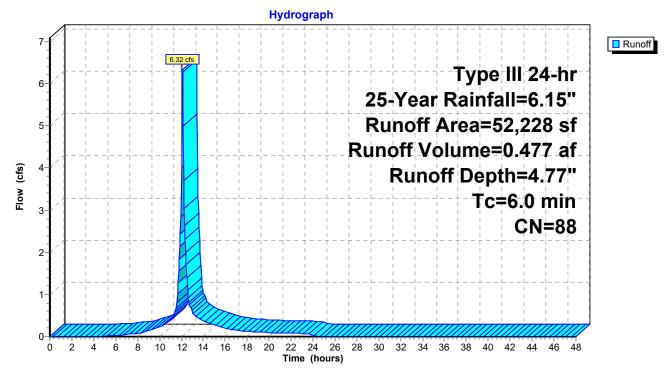

Summary for Subcatchment S-B: S-B

Runoff = 2.42 cfs @ 12.09 hrs, Volume= 0.179 af, Depth= 4.34" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

>75% Grass cover, Good, HSG C		
Gravel surface, HSG C		
-		

Subcatchment S-B: S-B


Summary for Subcatchment SWALE: SWALE/BASIN

Runoff = 6.32 cfs @ 12.09 hrs, Volume= 0.477 af, Depth= 4.77" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description		
*		30,996	98	Impervious surfaces, HSG C		
		21,232	74	>75% Gras	s cover, Go	ood, HSG C
		52,228	88	Weighted A	verage	
		21,232		40.65% Pervious Area		
		30,996		59.35% Imp	pervious Ar	rea
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment SWALE: SWALE/BASIN

Summary for Pond ED-AB: Existing Depression

Inflow Are	a =	1.749 ac, 3	9.42% Impervious, In	flow Depth = 2.79" for 25-Year event	
Inflow	=	4.90 cfs @	12.11 hrs, Volume=	0.406 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 21.32' @ 24.55 hrs Surf.Area= 10,984 sf Storage= 17,682 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

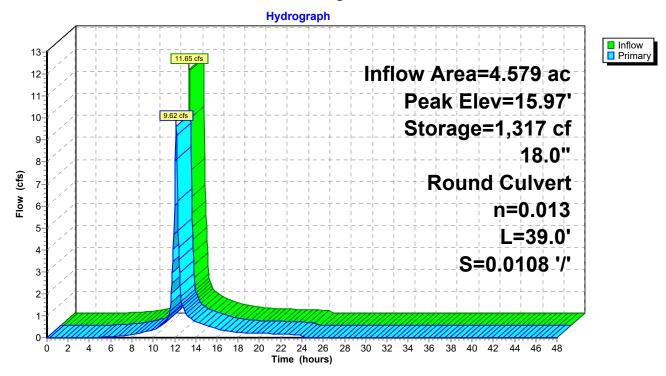
Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	18.0	0' 48,98	B9 cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
18.00		313	0	0	
19.00		2,684	1,499	1,499	
20.00		6,330	4,507	6,006	
21.00		10,192	8,261	14,267	
22.00		12,649	11,421	25,687	
23.00		15,970	14,310	39,997	
23.50		20,000	8,993	48,989	
Device F	Routing	Invert	Outlet Devic	es	
#1 F	Primary	23.43'	Head (feet) 2.50 3.00 3	0.20 0.40 0.60 .50 sh) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=18.00' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Hydrograph Inflow Primary 4.90 cfs Inflow Area=1.749 ac 5 Peak Elev=21.32' Storage=17,682 cf 4 Flow (cfs) 3 2-1 0.0 0-0 2 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 6 8 10 12 14 16 18 20 Time (hours)

Pond ED-AB: Existing Depression

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Area =	4.579 ac, 45.16% Impervious, Inflow D	Depth = 2.34" for 25-Year event			
Inflow =	11.65 cfs @ 12.09 hrs, Volume=	0.894 af			
Outflow =	9.62 cfs @12.15 hrs, Volume=	0.894 af, Atten= 17%, Lag= 3.5 min			
Primary =	9.62 cfs @12.15 hrs, Volume=	0.894 af			
Routed to nonexistent node 1R					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 15.97' @ 12.15 hrs Surf.Area= 1,724 sf Storage= 1,317 cf

Plug-Flow detention time= 0.7 min calculated for 0.894 af (100% of inflow) Center-of-Mass det. time= 0.7 min (800.6 - 799.8)

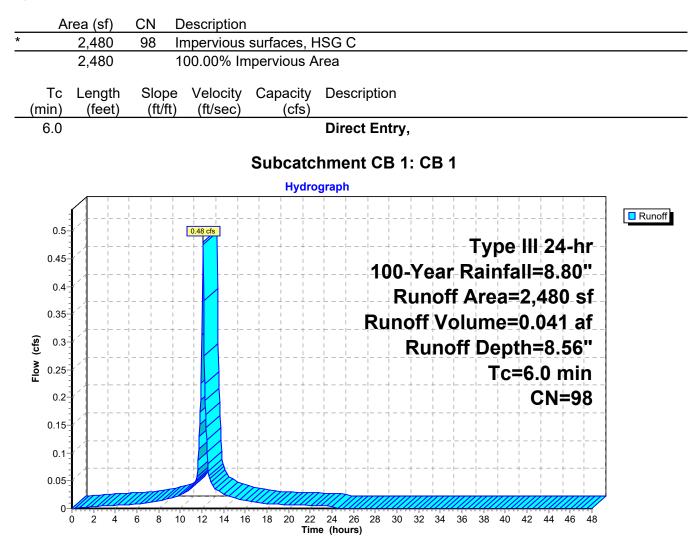
Volume	Ir	nvert Av	ail.Stora	ge Storage	e Description	
#1	1:	3.87'	17,546	cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
- 1				b 0 b b	0	
Elevatio		Surf.Area	-	Inc.Store	Cum.Store	
(fee	et)	(sq-ft) (c	cubic-feet)	(cubic-feet)	
13.8	37	()	0	0	
14.0	00	3	5	0	0	
15.0	00	488	}	246	246	
16.0	00	1,764	Ļ	1,126	1,372	
17.0	00	2,848	}	2,306	3,678	
18.0	00	3,993	}	3,421	7,098	
19.0	00	5,217	,	4,605	11,703	
20.0	00	6,468	}	5,843	17,546	
Device	Routin	g	nvert (Dutlet Devic	es	
#1	Prima	y ´	3.87' 1	18.0" Roun	d Culvert	
		-	L	_= 39.0' CF	P, square edge l	headwall, Ke= 0.500
						3.45' S= 0.0108 '/' Cc= 0.900
						ooth interior, Flow Area= 1.77 sf
			1	1 0.010 00		

Primary OutFlow Max=9.62 cfs @ 12.15 hrs HW=15.97' (Free Discharge) -1=Culvert (Barrel Controls 9.62 cfs @ 5.44 fps)

Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field

222-203 Lot A B Pre Development Conditions	Type III 24-hr	100-Year Rainfall=8.80"
Prepared by McKenzie Engineering Group Inc		Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutio	ons LLC	Page 52
		-

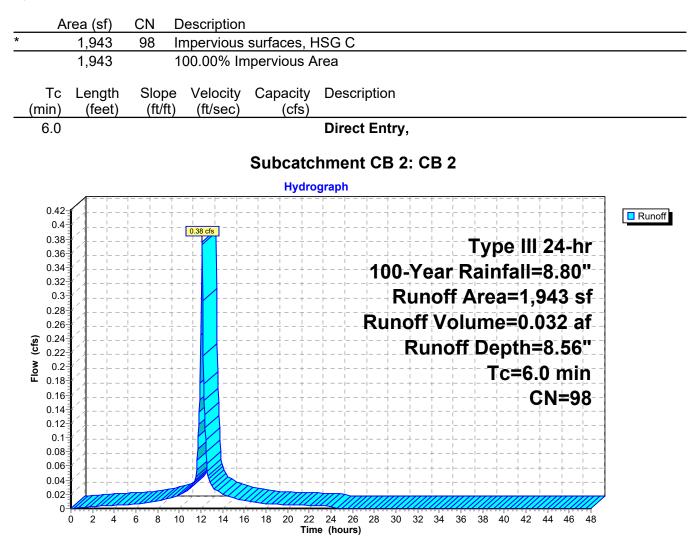
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method


SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=0.48 cfs 0.041 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=0.38 cfs 0.032 af
SubcatchmentCB 5: CB 5 Flow Length=195'	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=8.08" Slope=0.1230 '/' Tc=7.4 min CN=94 Runoff=1.26 cfs 0.106 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=3.34" Tc=6.0 min CN=55 Runoff=3.29 cfs 0.245 af
SubcatchmentS-A: S-A Flow Length=195'	Runoff Area=37,076 sf 61.01% Impervious Runoff Depth=6.99" Slope=0.1230 '/' Tc=7.4 min CN=85 Runoff=6.29 cfs 0.496 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=2.40" Flow Length=213' Tc=9.4 min CN=47 Runoff=1.77 cfs 0.158 af
SubcatchmentS-A-OS-LF: Offsite Lovell	Runoff Area=4,792 sf 2.98% Impervious Runoff Depth=4.92" Tc=6.0 min CN=68 Runoff=0.62 cfs 0.045 af
SubcatchmentS-B: S-B	Runoff Area=21,564 sf 22.87% Impervious Runoff Depth=6.87" Tc=6.0 min CN=84 Runoff=3.75 cfs 0.283 af
SubcatchmentSWALE: SWALE/BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=7.35" Tc=6.0 min CN=88 Runoff=9.51 cfs 0.735 af
Pond ED-AB: Existing Depression	Peak Elev=22.36' Storage=30,421 cf Inflow=8.53 cfs 0.698 af Outflow=0.00 cfs 0.000 af
	n Peak Elev=16.99' Storage=3,650 cf Inflow=18.65 cfs 1.441 af Culvert n=0.013 L=39.0' S=0.0108 '/' Outflow=13.10 cfs 1.441 af

Total Runoff Area = 4.579 ac Runoff Volume = 2.139 af Average Runoff Depth = 5.61" 54.84% Pervious = 2.511 ac 45.16% Impervious = 2.068 ac

Summary for Subcatchment CB 1: CB 1

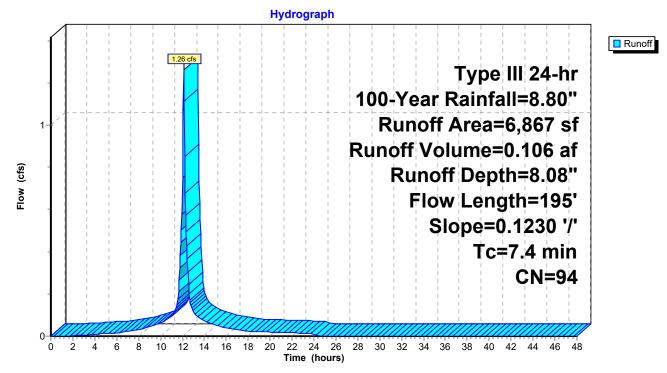
Runoff = 0.48 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 8.56" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

Summary for Subcatchment CB 2: CB 2

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 8.56" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

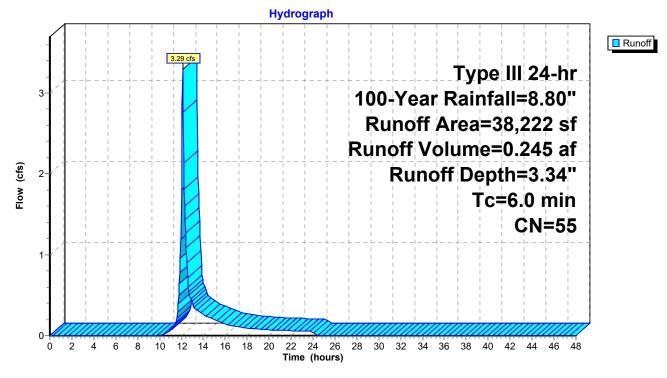

Summary for Subcatchment CB 5: CB 5

Runoff = 1.26 cfs @ 12.10 hrs, Volume= 0.106 af, Depth= 8.08" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

_	Α	rea (sf)	CN [Description									
*		5,683	98 I	mpervious	surfaces, H	ISG C							
_		1,184	74 >	>75% Gras	5% Grass cover, Good, HSG C								
	6,867 94 Weighted Average												
	1,184 17.24% Pervious Area												
	5,683 82.76% Impervious Area												
	Тс	Length	Slope	Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	6.0	50	0.1230	0.14		Sheet Flow, 1							
						Woods: Light underbrush n= 0.400 P2= 3.20"							
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2							
_						Woodland Kv= 5.0 fps							
	7.4	195	Total										

Subcatchment CB 5: CB 5


Summary for Subcatchment DCB 4: DCB 4

Runoff = 3.29 cfs @ 12.10 hrs, Volume= 0.245 af, Depth= 3.34" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

_	A	rea (sf)	CN	Description						
*		14,030	98	Impervious	surfaces, H	HSG A				
_		24,192	30	Woods, Go	od, HSG A	A				
		38,222	55	Weighted A	verage					
		24,192	192 63.29% Pervious Area							
		14,030	36.71% Impervious Area							
	_									
	Tc	Length	Slope	,	Capacity					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				
				_						

Summary for Subcatchment S-A: S-A

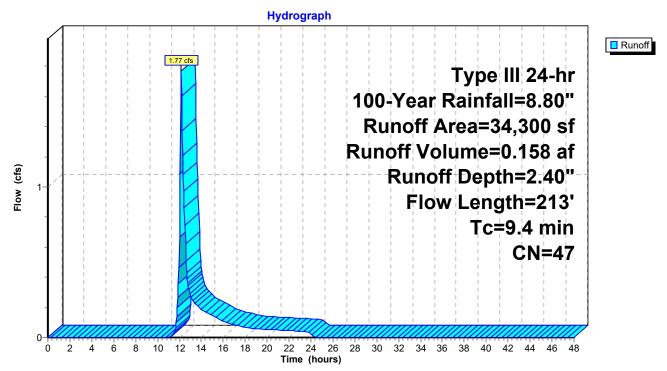
Runoff = 6.29 cfs @ 12.10 hrs, Volume= 0.496 af, Depth= 6.99" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN I	Description					
*		4,142	98 I	8 Bottom Basin, HSG A					
*		5,243	98 I	mpervious	surfaces, H	HSG A			
*		329	39 :	>75% Gras	s cover, Go	bod, HSG A			
*		2,305	30	Noods, Go	od, HSG A				
*		65		Roofs, HSG					
*		4,816		Roofs, HSG C					
*		8,343		Impervious surfaces, HSG C					
*		3,814		>75% Grass cover, Good, HSG C					
*		5,909							
*		157				C (OFFSITE)			
*		10				ISG C (OFFSITE)			
*		1,943							
		37,076		Neighted A					
		14,457		38.99% Pei					
		22,619	(61.01% Imp	pervious Ar	ea			
	-				O				
	Tc	Length	Slope			Description			
	(min)	(feet)	(ft/ft)		(cfs)				
	6.0	50	0.1230	0.14		Sheet Flow, 1			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	1.4	145	0.1230	1.75		Shallow Concentrated Flow, 2			
						Woodland Kv= 5.0 fps			
	7.4	195	Total						

Hydrograph 7 Runoff 6.29 cfs Type III 24-hr 6-100-Year Rainfall=8.80" Runoff Area=37,076 sf 5-Runoff Volume=0.496 af 4 Flow (cfs) Runoff Depth=6.99" Flow Length=195' 3-Slope=0.1230 '/' Tc=7.4 min 2-CN=85 1-0-2 4 10 12 14 16 18 22 24 26 6 8 20 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Subcatchment S-A: S-A


Summary for Subcatchment S-A-OS: Offsite Areas

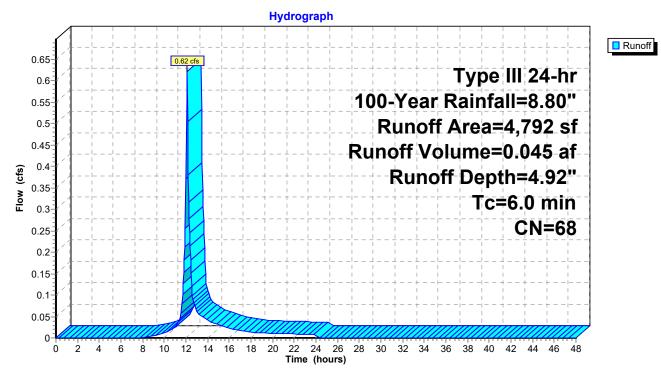
Runoff = 1.77 cfs @ 12.15 hrs, Volume= 0.158 af, Depth= 2.40" Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN D	Description						
*		15,938	30 V	30 Woods, Good, HSG A (OFFSITE)						
*		11,097	39 >	75% Gras	s cover, Go	bod, HSG Á (OFFSITE)				
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)				
*		1,600	98 Ir							
		34,300	47 V	Veighted A	verage					
		27,035	7	8.82% Per	rvious Area	L				
		7,265	2	1.18% Imp	pervious Ar	ea				
					<u> </u>					
	Тс	Length	Slope	Velocity	Capacity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_		•	•			Sheet Flow, 1				
	(min)	(feet)	(ft/ft)	(ft/sec)						
_	(min)	(feet) 50	(ft/ft)	(ft/sec)		Sheet Flow, 1				
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"				

Subcatchment S-A-OS: Offsite Areas

0.045 af, Depth= 4.92"

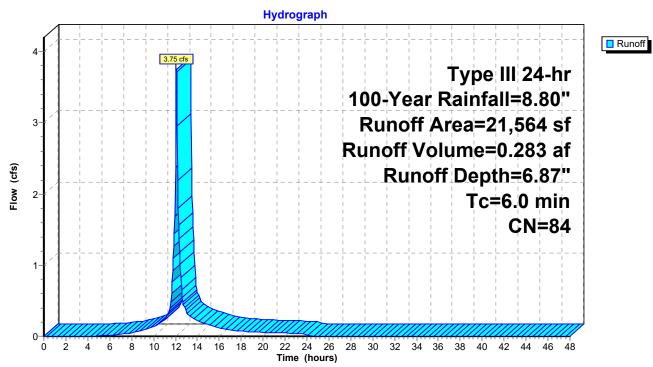

Summary for Subcatchment S-A-OS-LF: Offsite Lovell Field

Runoff = 0.62 cfs @ 12.09 hrs, Volume= Routed to Pond ED-AB : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN	Description								
*		772	39	>75% Gras	s cover, Go	bod, HSG A (OFFSITE)						
		2,699	74	>75% Gras	5% Grass cover, Good, HSG C							
*		1,178	70	Woods, Go	od, HSG C	(OFFSITE)						
*		143	98	Impervious	surfaces, H	ISG C (OFFSITE)						
		4,792	68	Weighted A	verage							
		4,649		97.02% Pe	rvious Area	l de la constante d						
		143		2.98% Impe	ervious Are	а						
	Тс	Length	Slope	e Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
	6.0					Direct Entry,						

Subcatchment S-A-OS-LF: Offsite Lovell Field

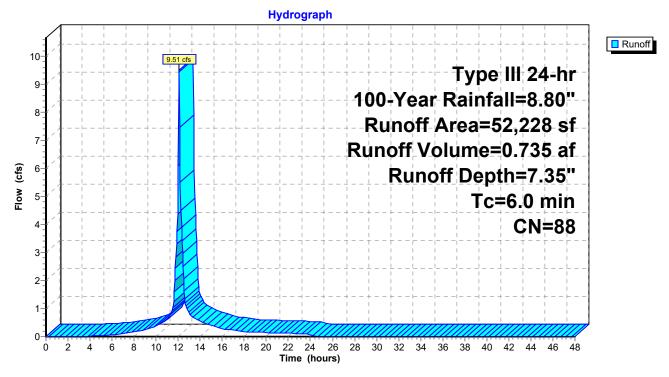

Summary for Subcatchment S-B: S-B

Runoff = 3.75 cfs @ 12.09 hrs, Volume= 0.283 af, Depth= 6.87" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Are	ea (sf)	CN	Description					
		3,849	98	Roofs, HSC	G C				
*		1,038	98	Impervious	surfaces, H	HSG C			
		7,880	74	>75% Gras	75% Grass cover, Good, HSG C				
		3,460	96	Gravel surfa	ravel surface, HSG C				
*		44	98	Impervious	surfaces, H	HSG C (OFFSITE)			
*		3,893	74	>75% Gras	>75% Grass cover, Good, HSG C (OFFSITE)				
*		1,400	96	Gravel, HSG C (OFFSITE)					
	2	21,564	84	Weighted A	verage				
	1	16,633		77.13% Pei	rvious Area	1			
		4,931		22.87% Imp	pervious Ar	ea			
	Тс	Length	Slop	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment S-B: S-B


Summary for Subcatchment SWALE: SWALE/BASIN

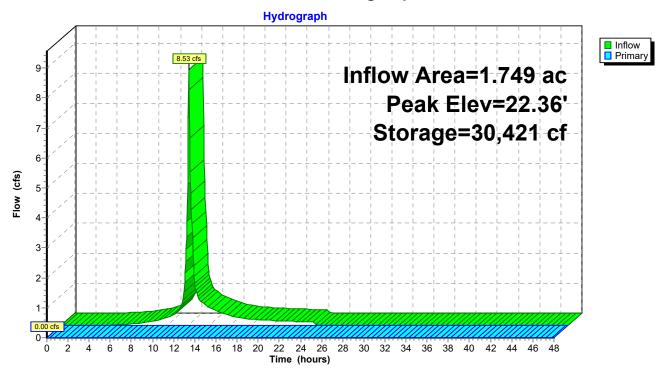
Runoff = 9.51 cfs @ 12.09 hrs, Volume= 0.735 af, Depth= 7.35" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

_	A	rea (sf)	CN	Description		
*		30,996	98	Impervious	surfaces, H	HSG C
		21,232	74	>75% Gras	s cover, Go	ood, HSG C
		52,228	88	Weighted A	verage	
		21,232		40.65% Per	rvious Area	а
		30,996 59.35% Impervious Ar				rea
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment SWALE: SWALE/BASIN

Summary for Pond ED-AB: Existing Depression


Inflow Are	a =	1.749 ac, 3	9.42% Impervious, I	nflow Depth = 4.79 "	for 100-Year event
Inflow	=	8.53 cfs @	12.11 hrs, Volume=	0.698 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	: 0.000 af, Att	en= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume=	: 0.000 af	
Routed	l to Pone	d ES-LF : DP-	LF Existing Swale/Ba	asin in Lovell Field	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 22.36' @ 24.55 hrs Surf.Area= 13,836 sf Storage= 30,421 cf

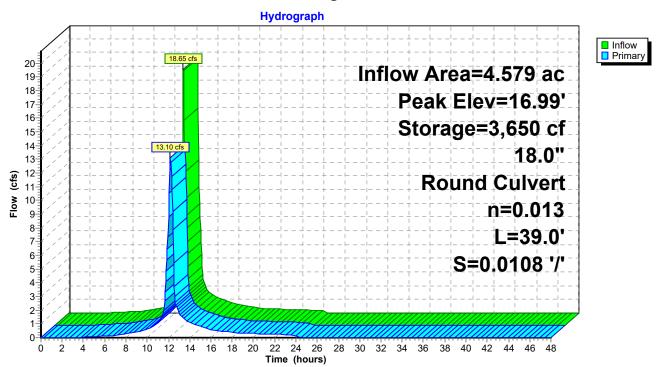
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	18.0	0' 48,98	39 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
18.00		313	0	0	
19.00		2,684	1,499	1,499	
20.00		6,330	4,507	6,006	
21.00		10,192	8,261	14,267	
22.00		12,649	11,421	25,687	
23.00		15,970	14,310	39,997	
23.50		20,000	8,993	48,989	
Device F	Routing	Invert	Outlet Device	es	
#1 F	Primary	23.43'	Head (feet) (2.50 3.00 3.	0.20 0.40 0.60 50 h) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=18.00' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

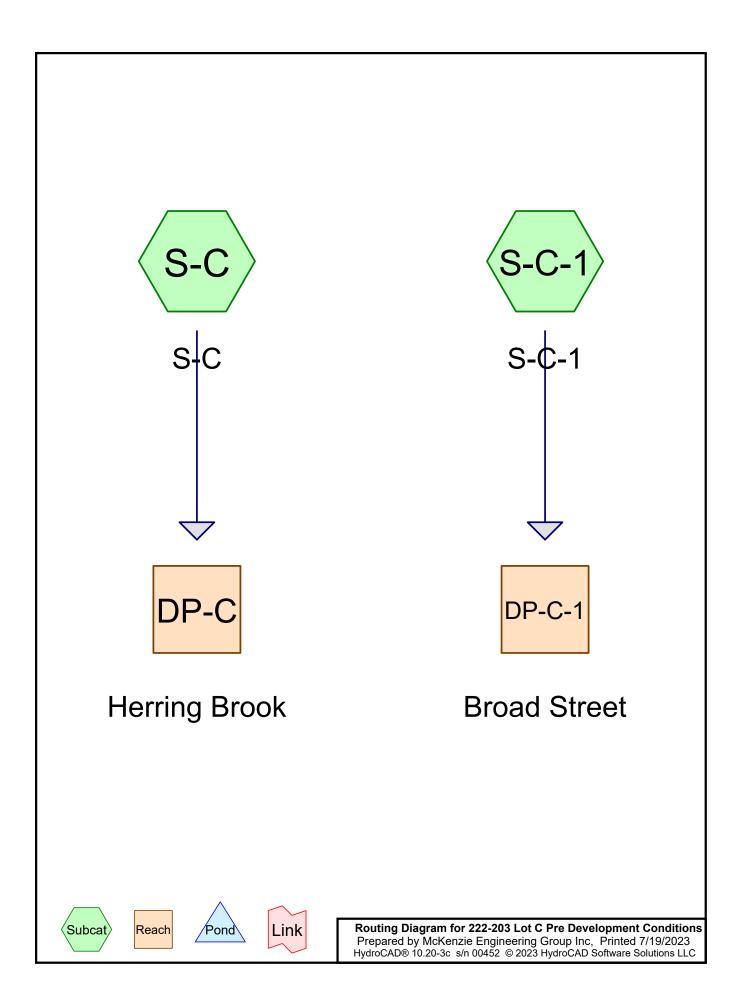
Pond ED-AB: Existing Depression

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Are	a =	4.579 ac, 45.16% Impervious, Inflow Depth = 3.7	78" for 100-Year event
Inflow	=	18.65 cfs @ 12.09 hrs, Volume= 1.441 af	
Outflow	=	13.10 cfs @ 12.18 hrs, Volume= 1.441 af,	Atten= 30%, Lag= 5.1 min
Primary	=	13.10 cfs @ 12.18 hrs, Volume= 1.441 af	-
Routed	l to nor	existent node 1R	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 16.99' @ 12.18 hrs Surf.Area= 2,838 sf Storage= 3,650 cf

Plug-Flow detention time= 1.4 min calculated for 1.439 af (100% of inflow) Center-of-Mass det. time= 1.4 min (791.7 - 790.3)


Volume	Ir	vert Av	ail.Stora	ge Storage	e Description	
#1	1:	3.87'	17,546	cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
- 1				b 0 b b	0	
Elevatio		Surf.Area	-	Inc.Store	Cum.Store	
(fee	et)	(sq-ft) (c	cubic-feet)	(cubic-feet)	
13.8	37	()	0	0	
14.0	00	3	5	0	0	
15.0	00	488	}	246	246	
16.0	00	1,764	Ļ	1,126	1,372	
17.0	00	2,848		2,306	3,678	
18.0	00	3,993		3,421	7,098	
19.0	00	5,217		4,605	11,703	
20.0	00	6,468		5,843	17,546	
Device	Routin	g	nvert (Dutlet Devic	es	
#1	Prima	y ´	3.87' 1	18.0" Roun	d Culvert	
		-	L	_= 39.0' CF	P, square edge l	headwall, Ke= 0.500
						3.45' S= 0.0108 '/' Cc= 0.900
						ooth interior, Flow Area= 1.77 sf
			1	1 0.010 00		

Primary OutFlow Max=13.04 cfs @ 12.18 hrs HW=16.97' (Free Discharge) ←1=Culvert (Inlet Controls 13.04 cfs @ 7.38 fps)

Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field

SITE C

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LL	С

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-Year	Type III 24-hr		Default	24.00	1	3.22	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.86	2
3	25-Year	Type III 24-hr		Default	24.00	1	6.15	2
4	100-Year	Type III 24-hr		Default	24.00	1	8.80	2

Rainfall Events Listing

222-203 Lot C Pre Development Conditions Prepared by McKenzie Engineering Group Inc HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.016	74	>75% Grass cover, Good, HSG C (S-C, S-C-1)
0.011	74	>75% Grass cover, Good, HSG C (OFFSITE) (S-C)
0.335	98	Impervious surfaces, HSG C (S-C, S-C-1)
0.064	98	Impervious surfaces, HSG C (OFFSITE) (S-C)
0.001	98	Impervious, HSG C (OFFSITE) (S-C-1)
0.007	74	Plantings, HSG C (OFFSITE) (S-C)
0.177	98	Roofs, HSG C (S-C, S-C-1)
0.611	97	TOTAL AREA

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.611	HSG C	S-C, S-C-1
0.000	HSG D	
0.000	Other	
0.611		TOTAL AREA

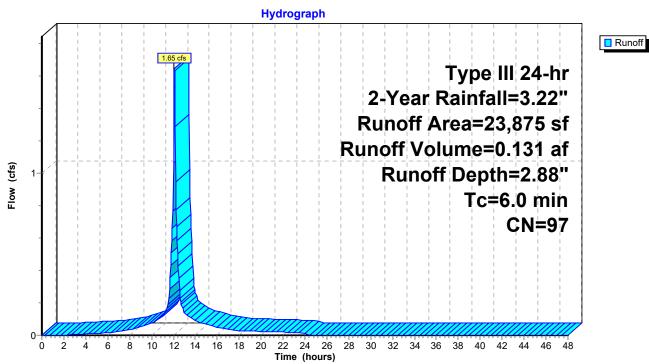
Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchmen Numbers
0.000	0.000	0.027	0.000	0.000	0.027	>75% Grass cover, Good	S-C,
							S-C-1
0.000	0.000	0.001	0.000	0.000	0.001	Impervious	S-C-1
0.000	0.000	0.399	0.000	0.000	0.399	Impervious surfaces	S-C,
							S-C-1
0.000	0.000	0.007	0.000	0.000	0.007	Plantings	S-C
0.000	0.000	0.177	0.000	0.000	0.177	Roofs	S-C,
							S-C-1
0.000	0.000	0.611	0.000	0.000	0.611	TOTAL AREA	

Ground Covers (all nodes)

222-203 Lot C Pre Development Co Prepared by McKenzie Engineering Grou HydroCAD® 10.20-3c s/n 00452 © 2023 Hydro	Type III 24-hr 2-Year Rainfall=3.22" Printed 7/19/2023 LC Page 6				
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method					
SubcatchmentS-C: S-C		96.27% Impervious Runoff Depth=2.88") min CN=97 Runoff=1.65 cfs 0.131 af			
SubcatchmentS-C-1: S-C-1		78.11% Impervious Runoff Depth=2.46" 0 min CN=93 Runoff=0.17 cfs 0.013 af			
Reach DP-C: Herring Brook		Inflow=1.65 cfs 0.131 af Outflow=1.65 cfs 0.131 af			
Reach DP-C-1: Broad Street		Inflow=0.17 cfs 0.013 af Outflow=0.17 cfs 0.013 af			

Total Runoff Area = 0.611 acRunoff Volume = 0.144 afAverage Runoff Depth = 2.83"5.60% Pervious = 0.034 ac94.40% Impervious = 0.577 ac

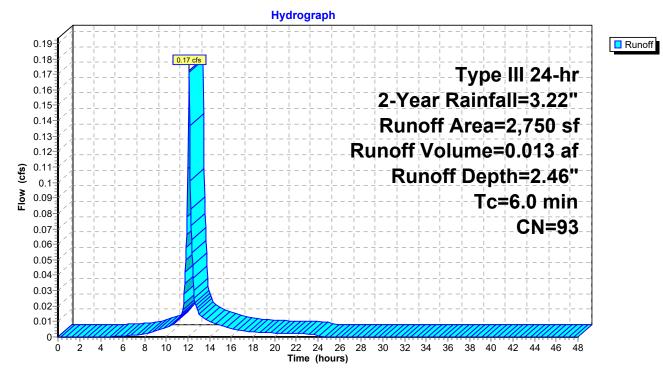

Summary for Subcatchment S-C: S-C

Runoff = 1.65 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C : Herring Brook 0.131 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Area (sf)	CN	Description
	6,815	98	Roofs, HSG C
*	13,361	98	Impervious surfaces, HSG C
	92	74	>75% Grass cover, Good, HSG C
*	2,792	98	Impervious surfaces, HSG C (OFFSITE)
*	490	74	>75% Grass cover, Good, HSG C (OFFSITE)
*	308	74	Plantings, HSG C (OFFSITE)
*	17	98	Impervious surfaces, HSG C (OFFSITE)
	23,875	97	Weighted Average
	890		3.73% Pervious Area
	22,985		96.27% Impervious Area
	Tc Length	Slop	pe Velocity Capacity Description
((min) (feet)	(ft/	ft) (ft/sec) (cfs)
	6.0		Direct Entry,
			-

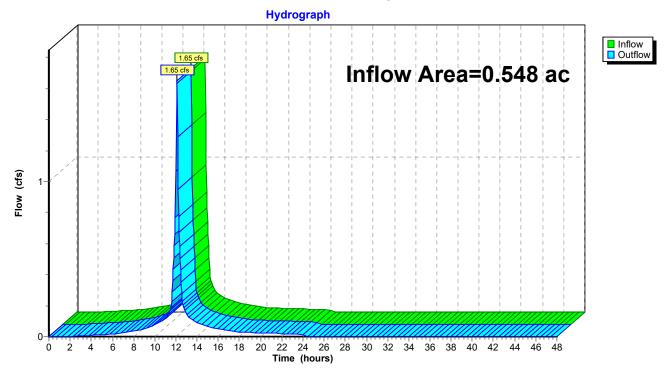
Subcatchment S-C: S-C


Summary for Subcatchment S-C-1: S-C-1

Runoff = 0.17 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.013 af, Depth= 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

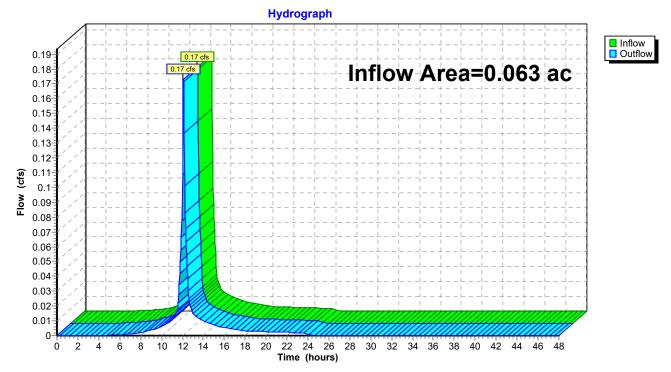
Α	rea (sf)	CN	Description				
	894	98	Roofs, HSC	G C			
*	1,228	98	Impervious	surfaces, H	HSG C		
	602	74	>75% Gras	s cover, Go	Good, HSG C		
*	26	98	Impervious,	HSG C (C	OFFSITE)		
	2,750	93	Weighted A	verage			
	602		21.89% Per	vious Area	а		
	2,148		78.11% Impervious Area				
Тс	Length	Slop		Capacity			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		


Subcatchment S-C-1: S-C-1

Summary for Reach DP-C: Herring Brook

Inflow Area	a =	0.548 ac, 96.27% Impervious, Inflow Depth = 2.88" for 2-Year event
Inflow	=	1.65 cfs @ 12.09 hrs, Volume= 0.131 af
Outflow	=	1.65 cfs @ 12.09 hrs, Volume= 0.131 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

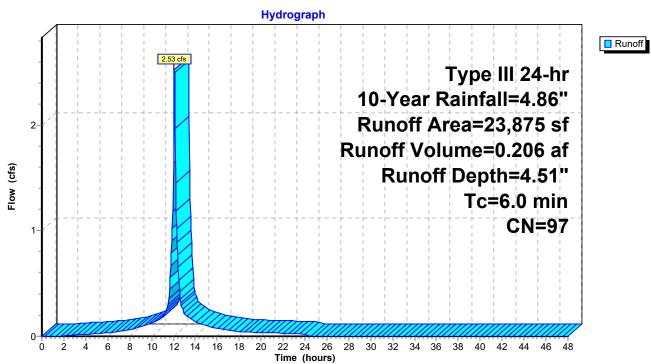
Inflow Area =	0.063 ac, 78.11% Impervious, Inflow D	Depth = 2.46" for 2-Year event
Inflow =	0.17 cfs @ 12.09 hrs, Volume=	0.013 af
Outflow =	0.17 cfs @ 12.09 hrs, Volume=	0.013 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

222-203 Lot C Pre Development Co Prepared by McKenzie Engineering Grou HydroCAD® 10.20-3c s/n 00452 © 2023 Hydro	up Inc		<i>10-Year Rainfall=4.86"</i> Printed 7/19/2023 Page 11			
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
SubcatchmentS-C: S-C		•	vious Runoff Depth=4.51" Runoff=2.53 cfs 0.206 af			
SubcatchmentS-C-1: S-C-1		•	vious Runoff Depth=4.06" Runoff=0.28 cfs 0.021 af			
Reach DP-C: Herring Brook			Inflow=2.53 cfs 0.206 af			
			Outflow=2.53 cfs 0.206 af			
Reach DP-C-1: Broad Street			Inflow=0.28 cfs 0.021 af			
			Outflow=0.28 cfs 0.021 af			

Total Runoff Area = 0.611 acRunoff Volume = 0.227 afAverage Runoff Depth = 4.46"5.60% Pervious = 0.034 ac94.40% Impervious = 0.577 ac

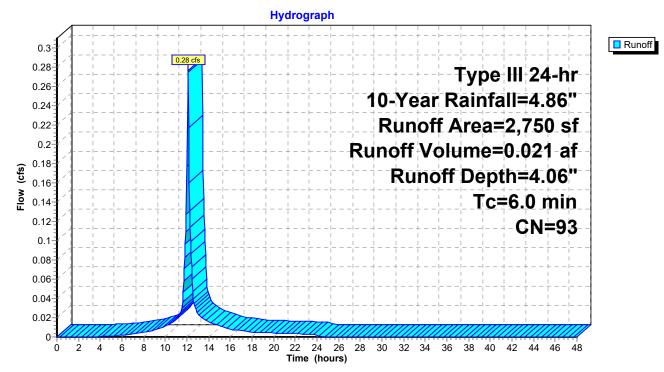

Summary for Subcatchment S-C: S-C

Runoff = 2.53 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C : Herring Brook 0.206 af, Depth= 4.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	Area (sf)	CN	Description
	6,815	98	Roofs, HSG C
*	13,361	98	Impervious surfaces, HSG C
	92	74	>75% Grass cover, Good, HSG C
*	2,792	98	Impervious surfaces, HSG C (OFFSITE)
*	490	74	>75% Grass cover, Good, HSG C (OFFSITE)
*	308	74	Plantings, HSG C (OFFSITE)
*	17	98	Impervious surfaces, HSG C (OFFSITE)
	23,875	97	Weighted Average
	890		3.73% Pervious Area
	22,985		96.27% Impervious Area
	Tc Lengt	h Slo	pe Velocity Capacity Description
_	(min) (feet) (ft/	/ft) (ft/sec) (cfs)
	6.0		Direct Entry,

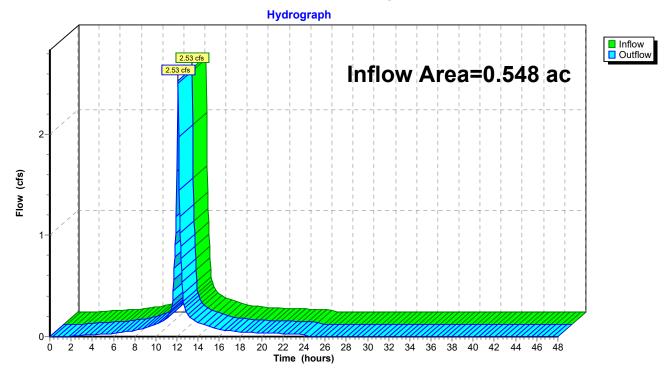
Subcatchment S-C: S-C


Summary for Subcatchment S-C-1: S-C-1

Runoff = 0.28 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.021 af, Depth= 4.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

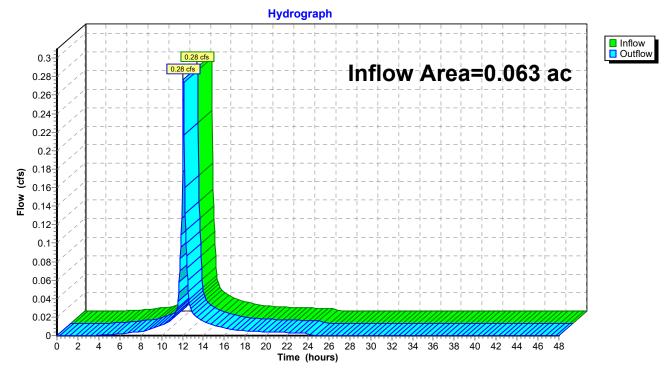
A	rea (sf)	CN	Description		
	894	98	Roofs, HSC	G C	
*	1,228	98	Impervious	surfaces, H	HSG C
	602	74	>75% Gras	s cover, Go	lood, HSG C
*	26	98	Impervious	, HSG C (O	OFFSITE)
	2,750	93	Weighted A	verage	
	602		21.89% Pe	rvious Area	а
	2,148		78.11% lmp	pervious Ar	rea
-		<u></u>		o "	
Tc	Length	Slope	,	Capacity	•
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,


Subcatchment S-C-1: S-C-1

Summary for Reach DP-C: Herring Brook

Inflow Area	a =	0.548 ac, 96.27% Impervious, Inflow Depth = 4.51" for 10-Year event	
Inflow	=	2.53 cfs @ 12.09 hrs, Volume= 0.206 af	
Outflow	=	2.53 cfs @ 12.09 hrs, Volume= 0.206 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

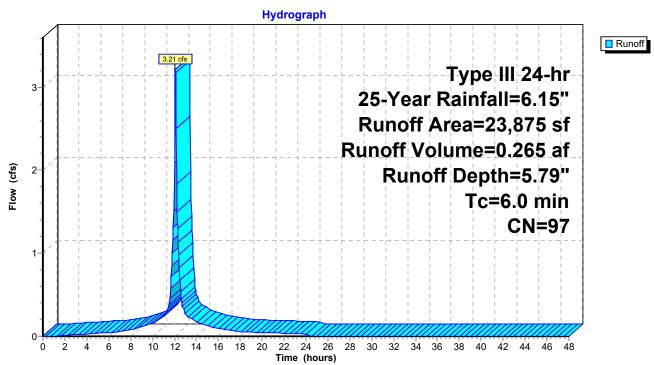
Inflow Area =	0.063 ac, 78.11% Impervious, Inflow D	epth = 4.06" for 10-Year event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

222-203 Lot C Pre Development Co Prepared by McKenzie Engineering Grou HydroCAD® 10.20-3c s/n 00452 © 2023 Hydro	up Inc Printed 7/19/2023
Runoff by SCS TF	0-48.00 hrs, dt=0.05 hrs, 961 points R-20 method, UH=SCS, Weighted-CN d method . Pond routing by Dyn-Stor-Ind method
SubcatchmentS-C: S-C	Runoff Area=23,875 sf 96.27% Impervious Runoff Depth=5.79" Tc=6.0 min CN=97 Runoff=3.21 cfs 0.265 af
SubcatchmentS-C-1: S-C-1	Runoff Area=2,750 sf 78.11% Impervious Runoff Depth=5.33" Tc=6.0 min CN=93 Runoff=0.36 cfs 0.028 af
Reach DP-C: Herring Brook	Inflow=3.21 cfs 0.265 af
	Outflow=3.21 cfs 0.265 af
Reach DP-C-1: Broad Street	Inflow=0.36 cfs 0.028 af Outflow=0.36 cfs 0.028 af

Total Runoff Area = 0.611 ac Runoff Volume = 0.293 af Average Runoff Depth = 5.75" 5.60% Pervious = 0.034 ac 94.40% Impervious = 0.577 ac

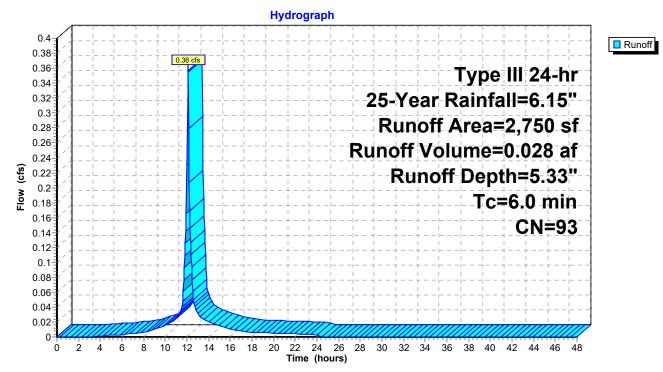

Summary for Subcatchment S-C: S-C

Runoff = 3.21 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C : Herring Brook 0.265 af, Depth= 5.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	Area (sf)	CN	Description
	6,815	98	Roofs, HSG C
*	13,361	98	Impervious surfaces, HSG C
	92	74	>75% Grass cover, Good, HSG C
*	2,792	98	Impervious surfaces, HSG C (OFFSITE)
*	490	74	>75% Grass cover, Good, HSG C (OFFSITE)
*	308	74	Plantings, HSG C (OFFSITE)
*	17	98	Impervious surfaces, HSG C (OFFSITE)
	23,875	97	Weighted Average
	890		3.73% Pervious Area
	22,985		96.27% Impervious Area
	Tc Lengt	h Slo	pe Velocity Capacity Description
_	(min) (feet	t) (ft/	/ft) (ft/sec) (cfs)
	6.0		Direct Entry,

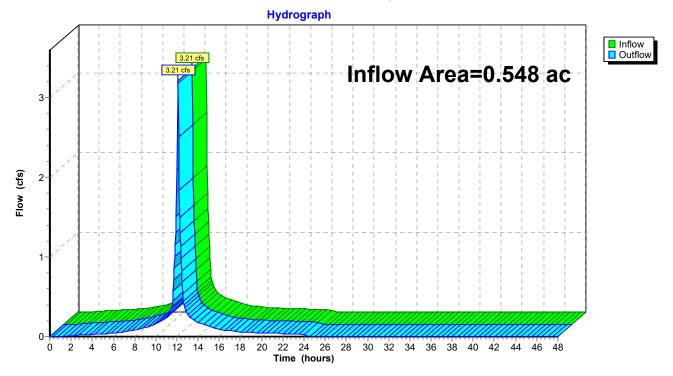
Subcatchment S-C: S-C


Summary for Subcatchment S-C-1: S-C-1

Runoff = 0.36 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.028 af, Depth= 5.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

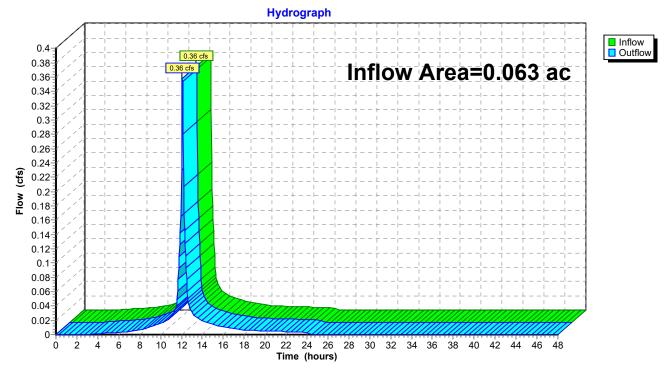
/	Area (sf)	CN	Description		
	894	98	Roofs, HSG	S C	
*	1,228	98	Impervious	surfaces, H	HSG C
	602	74	>75% Gras	s cover, Go	Good, HSG C
*	26	98	Impervious,	HSG C (C	OFFSITE)
	2,750	93	Weighted A	verage	
	602		21.89% Per	vious Area	a
	2,148		78.11% Imp	pervious Ar	vrea
Tc	5	Slop		Capacity	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,


Subcatchment S-C-1: S-C-1

Summary for Reach DP-C: Herring Brook

Inflow Area	a =	0.548 ac, 96.27% Impervious, Inflow Depth = 5.79" for 25-Year event	
Inflow	=	3.21 cfs @ 12.09 hrs, Volume= 0.265 af	
Outflow	=	3.21 cfs @ 12.09 hrs, Volume= 0.265 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

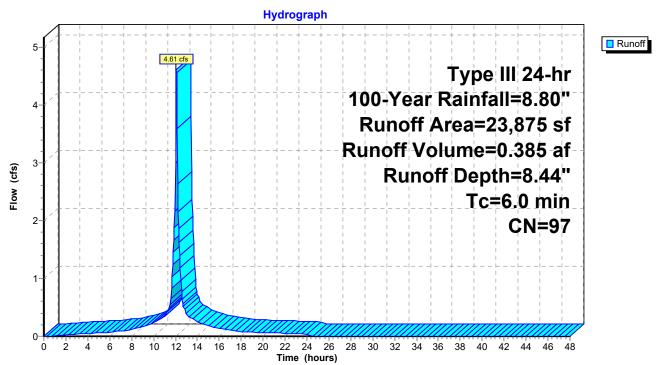
Inflow Area =	0.063 ac, 78.11% Impervious, Inflow I	Depth = 5.33" for 25-Year event
Inflow =	0.36 cfs @ 12.09 hrs, Volume=	0.028 af
Outflow =	0.36 cfs @ 12.09 hrs, Volume=	0.028 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

222-203 Lot C Pre Development Co Prepared by McKenzie Engineering Grou HydroCAD® 10.20-3c s/n 00452 © 2023 Hydro	up Inc		100-Year Rainfall=8.80" Printed 7/19/2023 Page 21
	0-48.00 hrs, dt=0.05 hrs R-20 method, UH=SCS d method - Pond routii	, Weighted-CN	
SubcatchmentS-C: S-C		•	rvious Runoff Depth=8.44" ′ Runoff=4.61 cfs 0.385 af
SubcatchmentS-C-1: S-C-1	,		rvious Runoff Depth=7.96" 8 Runoff=0.52 cfs 0.042 af
Reach DP-C: Herring Brook			Inflow=4.61 cfs 0.385 af Outflow=4.61 cfs 0.385 af
Reach DP-C-1: Broad Street			Inflow=0.52 cfs 0.042 af Outflow=0.52 cfs 0.042 af
	D ((1)/1)	0 40 7 6 4	

Total Runoff Area = 0.611 ac Runoff Volume = 0.427 af Average Runoff Depth = 8.39" 5.60% Pervious = 0.034 ac 94.40% Impervious = 0.577 ac

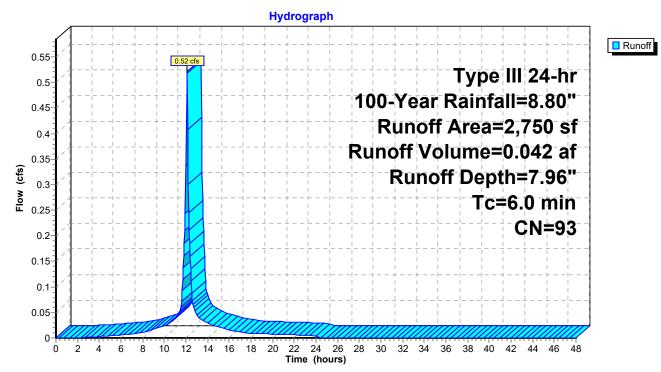

Summary for Subcatchment S-C: S-C

Runoff = 4.61 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C : Herring Brook 0.385 af, Depth= 8.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Area	(sf) (CN E	Description					
	6,8	315	98 F	Roofs, HSG C					
*	13,3	361	98 l	Impervious surfaces, HSG C					
		92	74 >	75% Gras	s cover, Go	bod, HSG C			
*	2,7	'92	98 l	mpervious	surfaces,	ISG C (OFFSITE)			
*	4	90	74 >	75% Gras	s cover, Go	bod, HSG C (OFFSITE)			
*	3	808	74 F	Plantings, HSG C (OFFSITE)					
*		17	98 l	Impervious surfaces, HSG C (OFFSITE)					
	23,8	875	97 V	Veighted A	verage				
	8	390	3	.73% Perv	ious Area				
	22,9	985	g	96.27% Impervious Area					
	Tc Lei	ngth	Slope	Velocity	Capacity	Description			
(min) (f	eet)	(ft/ft)	(ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment S-C: S-C


Summary for Subcatchment S-C-1: S-C-1

Runoff = 0.52 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.042 af, Depth= 7.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

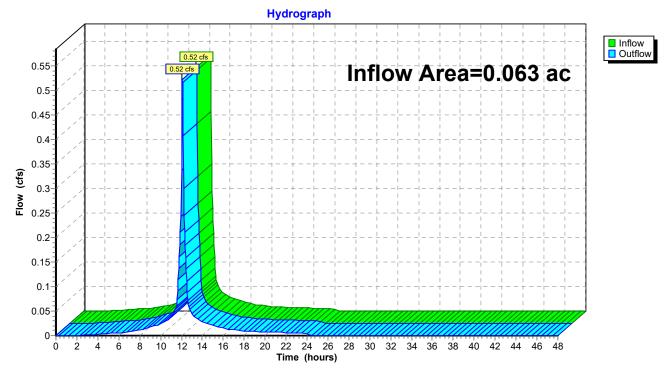
/	Area (sf)	CN	Description					
	894	98	Roofs, HSC	G C				
*	1,228	98	Impervious	surfaces, H	HSG C			
	602	74	>75% Gras	s cover, Go	Good, HSG C			
*	26	98	Impervious	HSG C (C	OFFSITE)			
	2,750	93	Weighted A	verage				
	602		21.89% Pervious Area					
	2,148		78.11% Imp	pervious Ar	rea			
To	: Length	Slop	e Velocity	Capacity	/ Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Subcatchment S-C-1: S-C-1

Summary for Reach DP-C: Herring Brook

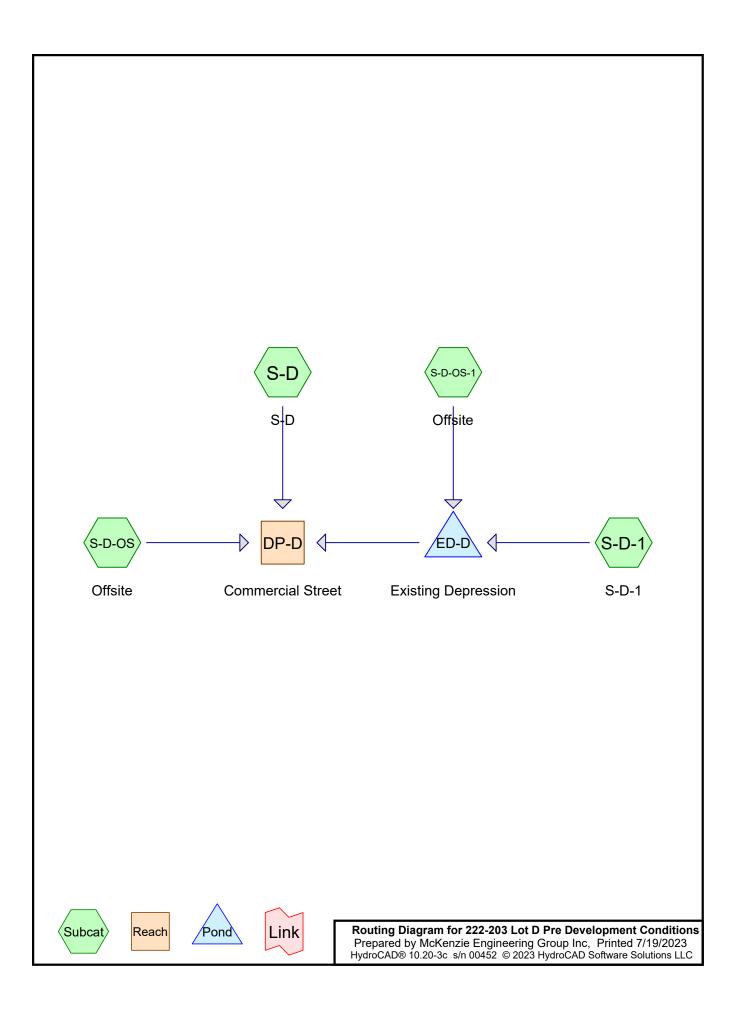
Inflow Area	a =	0.548 ac, 96.27% Impervious, Inflow Depth = 8.44" for 100-Year event
Inflow	=	4.61 cfs @ 12.09 hrs, Volume= 0.385 af
Outflow	=	4.61 cfs @ 12.09 hrs, Volume= 0.385 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street


Inflow Area =	0.063 ac, 78.11% Impervious, Inflow D	epth = 7.96" for 100-Year event
Inflow =	0.52 cfs @ 12.09 hrs, Volume=	0.042 af
Outflow =	0.52 cfs @12.09 hrs, Volume=	0.042 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

SITE D

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	;

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-Year	Type III 24-hr		Default	24.00	1	3.22	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.86	2
3	25-Year	Type III 24-hr		Default	24.00	1	6.15	2
4	100-Year	Type III 24-hr		Default	24.00	1	8.80	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.075	74	>75% Grass cover, Good, HSG C (S-D, S-D-1, S-D-OS-1)
0.126	74	>75% Grass cover, Good, HSG C (OFFSITE) (S-D-OS, S-D-OS-1)
0.071	98	Impervious surfaces, HSG C (S-D)
0.104	98	Roofs, HSG C (S-D)
0.016	98	Roofs, HSG C (OFFSITE) (S-D-OS)
0.393	86	TOTAL AREA

Soil Listing (all nodes)

Soil	Subcatchment
Group	Numbers
HSG A	
HSG B	
HSG C	S-D, S-D-1, S-D-OS, S-D-OS-1
HSG D	
Other	
	TOTAL AREA
	Group HSG A HSG B HSG C HSG D

222-203 Lot D Pre Development Conditions

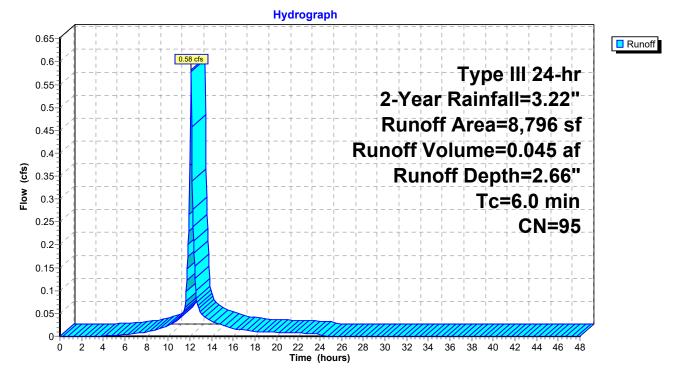
Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchme Numbers
0.000	0.000	0.201	0.000	0.000	0.201	>75% Grass cover, Good	S-D,
							S-D-1,
							S-D-OS,
							S-D-OS-
							1
0.000	0.000	0.071	0.000	0.000	0.071	Impervious surfaces	S-D
0.000	0.000	0.121	0.000	0.000	0.121	Roofs	S-D,
							S-D-OS
0.000	0.000	0.393	0.000	0.000	0.393	TOTAL AREA	

Ground Covers (all nodes)

	mound i ond rodding by byn olor ma mound
SubcatchmentS-D: S-D	Runoff Area=8,796 sf 86.85% Impervious Runoff Depth=2.66" Tc=6.0 min CN=95 Runoff=0.58 cfs 0.045 af
SubcatchmentS-D-1: S-D-1	Runoff Area=1,051 sf 0.00% Impervious Runoff Depth=1.05" Tc=6.0 min CN=74 Runoff=0.03 cfs 0.002 af
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=1.35" Tc=6.0 min CN=79 Runoff=0.11 cfs 0.008 af
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=1.05" Tc=6.0 min CN=74 Runoff=0.11 cfs 0.008 af
Reach DP-D: Commercial Street	Inflow=0.69 cfs 0.053 af Outflow=0.69 cfs 0.053 af
Pond ED-D: Existing Depression	Peak Elev=37.42' Storage=447 cf Inflow=0.13 cfs 0.010 af Outflow=0.00 cfs 0.000 af

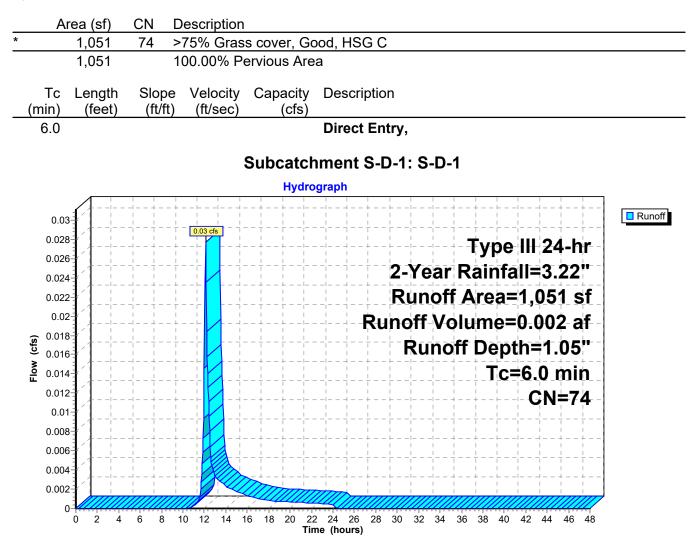
Total Runoff Area = 0.393 ac Runoff Volume = 0.063 af Average Runoff Depth = 1.94" 51.25% Pervious = 0.201 ac 48.75% Impervious = 0.191 ac


Summary for Subcatchment S-D: S-D

Runoff = 0.58 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.045 af, Depth= 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Area (sf)	CN	Description						
	4,549	98	Roofs, HSG C						
*	3,090	98	Impervious	surfaces, H	ISG C				
	1,157	74	>75% Gras	s cover, Go	ood, HSG C				
	8,796	95	Weighted A	verage					
	1,157		13.15% Pervious Area						
	7,639		86.85% Impervious Area						
	Fc Length	Slop		Capacity	Description				
(mi	n) (feet)	(ft/ft) (ft/sec)	(cfs)					
6	.0				Direct Entry,				

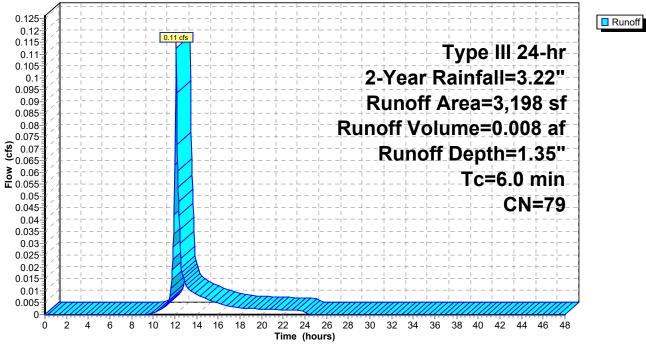

Subcatchment S-D: S-D

Summary for Subcatchment S-D-1: S-D-1

Runoff = 0.03 cfs @ 12.10 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.002 af, Depth= 1.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

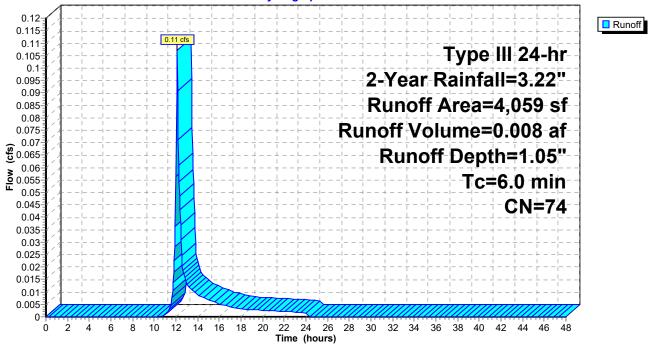
Summary for Subcatchment S-D-OS: Offsite


Runoff = 0.11 cfs @ 12.10 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.008 af, Depth= 1.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Α	rea (sf)	CN	Description		
*		700	98	Roofs, HSC	G C (OFFSI	TE)
*		2,498	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)
		3,198 2,498 700		Weighted A 78.11% Pei 21.89% Imp	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
_	6.0		\$			Direct Entry,

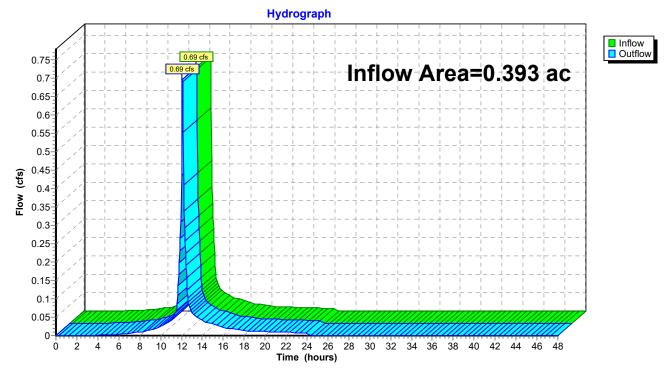
Subcatchment S-D-OS: Offsite


Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.11 cfs @ 12.10 hrs, Volume= 0.008 af, Depth= 1.05" Routed to Pond ED-D : Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Α	rea (sf)	CN	Description	l				
*		1,051	74	>75% Gras	s cover, Go	ood, HSG C			
*		3,008	74	74 >75% Grass cover, Good, HSG C (OFFSITE)					
		4,059 4,059	74	Weighted A 100.00% P	Average ervious Are	a			
(r	Tc nin)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description			
	6.0				· · ·	Direct Entry,			
	Subcatchment S-D-OS-1: Offsite								


Hydrograph

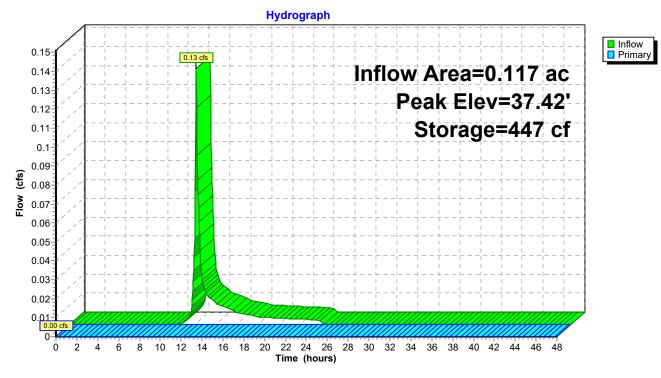
Summary for Reach DP-D: Commercial Street

Inflow Are	a =	0.393 ac, 48.75% Impervious, Inflow Depth = 1.62" for 2-Year event
Inflow	=	0.69 cfs @ 12.09 hrs, Volume= 0.053 af
Outflow	=	0.69 cfs @ 12.09 hrs, Volume= 0.053 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-D: Commercial Street

Summary for Pond ED-D: Existing Depression


Inflow Area =		0.117 ac,	0.00% Impervious, Inflow D	epth = 1.05" for 2-Year event			
Inflow	=	0.13 cfs @	12.10 hrs, Volume=	0.010 af			
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min			
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af			
Routed to Reach DP-D : Commercial Street							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 37.42' @ 24.40 hrs Surf.Area= 318 sf Storage= 447 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	e Description			
#1	34.0	00' 1,10	08 cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
34.0	00	13	0	0			
35.0	00	55	34	34			
36.0	00	137	96	130			
37.0	00	255	196	326			
38.0	00	404	330	656			
39.0	00	500	452	1,108			
Device	Routing	Invert	Outlet Devic	es			
#1	Primary	37.75'	2.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64				
Primary OutFlow May-0.00 of a 0.00 hrs. UN-24.001 TM-0.001 (Dynamia Tailwatar)							

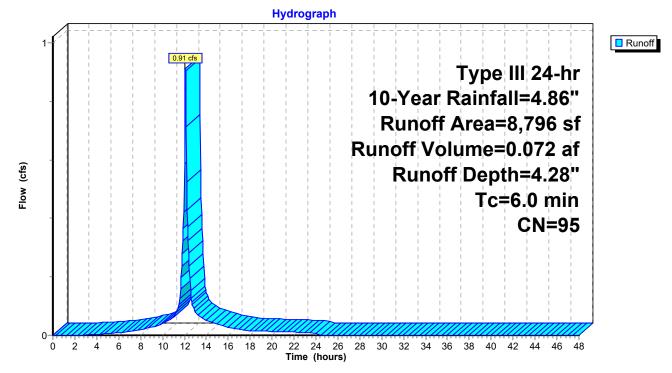
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=34.00' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond ED-D: Existing Depression

222-203 Lot D Pre Development Co Prepared by McKenzie Engineering Grou HydroCAD® 10.20-3c s/n 00452 © 2023 Hydro	up Inc Printed 7/19/2023						
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method							
SubcatchmentS-D: S-D	Runoff Area=8,796 sf 86.85% Impervious Runoff Depth=4.28" Tc=6.0 min CN=95 Runoff=0.91 cfs 0.072 af						
SubcatchmentS-D-1: S-D-1	Runoff Area=1,051 sf 0.00% Impervious Runoff Depth=2.25" Tc=6.0 min CN=74 Runoff=0.06 cfs 0.005 af						
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=2.68" Tc=6.0 min CN=79 Runoff=0.23 cfs 0.016 af						
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=2.25" Tc=6.0 min CN=74 Runoff=0.24 cfs 0.017 af						
Reach DP-D: Commercial Street	Inflow=1.14 cfs 0.098 af Outflow=1.14 cfs 0.098 af						

 Pond ED-D: Existing Depression
 Peak Elev=37.78' Storage=571 cf Inflow=0.30 cfs 0.022 af Outflow=0.03 cfs 0.009 af

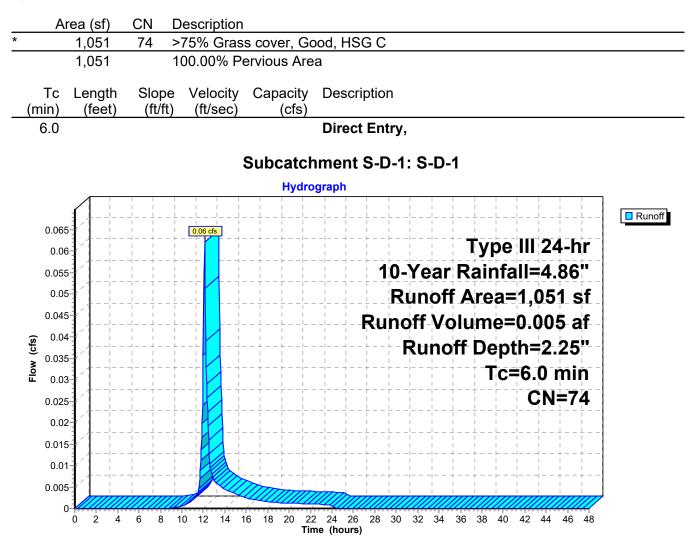
Total Runoff Area = 0.393 acRunoff Volume = 0.110 afAverage Runoff Depth = 3.38"51.25% Pervious = 0.201 ac48.75% Impervious = 0.191 ac


Summary for Subcatchment S-D: S-D

Runoff = 0.91 cfs @ 12.09 hrs, Volume= 0.072 af, Depth= 4.28" Routed to Reach DP-D : Commercial Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	Are	ea (sf)	CN	Description				
		4,549	98	Roofs, HSG	ЭC			
*		3,090	98	Impervious	surfaces, H	ISG C		
		1,157	74	>75% Gras	s cover, Go	bod, HSG C		
		8,796	95 Weighted Average					
		1,157		13.15% Pervious Area				
		7,639		86.85% Impervious Area				
	Tc iin)	Length (feet)	Slop (ft/fl	,	Capacity (cfs)	Description		
6	6.0					Direct Entry,		
					• • •			

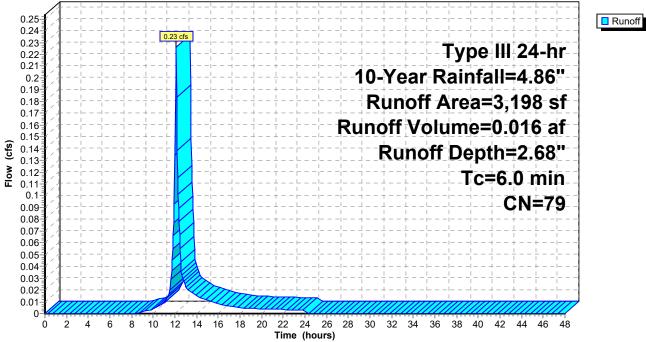


Summary for Subcatchment S-D-1: S-D-1

Runoff = 0.06 cfs @ 12.10 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.005 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

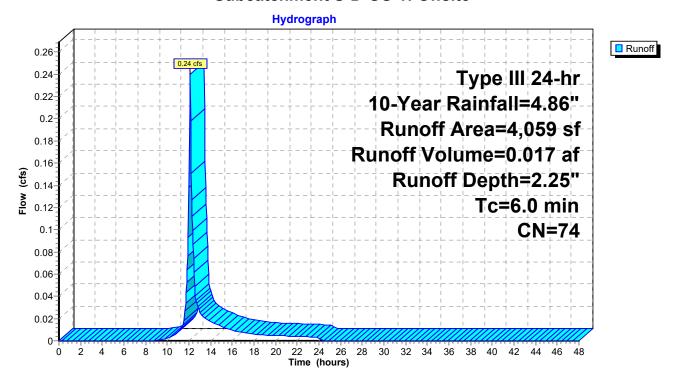
Summary for Subcatchment S-D-OS: Offsite


Runoff = 0.23 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.016 af, Depth= 2.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

_	A	rea (sf)	CN	Description		
*		700	98	Roofs, HSC	G C (OFFSI	TE)
*		2,498	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)
		3,198 2,498 700		Weighted A 78.11% Per 21.89% Imp	rvious Area	
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
_	6.0					Direct Entry,

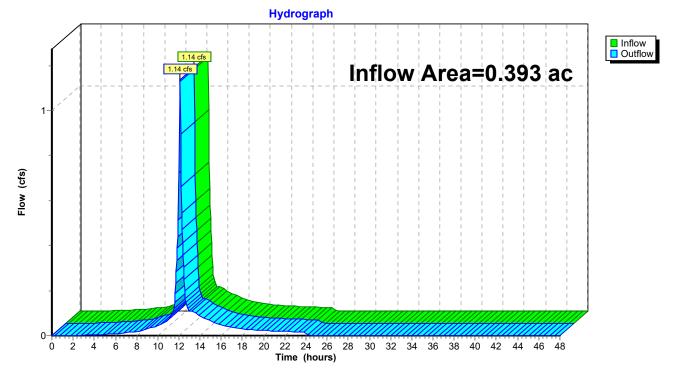
Subcatchment S-D-OS: Offsite



Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.24 cfs @ 12.10 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.017 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

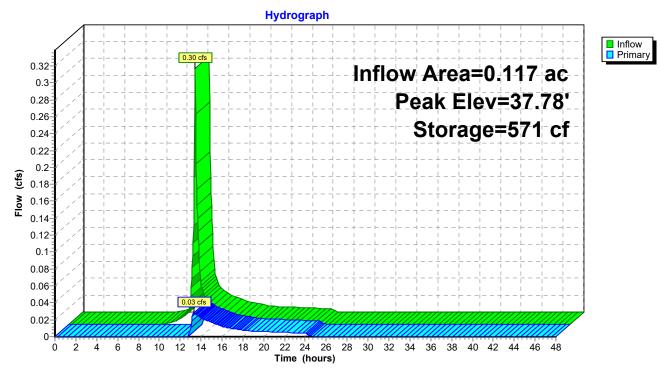

	A	rea (sf)	CN	Description				
*		1,051	74	>75% Gras	s cover, Go	bod, HSG C		
*		3,008	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)		
		4,059 4,059	74	Weighted A 100.00% P	0	a		
(Tc min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
	6.0					Direct Entry,		
	Subcatchment S-D-OS-1: Offsite							

Summary for Reach DP-D: Commercial Street

Inflow Are	a =	0.393 ac, 48.75% Impervious, Inflow Depth = 2.98" for 10-Year event
Inflow	=	1.14 cfs @ 12.09 hrs, Volume= 0.098 af
Outflow	=	1.14 cfs @ 12.09 hrs, Volume= 0.098 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-D: Commercial Street


Summary for Pond ED-D: Existing Depression

Inflow Area =	0.117 ac,	0.00% Impervious, Inflow	Depth = 2.25" for 10-Year event					
Inflow =	0.30 cfs @	12.10 hrs, Volume=	0.022 af					
Outflow =	0.03 cfs @	13.32 hrs, Volume=	0.009 af, Atten= 91%, Lag= 73.7 min					
Primary =	0.03 cfs @	13.32 hrs, Volume=	0.009 af					
Routed to Reach DP-D : Commercial Street								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 37.78' @ 13.32 hrs Surf.Area= 371 sf Storage= 571 cf

Plug-Flow detention time= 293.3 min calculated for 0.009 af (42% of inflow) Center-of-Mass det. time= 168.8 min (1,007.6 - 838.8)

Volume	Inve	ert Avail.Sto	rage Storage	ge Description	
#1	34.0	00' 1,10	08 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee 34.0 35.0 36.0 37.0	20 20 20 20 20 20	Surf.Area (sq-ft) 13 55 137 255	Inc.Store (cubic-feet) 0 34 96 196	Cum.Store (cubic-feet) 0 34 130 326	
38.00 39.00		404 500	330 452	656 1,108	
Device #1	Routing Primary	Invert 37.75'	Outlet Devic 2.0' long x Head (feet)		

Pond ED-D: Existing Depression

222-203 Lot D Pre Development Conditions	Type III 24-hr 25-Year Rainfall=6.15"		
Prepared by McKenzie Engineering Group Inc	Printed 7/19/2023		
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solution	ns LLC Page 22		
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method			
	sf 86.85% Impervious Runoff Depth=5.56" =6.0 min CN=95 Runoff=1.17 cfs 0.094 af		

	Tc=6.0 min CN=95 Runoff=1.17 cfs 0.094 af
SubcatchmentS-D-1: S-D-1	Runoff Area=1,051 sf 0.00% Impervious Runoff Depth=3.31" Tc=6.0 min CN=74 Runoff=0.09 cfs 0.007 af
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=3.81" Tc=6.0 min CN=79 Runoff=0.32 cfs 0.023 af
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=3.31" Tc=6.0 min CN=74 Runoff=0.35 cfs 0.026 af
Reach DP-D: Commercial Street	Inflow=1.49 cfs 0.136 af Outflow=1.49 cfs 0.136 af
Pond ED-D: Existing Depression	Peak Elev=37.86' Storage=602 cf Inflow=0.45 cfs 0.032 af Outflow=0.19 cfs 0.020 af

Total Runoff Area = 0.393 acRunoff Volume = 0.149 afAverage Runoff Depth = 4.56"51.25% Pervious = 0.201 ac48.75% Impervious = 0.191 ac

Summary for Subcatchment S-D: S-D

Runoff = 1.17 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street

8 10 12 14 16 18 20

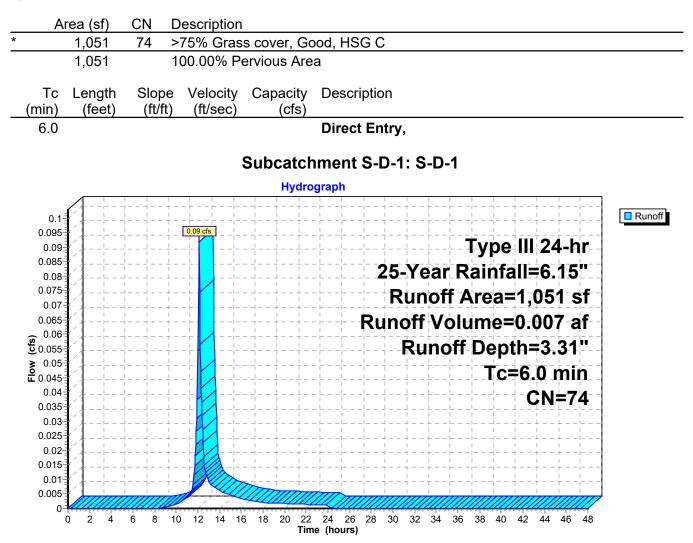
0

0 2 4

6

0.094 af, Depth= 5.56"

22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

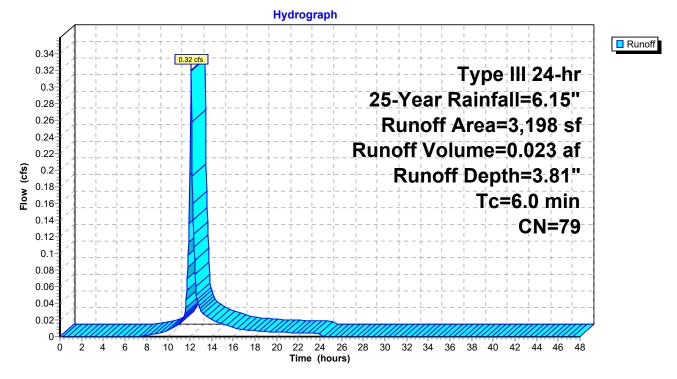

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN E	Description		
		4,549		Roofs, HSC		
*		3,090				
		<u>1,157</u> 8,796		Veighted A		
		1,157			vious Area	
		7,639	8	86.85% Imp	pervious Ar	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry,
					Subcat	chment S-D: S-D
					Hydro	graph
	ĺ					Runoff
	-			1.17 cfs		Type III 24-hr
			·			25-Year Rainfall=6.15"
	1-					
						Runoff Area=8,796 sf
	-					Runoff Volume=0.094 af
	Flow (cfs)					Runoff Depth=5.56"
	N I					Tc=6.0 min
	"					CN=95

Summary for Subcatchment S-D-1: S-D-1

Runoff = 0.09 cfs @ 12.09 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.007 af, Depth= 3.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

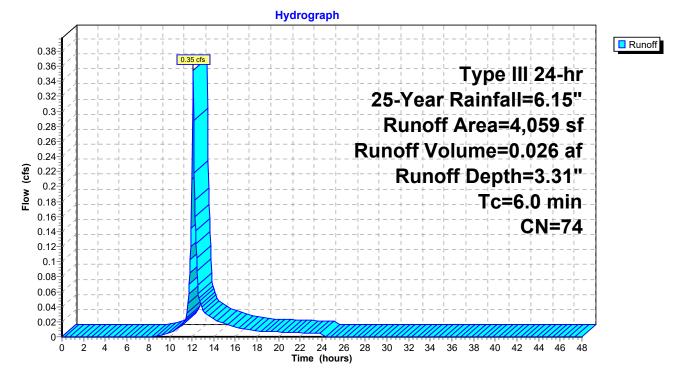

Summary for Subcatchment S-D-OS: Offsite

Runoff = 0.32 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.023 af, Depth= 3.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

_	A	rea (sf)	CN	Description			
*		700	98	Roofs, HSC	Roofs, HSG C (OFFSITE)		
*		2,498	74	>75% Gras	s cover, Go	pod, HSG C (OFFSITE)	
		3,198 2,498 700	79	Weighted A 78.11% Per 21.89% Imp	rvious Area		
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description	
	6.0					Direct Entry,	

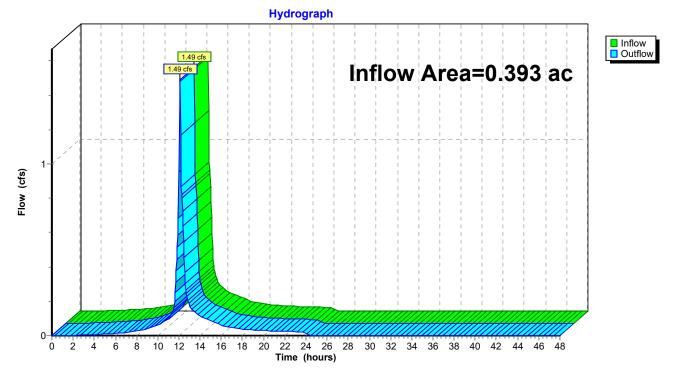
Subcatchment S-D-OS: Offsite


Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.35 cfs @ 12.09 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.026 af, Depth= 3.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

A	rea (sf)	CN	Description		
*	1,051	74	>75% Gras	s cover, Go	bod, HSG C
*	3,008	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)
	4,059 4,059	74	Weighted Average 100.00% Pervious Area		
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
6.0					Direct Entry,
			•		

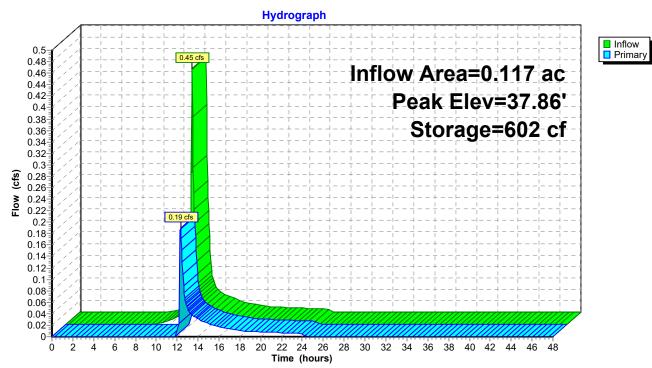

Subcatchment S-D-OS-1: Offsite

Summary for Reach DP-D: Commercial Street

Inflow Are	a =	0.393 ac, 48.75% Impervious, Inflow Depth = 4.17" for 25-Year event
Inflow	=	1.49 cfs @ 12.09 hrs, Volume= 0.136 af
Outflow	=	1.49 cfs @ 12.09 hrs, Volume= 0.136 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-D: Commercial Street


Summary for Pond ED-D: Existing Depression

Inflow Area =	0.117 ac,	0.00% Impervious, Infl	ow Depth = 3.31" for 25-Year event
Inflow =	0.45 cfs @	12.09 hrs, Volume=	0.032 af
Outflow =	0.19 cfs @	12.33 hrs, Volume=	0.020 af, Atten= 58%, Lag= 14.5 min
Primary =	0.19 cfs @	12.33 hrs, Volume=	0.020 af
Routed to F	Reach DP-D : Co	ommercial Street	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 37.86' @ 12.33 hrs Surf.Area= 384 sf Storage= 602 cf

Plug-Flow detention time= 196.1 min calculated for 0.020 af (60% of inflow) Center-of-Mass det. time= 88.2 min (915.9 - 827.7)

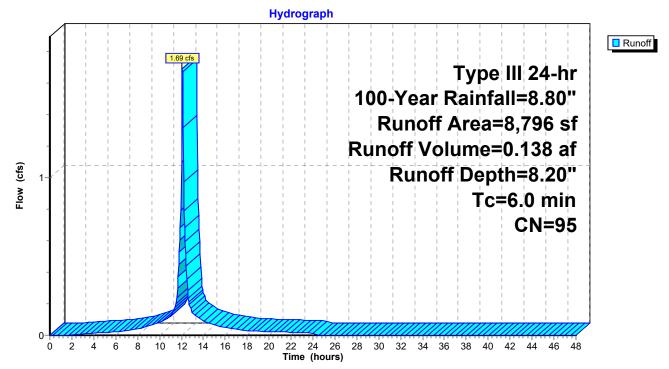
Volume	Inve	ert Avail.Sto	rage Storage	ge Description	
#1	34.0	00' 1,10	08 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)	
(fee 34.0 35.0 36.0 37.0	ElevationSurf.Area(feet)(sq-ft)34.001335.005536.0013737.00255		Inc.Store (cubic-feet) 0 34 96 196	Cum.Store (cubic-feet) 0 34 130 326	
38.0 39.0		404 500	330 452	656 1,108	
Device #1	Routing Primary	Invert 37.75'	Outlet Devic 2.0' long x Head (feet)		

Pond ED-D: Existing Depression

222-203 Lot D Pre Development Condi	tions Type III 24-hr 100-Year Rainfall=8.80"
Prepared by McKenzie Engineering Group Ir	Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAI	D Software Solutions LLC Page 30
Runoff by SCS TR-20	00 hrs, dt=0.05 hrs, 961 points method, UH=SCS, Weighted-CN thod - Pond routing by Dyn-Stor-Ind method
SubcatchmentS-D: S-D R	unoff Area=8,796 sf 86.85% Impervious Runoff Depth=8.20" Tc=6.0 min CN=95 Runoff=1.69 cfs 0.138 af

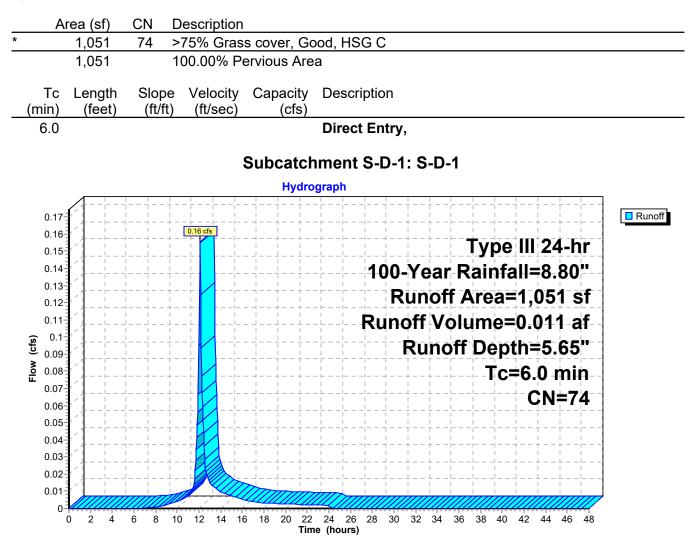
SubcatchmentS-D-1: S-D-1	Runoff Area=1,051 sf 0.00% Impervious Runoff Depth=5.65" Tc=6.0 min CN=74 Runoff=0.16 cfs 0.011 af
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=6.26" Tc=6.0 min CN=79 Runoff=0.52 cfs 0.038 af
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=5.65" Tc=6.0 min CN=74 Runoff=0.60 cfs 0.044 af
Reach DP-D: Commercial Street	Inflow=2.88 cfs 0.219 af Outflow=2.88 cfs 0.219 af
Pond ED-D: Existing Depression	Peak Elev=38.02' Storage=665 cf Inflow=0.76 cfs 0.055 af Outflow=0.72 cfs 0.042 af

Total Runoff Area = 0.393 acRunoff Volume = 0.231 afAverage Runoff Depth = 7.07"51.25% Pervious = 0.201 ac48.75% Impervious = 0.191 ac


Summary for Subcatchment S-D: S-D

Runoff = 1.69 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.138 af, Depth= 8.20"

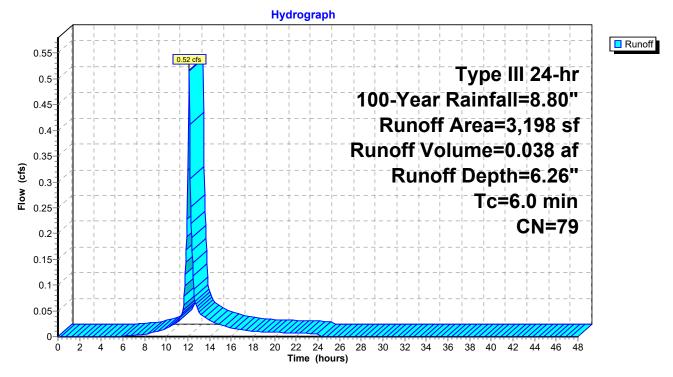
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"


A	rea (sf)	CN	Description			
	4,549	98	Roofs, HSC	Roofs, HSG C		
*	3,090	98	Impervious surfaces, HSG C			
	1,157	74	>75% Gras	s cover, Go	Good, HSG C	
	8,796 1,157 7,639		Weighted A 13.15% Pe 86.85% Imp	rvious Area		
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)		
6.0					Direct Entry,	

Subcatchment S-D: S-D

Summary for Subcatchment S-D-1: S-D-1

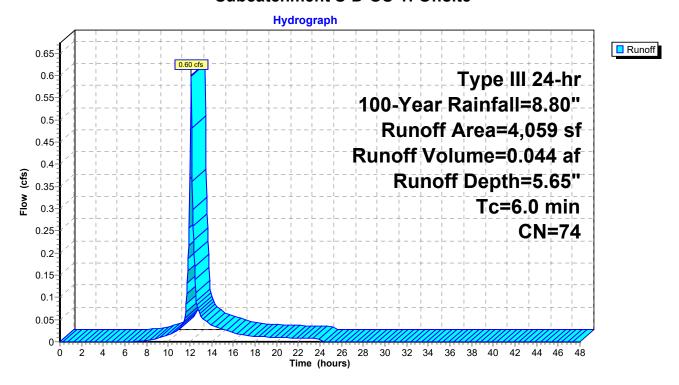
Runoff = 0.16 cfs @ 12.09 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.011 af, Depth= 5.65"


Summary for Subcatchment S-D-OS: Offsite

Runoff = 0.52 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.038 af, Depth= 6.26"

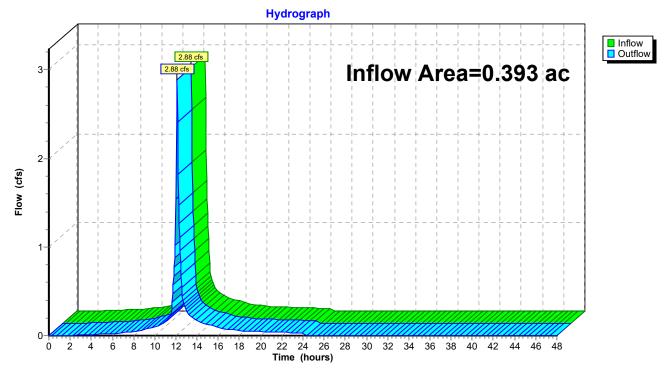
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

_	A	rea (sf)	CN	Description				
*		700	98	Roofs, HSG C (OFFSITE)				
*		2,498	74	>75% Grass cover, Good, HSG C (OFFSITE)				
		3,198	79	Weighted A	verage			
		2,498		78.11% Pei	rvious Area			
		700		21.89% lmp	pervious Ar	ea		
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
	6.0					Direct Entry,		


Subcatchment S-D-OS: Offsite

Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.60 cfs @ 12.09 hrs, Volume= Routed to Pond ED-D : Existing Depression 0.044 af, Depth= 5.65"

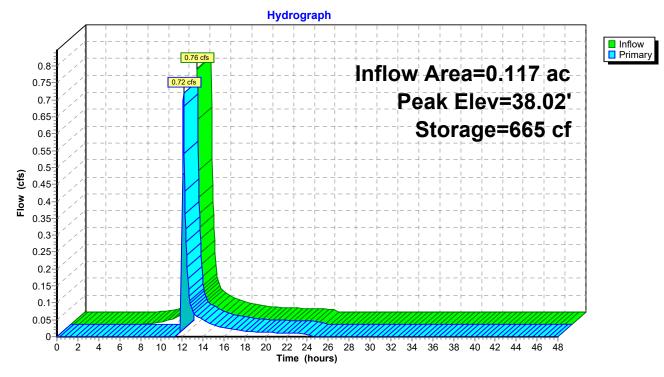

	Α	rea (sf)	CN	Description		
*		1,051	74	>75% Gras	s cover, Go	bod, HSG C
*		3,008	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)
		4,059 4,059	8 8			
(Tc min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description
	6.0					Direct Entry,
	Subcatchment S-D-OS-1: Offsite					

Summary for Reach DP-D: Commercial Street

Inflow Are	a =	0.393 ac, 48.75% Impervious, Inflow Depth = 6.68" for 100-Year event
Inflow	=	2.88 cfs @ 12.10 hrs, Volume= 0.219 af
Outflow	=	2.88 cfs @ 12.10 hrs, Volume= 0.219 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

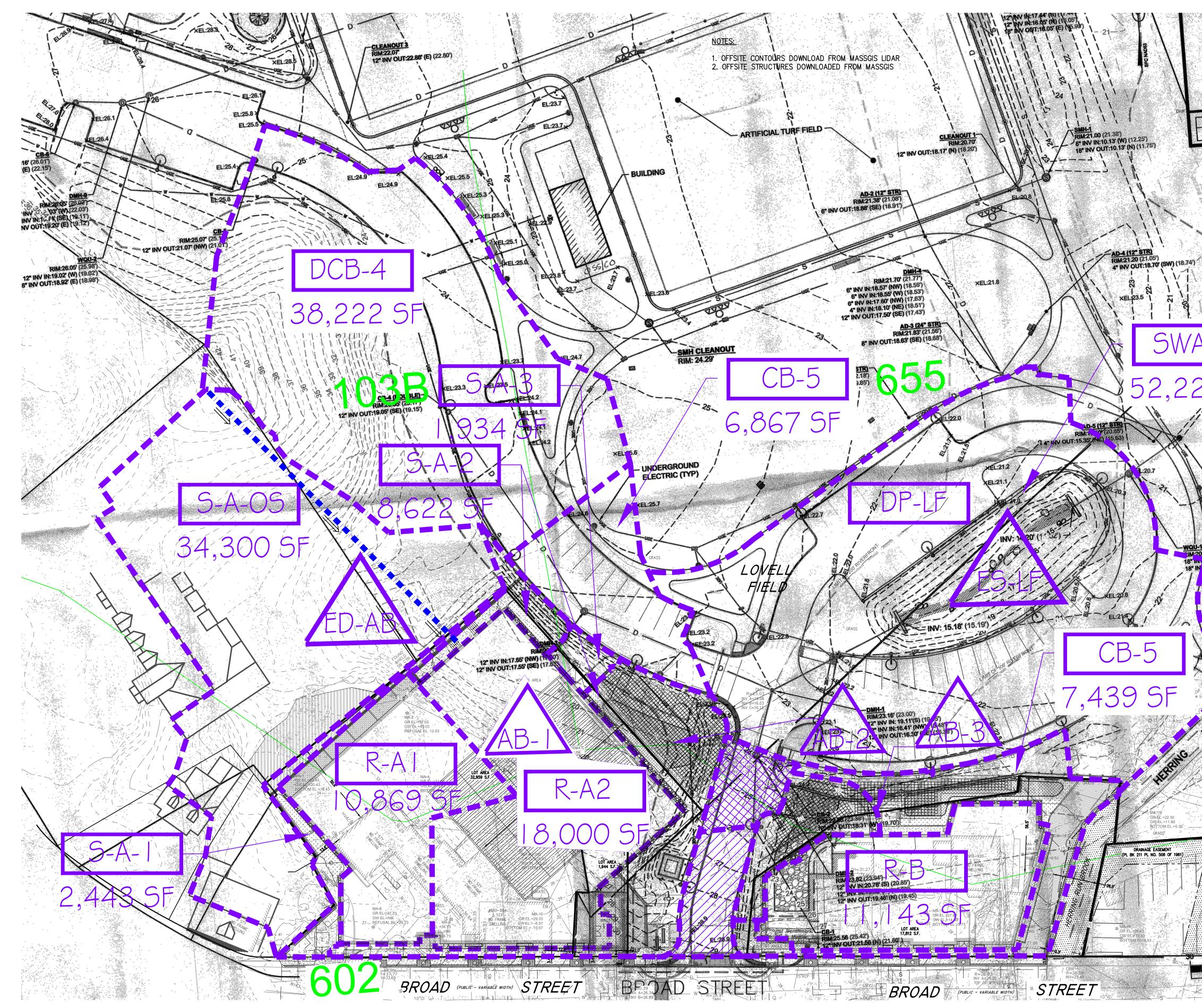
Reach DP-D: Commercial Street


Summary for Pond ED-D: Existing Depression

Inflow Area = 0.117		0.117 ac,	0.00% Impervious, Inflow D	epth = 5.65" for 100-Year event
Inflow	=	0.76 cfs @	12.09 hrs, Volume=	0.055 af
Outflow	=	0.72 cfs @	12.12 hrs, Volume=	0.042 af, Atten= 5%, Lag= 1.8 min
Primary	=	0.72 cfs @	12.12 hrs, Volume=	0.042 af
Routed	to Rea	ch DP-D : Čo	mmercial Street	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 38.02' @ 12.12 hrs Surf.Area= 406 sf Storage= 665 cf

Plug-Flow detention time= 132.7 min calculated for 0.042 af (77% of inflow) Center-of-Mass det. time= 49.4 min (861.8 - 812.4)


Volume	Inve	ert Avail.Sto	orage Storage	Description	
#1	34.0	00' 1,1	08 cf Custon	n Stage Data (Prisma	atic)Listed below (Recalc)
Elevatio (fee 34.0	et)	Surf.Area (sq-ft) 13	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	
35.0	00	55	34	34	
36.0	00	137	96	130	
37.0	00	255	196	326	
38.0	00	404	330	656	
39.0	00	500	452	1,108	
Device #1	Routing Primary	Invert 37.75'	Head (feet)	0.0' breadth Broad-	Crested Rectangular Weir 1.00 1.20 1.40 1.60 .69 2.68 2.69 2.67 2.64

Pond ED-D: Existing Depression

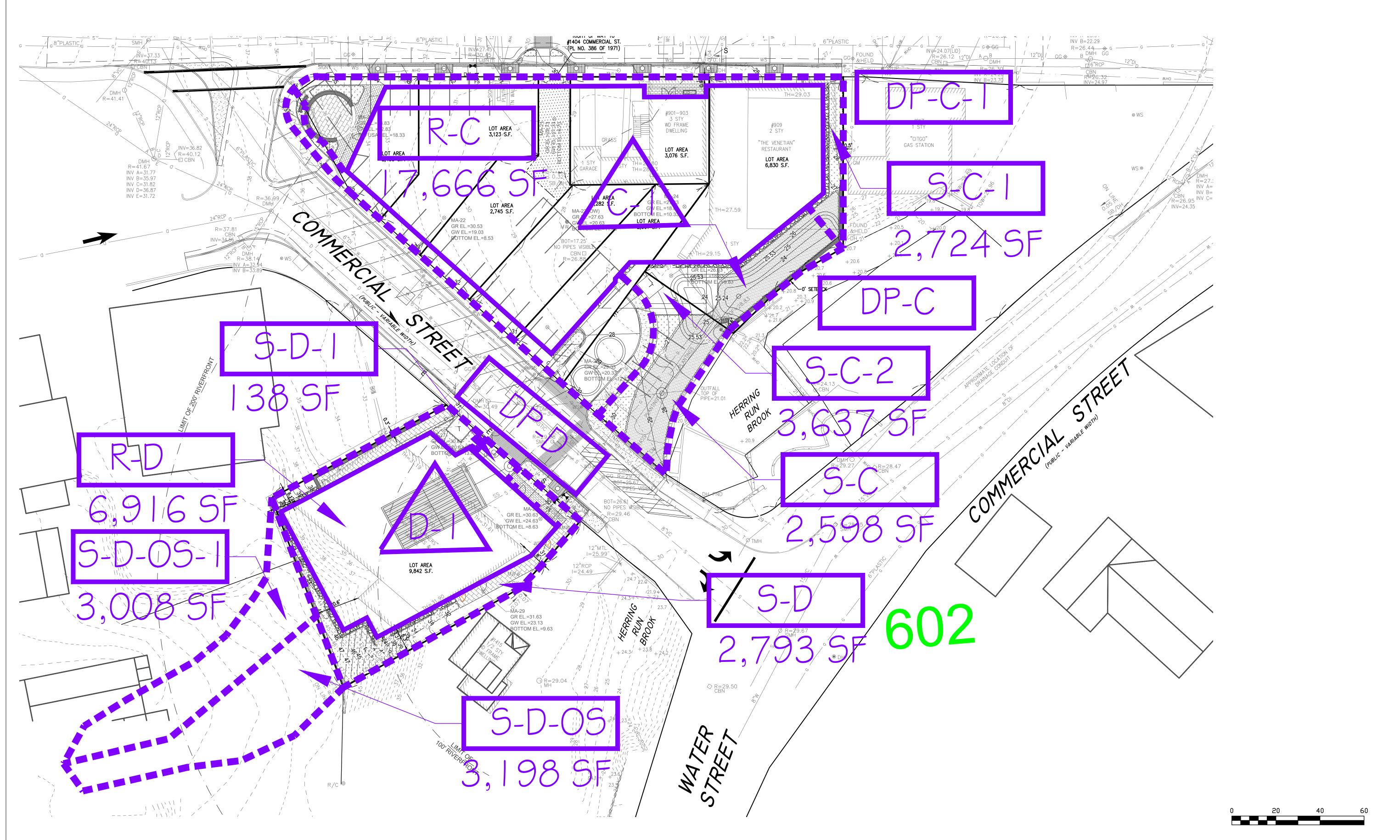
APPENDIX B

Post-Development Condition

SOIL KEY

SOIL CLASSIFICATION	DESCRIPTION	HYDROLOGIC SOIL GROUP
103B	CHARLTON-HOLLIS-ROCK OUTCROP-COMPLEX, 3 TO 8 PERCENT SLOPES	A
602	URBAN LAND, 0 TO 15 PERCENT SLOPES	C ASSUMED
655	URDORTHENTS, WET SUBSTRATUM	C ASSUMED

LEGEND


LIMIT OF WATERSHED

SOIL TYPE BOUNDARY

ANDSCAPE & CON CO. UND LAKEVILLE, MA PHONE (508) 823-6699 FA www.greenacree			ARCHITECT EMBB 580 HARRISON AVE, SU BOSTON, MA 02118 O: 617.765.8000 www.embarcdesign.com OWNER IRAKLIS N PAPACHRISTOS, MANAGER OF 864, 909, 91 AND 1409 COMMERCIAL SI 1 FRANKLIN STREET, UNIT 23 BOSTON, MA 02110 202.230.1693 CONSULTANTS CIVIL MCKENZIE ENGINER 150 LONGWATER DRIVE, SU NORWELL, MA 02061 781.792.3900 LANDSCAPE MDLA 840 SUMMER STREET SUITE #201A BOSTON, MA 02127	UITE 2W
28 SF PILE	CB-1 2,480 SF		MEXMOUTH, MA WENDUTH, MA ISTE	NOI PLAN REVIEW
AD INT ANALON OR			C DRAWING INFORMATIC ISSUE: NOI PLAN RI DATE: SEPTEMBER C PROJECT #: 22034 SCALE: DRAWING TITLE POST-DEVEL WATERSHEE BUILDINGS DRAWING NUMBER	LOPMENT
	0 20	40 60	COpyright: EMBARC INC.	}

SOIL KEY

SOIL CLASSIFICATION	DESCRIPTION	HYDROLOGIC SOIL GROUP
103B	CHARLTON-HOLLIS-ROCK OUTCROP-COMPLEX, 3 TO 8 PERCENT SLOPES	A
602	URBAN LAND, 0 TO 15 PERCENT SLOPES	C ASSUMED
655	URDORTHENTS, WET SUBSTRATUM	C ASSUMED

LEGEND

TIME OF CONCENTRATION FLOW PATH SOIL TYPE BOUNDARY

| ARCHITECT EMBARC 580 HARRISON AVE, SUITE 2

BOSTON, MA 02118 O: 617.765.8000 www.embarcdesign.com OWNER

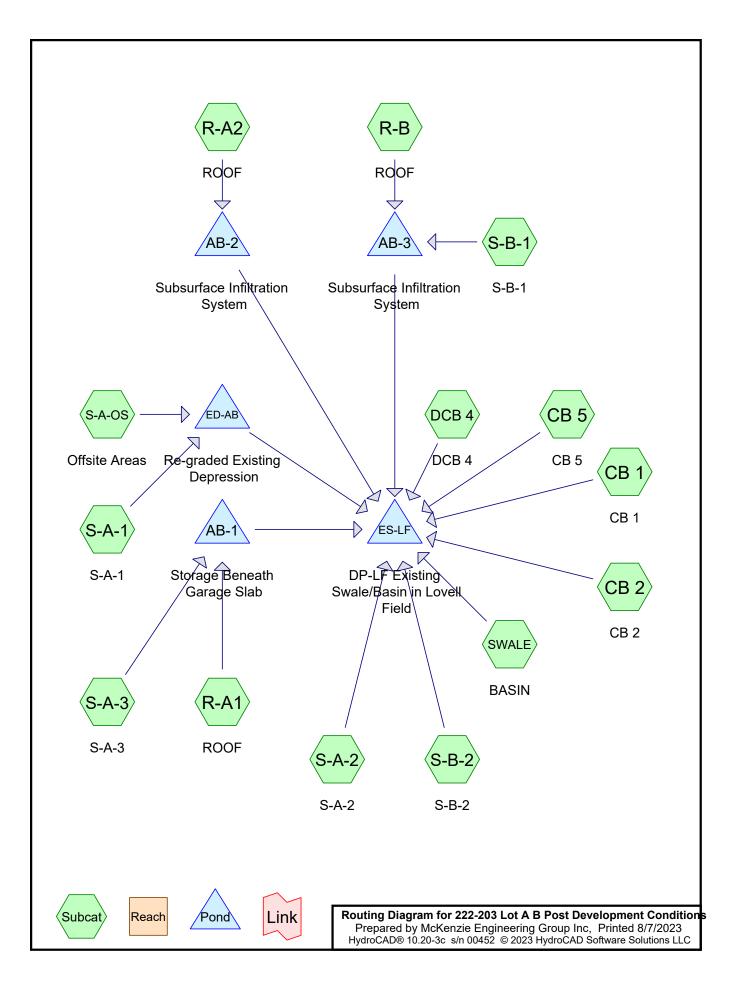
IRAKLIS N PAPACHRISTOS, MANAGER OF 864, 909, 910 BROAD ST LLCs AND 1409 COMMERCIAL ST LLC 1 FRANKLIN STREET, UNIT 2308 BOSTON, MA 02110 202.230.1693

CONSULTANTS

CIVIL MCKENZIE ENGINEERING GROUP 150 LONGWATER DRIVE, SUITE 101 NORWELL, MA 02061 781.792.3900

LANDSCAPE MDLA 840 SUMMER STREET SUITE #201A BOSTON, MA 02127

ш


SQUARI

REVIEW AN MA WEYMOUTH, Ц ŌZ

JACKSON REVISIONS MARK IS DRAWING INFORMATION NOI PLAN REVIEW ISSUE: SEPTEMBER 6, 2023 DATE: PROJECT #: 22034 SCALE: DRAWING TITLE POST-DEVELOPMENT WATERSHED PLANS BUILDINGS C&D DRAWING NUMBER

WS-4 copyright: EMBARC INC.

SITES A & B

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Soluti	ons LLC

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-Year	Type III 24-hr		Default	24.00	1	3.22	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.86	2
3	25-Year	Type III 24-hr		Default	24.00	1	6.15	2
4	100-Year	Type III 24-hr		Default	24.00	1	8.80	2

Rainfall Events Listing

Area Listing (all nodes)

	Area	CN	Description
	cres)		(subcatchment-numbers)
().255	39	>75% Grass cover, Good, HSG A (OFFSITE) (S-A-OS)
	0.515	74	>75% Grass cover, Good, HSG C (CB 5, SWALE)
	0.038	74	>75% Grass cover, Good, HSG C (OFFSITE) (S-A-2)
	0.009	96	Gravel surface, HSG C (S-A-1, S-B-1, S-B-2)
	0.004	96	Gravel surface, HSG C (OFFSITE) (S-A-2)
C	0.001	96	Gravel, HSG A (S-A-2)
C	0.005	96	Gravel, HSG C (S-A-2)
C).322	98	Impervious surfaces, HSG A (DCB 4)
C).944	98	Impervious surfaces, HSG C (CB 1, CB 2, CB 5, SWALE)
C	0.037	98	Impervious surfaces, HSG C (OFFSITE) (S-A-2, S-A-OS)
(0.014	98	Patio, HSG A (R-A1)
(0.004	98	Patio, HSG C (R-A1)
C	0.002	98	Pavement, HSG A (S-A-3)
C	0.007	98	Pavement, HSG C (S-A-3, S-B-1)
C	0.028	98	Pavement, HSG C (OFFSITE) (S-A-3, S-B-1)
C	0.012	39	Plantings, HSG A (S-A-1)
C	0.011	74	Plantings, HSG A (S-A-2)
C	0.010	39	Plantings, HSG A (OFFSITE) (S-A-2)
C	0.200	74	Plantings, HSG C (S-A-1, S-A-2, S-B-1, S-B-2)
C	0.091	74	Plantings, HSG C (OFFSITE) (S-A-2, S-B-1, S-B-2)
C).413	98	Roof, HSG C (R-A2)
C).229	98	Roofs, HSG A (R-A1)
C	0.130	98	Roofs, HSG A (OFFSITE) (S-A-OS)
C).258	98	Roofs, HSG C (R-A1, R-B)
C	0.010	98	Sidewalk, HSG A (S-A-2)
C	0.053	98	Sidewalk, HSG C (S-A-3, S-B-1, S-B-2)
C	0.008	98	Sidewalk, HSG C (OFFSITE) (S-B-1)
C	0.001	98	Sidewalk,HSG C (S-A-2)
(0.030	98	Sidewalk/parking, HSG C (OFFSITE) (S-A-2)
(0.000	98	Sign, HSG C (OFFSITE) (S-A-2)
(0.004	98	Transformer pad, HSG C (S-A-1, S-B-2)
(0.006	98	Wall, HSG A (S-A-1)
(0.006	98	Wall, HSG C (S-A-1, S-B-1, S-B-2)
C	0.002	98	Wall, HSG C (OFFSITE) (S-A-2, S-B-1)
C	0.555	30	Woods, Good, HSG A (DCB 4)
(0.366	30	Woods, Good, HSG A (OFFSITE) (S-A-OS)
4	4.579	76	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
1.923	HSG A	DCB 4, R-A1, S-A-1, S-A-2, S-A-3, S-A-OS
0.000	HSG B	
2.656	HSG C	CB 1, CB 2, CB 5, R-A1, R-A2, R-B, S-A-1, S-A-2, S-A-3, S-A-OS, S-B-1, S-B-2, SWALE
0.000	HSG D	
0.000	Other	
4.579		TOTAL AREA

222-203 Lot A B Post Development Conditions

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	

Printed 8/7/2023 Page 5

HSG (acre		HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.2	55 0.000	0.553	0.000	0.000	0.807	>75% Grass cover, Good	CB 5, S-A-2, S-A-OS, SWALE
0.0	01 0.000	0.005	0.000	0.000	0.006	Gravel	S-A-2
0.0		0.013	0.000	0.000	0.013	Gravel surface	S-A-1,
							S-A-2, S-B-1, S-B-2
0.3	22 0.000	0.981	0.000	0.000	1.303	Impervious surfaces	CB 1, CB 2, CB 5, DCB 4, S-A-2, S-A-OS, SWALE
0.0	14 0.000	0.004	0.000	0.000	0.019	Patio	R-A1
0.0		0.035	0.000	0.000	0.037	Pavement	S-A-3, S-B-1
0.0	33 0.000	0.291	0.000	0.000	0.324	Plantings	S-A-1, S-A-2, S-B-1,
0.0	00 0.000	0.413	0.000	0.000	0 442	Roof	S-B-2 R-A2
0.0		0.413	0.000	0.000	0.413 0.617	Roofs	R-A2 R-A1,
0.5	59 0.000	0.236	0.000	0.000	0.017	RUUIS	R-AI, R-B, S-A-OS
0.0	10 0.000	0.062	0.000	0.000	0.072	Sidewalk	S-A-2, S-A-3, S-B-1, S-B-2
0.0	00.00	0.030	0.000	0.000	0.030	Sidewalk/parking	S-A-2
0.0	00.00	0.000	0.000	0.000	0.000	Sign	S-A-2
0.0	00 0.000	0.004	0.000	0.000	0.004	Transformer pad	S-A-1, S-B-2
0.0	06 0.000	0.008	0.000	0.000	0.013	Wall	S-A-1, S-A-2, S-B-1, S-B-2
0.9	21 0.000	0.000	0.000	0.000	0.921	Woods, Good	DCB 4, S-A-OS

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment			
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers			
 1.923	0.000	2.656	0.000	0.000	4.579	TOTAL AREA				

Ground Covers (all nodes) (continued)

Prepared by McKenzie Engineering Group Inc	Printed 8/7/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	Page 7

	Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill	Node
_		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)	Name
	1	AB-1	16.75	16.13	80.0	0.0078	0.013	0.0	12.0	0.0	
	2	AB-2	19.00	18.98	1.0	0.0200	0.013	0.0	12.0	0.0	
	3	AB-3	21.83	21.00	28.0	0.0296	0.013	0.0	12.0	0.0	
	4	ES-LF	13.87	13.45	39.0	0.0108	0.013	0.0	18.0	0.0	

Pipe Listing (all nodes)

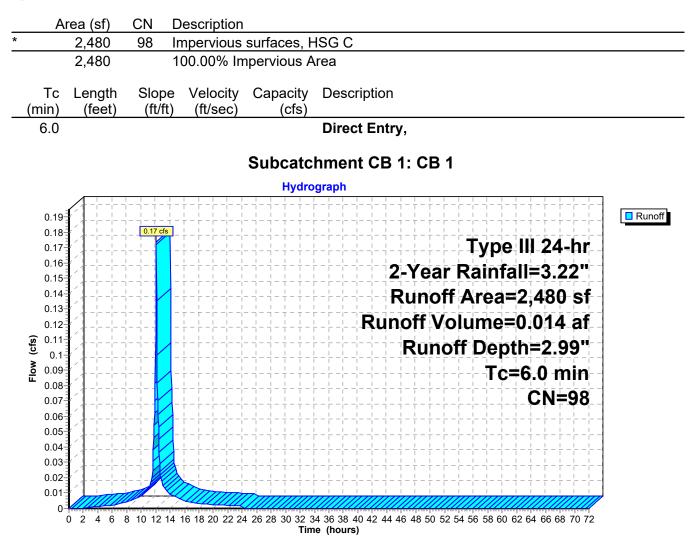
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.011 af
SubcatchmentCB 5: CB 5	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=2.56" Tc=6.0 min CN=94 Runoff=0.44 cfs 0.034 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=0.26" Tc=6.0 min CN=55 Runoff=0.09 cfs 0.019 af
SubcatchmentR-A1: ROOF	Runoff Area=10,869 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.76 cfs 0.062 af
SubcatchmentR-A2: ROOF	Runoff Area=18,000 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=1.26 cfs 0.103 af
SubcatchmentR-B: ROOF	Runoff Area=11,143 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.78 cfs 0.064 af
SubcatchmentS-A-1: S-A-1	Runoff Area=2,443 sf 21.29% Impervious Runoff Depth=1.00" Tc=6.0 min CN=73 Runoff=0.06 cfs 0.005 af
SubcatchmentS-A-2: S-A-2	Runoff Area=8,622 sf 21.86% Impervious Runoff Depth=1.35" Tc=6.0 min CN=79 Runoff=0.30 cfs 0.022 af
SubcatchmentS-A-3: S-A-3	Runoff Area=1,934 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.011 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=0.08" Flow Length=213' Tc=9.4 min CN=47 Runoff=0.01 cfs 0.005 af
SubcatchmentS-B-1: S-B-1	Runoff Area=2,982 sf 46.91% Impervious Runoff Depth=1.85" Tc=6.0 min CN=86 Runoff=0.15 cfs 0.011 af
SubcatchmentS-B-2: S-B-2	Runoff Area=7,439 sf 14.54% Impervious Runoff Depth=1.29" Tc=6.0 min CN=78 Runoff=0.25 cfs 0.018 af
SubcatchmentSWALE: BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=2.01" Tc=6.0 min CN=88 Runoff=2.76 cfs 0.201 af
Pond AB-1: Storage Beneath Garage Slab	Peak Elev=17.51' Storage=2,162 cf Inflow=0.90 cfs 0.073 af Outflow=0.02 cfs 0.073 af
Pond AB-2: Subsurface Infiltration System Discarded=0.17 ct	n Peak Elev=19.43' Storage=1,299 cf Inflow=1.26 cfs 0.103 af fs 0.103 af Primary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.103 af

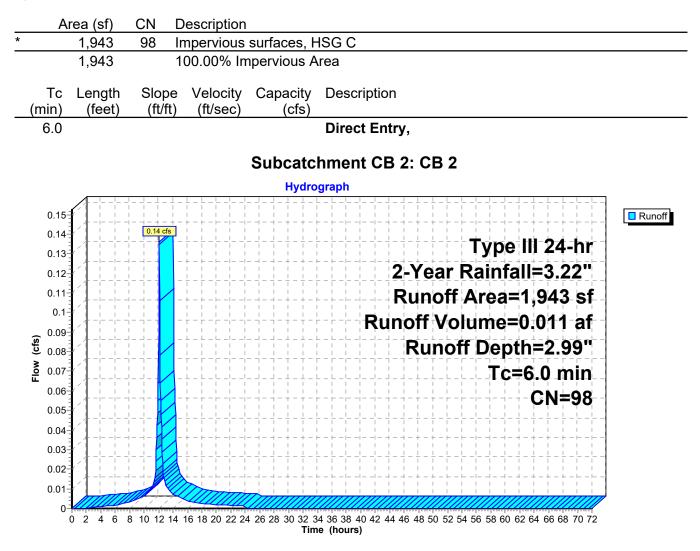
222-203 Lot A B Post Development Conditions	Type III 24-hr	2-Year Rainfall=3.22"
Prepared by McKenzie Engineering Group Inc		Printed 8/7/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions	s LLC	Page 9

Pond AB-3: Subsurface Infiltration System Peak Elev=21.99' Storage=794 cf Inflow=0.93 cfs 0.074 af Discarded=0.18 cfs 0.074 af Primary=0.00 cfs 0.000 af Outflow=0.18 cfs 0.074 af


Pond ED-AB: Re-graded Existing Depression Peak Elev=20.42' Storage=420 cf Inflow=0.06 cfs 0.010 af Outflow=0.00 cfs 0.000 af

Pond ES-LF: DP-LF Existing Swale/Basin in Peak Elev=14.89' Storage=194 cf Inflow=4.11 cfs 0.393 af 18.0" Round Culvert n=0.013 L=39.0' S=0.0108 '/ Outflow=4.01 cfs 0.393 af

Total Runoff Area = 4.579 ac Runoff Volume = 0.580 af Average Runoff Depth = 1.52" 45.24% Pervious = 2.072 ac 54.76% Impervious = 2.508 ac

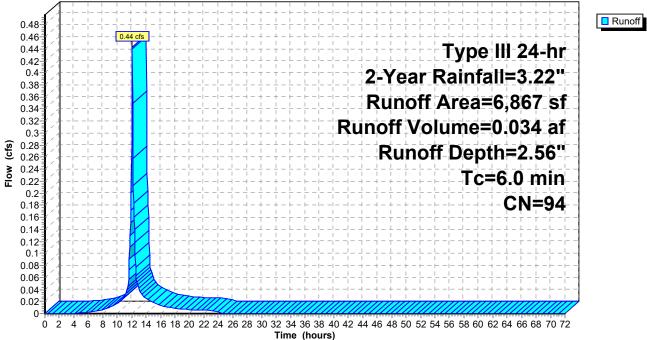

Summary for Subcatchment CB 1: CB 1

Runoff = 0.17 cfs @ 12.09 hrs, Volume= 0.014 af, Depth= 2.99" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Summary for Subcatchment CB 2: CB 2

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 2.99" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Summary for Subcatchment CB 5: CB 5

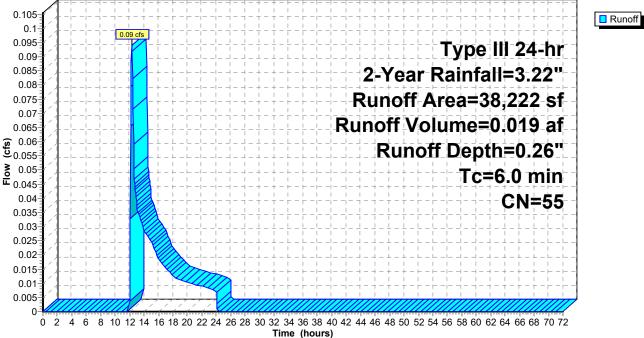

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.034 af, Depth= 2.56" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Area (sf)	CN	Description							
*	5,683	98	98 Impervious surfaces, HSG C							
	1,184	74	>75% Gras	75% Grass cover, Good, HSG C						
	6,867	94	94 Weighted Average							
	1,184		17.24% Pervious Area							
	5,683		82.76% Impervious Area							
Тс	5	Slope		Capacity	Description					
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Entry,					

Subcatchment CB 5: CB 5

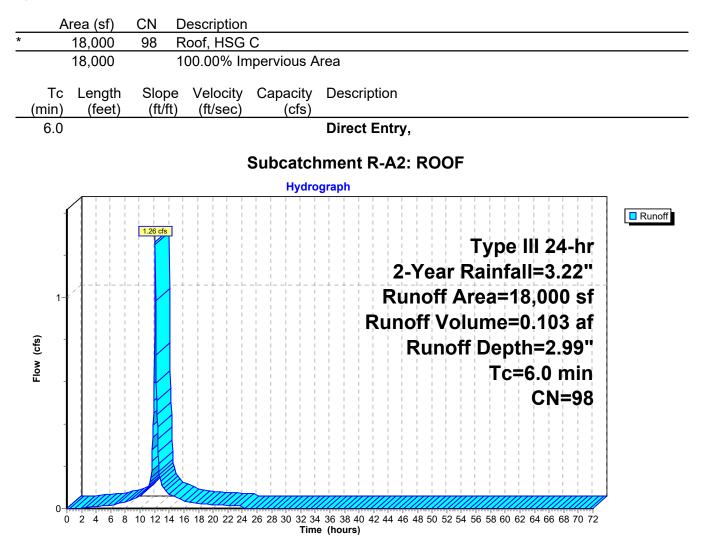
Summary for Subcatchment DCB 4: DCB 4


Runoff = 0.09 cfs @ 12.33 hrs, Volume= 0.019 af, Depth= 0.26" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

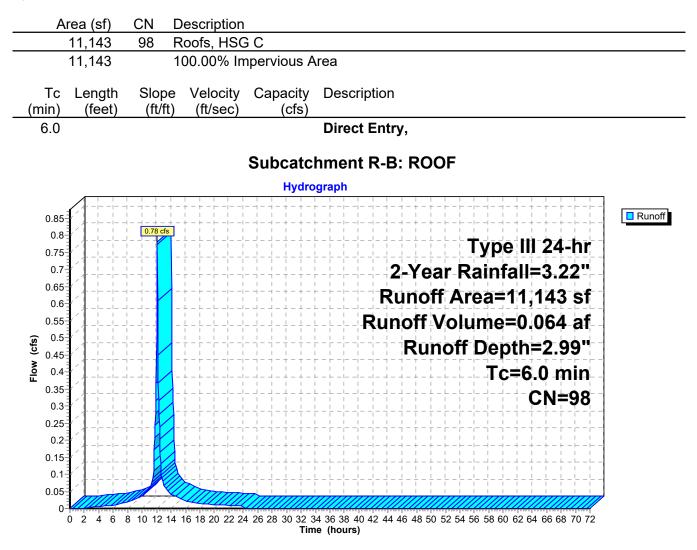
A	Area (sf)	CN	Description							
*	14,030	98	Impervious	Impervious surfaces, HSG A						
	24,192	30	Woods, Go	Voods, Good, HSG A						
	38,222	55	Weighted A	verage						
	24,192		63.29% Per	vious Area	3					
	14,030		36.71% Imp	pervious Ar	rea					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description					
6.0					Direct Entry,					
6.0					Direct Entry,					

Subcatchment DCB 4: DCB 4


Summary for Subcatchment R-A1: ROOF

Runoff = 0.76 cfs @ 12.09 hrs, Volume= 0.062 af, Depth= 2.99" Routed to Pond AB-1 : Storage Beneath Garage Slab

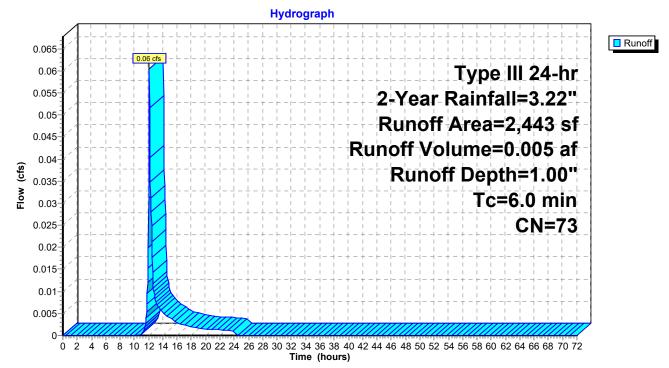
	A	rea (sf)	CN [Description			
		9,976		Roofs, HSC			
*		630		Patio, HSG			
*		74		Roofs, HSC			
		189		Patio, HSG			
		10,869 10,869		Neighted A	verage pervious A	Area	
		10,009		100.00% 11	ipervious P	Alea	
	Тс	Length	Slope	Velocity	Capacity	Description	
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•	
	6.0					Direct Entry,	
					Subcatch	hment R-A1: ROOF	
						ograph	
	0.85			-+-+	+ - +		
	0.8		- -+-+	- + - + - + - 			Runoff
	0.75					Type III 24-hr	
	0.7					2-Year Rainfall=3.22"	
	0.65		 				
	0.6					Runoff Area=10,869 sf	
	0.55 0.5	<pre>/ / - / </pre>				Runoff Volume=0.062 af	
	(cis) 0.45 0.4					Runoff Depth=2.99"	
i	0.4 0.35	/				Tc=6.0 min	
	0.35			-+-+	+-+-		
	0.25						
	0.2						
	0.15						
	0.1						
	0.05			Timm			
	0-		<u>()</u>				
		02468	8 10 12 14	10 10 20 22 24		34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 ne (hours)	


Summary for Subcatchment R-A2: ROOF

Runoff = 1.26 cfs @ 12.09 hrs, Volume= 0.103 af, Depth= 2.99" Routed to Pond AB-2 : Subsurface Infiltration System

Summary for Subcatchment R-B: ROOF

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 0.064 af, Depth= 2.99" Routed to Pond AB-3 : Subsurface Infiltration System

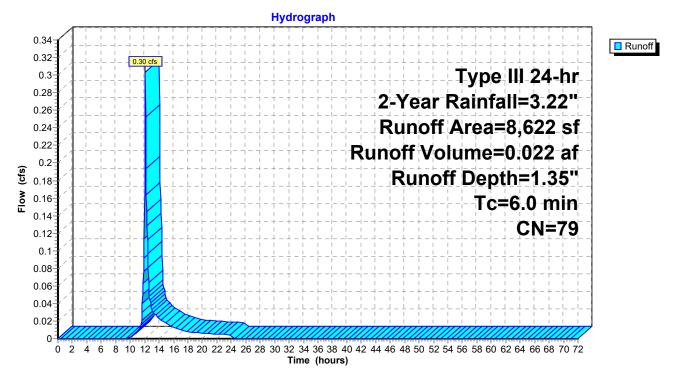

Summary for Subcatchment S-A-1: S-A-1

Runoff = 0.06 cfs @ 12.10 hrs, Volume= 0.005 af, Depth= 1.00" Routed to Pond ED-AB : Re-graded Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN	Description					
*		244	98	Wall, HSG	A				
*		527	39	Plantings, I	ISG A				
*		72	98	Transforme	r pad, HSG	C			
		160	96	Gravel surf	ace, HSG ()			
*		204	98	Wall, HSG	С				
*		1,236	74	Plantings, I	ISG C				
		2,443 73 Weighted Average							
		1,923							
		520		21.29% Im	pervious Ar	ea			
	Тс	Length	Slop		Capacity	Description			
((min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment S-A-1: S-A-1

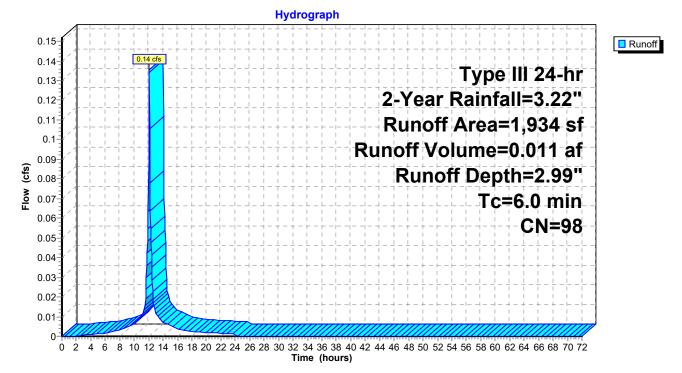


Summary for Subcatchment S-A-2: S-A-2

Runoff = 0.30 cfs @ 12.10 hrs, Volume= 0.022 af, Depth= 1.35" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

	Area (sf)	CN	Description						
*	470	74	0						
*	3,711	74	Plantings, HSG C						
*	58	96	Gravel, HSG A						
*	437	98	Sidewalk, HSG A						
*	62	98	Sidewalk,HSG C						
*	222	96	Gravel, HSG C						
*	36	74	Plantings, HSG C (OFFSITE)						
*	423	39	Plantings, HSG A (OFFSITE)						
*	63	98	Wall, HSG C (OFFSITE)						
*	10	98	Sign, HSG C (OFFSITE)						
*	157	96	Gravel surface, HSG C (OFFSITE)						
*	10	98	Impervious surfaces, HSG C (OFFSITE)						
*	236	74	>75% Grass cover, Good, HSG C (OFFSITE)						
*	1,303	98	Sidewalk/parking, HSG C (OFFSITE)						
*	1,424	74	74 >75% Grass cover, Good, HSG C (OFFSITE)						
	8,622	79	Weighted Average						
	6,737		78.14% Pervious Area						
	1,885		21.86% Impervious Area						
	Tc Length	Sloj	be Velocity Capacity Description						
((min) (feet)	(ft/	ft) (ft/sec) (cfs)						
	6.0		Direct Entry,						

Subcatchment S-A-2: S-A-2

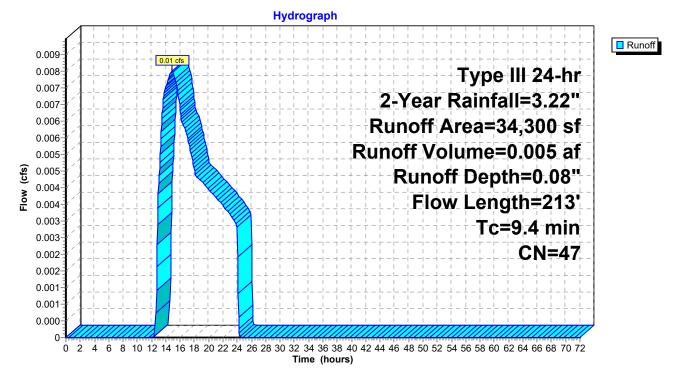

Summary for Subcatchment S-A-3: S-A-3

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 2.99" Routed to Pond AB-1 : Storage Beneath Garage Slab

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN	Description					
*		81	98	Pavement,	Pavement, HSG C				
*		91	98	Pavement,	Pavement, HSG A				
*		1,304	98	Sidewalk, H	ISG C				
*		458	98	Pavement,	HSG C (OF	PFSITE)			
		1,934	98	Weighted A	verage				
		1,934		100.00% In	npervious A	Area			
	Tc	Length	Slop		Capacity				
(r	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment S-A-3: S-A-3


Summary for Subcatchment S-A-OS: Offsite Areas

Runoff = 0.01 cfs @ 14.80 hrs, Volume= 0.005 af, Depth= 0.08" Routed to Pond ED-AB : Re-graded Existing Depression

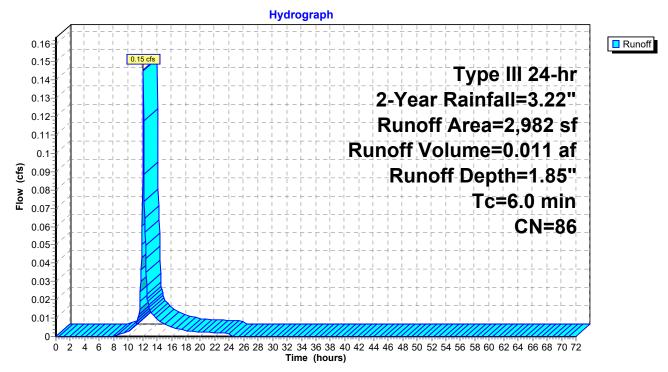
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN E	Description					
*		15,938	30 V	30 Woods, Good, HSG A (OFFSITE)					
*		11,097	39 >	75% Gras	s cover, Go	bod, HSG Á (OFFSITE)			
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)			
*		1,600	98 l	mpervious	surfaces, H	HSG C (OFFSITE)			
		34,300	47 V	Veighted A	verage				
		27,035	7	′8.82% Pei	rvious Area	l			
		7,265	2	1.18% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_				,		Description Sheet Flow, 1			
_	(min)	(feet)	(ft/ft)	(ft/sec)					
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, 1			
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"			

Subcatchment S-A-OS: Offsite Areas

Summary for Subcatchment S-B-1: S-B-1

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 1.85" Routed to Pond AB-3 : Subsurface Infiltration System

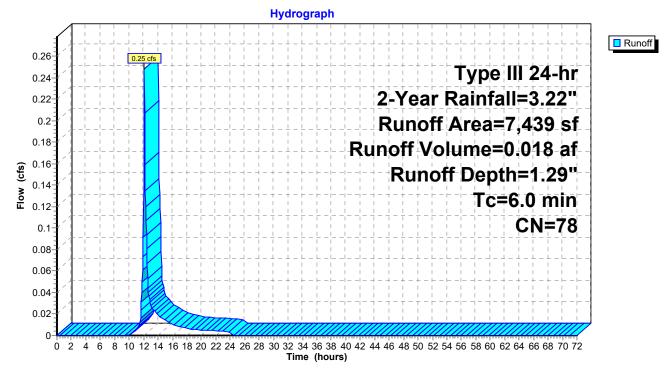

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Ai	rea (sf)	CN	Description						
*		205	98	Pavement, HSG C						
*		61	98	Sidewalk, HSG C						
*		14	98	Wall, HSG C						
*		124	96	Gravel surface, HSG C						
*		224	74	Plantings, HSG C						
*		217	98	Sidewalk, HSG C (OFFSITE)						
*		766	98	Pavement, HSG C (OFFSITÉ)						
*		129	98	Sidewalk, HSG C (ÒFFSITE)						
*		7	98	Wall, HSG C (OFFSITE)						
*		1,235	74	Plantings, HSG C (OFFSITE)						
		2,982	86	Weighted Average						
		1,583		53.09% Pervious Area						
		1,399		46.91% Impervious Area						
	Тс	Length	Slop	be Velocity Capacity Description						
	(min)	(feet)	(ft/	ft) (ft/sec) (cfs)						

6.0

Direct Entry,

Subcatchment S-B-1: S-B-1


Summary for Subcatchment S-B-2: S-B-2

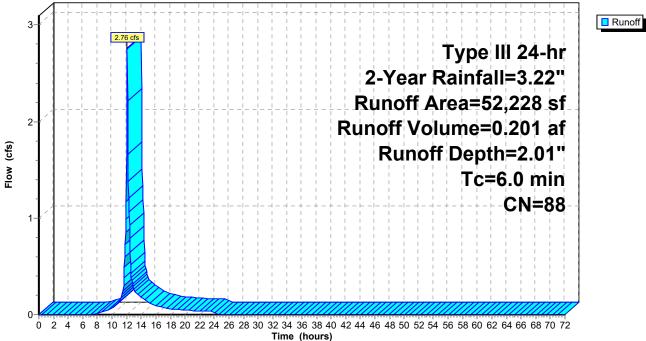
Runoff = 0.25 cfs @ 12.10 hrs, Volume= 0.018 af, Depth= 1.29" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Are	ea (sf)	CN	Description					
*		931	98	Sidewalk, HSG C					
*		42	98	Wall, HSG C					
*		3,548	74	Plantings, HSG C					
*		109	98	Transformer pad, HSG C					
		108	96	Gravel surface, HSG C					
*		2,701	74	Plantings, HSG C (OFFSITE)					
		7,439	78	Weighted Average					
		6,357		85.46% Pervious Area					
		1,082		14.54% Impervious Area					
	Тс	Length	Slop						
(n	nin)	(feet)	(ft/f) (ft/sec) (cfs)					
	6.0			Direct Entry,					

Subcatchment S-B-2: S-B-2

Summary for Subcatchment SWALE: BASIN


Runoff = 2.76 cfs @ 12.09 hrs, Volume= 0.201 af, Depth= 2.01" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN	Description				
*		30,996	98	Impervious surfaces, HSG C				
		21,232	74	>75% Grass cover, Good, HSG C				
		52,228	88 Weighted Average					
		21,232	21,232 40.65% Pervious Area					
		30,996		59.35% Impervious Area				
	_							
	Tc	Length	Slope		Capacity	Description		
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	6.0					Direct Entry,		
				C	ubaataba			

Subcatchment SWALE: BASIN

Summary for Pond AB-1: Storage Beneath Garage Slab

Inflow Area =		0.294 ac,100.00% Impervious, Inflow Depth = 2.99" for 2-Year event
Inflow	=	0.90 cfs @ 12.09 hrs, Volume= 0.073 af
Outflow	=	0.02 cfs @ 16.61 hrs, Volume= 0.073 af, Atten= 98%, Lag= 271.5 min
Primary	=	0.02 cfs @ 16.61 hrs, Volume= 0.073 af
Routed	to Pone	ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 17.51' @ 16.61 hrs Surf.Area= 8,842 sf Storage= 2,162 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1,013.4 min (1,769.7 - 756.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.75'	0 cf	85.63'W x 103.25'L x 2.08'H Field A
			18,425 cf Overall - 6,644 cf Embedded = 11,781 cf x 0.0% Voids
#2A	16.75'	5,371 cf	ADS N-12 18" x 145 Inside #1
			Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf
			Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf
			145 Chambers in 29 Rows
			84.13' Header x 1.80 sf x 1 = 151.4 cf Inside
		5,371 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.75'	12.0" Round Culvert
	•		L= 80.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 16.75' / 16.13' S= 0.0078 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	16.75'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	18.15'	4.0' long x 5.40' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.02 cfs @ 16.61 hrs HW=17.51' TW=14.04' (Dynamic Tailwater)

-**1=Culvert** (Passes 0.02 cfs of 1.72 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 4.08 fps)

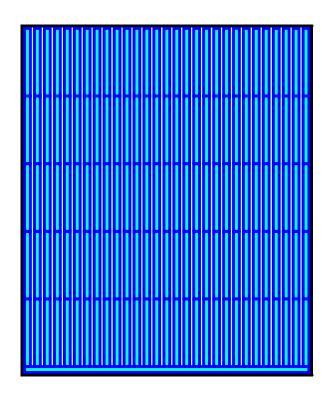
-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Pond AB-1: Storage Beneath Garage Slab - Chamber Wizard Field A

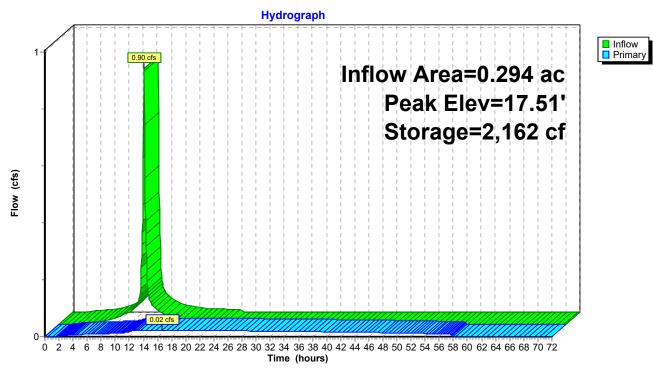
Chamber Model = ADS N-12 18" (ADS N-12® Pipe)

Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf

21.0" Wide + 14.3" Spacing = 35.3" C-C Row Spacing


5 Chambers/Row x 20.00' Long +1.75' Header x 1 = 101.75' Row Length +9.0" End Stone x 2 = 103.25' Base Length 29 Rows x 21.0" Wide + 14.3" Spacing x 28 + 9.0" Side Stone x 2 = 85.63' Base Width 21.0" Chamber Height + 4.0" Stone Cover = 2.08' Field Height

145 Chambers x 36.0 cf + 84.13' Header x 1.80 sf = 5,371.5 cf Chamber Storage 145 Chambers x 44.5 cf + 84.13' Header x 2.23 sf = 6,643.5 cf Displacement


18,424.9 cf Field - 6,643.5 cf Chambers = 11,781.4 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 5,371.5 cf = 0.123 af Overall Storage Efficiency = 29.2% Overall System Size = 103.25' x 85.63' x 2.08'

145 Chambers 682.4 cy Field 436.3 cy Stone

Summary for Pond AB-2: Subsurface Infiltration System

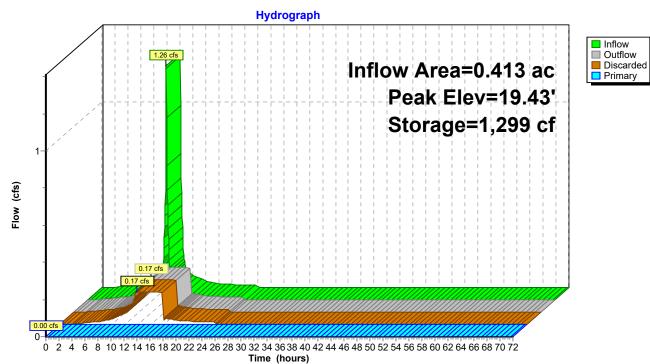
Inflow Area =	0.413 ac,100.00% Impervious, Inflow	Depth = 2.99" for 2-Year event							
Inflow =	1.26 cfs @ 12.09 hrs, Volume=	0.103 af							
Outflow =	0.17 cfs @_ 11.80 hrs, Volume=	0.103 af, Atten= 86%, Lag= 0.0 min							
Discarded =	0.17 cfs @ 11.80 hrs, Volume=	0.103 af							
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af							
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field									

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 19.43' @ 12.61 hrs Surf Area= 3,133 sf Storage= 1,299 cf

Plug-Flow detention time= 44.0 min calculated for 0.103 af (100% of inflow) Center-of-Mass det. time= 44.0 min (800.2 - 756.3)

Volume	Invert	Avail.Stor	rage	Storage De	escription	
#1	18.75'	1,37	75 cf			ismatic)Listed below (Recalc)
#2	19.08'	3 42	20 cf		,	cf Embedded = 3,438 cf x 40.0% Voids) x 797 Inside #1
<i>π</i> ∠	10.00	0,42	-0 01			=> 2.18 sf x 1.97'L = 4.3 cf
						H => 2.42 sf x 1.97'L = 4.8 cf
				797 Cham	bers in 36 Rov	VS
		4,79	95 cf	Total Avail	able Storage	
Elevatio	on Su	rf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-feet)	
18.7	75	3,133		0	0	
21.0	06	3,133		7,237	7,237	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	19.00'	12.0	" Round C	ulvert	
	, ,		-			adwall, Ke= 0.500
						8.98' S= 0.0200 '/' Cc= 0.900
			n= 0	.013 Corru	gated PE, smo	ooth interior, Flow Area= 0.79 sf
#2	Device 1	20.15'				0.600 Limited to weir flow at low heads
#3	Device 1	20.75'	4.0'	long x 3.15	' rise Sharp-0	Crested Rectangular Weir
				d Contractio		-
#4	Discarded	18.75'				Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.17 cfs @ 11.80 hrs HW=18.82' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.17 cfs)


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=18.75' TW=13.87' (Dynamic Tailwater)

-1=Culvert (Controls 0.00 cfs)

-2=Orifice/ Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond AB-2: Subsurface Infiltration System

Summary for Pond AB-3: Subsurface Infiltration System

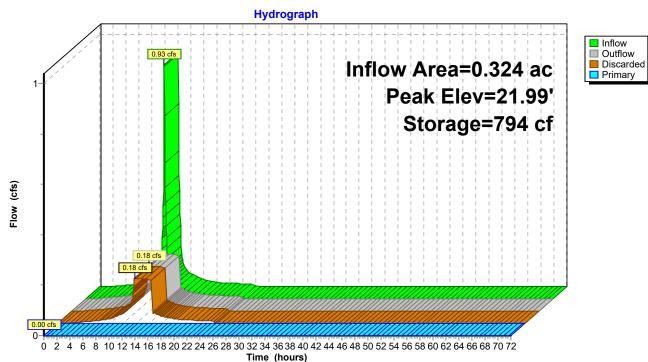
Inflow Area =	0.324 ac, 88.79% Impervious, Inflow	v Depth = 2.75" for 2-Year event
Inflow =	0.93 cfs @ 12.09 hrs, Volume=	0.074 af
Outflow =	0.18 cfs @ 11.85 hrs, Volume=	0.074 af, Atten= 81%, Lag= 0.0 min
Discarded =	0.18 cfs @ 11.85 hrs, Volume=	0.074 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Pond	d ES-LF : DP-LF Existing Swale/Basin	in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 21.99' @ 12.53 hrs Surf.Area= 3,154 sf Storage= 794 cf

Plug-Flow detention time= 24.1 min calculated for 0.074 af (100% of inflow) Center-of-Mass det. time= 24.1 min (789.7 - 765.7)

Volume	Invert	Avail.Stora	age	Storage D	escription	
#1	21.50'	1,264				rismatic)Listed below (Recalc)
				,	,	cf Embedded = 3,161 cf x 40.0% Voids
#2	21.83'	1,384	4 cf			4 x 726 Inside #1
				-	-	=> 0.97 sf x 1.97'L = 1.9 cf
				Outside=	19.7"W x 7.9"ŀ	H => 1.08 sf x 1.97'L = 2.1 cf
				726 Cham	bers in 10 Ro	WS
		2,649	9 cf	Total Avai	lable Storage	
Elevatio	on Sur	f.Area	Inc.	Store	Cum.Store	
(fee	et)	(sq-ft) ((cubic	-feet)	(cubic-feet)	
21.5	50	3,154		0	0	
22.9	99	3,154	4	4,699	4,699	
Device	Routing	Invert	Outle	t Devices		
#1	Primary	21.83'	12.0"	' Round C	Culvert	
	,		L= 28	3.0' CPP,	square edge l	neadwall, Ke= 0.500
			Inlet /	/ Outlet Inv	ert= 21.83 [°] / 2	1.00' S= 0.0296 '/' Cc= 0.900
			n= 0.	013 Corru	gated PE, sm	ooth interior, Flow Area= 0.79 sf
#2	Device 1	22.00'	10.0"	' Vert. Orif	fice/Grate C=	= 0.600 Limited to weir flow at low heads
#3	Device 1	22.20'	4.0' I	ong x 2.20	' rise Sharp-	Crested Rectangular Weir
			2 End	2 End Contraction(s)		
#4	Discarded					Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.18 cfs @ 11.85 hrs HW=21.55' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.18 cfs)


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=21.50' TW=13.87' (Dynamic Tailwater)

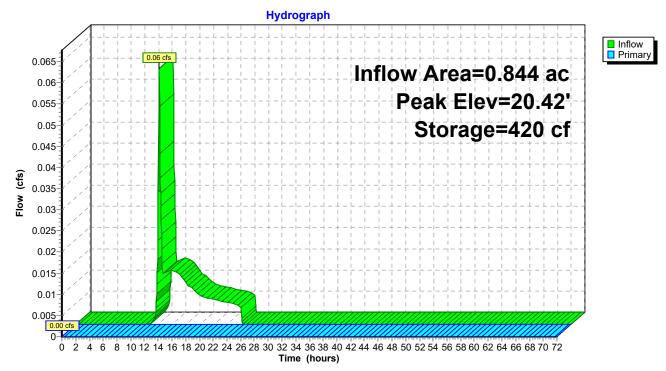
-1=Culvert (Controls 0.00 cfs)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond ED-AB: Re-graded Existing Depression

Inflow Are	a =	0.844 ac, 2	21.19% Impervious, Inflov	<i>w</i> Depth = 0.14" for 2-Year event					
Inflow	=	0.06 cfs @	12.10 hrs, Volume=	0.010 af					
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min					
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af					
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field									

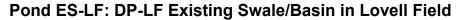

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 20.42' @ 24.55 hrs Surf.Area= 857 sf Storage= 420 cf

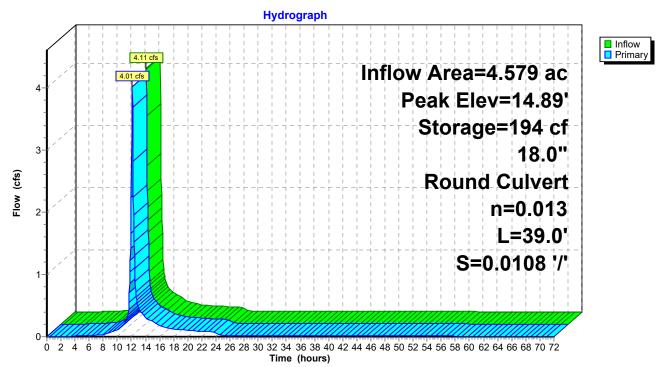
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	In	vert Avai	il.Storage	Storage	Description	
#1	19	.50'	8,308 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee 19.5 20.0 21.0 22.0 23.0 23.5	9 <u>t)</u> 50 00 00 00 00	Surf.Area (sq-ft) 69 484 1,371 2,351 3,941 5,000		c.Store <u>c-feet)</u> 138 928 1,861 3,146 2,235	Cum.Store (cubic-feet) 0 138 1,066 2,927 6,073 8,308	
Device	Routing	g In	vert Out	et Device	S	
#1	Primar	0	Hea 2.50 Coe	d (feet) 0 3.00 3.5	1.20 0.40 0.60 50 1) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=19.50' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Area	a =	4.579 ac, 54.76% Impervious, In	nflow Depth = 1.03" for 2-Year event						
Inflow	=	4.11 cfs @ 12.09 hrs, Volume=	0.393 af						
Outflow	=	4.01 cfs @ 12.11 hrs, Volume=	0.393 af, Atten= 2%, Lag= 1.0 min						
Primary	=	4.01 cfs @ 12.11 hrs, Volume=	0.393 af						
Routed to nonexistent node 1R									


Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 14.89' @ 12.11 hrs Surf.Area= 434 sf Storage= 194 cf

Plug-Flow detention time= 0.3 min calculated for 0.393 af (100% of inflow) Center-of-Mass det. time= 0.3 min (996.8 - 996.5)

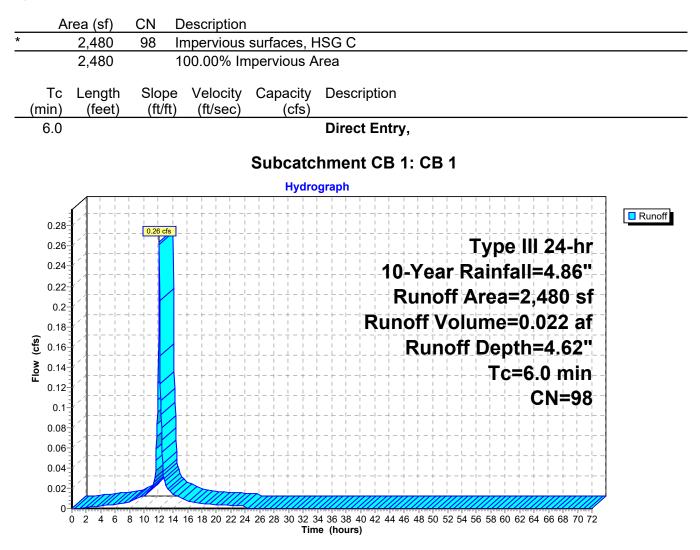
Volume	Ir	vert Av	ail.Stora	ge Storage	e Description				
#1	1:	3.87'	17,546	cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)			
- 1				b 0 b b	0				
Elevatio		Surf.Area	-	Inc.Store	Cum.Store				
(fee	et)	(sq-ft) (c	cubic-feet)	(cubic-feet)				
13.8	37	()	0	0				
14.0	00	3	5	0	0				
15.0	00	488	}	246	246				
16.0	00	1,764	Ļ	1,126	1,372				
17.0	00	2,848	}	2,306	3,678				
18.0	18.00 3,993		}	3,421	7,098				
19.00		5,217	,	4,605	11,703				
20.0	00	6,468	}	5,843	17,546				
Device	Routin	g	nvert (Dutlet Devic	es				
#1	Prima	y ´	3.87' 1	18.0" Roun	d Culvert				
		-	L	_= 39.0' CF	P, square edge l	headwall, Ke= 0.500			
				Inlet / Outlet Invert= 13.87' / 13.45' S= 0.0108 '/' Cc= 0.900					
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf							
			1	1 0.010 00					

Primary OutFlow Max=3.93 cfs @ 12.11 hrs HW=14.87' (Free Discharge) **1=Culvert** (Barrel Controls 3.93 cfs @ 4.42 fps)

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

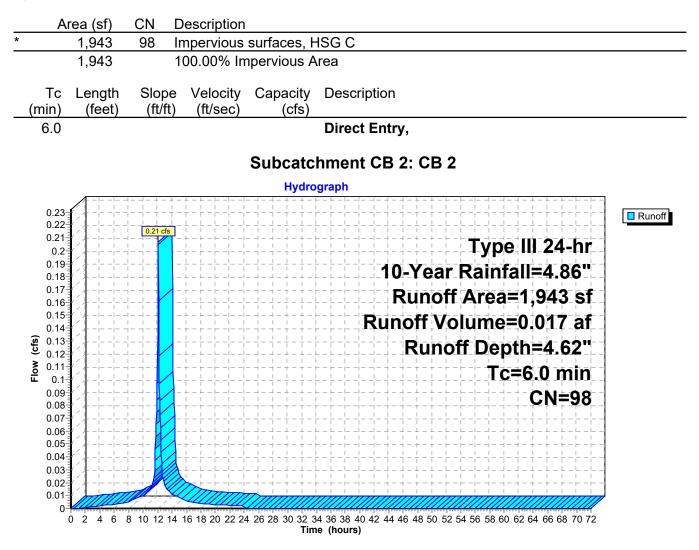
SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.022 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.21 cfs 0.017 af
SubcatchmentCB 5: CB 5	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=4.17" Tc=6.0 min CN=94 Runoff=0.70 cfs 0.055 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=0.91" Tc=6.0 min CN=55 Runoff=0.72 cfs 0.067 af
SubcatchmentR-A1: ROOF	Runoff Area=10,869 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=1.16 cfs 0.096 af
SubcatchmentR-A2: ROOF	Runoff Area=18,000 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=1.92 cfs 0.159 af
SubcatchmentR-B: ROOF	Runoff Area=11,143 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=1.19 cfs 0.099 af
SubcatchmentS-A-1: S-A-1	Runoff Area=2,443 sf 21.29% Impervious Runoff Depth=2.17" Tc=6.0 min CN=73 Runoff=0.14 cfs 0.010 af
SubcatchmentS-A-2: S-A-2	Runoff Area=8,622 sf 21.86% Impervious Runoff Depth=2.68" Tc=6.0 min CN=79 Runoff=0.61 cfs 0.044 af
SubcatchmentS-A-3: S-A-3	Runoff Area=1,934 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.21 cfs 0.017 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=0.49" Flow Length=213' Tc=9.4 min CN=47 Runoff=0.18 cfs 0.032 af
SubcatchmentS-B-1: S-B-1	Runoff Area=2,982 sf 46.91% Impervious Runoff Depth=3.34" Tc=6.0 min CN=86 Runoff=0.26 cfs 0.019 af
SubcatchmentS-B-2: S-B-2	Runoff Area=7,439 sf 14.54% Impervious Runoff Depth=2.59" Tc=6.0 min CN=78 Runoff=0.51 cfs 0.037 af
SubcatchmentSWALE: BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=3.54" Tc=6.0 min CN=88 Runoff=4.76 cfs 0.353 af
Pond AB-1: Storage Beneath Garage Slab	Peak Elev=17.83' Storage=3,586 cf Inflow=1.36 cfs 0.113 af Outflow=0.03 cfs 0.111 af
Pond AB-2: Subsurface Infiltration System Discarded=0.17 ct	n Peak Elev=19.86' Storage=2,385 cf Inflow=1.92 cfs 0.159 af s 0.159 af Primary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.159 af

Pond AB-3: Subsurface Infiltration System Peak Elev=22.22' Storage=1,363 cf Inflow=1.45 cfs 0.118 af Discarded=0.18 cfs 0.107 af Primary=0.22 cfs 0.011 af Outflow=0.39 cfs 0.118 af


Pond ED-AB: Re-graded Existing Depression Peak Elev=21.48' Storage=1,839 cf Inflow=0.26 cfs 0.042 af Outflow=0.00 cfs 0.000 af

Pond ES-LF: DP-LF Existing Swale/Basin in Peak Elev=15.39' Storage=532 cf Inflow=7.77 cfs 0.717 af 18.0" Round Culvert n=0.013 L=39.0' S=0.0108 '/' Outflow=7.22 cfs 0.717 af

Total Runoff Area = 4.579 ac Runoff Volume = 1.027 af Average Runoff Depth = 2.69" 45.24% Pervious = 2.072 ac 54.76% Impervious = 2.508 ac

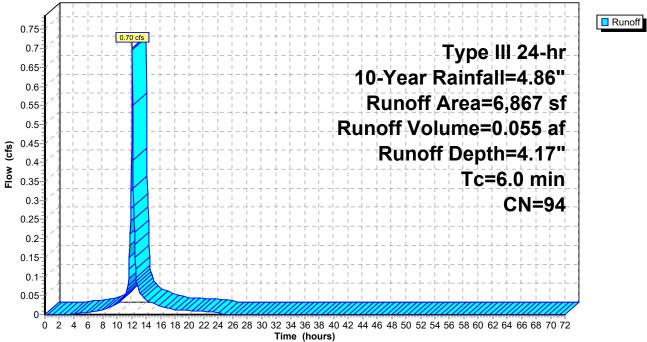

Summary for Subcatchment CB 1: CB 1

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 4.62" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Summary for Subcatchment CB 2: CB 2

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 4.62" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

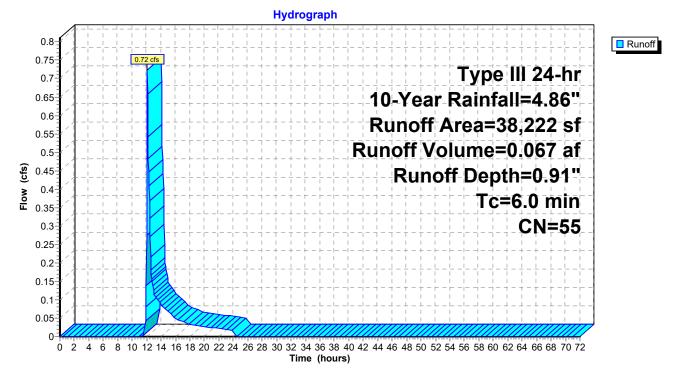
Summary for Subcatchment CB 5: CB 5


Runoff = 0.70 cfs @ 12.09 hrs, Volume= 0.055 af, Depth= 4.17" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description	l						
*		5,683	98	Impervious surfaces, HSG C							
		1,184	74	>75% Grass cover, Good, HSG C							
		6,867	94	04 Weighted Average							
		1,184		17.24% Pervious Area							
		5,683		82.76% Impervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
	6.0					Direct Entry,					

Subcatchment CB 5: CB 5

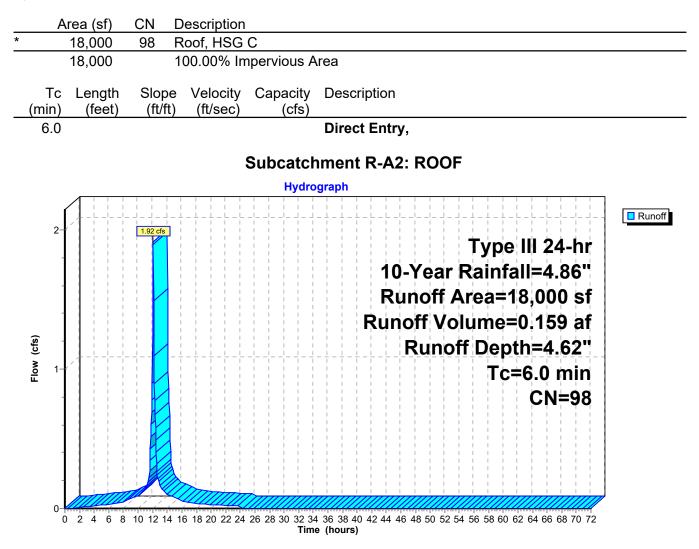

Summary for Subcatchment DCB 4: DCB 4

Runoff = 0.72 cfs @ 12.11 hrs, Volume= 0.067 af, Depth= 0.91" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

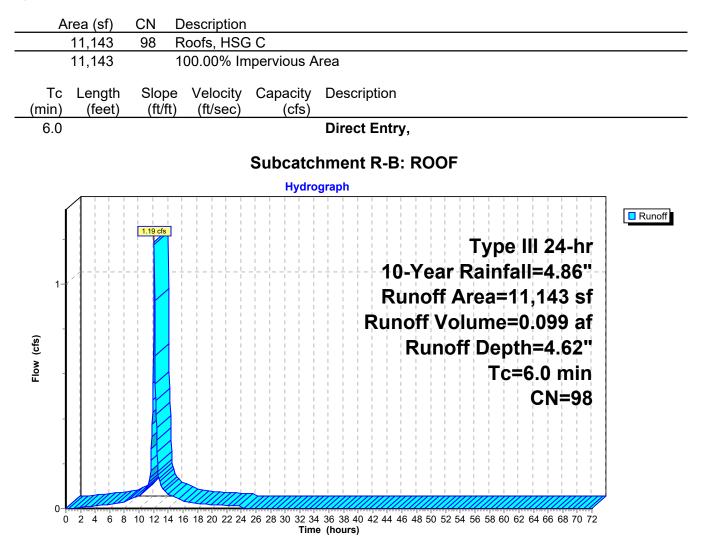
_	A	rea (sf)	CN	Description						
*		14,030	98	Impervious	surfaces, H	HSG A				
_		24,192	30	Woods, Go	od, HSG A	\				
		38,222	55 Weighted Average							
		24,192		63.29% Pervious Area						
		14,030		36.71% Imp	pervious Ar	rea				
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description				
	6.0					Direct Entry,				

Subcatchment DCB 4: DCB 4


Summary for Subcatchment R-A1: ROOF

Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.096 af, Depth= 4.62" Routed to Pond AB-1 : Storage Beneath Garage Slab

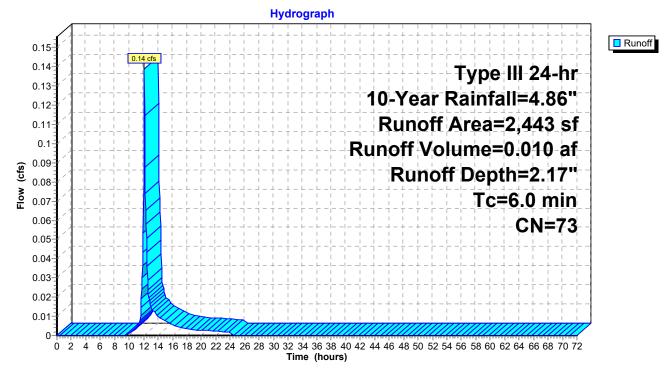
Area (sf) CN Description 9,976 98 Roofs, HSG A * 630 98 Patio, HSG A * 74 98 Roofs, HSG C * 189 98 Patio, HSG C 10,869 98 Weighted Average 10,869 100.00% Impervious Area									
TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,									
Subcatchment R-A1: ROOF									
Pydrograph Image: State of the	Runoff								


Summary for Subcatchment R-A2: ROOF

Runoff = 1.92 cfs @ 12.09 hrs, Volume= 0.159 af, Depth= 4.62" Routed to Pond AB-2 : Subsurface Infiltration System

Summary for Subcatchment R-B: ROOF

Runoff = 1.19 cfs @ 12.09 hrs, Volume= 0.099 af, Depth= 4.62" Routed to Pond AB-3 : Subsurface Infiltration System

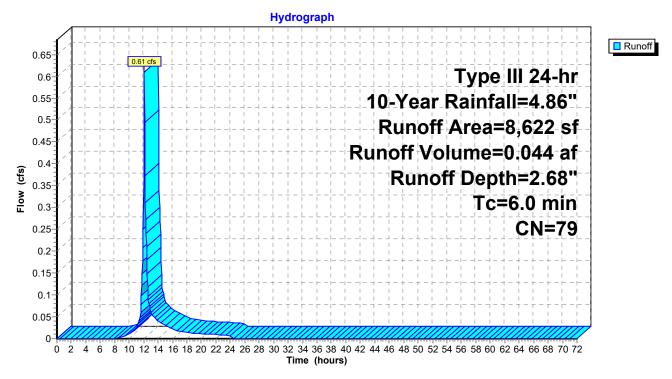

Summary for Subcatchment S-A-1: S-A-1

Runoff = 0.14 cfs @ 12.10 hrs, Volume= 0.010 af, Depth= 2.17" Routed to Pond ED-AB : Re-graded Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description		
*		244	98	Wall, HSG	A	
*		527	39	Plantings, I	ISG A	
*		72	98	Transforme	r pad, HSG	GC
		160	96	Gravel surfa	ace, HSG C	C
*		204	98	Wall, HSG	С	
*		1,236	74	Plantings, H	ISG C	
		2,443	73	Weighted A	verage	
		1,923		78.71% Pe	rvious Area	а
		520		21.29% Imp	pervious Ar	rea
	-				0	
,	Τc	Length	Slop		Capacity	
1)	min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment S-A-1: S-A-1

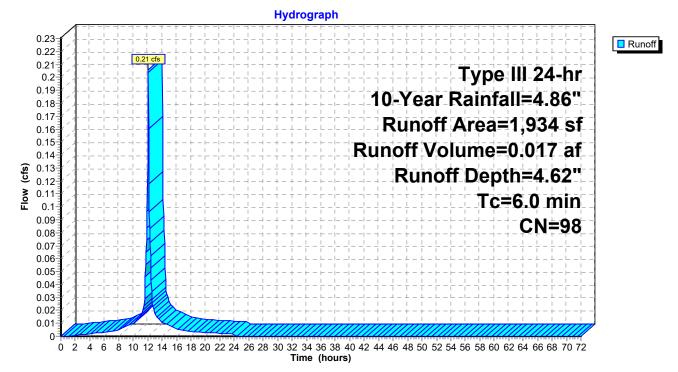


Summary for Subcatchment S-A-2: S-A-2

Runoff = 0.61 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 2.68" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

	Area (sf)	CN	Description
*	470	74	Plantings, HSG A
*	3,711	74	Plantings, HSG C
*	58	96	Gravel, HSG A
*	437	98	Sidewalk, HSG A
*	62	98	Sidewalk,HSG C
*	222	96	Gravel, HSG C
*	36	74	Plantings, HSG C (OFFSITE)
*	423	39	Plantings, HSG A (OFFSITE)
*	63	98	Wall, HSG C (OFFSITE)
*	10	98	Sign, HSG C (OFFSITE)
*	157	96	Gravel surface, HSG C (OFFSITE)
*	10	98	Impervious surfaces, HSG C (OFFSITE)
*	236	74	>75% Grass cover, Good, HSG C (OFFSITE)
*	1,303	98	Sidewalk/parking, HSG C (OFFSITE)
*	1,424	74	>75% Grass cover, Good, HSG C (OFFSITE)
	8,622	79	Weighted Average
	6,737		78.14% Pervious Area
	1,885		21.86% Impervious Area
	Tc Length	Sloj	be Velocity Capacity Description
((min) (feet)	(ft/	ft) (ft/sec) (cfs)
	6.0		Direct Entry,

Subcatchment S-A-2: S-A-2

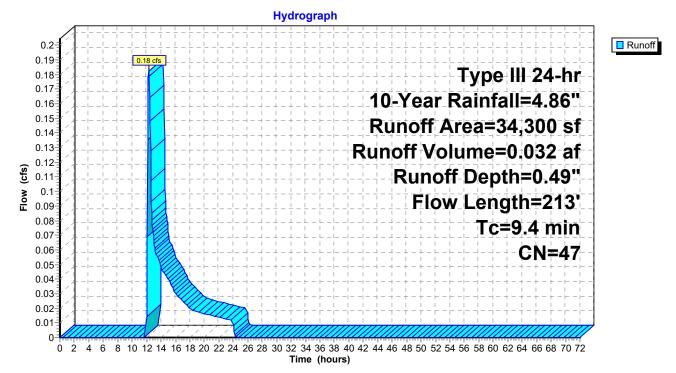

Summary for Subcatchment S-A-3: S-A-3

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 4.62" Routed to Pond AB-1 : Storage Beneath Garage Slab

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description			
*		81	98	Pavement,	HSG C		
*		91	98	Pavement,	HSG A		
*		1,304	98	Sidewalk, H	ISG C		
*		458	98	Pavement,	HSG C (OF	FSITE)	
		1,934	98	Weighted A	verage		
		1,934		100.00% In	npervious A	rea	
(n	Tc nin)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description	
	6.0					Direct Entry,	

Subcatchment S-A-3: S-A-3


Summary for Subcatchment S-A-OS: Offsite Areas

Runoff = 0.18 cfs @ 12.32 hrs, Volume= 0.032 af, Depth= 0.49" Routed to Pond ED-AB : Re-graded Existing Depression

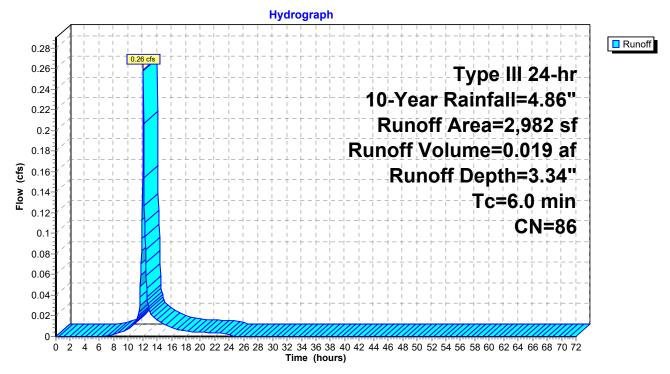
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN [CN Description						
*		15,938	30 V	0 Woods, Good, HSG A (OFFSITE)						
*		11,097	39 >	>75% Grass cover, Good, HSG Á (OFFSITE)						
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)				
*		1,600	98 I	mpervious	surfaces, H	ISG C (OFFSITE)				
		34,300	47 V	Veighted A	verage					
		27,035	7	78.82% Pei	rvious Area					
		7,265	2	1.18% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
				,		Description Sheet Flow, 1				
_	(min)	(feet)	(ft/ft)	(ft/sec)						
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, 1				
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"				

Subcatchment S-A-OS: Offsite Areas

Summary for Subcatchment S-B-1: S-B-1

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.019 af, Depth= 3.34" Routed to Pond AB-3 : Subsurface Infiltration System

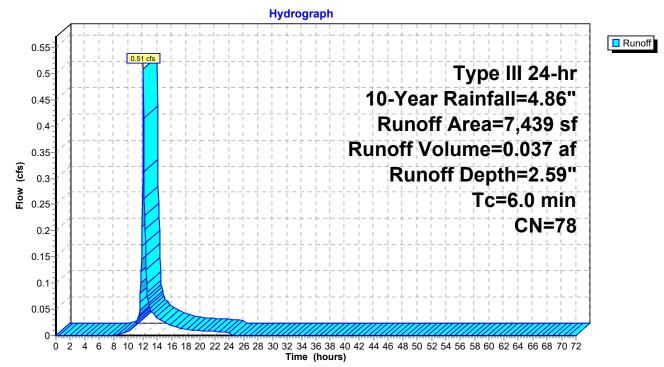

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	Ai	rea (sf)	CN	Description				
*		205	98	Pavement, HSG C				
*		61	98	Sidewalk, HSG C				
*		14	98	Wall, HSG C				
*		124	96	Gravel surface, HSG C				
*		224	74	Plantings, HSG C				
*		217	98	Sidewalk, HSG C (OFFSITE)				
*		766	98	Pavement, HSG C (OFFSITÉ)				
*		129	98	Sidewalk, HSG C (OFFSITE)				
*		7	98	Wall, HSG C (OFFSITE)				
*		1,235	74	Plantings, HSG C (OFFSITE)				
		2,982	86	Weighted Average				
		1,583		53.09% Pervious Area				
		1,399		46.91% Impervious Area				
	Тс	Length	Slop	pe Velocity Capacity Description				
	(min)	(feet)	(ft/	ft) (ft/sec) (cfs)				

6.0

Direct Entry,

Subcatchment S-B-1: S-B-1

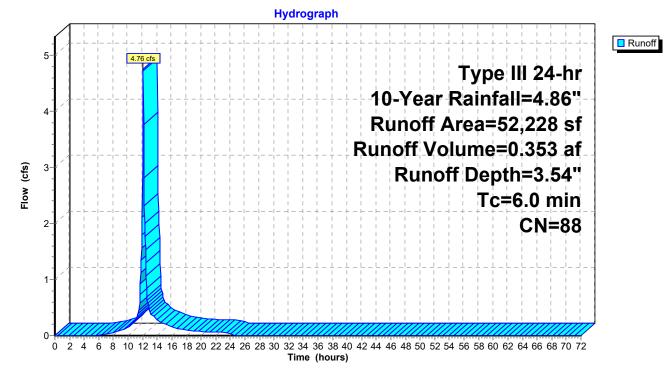

Summary for Subcatchment S-B-2: S-B-2

Runoff = 0.51 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 2.59" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	Area (sf) C	N D	Description				
*	9	31 9	98 5	Sidewalk, ⊢	ISG C			
*		42 9	98 V	Vall, HSG	С			
*	3,5	48 7	74 F	Plantings, F	ISG C			
*	1	09 9	98 T	ransforme	r pad, HSG	GC		
	1	08 9	96 0	Gravel surfa	ace, HSG C	C		
*	2,7	01 7	74 F	Plantings, F	ISG C (OF	FFSITE)		
	7,4	39 7	78 V	Veighted A	verage			
	6,3	57	8	5.46% Pei	vious Area	а		
	1,0	82	1	14.54% Impervious Area				
(m	Tc Ler nin) (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)			
	6.0					Direct Entry,		

Subcatchment S-B-2: S-B-2


Summary for Subcatchment SWALE: BASIN

Runoff = 4.76 cfs @ 12.09 hrs, Volume= 0.353 af, Depth= 3.54" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description					
*		30,996	98	Impervious surfaces, HSG C					
		21,232	74	>75% Gras	s cover, Go	bod, HSG C			
	52,228 88 Weighted Average								
		21,232		40.65% Pervious Area					
		30,996		59.35% Imp	pervious Ar	ea			
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
	6.0					Direct Entry,			

Subcatchment SWALE: BASIN

Summary for Pond AB-1: Storage Beneath Garage Slab

Inflow Are	a =	0.294 ac,100.00% Impervious, Inflow Depth = 4.62" for 10-Year event
Inflow	=	1.36 cfs @ 12.09 hrs, Volume= 0.113 af
Outflow	=	0.03 cfs @ 17.58 hrs, Volume= 0.111 af, Atten= 98%, Lag= 329.3 min
Primary	=	0.03 cfs @ 17.58 hrs, Volume= 0.111 af
Routed	l to Pone	d ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 17.83' @ 17.58 hrs Surf.Area= 8,842 sf Storage= 3,586 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1,377.0 min (2,125.5 - 748.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.75'	0 cf	85.63'W x 103.25'L x 2.08'H Field A
			18,425 cf Overall - 6,644 cf Embedded = 11,781 cf x 0.0% Voids
#2A	16.75'	5,371 cf	ADS N-12 18" x 145 Inside #1
			Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf
			Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf
			145 Chambers in 29 Rows
			84.13' Header x 1.80 sf x 1 = 151.4 cf Inside
		5,371 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.75'	12.0" Round Culvert
			L= 80.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 16.75' / 16.13' S= 0.0078 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	16.75'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	18.15'	4.0' long x 5.40' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.03 cfs @ 17.58 hrs HW=17.83' TW=14.07' (Dynamic Tailwater)

-**1=Culvert** (Passes 0.03 cfs of 2.78 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.03 cfs @ 4.90 fps)

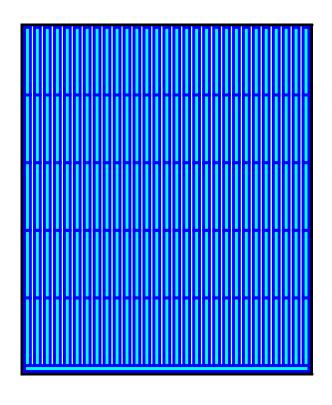
-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Pond AB-1: Storage Beneath Garage Slab - Chamber Wizard Field A

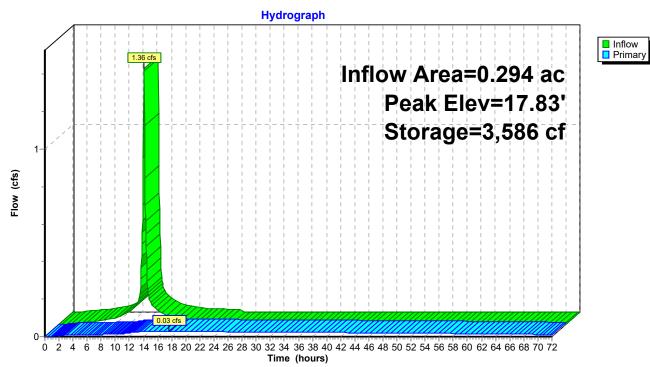
Chamber Model = ADS N-12 18" (ADS N-12® Pipe)

Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf

21.0" Wide + 14.3" Spacing = 35.3" C-C Row Spacing


5 Chambers/Row x 20.00' Long +1.75' Header x 1 = 101.75' Row Length +9.0" End Stone x 2 = 103.25' Base Length 29 Rows x 21.0" Wide + 14.3" Spacing x 28 + 9.0" Side Stone x 2 = 85.63' Base Width 21.0" Chamber Height + 4.0" Stone Cover = 2.08' Field Height

145 Chambers x 36.0 cf + 84.13' Header x 1.80 sf = 5,371.5 cf Chamber Storage 145 Chambers x 44.5 cf + 84.13' Header x 2.23 sf = 6,643.5 cf Displacement


18,424.9 cf Field - 6,643.5 cf Chambers = 11,781.4 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 5,371.5 cf = 0.123 af Overall Storage Efficiency = 29.2% Overall System Size = 103.25' x 85.63' x 2.08'

145 Chambers 682.4 cy Field 436.3 cy Stone

Summary for Pond AB-2: Subsurface Infiltration System

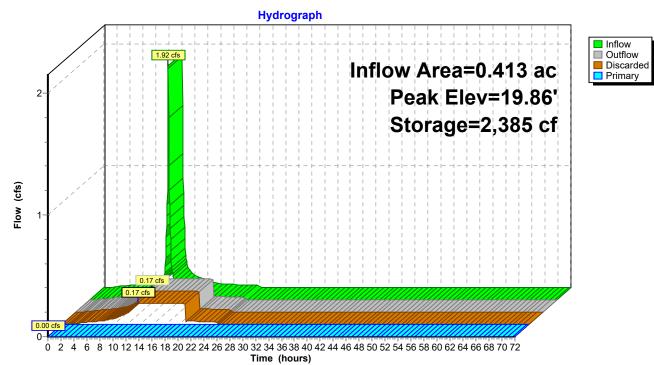
Inflow Area =	0.413 ac,100.00% Impervious, Inflow	v Depth = 4.62" for 10-Year event
Inflow =	1.92 cfs @ 12.09 hrs, Volume=	0.159 af
Outflow =	0.17 cfs @_ 11.65 hrs, Volume=	0.159 af, Atten= 91%, Lag= 0.0 min
Discarded =	0.17 cfs @_ 11.65 hrs, Volume=	0.159 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Pond	d ES-LF : DP-LF Existing Swale/Basin i	in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 19.86' @ 12.95 hrs Surf Area= 3,133 sf Storage= 2,385 cf

Plug-Flow detention time= 93.1 min calculated for 0.159 af (100% of inflow) Center-of-Mass det. time= 93.1 min (841.6 - 748.5)

Volume	Invert	Avail.Stor	age S	Storage Description
#1	18.75'	1,37		
#2	19.08'	3.42		7,237 cf Overall - 3,800 cf Embedded = 3,438 cf x 40.0% Voids Ferguson R-Tank XD 9 x 797 Inside #1
		-,	Ir	Inside= 19.7"W x 17.7"H => 2.18 sf x 1.97'L = 4.3 cf
				Outside= 19.7"W x 17.7"H => 2.42 sf x 1.97'L = 4.8 cf
				797 Chambers in 36 Rows
		4,79	5 cf T	Total Available Storage
Elevatio	on Su	rf.Area	Inc.S	c.Store Cum.Store
(fee	et)	(sq-ft)	(cubic-f	ic-feet) (cubic-feet)
18.7	75	3,133		0 0
21.0	06	3,133	7,	7,237 7,237
Device	Routing	Invert	Outlet	tlet Devices
#1	Primary	19.00'	12.0"	0" Round Culvert
				1.0' CPP, square edge headwall, Ke= 0.500
				et / Outlet Invert= 19.00' / 18.98' S= 0.0200 '/' Cc= 0.900
				0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	20.15'		"Vert. Orifice/ Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	20.75'		' long x 3.15' rise Sharp-Crested Rectangular Weir
				nd Contraction(s)
#4	Discarded	18.75'		10 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.17 cfs @ 11.65 hrs HW=18.81' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.17 cfs)


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=18.75' TW=13.87' (Dynamic Tailwater)

-1=Culvert (Controls 0.00 cfs)

-2=Orifice/ Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond AB-2: Subsurface Infiltration System

Summary for Pond AB-3: Subsurface Infiltration System

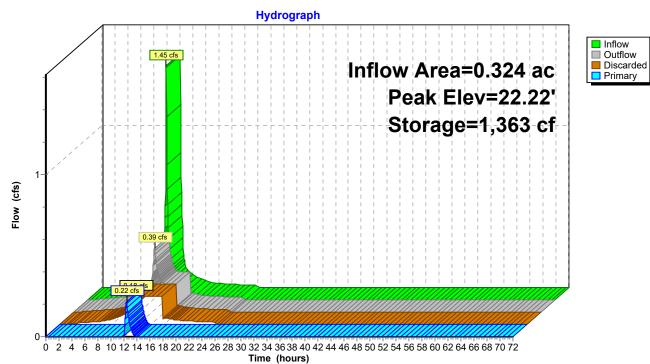
Inflow Area =	0.324 ac, 8	38.79% Impervious,	Inflow Depth = 4.35" for 10-Year event			
Inflow =	1.45 cfs @	12.09 hrs, Volume=	= 0.118 af			
Outflow =	0.39 cfs @	12.44 hrs, Volume=	= 0.118 af, Atten= 73%, Lag= 21.3 min			
Discarded =	0.18 cfs @	11.70 hrs, Volume=	= 0.107 af			
Primary =	0.22 cfs @	12.44 hrs, Volume=	= 0.011 af			
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 22.22' @ 12.44 hrs Surf.Area= 3,154 sf Storage= 1,363 cf

Plug-Flow detention time= 35.6 min calculated for 0.118 af (100% of inflow) Center-of-Mass det. time= 35.6 min (793.3 - 757.7)

Volume	Invert	Avail.Stor	rage	Storage D	escription	
#1	21.50'	1,26	64 cf	Custom Stage Data (Prismatic)Listed below (Recalc)		
#2	21.83'	1.38	84 cf			cf Embedded = 3,161 cf x 40.0% Voids 4 x 726 Inside #1
"~	21.00	1,00	- 01			=> 0.97 sf x 1.97'L = 1.9 cf
						H => 1.08 sf x 1.97'L = 2.1 cf
				726 Cham	bers in 10 Ro	WS
		2,64	9 cf	Total Avai	lable Storage	
Elevatio	on Su	rf.Area	Inc	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
21.5	50	3,154		0	0	
22.9	99	3,154		4,699	4,699	
Device	Routing	Invert	Outl	et Devices		
#1	Primary	21.83'	12.0	" Round C	Culvert	
						neadwall, Ke= 0.500
						1.00' S= 0.0296 '/' Cc= 0.900
						both interior, Flow Area= 0.79 sf
#2	Device 1	22.00'		10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#3	Device 1	22.20'		of long x 2.20' rise Sharp-Crested Rectangular Weir		
		-		d Contracti		
#4	Discarded	21.50'				Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.18 cfs @ 11.70 hrs HW=21.53' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.18 cfs)


Primary OutFlow Max=0.22 cfs @ 12.44 hrs HW=22.22' TW=14.67' (Dynamic Tailwater)

-**1=Culvert** (Passes 0.22 cfs of 0.60 cfs potential flow)

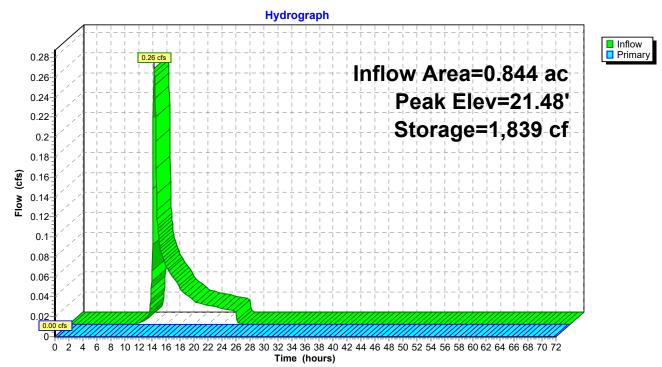
-2=Orifice/Grate (Orifice Controls 0.18 cfs @ 1.59 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.03 cfs @ 0.45 fps)

Pond AB-3: Subsurface Infiltration System

Summary for Pond ED-AB: Re-graded Existing Depression

Inflow Are	a =	0.844 ac, 2	1.19% Impervious, Inflo	w Depth = 0.60" for 10-Year event		
Inflow	=	0.26 cfs @	12.20 hrs, Volume=	0.042 af		
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 mir	۱	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af		
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field						

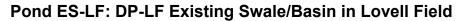

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 21.48' @ 24.55 hrs Surf.Area= 1,843 sf Storage= 1,839 cf

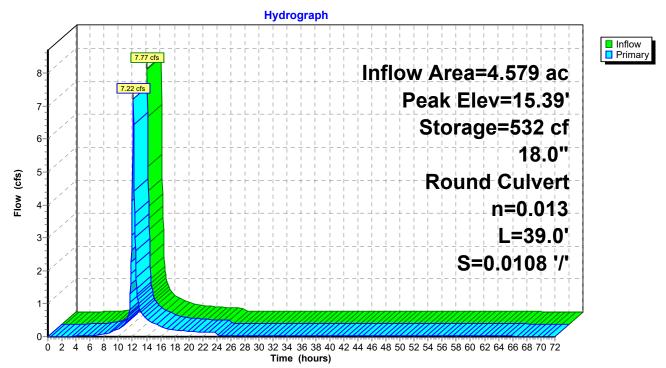
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	I	nvert	Avail.St	torage	age Storage Description			
#1	1	9.50'	8,	308 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)	
Elevatio (fee 20.0 21.0 22.0 23.0 23.0	≥t) 50 00 00 00 00 00	Su	rf.Area (sq-ft) 69 484 1,371 2,351 3,941 5,000		c.Store <u>c-feet)</u> 138 928 1,861 3,146 2,235	Cum.Store (cubic-feet) 0 138 1,066 2,927 6,073 8,308		
Device	Routir	ng	Inver	t Outl	et Device:	S		
#1	Prima	0	23.43	Hea 2.50 Coe	d (feet) 0 3.00 3.5	.20 0.40 0.60 50 n) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=19.50' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Are	a =	4.579 ac, 54.76% Impervious, Inflow Depth > 1.88" for 10-Year eve	nt				
Inflow	=	7.77 cfs @ 12.09 hrs, Volume= 0.717 af					
Outflow	=	7.22 cfs @ 12.12 hrs, Volume= 0.717 af, Atten= 7%, Lag= 1.9) min				
Primary	=	7.22 cfs @ 12.12 hrs, Volume= 0.717 af					
Routed to nonexistent node 1R							


Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 15.39' @ 12.12 hrs Surf.Area= 985 sf Storage= 532 cf

Plug-Flow detention time= 0.4 min calculated for 0.716 af (100% of inflow) Center-of-Mass det. time= 0.4 min (1,011.8 - 1,011.3)

Volume I	nvert Avail.Sto	rage Storage Description			
#1 1	3.87' 17,5	46 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)	
-	o ()				
Elevation	Surf.Area	Inc.Store	Cum.Store		
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)		
13.87	0	0	0		
14.00	3	0	0		
15.00	488	246	246		
16.00	1,764	1,126	1,372		
17.00	2,848	2,306	3,678		
18.00	3,993	3,421	7,098		
19.00	5,217	4,605	11,703		
20.00	6,468	5,843	17,546		
Device Routi	ng Invert	Outlet Device	S		
#1 Prima	nry 13.87'	18.0" Round	l Culvert		
	•	L= 39.0' CPP, square edge headwall, Ke= 0.500			
		Inlet / Outlet Invert= 13.87' / 13.45' S= 0.0108 '/' Cc= 0.900			
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf			
			5 _,	,	
13.87 14.00 15.00 16.00 17.00 18.00 19.00 20.00 Device Routin	3 488 1,764 2,848 3,993 5,217 6,468 ng Invert	0 0 246 1,126 2,306 3,421 4,605 5,843 Outlet Device 18.0'' Round L= 39.0' CPF Inlet / Outlet I	0 0 246 1,372 3,678 7,098 11,703 17,546 <u>s</u> I Culvert P, square edge I nvert= 13.87' / 1	3.45' S= 0.0108 '/' Cc= 0.900	

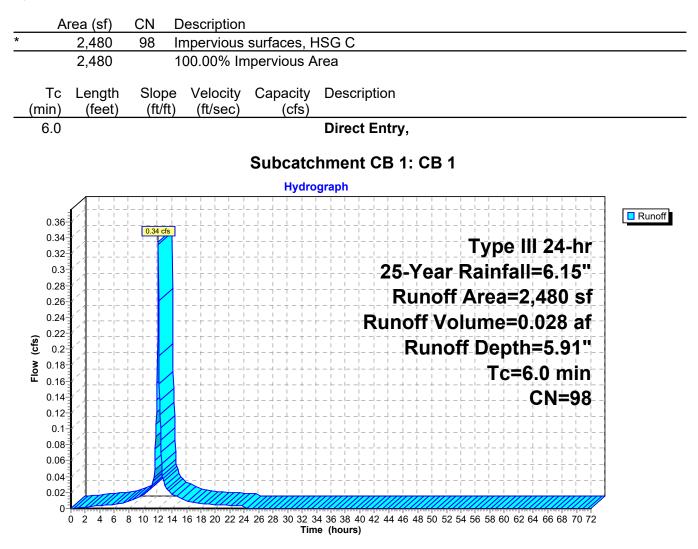
Primary OutFlow Max=7.06 cfs @ 12.12 hrs HW=15.36' (Free Discharge) **1=Culvert** (Barrel Controls 7.06 cfs @ 4.99 fps)

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.028 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.022 af
SubcatchmentCB 5: CB 5	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=5.45" Tc=6.0 min CN=94 Runoff=0.90 cfs 0.072 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=1.60" Tc=6.0 min CN=55 Runoff=1.46 cfs 0.117 af
SubcatchmentR-A1: ROOF	Runoff Area=10,869 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=1.47 cfs 0.123 af
SubcatchmentR-A2: ROOF	Runoff Area=18,000 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=2.43 cfs 0.204 af
SubcatchmentR-B: ROOF	Runoff Area=11,143 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=1.51 cfs 0.126 af
SubcatchmentS-A-1: S-A-1	Runoff Area=2,443 sf 21.29% Impervious Runoff Depth=3.21" Tc=6.0 min CN=73 Runoff=0.21 cfs 0.015 af
SubcatchmentS-A-2: S-A-2	Runoff Area=8,622 sf 21.86% Impervious Runoff Depth=3.81" Tc=6.0 min CN=79 Runoff=0.86 cfs 0.063 af
SubcatchmentS-A-3: S-A-3	Runoff Area=1,934 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.022 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=1.00" Flow Length=213' Tc=9.4 min CN=47 Runoff=0.58 cfs 0.066 af
SubcatchmentS-B-1: S-B-1	Runoff Area=2,982 sf 46.91% Impervious Runoff Depth=4.55" Tc=6.0 min CN=86 Runoff=0.35 cfs 0.026 af
SubcatchmentS-B-2: S-B-2	Runoff Area=7,439 sf 14.54% Impervious Runoff Depth=3.71" Tc=6.0 min CN=78 Runoff=0.73 cfs 0.053 af
SubcatchmentSWALE: BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=4.77" Tc=6.0 min CN=88 Runoff=6.32 cfs 0.477 af
Pond AB-1: Storage Beneath Garage Slab	Peak Elev=18.12' Storage=4,735 cf Inflow=1.73 cfs 0.145 af Outflow=0.03 cfs 0.130 af
Pond AB-2: Subsurface Infiltration System Discarded=0.17 ct	n Peak Elev=20.23' Storage=3,329 cf Inflow=2.43 cfs 0.204 af fs 0.202 af Primary=0.01 cfs 0.001 af Outflow=0.19 cfs 0.204 af

Pond AB-3: Subsurface Infiltration System Peak Elev=22.29' Storage=1,542 cf Inflow=1.85 cfs 0.152 af Discarded=0.18 cfs 0.125 af Primary=0.68 cfs 0.027 af Outflow=0.86 cfs 0.152 af

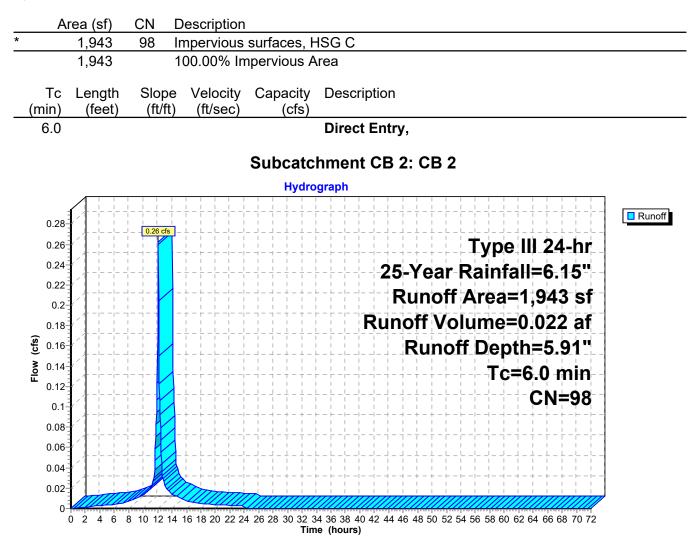
Pond ED-AB: Re-graded Existing Depression Peak Elev=22.23' Storage=3,512 cf Inflow=0.74 cfs 0.081 af Outflow=0.00 cfs 0.000 af


Pond ES-LF: DP-LF Existing Swale/Basin in Peak Elev=15.85' Storage=1,123 cf Inflow=10.93 cfs 0.989 af 18.0" Round Culvert n=0.013 L=39.0' S=0.0108 '/ Outflow=9.23 cfs 0.989 af

Total Runoff Area = 4.579 ac Runoff Volume = 1.412 af Average Runoff Depth = 3.70" 45.24% Pervious = 2.072 ac 54.76% Impervious = 2.508 ac

Summary for Subcatchment CB 1: CB 1

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af, Depth= 5.91" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

Summary for Subcatchment CB 2: CB 2

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 5.91" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

Summary for Subcatchment CB 5: CB 5

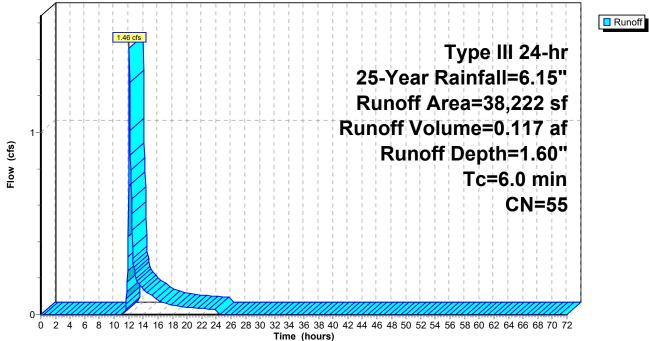
Runoff = 0.90 cfs @ 12.09 hrs, Volume= 0.072 af, Depth= 5.45" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

A	Area (sf)	CN D	escription			
*	5,683			surfaces, H	HSG C	
	1,184	74 >	75% Gras	s cover, Go	Good, HSG C	
	6,867		Veighted A			
	1,184			rvious Area		
	5,683	8	2.76% imp	pervious Ar	rea	
Тс	Length	Slope	Velocity	Capacity	/ Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	
				Subcatc	chment CB 5: CB 5	
				Hydro	rograph	
-1 - - - - - - - - - - - - - - - - - -					Type III 24-hr 25-Year Rainfall=6.15" Runoff Area=6,867 sf Runoff Volume=0.072 af Runoff Depth=5.45" Tc=6.0 min CN=94	Runoff

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Subcatchment DCB 4: DCB 4


Runoff = 1.46 cfs @ 12.10 hrs, Volume= 0.117 af, Depth= 1.60" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	Area (sf)	CN	Description					
*	14,030	98	Impervious	surfaces, H	ISG A			
	24,192	30	Woods, Good, HSG A					
	38,222	55	Weighted A	verage				
	24,192		63.29% Pe	rvious Area				
	14,030		36.71% Im	pervious Ar	ea			
To (min)	5	Slop (ft/ft	,	Capacity (cfs)	Description			
6.0			, , , ,		Direct Entry,			

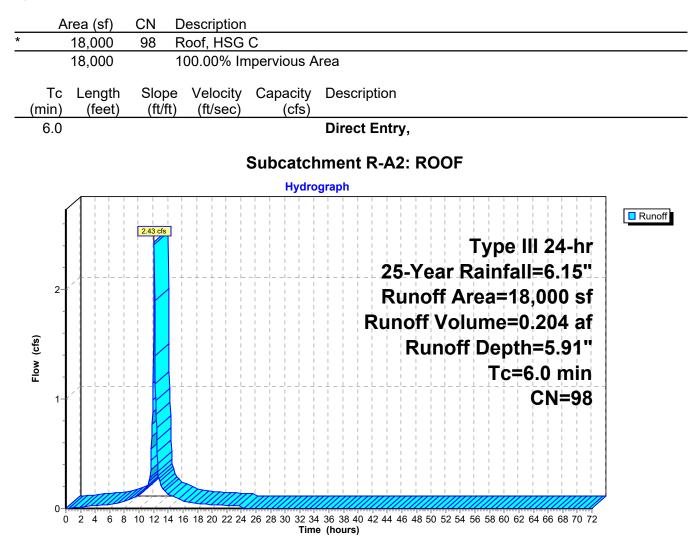
Subcatchment DCB 4: DCB 4

Hydrograph

Summary for Subcatchment R-A1: ROOF

Runoff = 1.47 cfs @ 12.09 hrs, Volume= 0.123 af, Depth= 5.91" Routed to Pond AB-1 : Storage Beneath Garage Slab

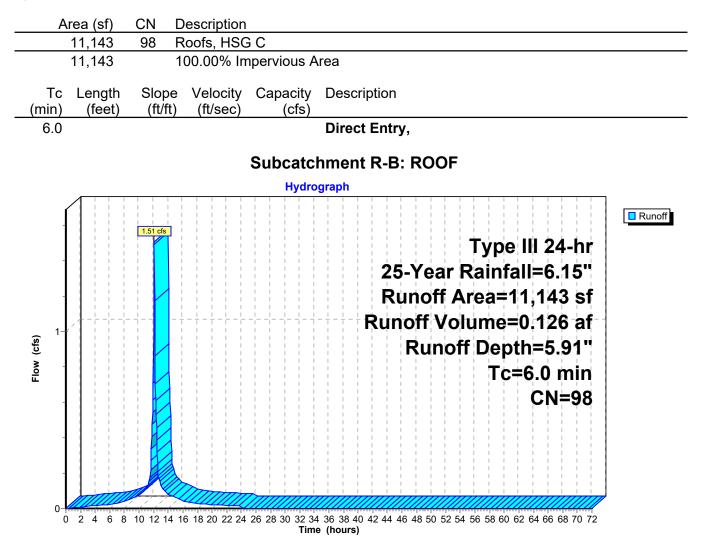
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"


* * *	A	rea (sf) 9,976 630 74 189 10,869	98 98 98 98	Description Roofs, HSG Patio, HSG Roofs, HSG Patio, HSG Weighted A	A A C C verage		
	Tc (<u>min)</u> 6.0	10,869 Length (feet)	Slope (ft/ft		pervious A Capacity (cfs)		
				:		hment R-A1: ROOF	
	Flow (cfs)		1.47 cfs		Hydro 	Type III 24-hr 25-Year Rainfall=6.15" Runoff Area=10,869 sf Runoff Volume=0.123 af Runoff Depth=5.91" Tc=6.0 min CN=98	Runoff

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Subcatchment R-A2: ROOF

Runoff = 2.43 cfs @ 12.09 hrs, Volume= 0.204 af, Depth= 5.91" Routed to Pond AB-2 : Subsurface Infiltration System


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

Summary for Subcatchment R-B: ROOF

Runoff = 1.51 cfs @ 12.09 hrs, Volume= 0.126 af, Depth= 5.91" Routed to Pond AB-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

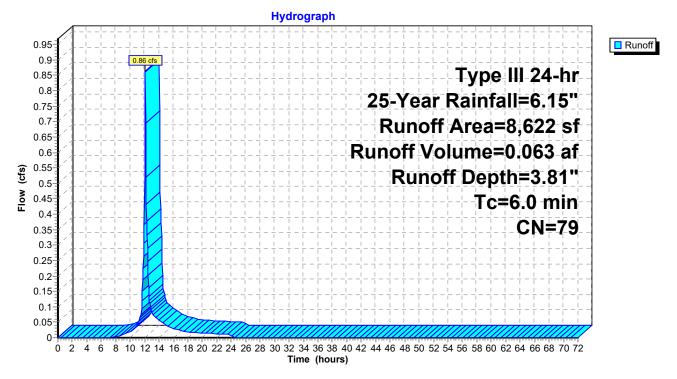
Summary for Subcatchment S-A-1: S-A-1

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 3.21" Routed to Pond ED-AB : Re-graded Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description		
*		244	98	Wall, HSG	A	
*		527	39	Plantings, I	ISG A	
*		72	98	Transforme	r pad, HSG	GC
		160	96	Gravel surfa	ace, HSG C	C
*		204	98	Wall, HSG	С	
*		1,236	74	Plantings, H	ISG C	
		2,443	73	Weighted A	verage	
		1,923		78.71% Pe	rvious Area	а
		520		21.29% Imp	pervious Ar	rea
	_					
	Tç	Length	Slop		Capacity	•
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment S-A-1: S-A-1

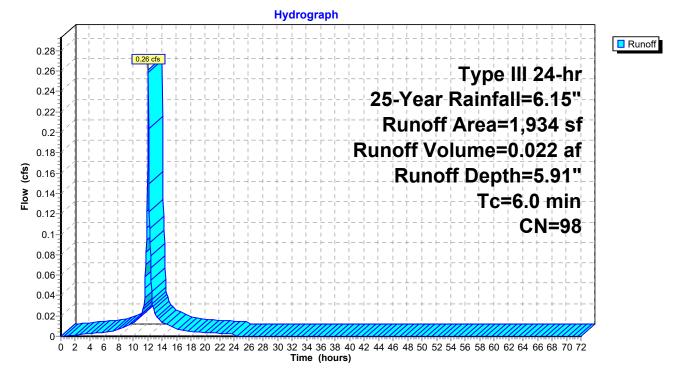

Summary for Subcatchment S-A-2: S-A-2

Runoff = 0.86 cfs @ 12.09 hrs, Volume= 0.063 af, Depth= 3.81" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	Area (sf)	CN	Description				
*	470	74	Plantings, HSG A				
*	3,711	74	Plantings, HSG C				
*	58	96	Gravel, HSG A				
*	437	98	Sidewalk, HSG A				
*	62	98	Sidewalk,HSG C				
*	222	96	Gravel, HSG C				
*	36	74	Plantings, HSG C (OFFSITE)				
*	423	39	Plantings, HSG A (OFFSITE)				
*	63	98					
*	10	98	B Sign, HSG C (OFFSITE)				
*	157	96					
*	10	98					
*	236	74	>75% Grass cover, Good, HSG C (OFFSITE)				
*	1,303	98	Sidewalk/parking, HSG C (OFFSITE)				
*	1,424	74	>75% Grass cover, Good, HSG C (OFFSITE)				
	8,622	79	Weighted Average				
	6,737		78.14% Pervious Area				
	1,885		21.86% Impervious Area				
	Tc Length	Slop					
(n	nin) (feet)	(ft/	ft) (ft/sec) (cfs)				
	6.0		Direct Entry,				

Subcatchment S-A-2: S-A-2

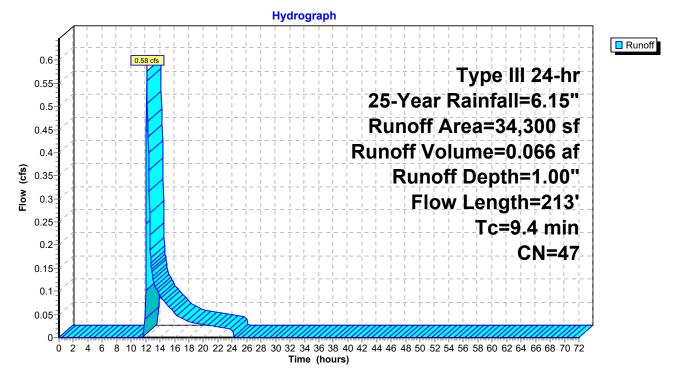

Summary for Subcatchment S-A-3: S-A-3

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 5.91" Routed to Pond AB-1 : Storage Beneath Garage Slab

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description			
*		81	98	Pavement,	HSG C		
*		91	98	Pavement,	Pavement, HSG A		
*		1,304	98	Sidewalk, H	Sidewalk, HSG C		
*		458	98	Pavement,	HSG C (OF	FSITE)	
		1,934	98	Weighted A	verage		
		1,934		100.00% In	npervious A	rea	
(n	Tc nin)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description	
	6.0					Direct Entry,	

Subcatchment S-A-3: S-A-3


Summary for Subcatchment S-A-OS: Offsite Areas

Runoff = 0.58 cfs @ 12.17 hrs, Volume= 0.066 af, Depth= 1.00" Routed to Pond ED-AB : Re-graded Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

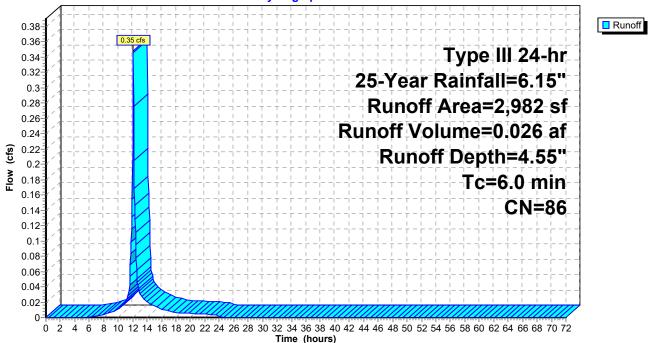
	A	rea (sf)	CN [Description		
*		15,938	30 V	Voods, Go	od, HSG A	(OFFSITE)
*		11,097	39 >	·75% Gras	s cover, Go	ood, HSG A (OFFSITE)
*		5,665	98 F	Roofs, HSG	A (OFFSI	TE)
*		1,600	98 I	mpervious	surfaces, H	ISG C (OFFSITE)
		34,300	47 V	Veighted A	verage	
		27,035	7	78.82% Pei	rvious Area	
		7,265	2	1.18% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
				,		Description Sheet Flow, 1
_	(min)	(feet)	(ft/ft)	(ft/sec)		
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, 1
_	<u>(min)</u> 7.9	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.10		Sheet Flow, 1 Woods: Light underbrush n= 0.400 P2= 3.20"

Subcatchment S-A-OS: Offsite Areas

Summary for Subcatchment S-B-1: S-B-1

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 4.55" Routed to Pond AB-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

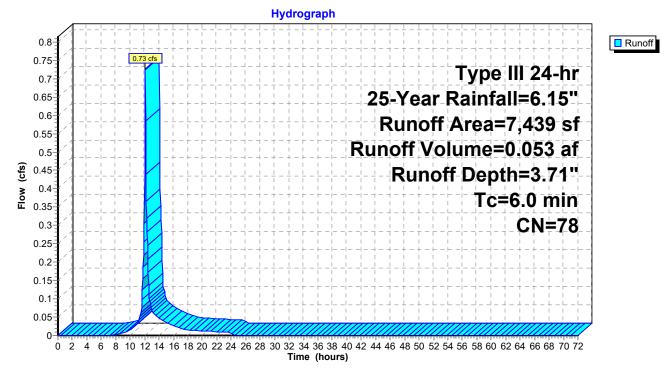

	Are	ea (sf)	CN	Description				
*		205	98	Pavement, HSG C				
*		61	98	Sidewalk, HSG C				
*		14	98	Wall, HSG C				
*		124	96	Gravel surface, HSG C				
*		224	74	Plantings, HSG C				
*		217	98	Sidewalk, HSG C (OFFSITE)				
*		766	98	Pavement, HSG C (OFFSITÉ)				
*		129	98	Sidewalk, HSG C (OFFSITE)				
*		7	98	Wall, HSG C (OFFSITE)				
*		1,235	74	Plantings, HSG C (OFFSITE)				
		2,982	86	Weighted Average				
		1,583		53.09% Pervious Area				
		1,399		46.91% Impervious Area				
	Тс	Length	Slop	pe Velocity Capacity Description				
	(min)	(feet)	(ft/	ft) (ft/sec) (cfs)				

6.0

Direct Entry,

Subcatchment S-B-1: S-B-1

Hydrograph

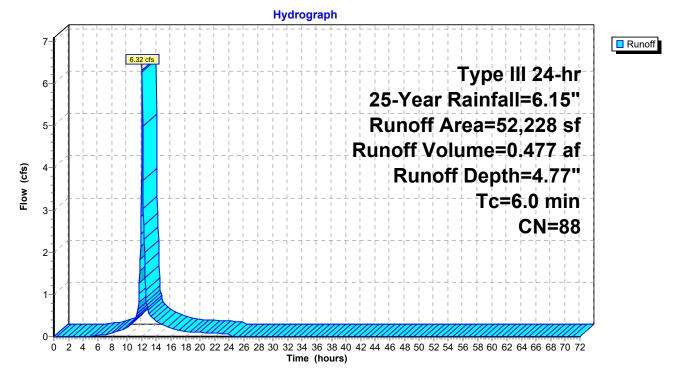

Summary for Subcatchment S-B-2: S-B-2

Runoff = 0.73 cfs @ 12.09 hrs, Volume= 0.053 af, Depth= 3.71" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	Area (sf)	CN	Description		
*	931	98	Sidewalk, HS	SGC	
*	42	98	Wall, HSG C		
*	3,548	74	Plantings, H	SG C	
*	109	98	Transformer	pad, HSG	GC
	108	96	Gravel surface	ce, HSG C	C
*	2,701	74	Plantings, H	SG C (OFI	FFSITE)
	7,439	78	Weighted Av	erage	
	6,357		85.46% Perv	vious Area	а
	1,082		14.54% Impe	ervious Are	rea
	Tc Length in) (feet)			Capacity (cfs)	
6	3.0				Direct Entry,

Subcatchment S-B-2: S-B-2


Summary for Subcatchment SWALE: BASIN

Runoff = 6.32 cfs @ 12.09 hrs, Volume= 0.477 af, Depth= 4.77" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

_	A	rea (sf)	CN	Description						
*		30,996	98	Impervious surfaces, HSG C						
_		21,232	74	>75% Gras	>75% Grass cover, Good, HSG C					
		52,228	88	Weighted A	verage					
		21,232		40.65% Pe	rvious Area	3				
		30,996		59.35% Imp	pervious Ar	rea				
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
	6.0					Direct Entry,				

Subcatchment SWALE: BASIN

Summary for Pond AB-1: Storage Beneath Garage Slab

Inflow Are	a =	0.294 ac,100.00% Impervious, Inflow Depth = 5.91" for 25-Year event
Inflow	=	1.73 cfs @ 12.09 hrs, Volume= 0.145 af
Outflow	=	0.03 cfs @ 17.97 hrs, Volume= 0.130 af, Atten= 98%, Lag= 353.2 min
Primary	=	0.03 cfs @ 17.97 hrs, Volume= 0.130 af
Routed	to Pond	I ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 18.12' @ 17.97 hrs Surf.Area= 8,842 sf Storage= 4,735 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1,431.3 min (2,176.1 - 744.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.75'	0 cf	85.63'W x 103.25'L x 2.08'H Field A
			18,425 cf Overall - 6,644 cf Embedded = 11,781 cf x 0.0% Voids
#2A	16.75'	5,371 cf	ADS N-12 18" x 145 Inside #1
			Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf
			Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf
			145 Chambers in 29 Rows
			84.13' Header x 1.80 sf x 1 = 151.4 cf Inside
		5,371 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.75'	12.0" Round Culvert
			L= 80.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 16.75' / 16.13' S= 0.0078 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	16.75'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	18.15'	4.0' long x 5.40' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.03 cfs @ 17.97 hrs HW=18.12' TW=14.09' (Dynamic Tailwater)

-**1=Culvert** (Passes 0.03 cfs of 3.12 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.03 cfs @ 5.54 fps)

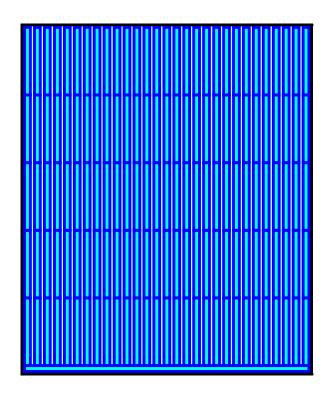
-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Pond AB-1: Storage Beneath Garage Slab - Chamber Wizard Field A

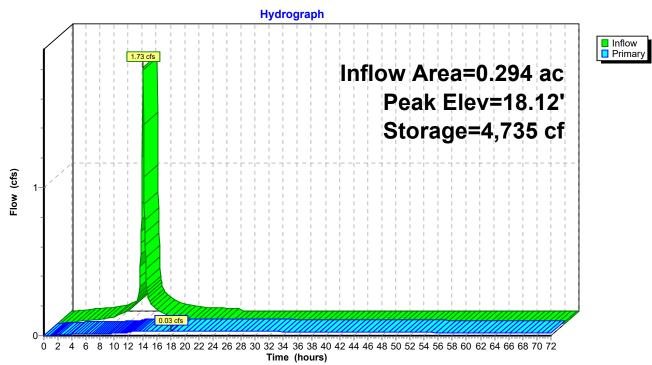
Chamber Model = ADS N-12 18" (ADS N-12® Pipe)

Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf

21.0" Wide + 14.3" Spacing = 35.3" C-C Row Spacing


5 Chambers/Row x 20.00' Long +1.75' Header x 1 = 101.75' Row Length +9.0" End Stone x 2 = 103.25' Base Length 29 Rows x 21.0" Wide + 14.3" Spacing x 28 + 9.0" Side Stone x 2 = 85.63' Base Width 21.0" Chamber Height + 4.0" Stone Cover = 2.08' Field Height

145 Chambers x 36.0 cf + 84.13' Header x 1.80 sf = 5,371.5 cf Chamber Storage 145 Chambers x 44.5 cf + 84.13' Header x 2.23 sf = 6,643.5 cf Displacement


18,424.9 cf Field - 6,643.5 cf Chambers = 11,781.4 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 5,371.5 cf = 0.123 af Overall Storage Efficiency = 29.2% Overall System Size = 103.25' x 85.63' x 2.08'

145 Chambers 682.4 cy Field 436.3 cy Stone

Summary for Pond AB-2: Subsurface Infiltration System

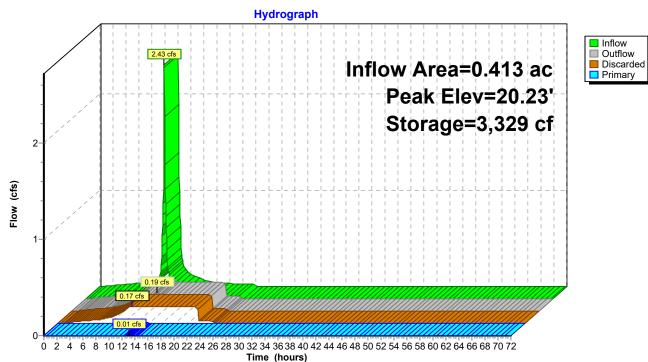
Inflow Area =	0.413 ac,10	0.00% Impervious, I	nflow Depth = 5.91"	for 25-Year event
Inflow =	2.43 cfs @	12.09 hrs, Volume=	0.204 af	
Outflow =	0.19 cfs @	13.12 hrs, Volume=	0.204 af, At	ten= 92%, Lag= 62.0 min
Discarded =	0.17 cfs @	11.40 hrs, Volume=	0.202 af	
Primary =	0.01 cfs @	13.12 hrs, Volume=	0.001 af	
Routed to Pond	d ES-LF : DP-	-LF Existing Swale/Ba	asin in Lovell Field	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 20.23' @ 13.12 hrs Surf.Area= 3,133 sf Storage= 3,329 cf

Plug-Flow detention time= 137.8 min calculated for 0.203 af (100% of inflow) Center-of-Mass det. time= 137.7 min (882.4 - 744.8)

Volume	Invert	Avail.Stora	age Storage Description		
#1	18.75'	1,375			
#2	19.08'	3,420	7,237 cf Overall - 3,800 cf Embedded = 3,438 cf x 40.0% Voids 0 cf Ferguson R-Tank XD 9 x 797 Inside #1 Inside= 19.7"W x 17.7"H => 2.18 sf x 1.97'L = 4.3 cf Outside= 19.7"W x 17.7"H => 2.42 sf x 1.97'L = 4.8 cf 797 Chambers in 36 Rows		
		4,795			
Elevatio (fee 18.7 21.0	et) 75	f.Area (sq-ft) (o 3,133 3,133	Inc.Store Cum.Store (cubic-feet) (cubic-feet) 0 0 7,237 7,237		
Device	Routing	Invert	Outlet Devices		
#1	Primary	l	12.0" Round Culvert L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 19.00' / 18.98' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		
#2			.0" Vert. Orifice/ Grate C= 0.600 Limited to weir flow at low heads		
#3	Device 1		4.0' long x 3.15' rise Sharp-Crested Rectangular Weir		
#4	Discarded		2 End Contraction(s) 2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'		

Discarded OutFlow Max=0.17 cfs @ 11.40 hrs HW=18.80' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.17 cfs)


Primary OutFlow Max=0.01 cfs @ 13.12 hrs HW=20.23' TW=14.34' (Dynamic Tailwater)

-1=Culvert (Passes 0.01 cfs of 2.81 cfs potential flow)

-2=Orifice/ Grate (Orifice Controls 0.01 cfs @ 0.95 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond AB-3: Subsurface Infiltration System

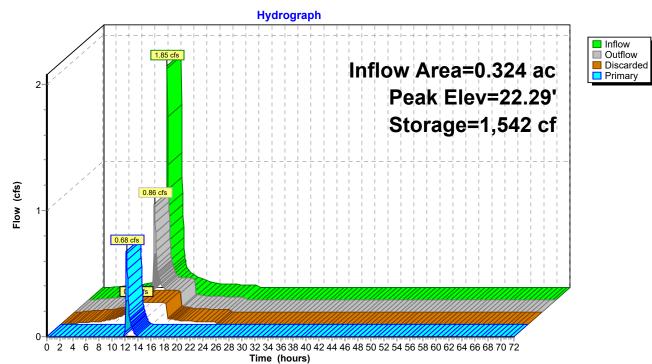
Inflow Area =	0.324 ac, 8	8.79% Impervious, I	nflow Depth = 5.62" for 25-Year event
Inflow =	1.85 cfs @	12.09 hrs, Volume=	0.152 af
Outflow =	0.86 cfs @	12.27 hrs, Volume=	0.152 af, Atten= 54%, Lag= 10.8 min
Discarded =	0.18 cfs @	11.60 hrs, Volume=	0.125 af
Primary =	0.68 cfs @	12.27 hrs, Volume=	0.027 af
Routed to Pond	ES-LF : DP-	LF Existing Swale/Ba	asin in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 22.29' @ 12.27 hrs Surf.Area= 3,154 sf Storage= 1,542 cf

Plug-Flow detention time= 33.5 min calculated for 0.152 af (100% of inflow) Center-of-Mass det. time= 33.5 min (787.2 - 753.7)

Volume	Invert	Avail.Sto	rage	e Storage Description
#1	21.50'	1,26	64 cf	
#2	21.83'	1 39	34 cf	4,699 cf Overall - 1,538 cf Embedded = 3,161 cf x 40.0% Voids f Ferguson R-Tank XD 4 x 726 Inside #1
<i>π</i> ∠	21.00	1,00	J - CI	Inside= 19.7 "W x 7.9"H => 0.97 sf x 1.97'L = 1.9 cf
				Outside= 19.7"W x 7.9"H => 1.08 sf x 1.97'L = 2.1 cf
				726 Chambers in 10 Rows
		2,64	19 cf	of Total Available Storage
Elevatio	on Si	ırf.Area	Inc	nc.Store Cum.Store
(fee	et)	(sq-ft)	(cubi	ıbic-feet) (cubic-feet)
21.5	50	3,154		0 0
22.9	99	3,154		4,699 4,699
Device	Routing	Invert	Outl	utlet Devices
#1	Primary	21.83'	12.0	2.0" Round Culvert
	,		L= 2	= 28.0' CPP, square edge headwall, Ke= 0.500
				let / Outlet Invert= 21.83' / 21.00' S= 0.0296 '/' Cc= 0.900
			n= 0	= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	22.00'	10.0	0.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	22.20'	4.0'	0' long x 2.20' rise Sharp-Crested Rectangular Weir
			2 Er	End Contraction(s)
#4	Discarded	21.50'	2.41	410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.18 cfs @ 11.60 hrs HW=21.53' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.18 cfs)


Primary OutFlow Max=0.67 cfs @ 12.27 hrs HW=22.29' TW=15.40' (Dynamic Tailwater)

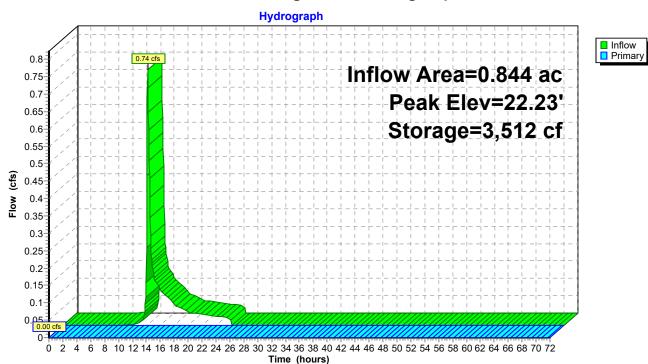
-1=Culvert (Passes 0.67 cfs of 0.82 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.31 cfs @ 1.84 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.36 cfs @ 0.99 fps)

Pond AB-3: Subsurface Infiltration System

Summary for Pond ED-AB: Re-graded Existing Depression


Inflow Are	a =	0.844 ac, 2	1.19% Impervious, Inflo	ow Depth = 1.15" for 25-Year event	
Inflow	=	0.74 cfs @	12.16 hrs, Volume=	0.081 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min	۱
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Routed	l to Pon	d ES-LF : DP-	LF Existing Swale/Basir	n in Lovell Field	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 22.23' @ 24.55 hrs Surf.Area= 2,718 sf Storage= 3,512 cf

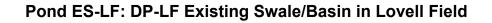
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

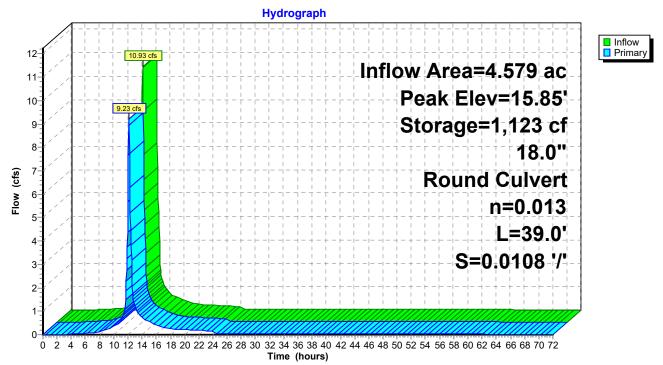
Volume	In	vert Ava	il.Storage	ge Storage Description		
#1	19	.50'	8,308 cf	Custom	Stage Data (Pi	r ismatic) Listed below (Recalc)
Elevatio (fee 19.5 20.0 21.0 22.0 23.0 23.5	et) 50 00 00 00 00 00	Surf.Area (sq-ft) 69 484 1,371 2,351 3,941 5,000		c.Store c-feet) 138 928 1,861 3,146 2,235	Cum.Store (cubic-feet) 0 138 1,066 2,927 6,073 8,308	
Device #1	Routing Primar	5	3.43' 2.0' Hea 2.50 Coe	d (feet) 0 3.00 3.5	.0' breadth Bro 0.20 0.40 0.60 50 1) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=19.50' TW=13.87' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Pond ED-AB: Re-graded Existing Depression

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field


Inflow Area =	4.579 ac, 54.76% Impervious, Inflow D	epth > 2.59" for 25-Year event					
Inflow =	10.93 cfs @ 12.09 hrs, Volume=	0.989 af					
Outflow =	9.23 cfs @12.15 hrs, Volume=	0.989 af, Atten= 16%, Lag= 3.1 min					
Primary =	9.23 cfs @12.15 hrs, Volume=	0.989 af					
Routed to nonexistent node 1R							


Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 15.85' @ 12.15 hrs Surf.Area= 1,574 sf Storage= 1,123 cf

Plug-Flow detention time= 0.6 min calculated for 0.989 af (100% of inflow) Center-of-Mass det. time= 0.6 min (981.3 - 980.7)

Volume	Ir	vert Av	ail.Stora	rage Storage Description		
#1	1:	3.87'	17,546	cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
- 1				b 0 b b	0	
Elevatio		Surf.Area	-	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)) (c	cubic-feet)	(cubic-feet)	
13.8	37	()	0	0	
14.0	00	3	5	0	0	
15.0	00	488	}	246	246	
16.0	00	1,764	Ļ	1,126	1,372	
17.0	00	2,848	}	2,306	3,678	
18.0	00	3,993	}	3,421	7,098	
19.0	00	5,217	,	4,605	11,703	
20.0	00	6,468	}	5,843	17,546	
Device	Routin	g	nvert (Dutlet Devic	es	
#1	Prima	y ´	3.87' 1	18.0" Roun	d Culvert	
		-	L	_= 39.0' CF	P, square edge l	headwall, Ke= 0.500
						3.45' S= 0.0108 '/' Cc= 0.900
						ooth interior, Flow Area= 1.77 sf
			1	1 0.010 00		

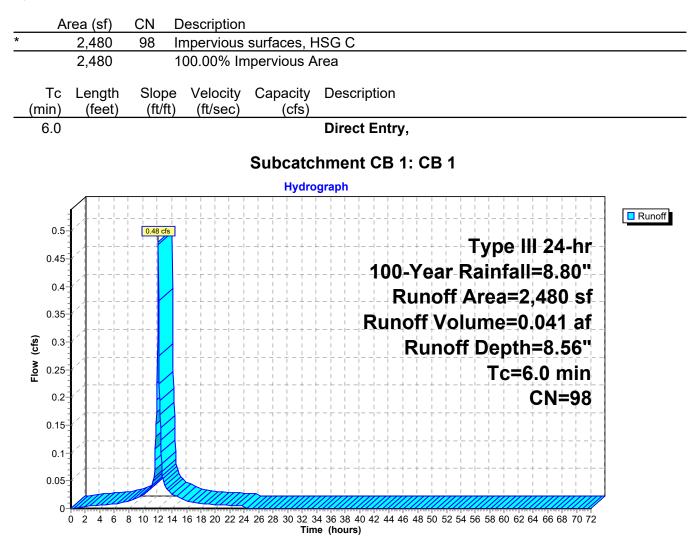
Primary OutFlow Max=9.23 cfs @ 12.15 hrs HW=15.84' (Free Discharge) -1=Culvert (Barrel Controls 9.23 cfs @ 5.24 fps)

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentCB 1: CB 1	Runoff Area=2,480 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=0.48 cfs 0.041 af
SubcatchmentCB 2: CB 2	Runoff Area=1,943 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=0.38 cfs 0.032 af
SubcatchmentCB 5: CB 5	Runoff Area=6,867 sf 82.76% Impervious Runoff Depth=8.08" Tc=6.0 min CN=94 Runoff=1.31 cfs 0.106 af
SubcatchmentDCB 4: DCB 4	Runoff Area=38,222 sf 36.71% Impervious Runoff Depth=3.34" Tc=6.0 min CN=55 Runoff=3.29 cfs 0.245 af
SubcatchmentR-A1: ROOF	Runoff Area=10,869 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=2.11 cfs 0.178 af
SubcatchmentR-A2: ROOF	Runoff Area=18,000 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=3.49 cfs 0.295 af
SubcatchmentR-B: ROOF	Runoff Area=11,143 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=2.16 cfs 0.182 af
SubcatchmentS-A-1: S-A-1	Runoff Area=2,443 sf 21.29% Impervious Runoff Depth=5.53" Tc=6.0 min CN=73 Runoff=0.35 cfs 0.026 af
SubcatchmentS-A-2: S-A-2	Runoff Area=8,622 sf 21.86% Impervious Runoff Depth=6.26" Tc=6.0 min CN=79 Runoff=1.40 cfs 0.103 af
SubcatchmentS-A-3: S-A-3	Runoff Area=1,934 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=0.37 cfs 0.032 af
SubcatchmentS-A-OS: Offsite Areas	Runoff Area=34,300 sf 21.18% Impervious Runoff Depth=2.40" Flow Length=213' Tc=9.4 min CN=47 Runoff=1.77 cfs 0.158 af
SubcatchmentS-B-1: S-B-1	Runoff Area=2,982 sf 46.91% Impervious Runoff Depth=7.11" Tc=6.0 min CN=86 Runoff=0.53 cfs 0.041 af
SubcatchmentS-B-2: S-B-2	Runoff Area=7,439 sf 14.54% Impervious Runoff Depth=6.13" Tc=6.0 min CN=78 Runoff=1.18 cfs 0.087 af
SubcatchmentSWALE: BASIN	Runoff Area=52,228 sf 59.35% Impervious Runoff Depth=7.35" Tc=6.0 min CN=88 Runoff=9.51 cfs 0.735 af
Pond AB-1: Storage Beneath Garage Slab	Peak Elev=18.28' Storage=5,215 cf Inflow=2.48 cfs 0.210 af Outflow=0.64 cfs 0.192 af
Pond AB-2: Subsurface Infiltration System Discarded=0.17 ct	n Peak Elev=20.88' Storage=4,569 cf Inflow=3.49 cfs 0.295 af is 0.247 af Primary=0.79 cfs 0.048 af Outflow=0.96 cfs 0.295 af

Pond AB-3: Subsurface Infiltration System Peak Elev=22.47' Storage=1,980 cf Inflow=2.69 cfs 0.223 af Discarded=0.18 cfs 0.158 af Primary=1.45 cfs 0.065 af Outflow=1.63 cfs 0.223 af

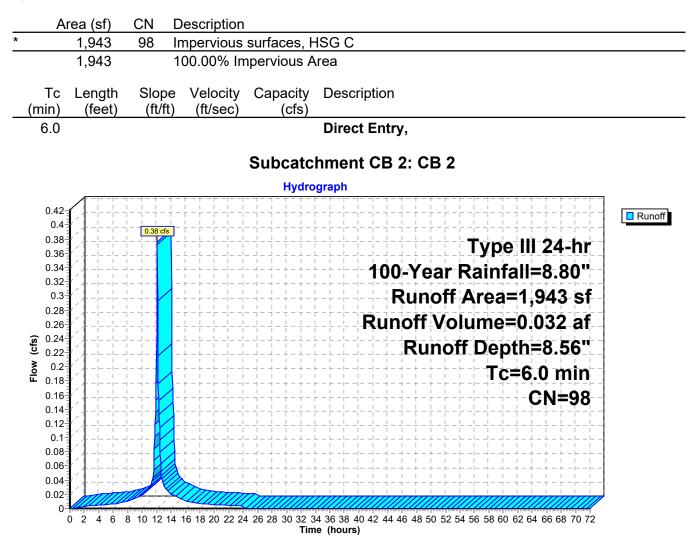
Pond ED-AB: Re-graded Existing Depression Peak Elev=23.44' Storage=7,992 cf Inflow=2.06 cfs 0.184 af Outflow=0.00 cfs 0.001 af


Pond ES-LF: DP-LF Existing Swale/Basin in Peak Elev=16.99' Storage=3,660 cf Inflow=18.63 cfs 1.653 af 18.0" Round Culvert n=0.013 L=39.0' S=0.0108 '/' Outflow=13.11 cfs 1.653 af

Total Runoff Area = 4.579 ac Runoff Volume = 2.259 af Average Runoff Depth = 5.92" 45.24% Pervious = 2.072 ac 54.76% Impervious = 2.508 ac

Summary for Subcatchment CB 1: CB 1

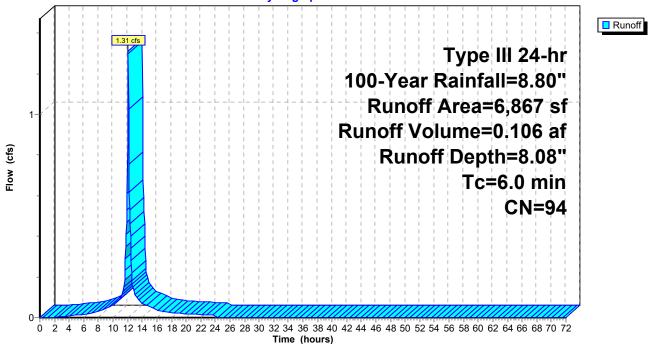
Runoff = 0.48 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 8.56" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

Summary for Subcatchment CB 2: CB 2

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 8.56" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"



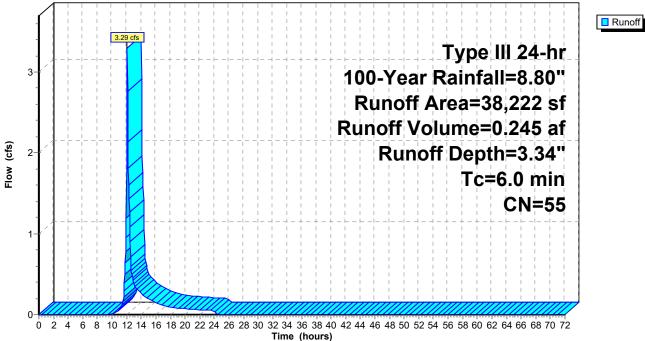
Summary for Subcatchment CB 5: CB 5

Runoff = 1.31 cfs @ 12.09 hrs, Volume= 0.106 af, Depth= 8.08" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN	Description						
*		5,683	98	Impervious	surfaces, H	ISG C				
		1,184	74	>75% Gras	s cover, Go	bod, HSG C				
		6,867	94	Weighted A	verage					
		1,184		17.24% Pe	17.24% Pervious Area					
		5,683		82.76% Impervious Area						
(m	Tc nin)	Length (feet)	Slop (ft/fl	lope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
	6.0		Direct Entry,							
	Subcatchment CB 5: CB 5									

Summary for Subcatchment DCB 4: DCB 4


Runoff = 3.29 cfs @ 12.10 hrs, Volume= 0.245 af, Depth= 3.34" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

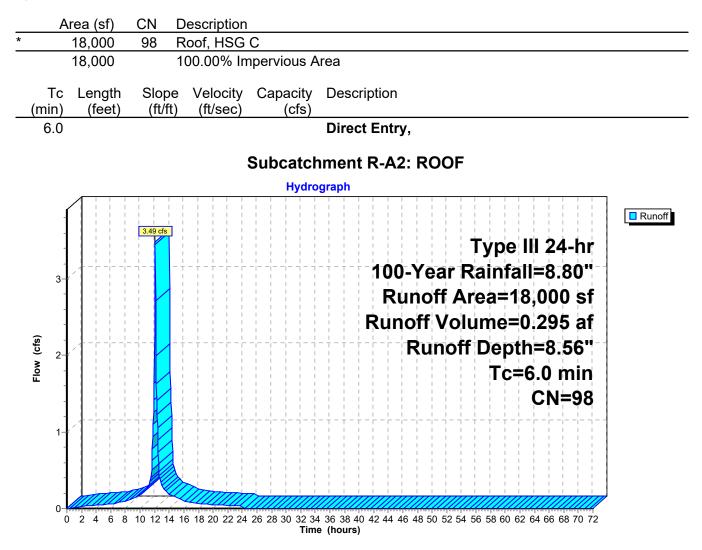
_	A	rea (sf)	CN	Description				
*		14,030	98	Impervious	surfaces, H	HSG A		
_		24,192	30	Woods, Good, HSG A				
		38,222	55	5 Weighted Average				
	24,192 63.29% Pervious Area					3		
		14,030	36.71% Impervious Are			rea		
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description		
	6.0					Direct Entry,		

Subcatchment DCB 4: DCB 4

Summary for Subcatchment R-A1: ROOF

Runoff = 2.11 cfs @ 12.09 hrs, Volume= 0.178 af, Depth= 8.56" Routed to Pond AB-1 : Storage Beneath Garage Slab

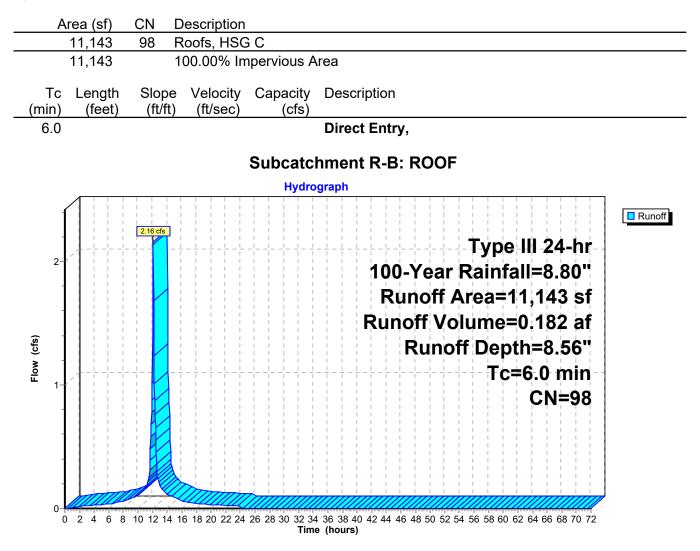
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"


9,976 98 Roofs, HSG A * 630 98 Patio, HSG A								
* 630 98 Patio HSG A								
* 74 98 Roofs, HSG C * 189 98 Patio, HSG C								
10,869 98 Weighted Average								
10,869 100.00% Impervious Area								
·								
Tc Length Slope Velocity Capacity Description								
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,								
0.0 Direct Entry,								
Subcatchment R-A1: ROOF								
Hydrograph								
	Runoff							
² Type III 24-hr 100-Year Rainfall=8.80"								
Runoff Area=10,869 sf								
Runoff Volume=0.178 af								
ଞ ଞୁ ଣୁ ଅନୁ								
ê ₁↓ / Tc=6.0 min'	-							
CN=98								
	ļ							

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Subcatchment R-A2: ROOF

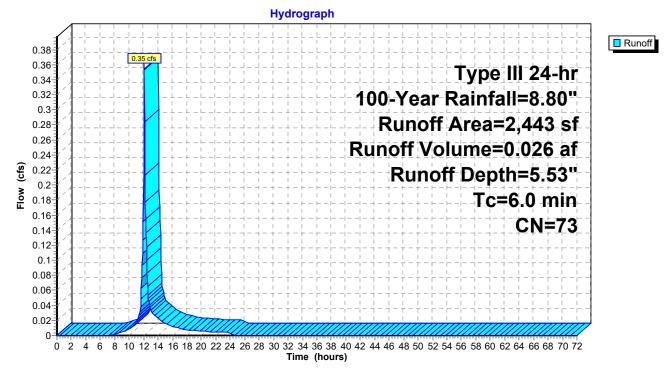
Runoff = 3.49 cfs @ 12.09 hrs, Volume= 0.295 af, Depth= 8.56" Routed to Pond AB-2 : Subsurface Infiltration System


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

Summary for Subcatchment R-B: ROOF

Runoff = 2.16 cfs @ 12.09 hrs, Volume= 0.182 af, Depth= 8.56" Routed to Pond AB-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

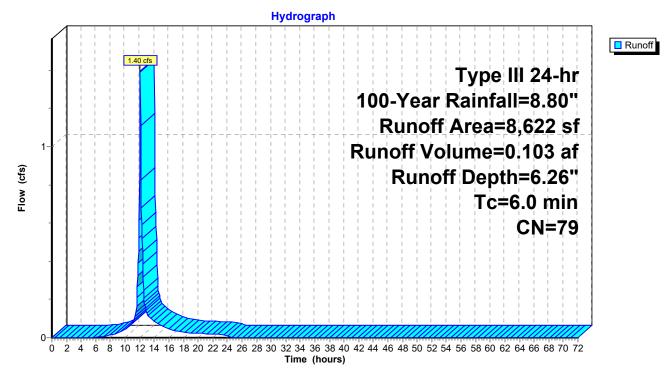

Summary for Subcatchment S-A-1: S-A-1

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 5.53" Routed to Pond ED-AB : Re-graded Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	А	rea (sf)	CN	Description				
*		244	98	Wall, HSG	Ą			
*		527	39	Plantings, H	ISG A			
*		72	98	Transforme	r pad, HSG	GC		
		160	96	Gravel surfa	Gravel surface, HSG C			
*		204	98	Wall, HSG	С			
*		1,236	74	Plantings, F	ISG C			
		2,443	73	Weighted A	verage			
		1,923		78.71% Pe	vious Area	а		
		520		21.29% Imp	pervious Ar	rea		
	Тс	Length	Slop		Capacity	Description		
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment S-A-1: S-A-1

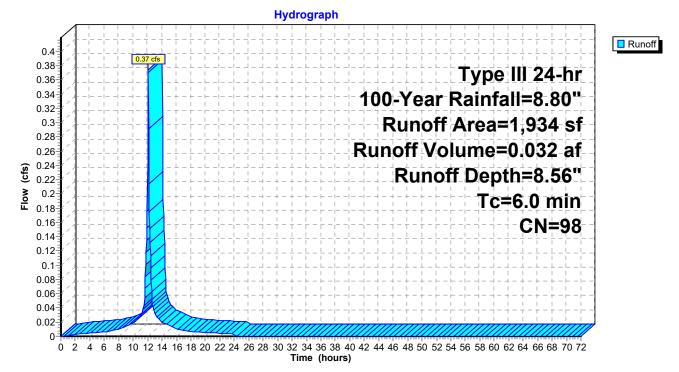

Summary for Subcatchment S-A-2: S-A-2

Runoff = 1.40 cfs @ 12.09 hrs, Volume= 0.103 af, Depth= 6.26" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Area (sf)	CN	Description				
*	470	74	Plantings, HSG A				
*	3,711	74	Plantings, HSG C				
*	58	96	Gravel, HSG A				
*	437	98	Sidewalk, HSG A				
*	62	98	Sidewalk,HSG C				
*	222	96	Gravel, HSG C				
*	36	74	Plantings, HSG C (OFFSITE)				
*	423	39	Plantings, HSG A (OFFSITE)				
*	63	98	Wall, HSG C (OFFSITE)				
*	10	98	Sign, HSG C (OFFSITE)				
*	157	96	Gravel surface, HSG C (OFFSITE)				
*	10	98	Impervious surfaces, HSG C (OFFSITE)				
*	236	74	>75% Grass cover, Good, HSG C (OFFSITE)				
*	1,303	98	Sidewalk/parking, HSG C (OFFSITE)				
*	1,424	74	>75% Grass cover, Good, HSG C (OFFSITE)				
	8,622	79	Weighted Average				
	6,737		78.14% Pervious Area				
	1,885		21.86% Impervious Area				
	Tc Length	Slo	pe Velocity Capacity Description				
(min) (feet)	(ft/	ft) (ft/sec) (cfs)				
	6.0		Direct Entry,				

Subcatchment S-A-2: S-A-2


Summary for Subcatchment S-A-3: S-A-3

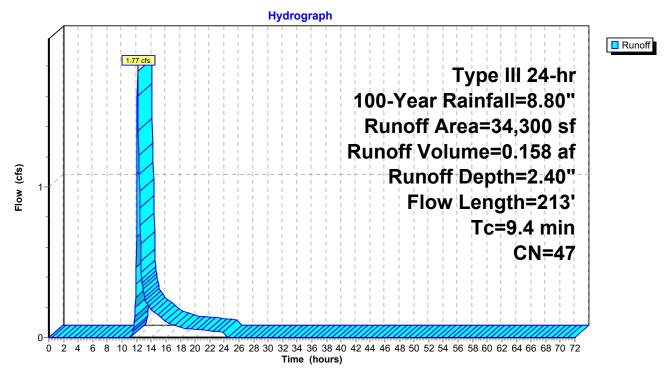
Runoff = 0.37 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 8.56" Routed to Pond AB-1 : Storage Beneath Garage Slab

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN	Description					
*		81	98	Pavement,	HSG C				
*		91	98	Pavement,	Pavement, HSG A				
*		1,304	98	Sidewalk, H	ISG C				
*		458	98	Pavement,	Pavement, HSG C (OFFSITE)				
		1,934	98	8 Weighted Average					
		1,934		100.00% In	npervious A	Area			
(Tc min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)				
	6.0					Direct Entry,			

Subcatchment S-A-3: S-A-3

Summary for Subcatchment S-A-OS: Offsite Areas


Runoff = 1.77 cfs @ 12.15 hrs, Volume= 0.158 af, Depth= 2.40" Routed to Pond ED-AB : Re-graded Existing Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

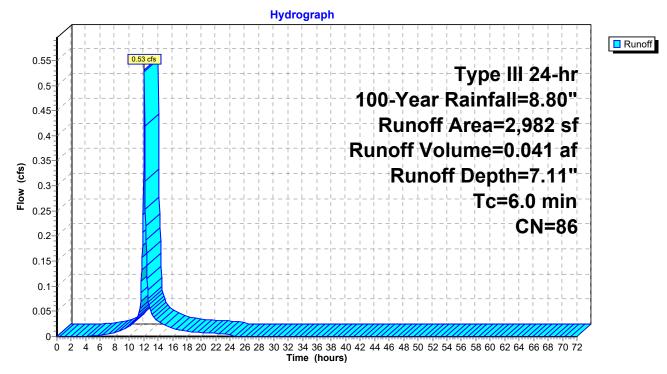
	A	rea (sf)	CN	Description				
*		15,938	30	Woods, Go	od, HSG A	(OFFSITE)		
*		11,097				bod, HSG Á (OFFSITE)		
*		5,665	98	Roofs, HSC	A (OFFSI	TE)		
*		1,600	98	Impervious	surfaces, I	HSĠ C (OFFSITE)		
		34,300	47	47 Weighted Average				
		27,035		78.82% Pervious Area				
		7,265		21.18% Imp	pervious Ar	ea		
				-				
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	7.9	50	0.0600	0.10		Sheet Flow, 1		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	1.5	163	0.1290	1.80		Shallow Concentrated Flow, 2		
						Woodland Kv= 5.0 fps		
_	0.4	040	Tatal					

9.4 213 Total

Subcatchment S-A-OS: Offsite Areas

Summary for Subcatchment S-B-1: S-B-1

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 7.11" Routed to Pond AB-3 : Subsurface Infiltration System

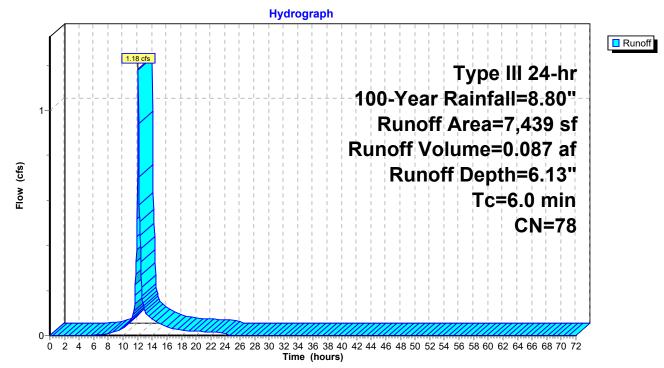

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN	Description				
*		205	98	Pavement, HSG C				
*		61	98	Sidewalk, HSG C				
*		14	98	Wall, HSG C				
*		124	96	Gravel surface, HSG C				
*		224	74	Plantings, HSG C				
*		217	98	Sidewalk, HSG C (OFFSITE)				
*		766	98	Pavement, HSG C (OFFSITE)				
*		129	98	Sidewalk, HSG C (OFFSITE)				
*		7	98	Wall, HSG C (OFFSITE)				
*		1,235	74	Plantings, HSG C (OFFSITE)				
		2,982	86	Weighted Average				
		1,583		53.09% Pervious Area				
		1,399		46.91% Impervious Area				
	Тс	Longth	Slor	be Velocity Capacity Description				
	Tc (min)	Length (feet)	Slop (ft/t					

6.0

Direct Entry,

Subcatchment S-B-1: S-B-1


Summary for Subcatchment S-B-2: S-B-2

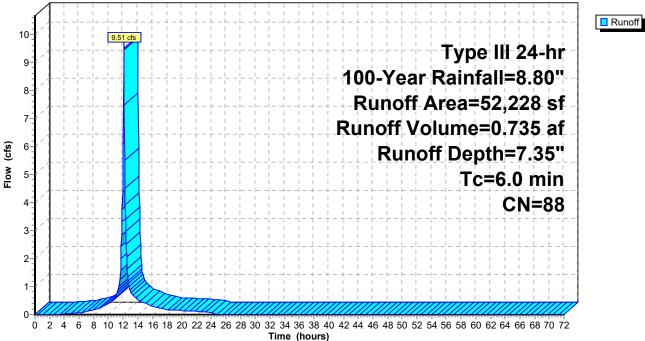
Runoff = 1.18 cfs @ 12.09 hrs, Volume= 0.087 af, Depth= 6.13" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Are	a (sf)	CN	Description				
*		931	98	Sidewalk, H	SG C			
*		42	98	Wall, HSG (C			
*		3,548	74	Plantings, H	ISG C			
*		109	98	Transforme	r pad, HSG	GC		
		108	96	Gravel surfa	ace, HSG C	С		
*		2,701	74	Plantings, HSG C (OFFSITE)				
	-	7,439	78	Weighted A	verage			
	(6,357		85.46% Per	vious Area	а		
		1,082		14.54% Imp	ervious Ar	rea		
	Tc L	_ength	Slop		Capacity	1		
(m	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment S-B-2: S-B-2

Summary for Subcatchment SWALE: BASIN


Runoff = 9.51 cfs @ 12.09 hrs, Volume= 0.735 af, Depth= 7.35" Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

_	A	rea (sf)	CN	Description					
*		30,996	98	Impervious	surfaces, H	HSG C			
		21,232	74	>75% Gras	>75% Grass cover, Good, HSG C				
		52,228	88	Weighted Average					
		21,232		40.65% Pervious Area					
		30,996		59.35% Imp	pervious Ar	rea			
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)				
	6.0					Direct Entry,			

Subcatchment SWALE: BASIN

Summary for Pond AB-1: Storage Beneath Garage Slab

Inflow Area =0.294 ac,100.00% Impervious, Inflow Depth =8.56" for 100-Year eventInflow =2.48 cfs @12.09 hrs, Volume=0.210 afOutflow =0.64 cfs @12.46 hrs, Volume=0.192 af, Atten= 74%, Lag= 22.2 minPrimary =0.64 cfs @12.46 hrs, Volume=0.192 afRouted to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field100-Year event

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 18.28' @ 12.46 hrs Surf.Area= 8,842 sf Storage= 5,215 cf

Plug-Flow detention time= 1,075.4 min calculated for 0.192 af (91% of inflow) Center-of-Mass det. time= 1,030.2 min (1,770.3 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.75'	0 cf	85.63'W x 103.25'L x 2.08'H Field A
			18,425 cf Overall - 6,644 cf Embedded = 11,781 cf x 0.0% Voids
#2A	16.75'	5,371 cf	ADS N-12 18" x 145 Inside #1
			Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf
			Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf
			145 Chambers in 29 Rows
			84.13' Header x 1.80 sf x 1 = 151.4 cf Inside
		5,371 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.75'	12.0" Round Culvert
			L= 80.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 16.75' / 16.13' S= 0.0078 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	16.75'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	18.15'	4.0' long x 5.40' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.64 cfs @ 12.46 hrs HW=18.28' TW=15.94' (Dynamic Tailwater)

-1=Culvert (Passes 0.64 cfs of 3.37 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.03 cfs @ 5.87 fps)

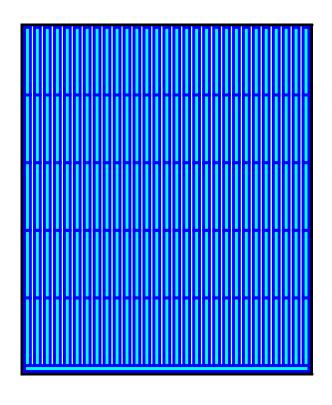
-3=Sharp-Crested Rectangular Weir (Weir Controls 0.61 cfs @ 1.18 fps)

Pond AB-1: Storage Beneath Garage Slab - Chamber Wizard Field A

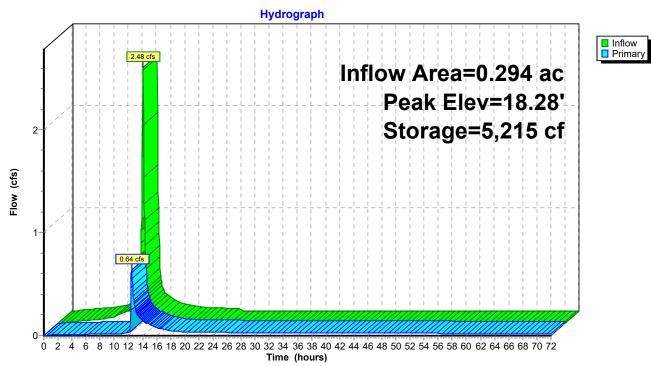
Chamber Model = ADS N-12 18" (ADS N-12® Pipe)

Inside= 18.2"W x 18.2"H => 1.80 sf x 20.00'L = 36.0 cf Outside= 21.0"W x 21.0"H => 2.23 sf x 20.00'L = 44.5 cf

21.0" Wide + 14.3" Spacing = 35.3" C-C Row Spacing


5 Chambers/Row x 20.00' Long +1.75' Header x 1 = 101.75' Row Length +9.0" End Stone x 2 = 103.25' Base Length 29 Rows x 21.0" Wide + 14.3" Spacing x 28 + 9.0" Side Stone x 2 = 85.63' Base Width 21.0" Chamber Height + 4.0" Stone Cover = 2.08' Field Height

145 Chambers x 36.0 cf + 84.13' Header x 1.80 sf = 5,371.5 cf Chamber Storage 145 Chambers x 44.5 cf + 84.13' Header x 2.23 sf = 6,643.5 cf Displacement


18,424.9 cf Field - 6,643.5 cf Chambers = 11,781.4 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 5,371.5 cf = 0.123 af Overall Storage Efficiency = 29.2% Overall System Size = 103.25' x 85.63' x 2.08'

145 Chambers 682.4 cy Field 436.3 cy Stone

Summary for Pond AB-2: Subsurface Infiltration System

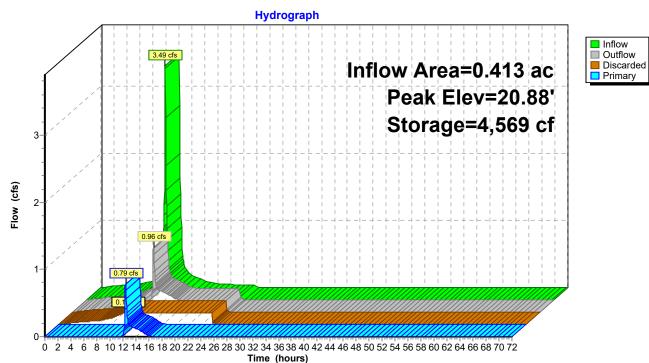
Inflow Area =	0.413 ac,10	0.00% Impervious, Inflo	w Depth = 8.56" for 100-Year event			
Inflow =	3.49 cfs @	12.09 hrs, Volume=	0.295 af			
Outflow =	0.96 cfs @	12.44 hrs, Volume=	0.295 af, Atten= 72%, Lag= 21.1 min			
Discarded =	0.17 cfs @	10.65 hrs, Volume=	0.247 af			
Primary =	0.79 cfs @	12.44 hrs, Volume=	0.048 af			
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 20.88' @ 12.44 hrs Surf Area= 3,133 sf Storage= 4,569 cf

Plug-Flow detention time= 141.8 min calculated for 0.295 af (100% of inflow) Center-of-Mass det. time= 141.7 min (881.7 - 740.1)

Volume	Invert	Avail.Stor	rage Storage Description		
#1	18.75'	1,37	75 cf Custom Stage Data (Prismatic)Listed below (Recalc)		
#2	19.08'	3,42	7,237 cf Overall - 3,800 cf Embedded = 3,438 cf x 40.0% Voids 20 cf Ferguson R-Tank XD 9 x 797 Inside #1 Inside= 19.7"W x 17.7"H => 2.18 sf x 1.97'L = 4.3 cf Outside= 19.7"W x 17.7"H => 2.42 sf x 1.97'L = 4.8 cf		
			797 Chambers in 36 Rows		
		4,79	95 cf Total Available Storage		
Elevatio (fee		rf.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)		
18.7	75	3,133	0 0		
21.0	06	3,133	7,237 7,237		
Device	Routing	Invert	Outlet Devices		
#1	Primary	19.00'	12.0" Round Culvert L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 19.00' / 18.98' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		
#2	Device 1	20.15'	•		
#3	Device 1	20.75'	4.0' long x 3.15' rise Sharp-Crested Rectangular Weir		
#4	Discarded	18.75'	2 End Contraction(s) 2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'		

Discarded OutFlow Max=0.17 cfs @ 10.65 hrs HW=18.80' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.17 cfs)


Primary OutFlow Max=0.78 cfs @ 12.44 hrs HW=20.88' TW=16.03' (Dynamic Tailwater)

-1=Culvert (Passes 0.78 cfs of 4.44 cfs potential flow)

-2=Orifice/ Grate (Orifice Controls 0.18 cfs @ 3.74 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.59 cfs @ 1.17 fps)

Pond AB-2: Subsurface Infiltration System

Summary for Pond AB-3: Subsurface Infiltration System

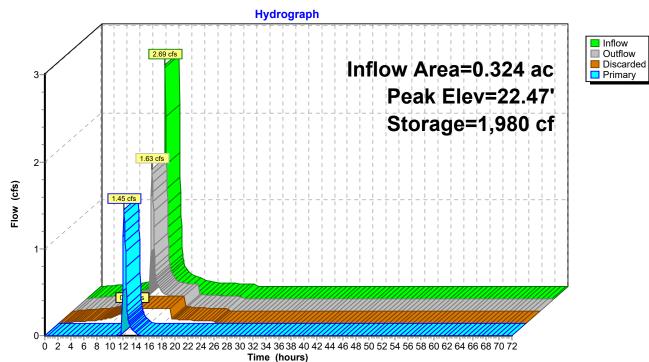
Inflow Area =	0.324 ac, 88.79% Impervious, Inflow	v Depth = 8.25" for 100-Year event					
Inflow =	2.69 cfs @ 12.09 hrs, Volume=	0.223 af					
Outflow =	1.63 cfs @ 12.20 hrs, Volume=	0.223 af, Atten= 39%, Lag= 6.9 min					
Discarded =	0.18 cfs @_ 11.20 hrs, Volume=	0.158 af					
Primary =	1.45 cfs @_ 12.20 hrs, Volume=	0.065 af					
Routed to Pond ES-LF : DP-LF Existing Swale/Basin in Lovell Field							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 22.47' @ 12.20 hrs Surf.Area= 3,154 sf Storage= 1,980 cf

Plug-Flow detention time= 31.3 min calculated for 0.223 af (100% of inflow) Center-of-Mass det. time= 31.3 min (779.4 - 748.2)

Volume	Invert	Avail.Stor	age	Storage D	escription			
#1	21.50'	1,26	1,264 cf Custom Stage Data (Prismatic)Listed below (Recalc)					
					cf Embedded = $3,161$ cf x 40.0% Voids			
#2	21.83'	1,38	4 cf			4 x 726 Inside #1		
				-		=> 0.97 sf x 1.97'L = 1.9 cf		
				Outside=	19.7"W x 7.9"ŀ	H => 1.08 sf x 1.97'L = 2.1 cf		
				726 Charr	<u>ubers in 10 Ro</u>	WS		
		2,64	9 cf	Total Avai	ilable Storage			
Elevatio	on Su	rf.Area	Inc	.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)			
21.	50	3,154		0	0			
22.9	99	3,154		4,699	4,699			
Device	Routing	Invert	Outl	et Devices				
#1	Primary	21.83'	12.0	" Round C	Culvert			
	,		L= 2	8.0' CPP.	square edge h	neadwall, Ke= 0.500		
						1.00' S= 0.0296 '/' Cc= 0.900		
			n= 0	.013 Corru	udated PE. sm	ooth interior, Flow Area= 0.79 sf		
#2	Device 1	22.00'			•	= 0.600 Limited to weir flow at low heads		
#3	Device 1	22.20'	4.0'	lona x 2.20	0' rise Sharp-(Crested Rectangular Weir		
				2 End Contraction(s)				
#4	Discarded	21.50'				Surface area Phase-In= 0.01'		

Discarded OutFlow Max=0.18 cfs @ 11.20 hrs HW=21.53' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.18 cfs)

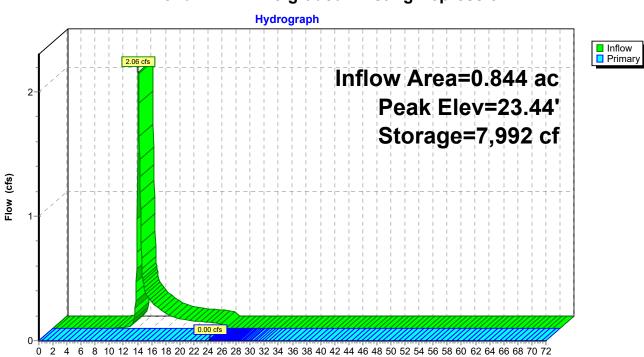

Primary OutFlow Max=1.45 cfs @ 12.20 hrs HW=22.47' TW=16.99' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 1.45 cfs @ 2.73 fps)

-2=Orifice/Grate (Passes < 0.75 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 1.83 cfs potential flow)

Summary for Pond ED-AB: Re-graded Existing Depression


Inflow Are	a =	0.844 ac, 21.19% Impervious, Inflow Depth = 2.61" for 100-Year event
Inflow	=	2.06 cfs @ 12.14 hrs, Volume= 0.184 af
Outflow	=	0.00 cfs @ 24.27 hrs, Volume= 0.001 af, Atten= 100%, Lag= 727.8 min
Primary	=	0.00 cfs @ 24.27 hrs, Volume= 0.001 af
Routed	to Pond	ES-LF : DP-LF Existing Swale/Basin in Lovell Field

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 23.44' @ 24.27 hrs Surf.Area= 4,864 sf Storage= 7,992 cf

Plug-Flow detention time= 1,211.3 min calculated for 0.001 af (0% of inflow) Center-of-Mass det. time= 887.6 min (1,754.6 - 867.0)

Volume	In	vert Avai	I.Storage	Storage	Description	
#1	19	.50'	8,308 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 19.5 20.0 21.0 22.0 23.0 23.5	50 50 50 50 50 50 50 50	Surf.Area (sq-ft) 69 484 1,371 2,351 3,941 5,000	(cubi	.Store <u>c-feet)</u> 138 928 1,861 3,146 2,235	Cum.Store (cubic-feet) 0 138 1,066 2,927 6,073 8,308	
Device #1	<u>Routing</u> Primary	g In	3.43' 2.0' Hea 2.50 Coe	<u>et Device</u> long x 2 d (feet) 0 3.00 3.9	s .0' breadth Bro 0.20 0.40 0.60 50 1) 2.54 2.61 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

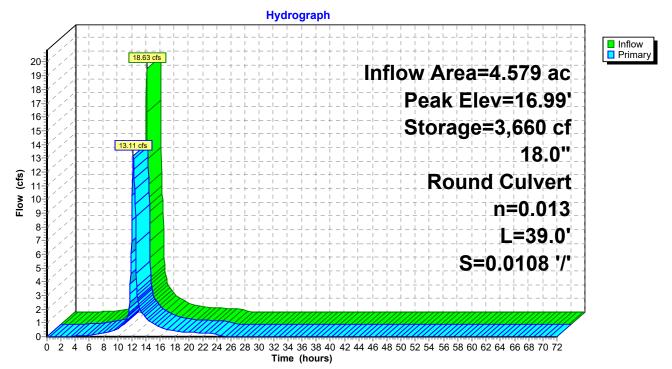
Primary OutFlow Max=0.00 cfs @ 24.27 hrs HW=23.44' TW=13.95' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Weir Controls 0.00 cfs @ 0.20 fps)

Time (hours)

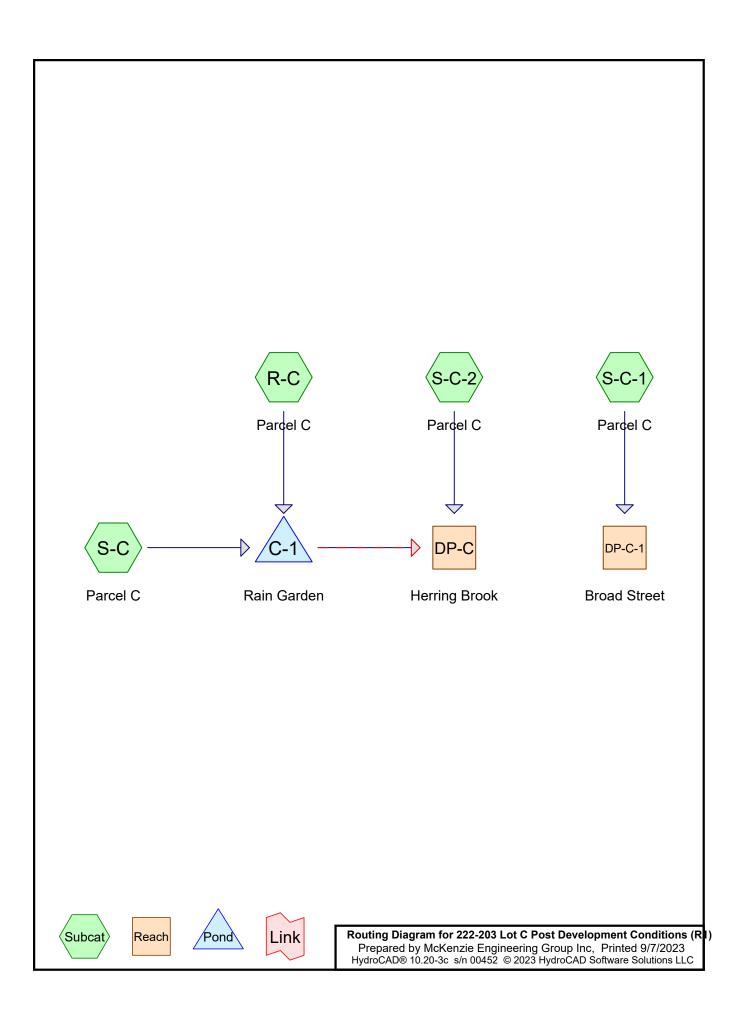
Pond ED-AB: Re-graded Existing Depression

Summary for Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field

Inflow Are	a =	4.579 ac, 54.76% Impervious, Inflow Depth > 4.33" for 100-Year event							
Inflow	=	18.63 cfs @ 12.09 hrs, Volume= 1.653 af							
Outflow	=	13.11 cfs @ 12.19 hrs, Volume= 1.653 af, Atten= 30%, Lag= 5.6 min							
Primary	=	13.11 cfs @ 12.19 hrs, Volume= 1.653 af							
Routed to nonexistent node 1R									


Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 16.99' @ 12.19 hrs Surf.Area= 2,841 sf Storage= 3,660 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.3 min (905.8 - 904.4)


Volume	l	nvert	Avail.Sto	rage	Storage	Description	
#1	1	3.87'	17,54	16 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Su	rf.Area		.Store	Cum.Store	
(fee	et)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
13.8	87		0		0	0	
14.0	00		3		0	0	
15.0	00		488		246	246	
16.0	00		1,764		1,126	1,372	
17.0	00		2,848		2,306	3,678	
18.0	00		3,993		3,421	7,098	
19.0	00		5,217		4,605	11,703	
20.0	00		6,468		5,843	17,546	
Device	Routir	ng	Invert	Outle	et Devices	6	
#1	Prima	ry	13.87'	18.0	" Round	Culvert	
							headwall, Ke= 0.500
							13.45' S= 0.0108 '/' Cc= 0.900
				n= 0	.013 Cor	rugated PE, sm	ooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=13.07 cfs @ 12.19 hrs HW=16.98' (Free Discharge) -1=Culvert (Inlet Controls 13.07 cfs @ 7.40 fps)

Pond ES-LF: DP-LF Existing Swale/Basin in Lovell Field

SITE C

222-203 Lot C Post Development Conditions (R1)

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	

Event	#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	2-Year	Type III 24-hr		Default	24.00	1	3.22	2
	2	10-Year	Type III 24-hr		Default	24.00	1	4.86	2
	3	25-Year	Type III 24-hr		Default	24.00	1	6.15	2
	4	100-Year	Type III 24-hr		Default	24.00	1	8.80	2
	5	WQV	Type III 24-hr		Default	24.00	1	1.25	2

Rainfall Events Listing

222-203 Lot C Post Development Conditions (R1)

Prepared by McKenzie Engineering Group Inc	-
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software So	lutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.005	96	Gravel surface, HSG C (S-C-2)
0.007	98	Pavement, HSG C (S-C)
0.018	98	Pavement, HSG C (OFFSITE) (S-C)
0.052	74	Plantings, HSG C (S-C, S-C-1, S-C-2)
0.052	74	Plantings, HSG C (OFFSITE) (S-C, S-C-2)
0.406	98	Roofs, HSG C (R-C)
0.051	98	Sidewalk, HSG C (S-C, S-C-1)
0.013	98	Sidewalk, HSG C (OFFSITE) (S-C, S-C-1)
0.002	98	Transformer, HSG C (S-C-2)
0.005	98	Wall, HSG C (S-C-1, S-C-2)
0.000	98	Wall, HSG C (OFFSITE) (S-C)
0.611	94	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.611	HSG C	R-C, S-C, S-C-1, S-C-2
0.000	HSG D	
0.000	Other	
0.611		TOTAL AREA

222-203 Lot C Post Development Conditions (R1)

Prepared by McKenzie Engineering Group Inc
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.005	0.000	0.000	0.005	Gravel surface	S-C-2
0.000	0.000	0.025	0.000	0.000	0.025	Pavement	S-C
0.000	0.000	0.104	0.000	0.000	0.104	Plantings	S-C, S-C-1, S-C-2
0.000	0.000	0.406	0.000	0.000	0.406	Roofs	R-C
0.000	0.000	0.064	0.000	0.000	0.064	Sidewalk	S-C, S-C-1
0.000	0.000	0.002	0.000	0.000	0.002	Transformer	S-C-2
0.000	0.000	0.005	0.000	0.000	0.005	Wall	S-C, S-C-1, S-C-2
0.000	0.000	0.611	0.000	0.000	0.611	TOTAL AREA	

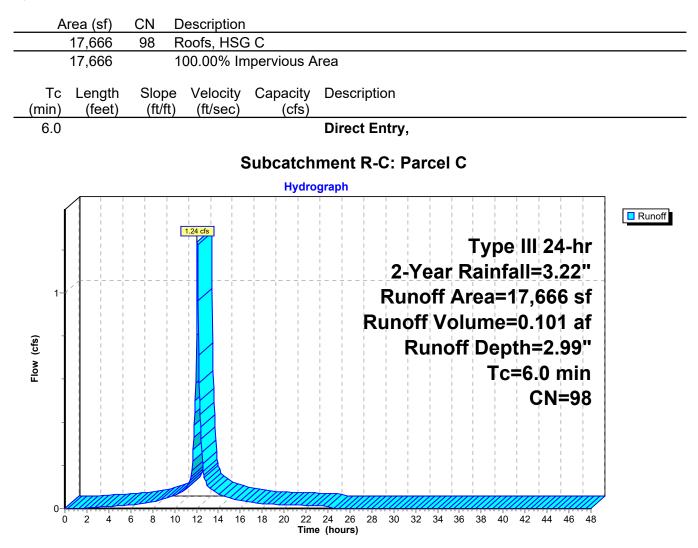
Ground Covers (all nodes)

222-203 Lot C Post Development Cond	tions (R1)
-------------------------------------	------------

Prepared by McKenzie Engineering Group Inc	Printed 9/7/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	Page 6

ripo Eloting (un nouco)										
Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)	Node Name
1	C-1	22.00	21.20	52.0	0.0154	0.013	0.0	18.0	0.0	
2	C-1	22.00	21.50	50.0	0.0100	0.013	0.0	4.0	0.0	

Pipe Listing (all nodes)

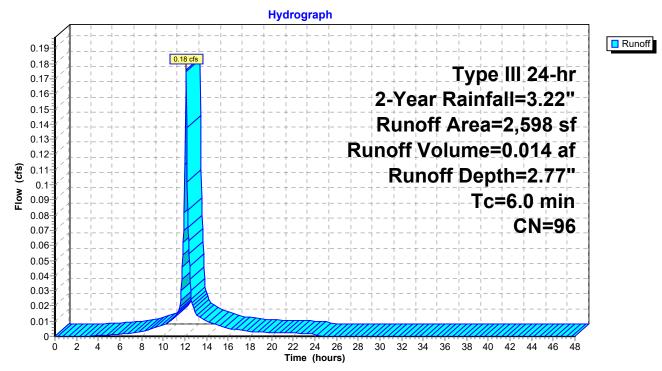

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentR-C: Parc	eIC Runoff Area=17,666 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=1.24 cfs 0.101 af
SubcatchmentS-C: Parc	eIC Runoff Area=2,598 sf 92.07% Impervious Runoff Depth=2.77" Tc=6.0 min CN=96 Runoff=0.18 cfs 0.014 af
SubcatchmentS-C-1: Pa	rcel C Runoff Area=2,724 sf 57.97% Impervious Runoff Depth=2.01" Tc=6.0 min CN=88 Runoff=0.14 cfs 0.011 af
SubcatchmentS-C-2: Pa	rcel C Runoff Area=3,637 sf 5.99% Impervious Runoff Depth=1.23" Tc=6.0 min CN=77 Runoff=0.11 cfs 0.009 af
Reach DP-C: Herring Bro	Inflow=1.51 cfs 0.123 af Outflow=1.51 cfs 0.123 af
Reach DP-C-1: Broad St	PeetInflow=0.14 cfs0.011 afOutflow=0.14 cfs0.011 af
Pond C-1: Rain Garden	Peak Elev=24.91' Storage=559 cf Inflow=1.41 cfs 0.115 af Primary=1.39 cfs 0.115 af Secondary=0.00 cfs 0.000 af Outflow=1.39 cfs 0.115 af
Total Ru	noff Area = 0.611 ac Runoff Volume = 0.134 af Average Runoff Depth = 2.63" 17.92% Pervious = 0.110 ac 82.08% Impervious = 0.502 ac

Summary for Subcatchment R-C: Parcel C

Runoff = 1.24 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.101 af, Depth= 2.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

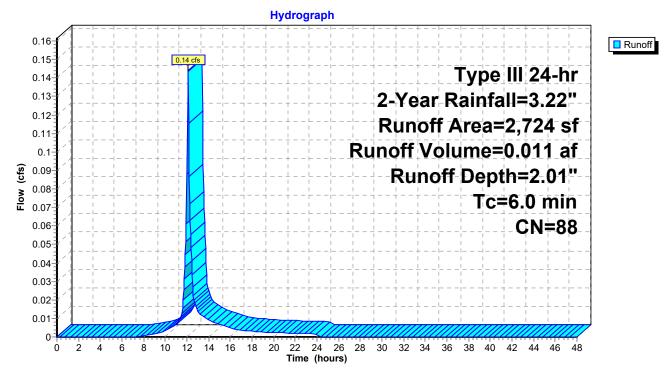

Summary for Subcatchment S-C: Parcel C

Runoff = 0.18 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.014 af, Depth= 2.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	Ar	rea (sf)	CN	Description	Description				
*		314	98	Pavement,	HSG C				
*		752	98	Sidewalk, H	ISG C				
*		113	74	Plantings, H	ISG C				
*		93	74	Plantings, H	ISG C (OF	FFSITE)			
*		534	98	Sidewalk, H	ISG C (OFI	FSITE)			
*		788	98	Pavement,	HSG C (OF	FFSITÉ)			
*		4	98	Wall, HSG	C (OFFSIT	TE)			
		2,598	96	Weighted Average					
		206		7.93% Perv	vious Area				
		2,392		92.07% Imp	pervious Ar	rea			
	Тс	Length	Slop		Capacity	Description			
(n	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment S-C: Parcel C

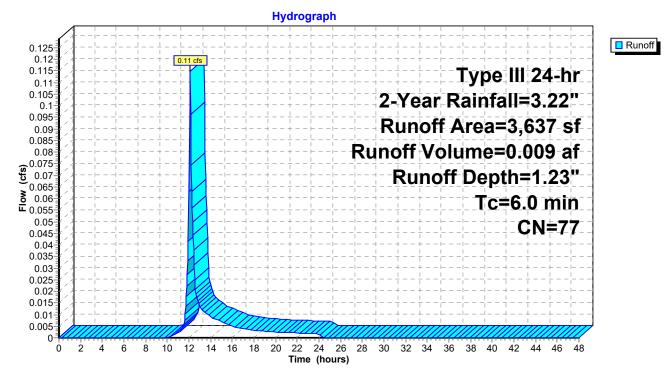

Summary for Subcatchment S-C-1: Parcel C

Runoff = 0.14 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.011 af, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN	Description					
*		1,472	98	Sidewalk, H	ISG C				
*		1,145	74	Plantings, H	ISG C				
*		81	98	Wall, HSG	С				
*		26	98	Sidewalk, H	ISG C (OFI	FSITE)			
		2,724	88	Weighted Average					
		1,145		42.03% Pervious Area					
		1,579		57.97% Imp	pervious Ar	rea			
	Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

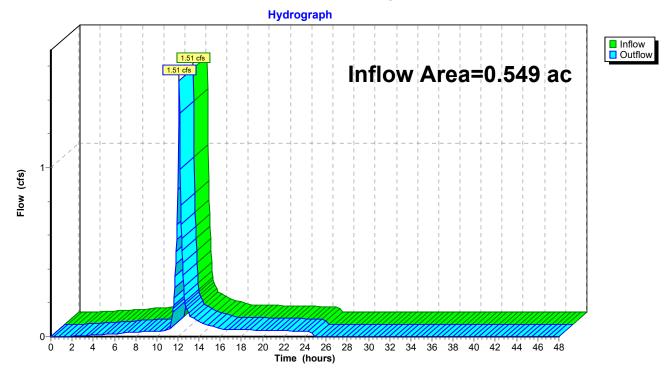
Subcatchment S-C-1: Parcel C


Summary for Subcatchment S-C-2: Parcel C

Runoff = 0.11 cfs @ 12.10 hrs, Volume= 0.009 af, Depth= 1.23" Routed to Reach DP-C : Herring Brook

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

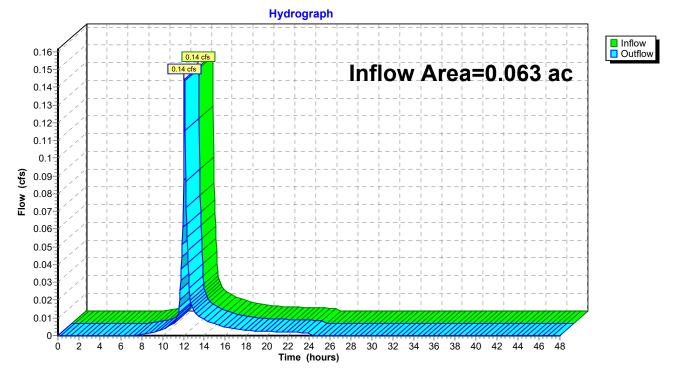
	Ar	rea (sf)	CN	Description				
*		72	98	Transforme	r, HSG C			
*		995	74	Plantings, H	ISG C			
		236	96	Gravel surfa	ace, HSG C	С		
*		146	98	Wall, HSG	С			
*		2,188	74	Plantings, F	ISG C (OF	FFSITE)		
		3,637	77	Weighted Average				
		3,419		94.01% Per	vious Area	а		
		218		5.99% Impervious Area				
	Тс	Length	Slop		Capacity	Description		
(r	min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	6.0					Direct Entry,		


Subcatchment S-C-2: Parcel C

Summary for Reach DP-C: Herring Brook

Inflow Area =	• 0.549 ac,	84.83% Impervious,	Inflow Depth = 2	2.70" for 2-Year event
Inflow =	1.51 cfs (12.10 hrs, Volume	e= 0.123 a	f
Outflow =	1.51 cfs (12.10 hrs, Volume	e= 0.123 a	f, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

Inflow Are	a =	0.063 ac, 57.97% Impervious, Inflow Depth = 2.01" for 2-Year event
Inflow	=	0.14 cfs @ 12.09 hrs, Volume= 0.011 af
Outflow	=	0.14 cfs $\overline{@}$ 12.09 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

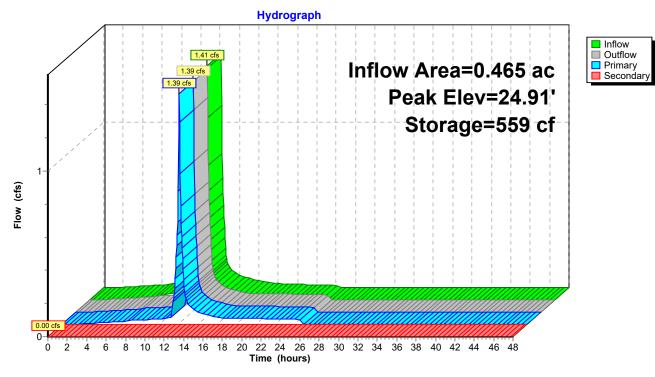
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

Summary for Pond C-1: Rain Garden

Inflow Area = 0.465 ac, 98.98% Impervious, Inflow Depth = 2.96" for 2-Year event Inflow = 1.41 cfs @ 12.09 hrs, Volume= 0.115 af 1.39 cfs @ 12.10 hrs, Volume= 1.39 cfs @ 12.10 hrs, Volume= Outflow 0.115 af, Atten= 1%, Lag= 1.0 min = Primary = 0.115 af Routed to Reach DP-C : Herring Brook Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach DP-C : Herring Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 24.91' @ 12.10 hrs Surf.Area= 727 sf Storage= 559 cf


Plug-Flow detention time= 59.7 min calculated for 0.115 af (100% of inflow) Center-of-Mass det. time= 59.7 min (818.0 - 758.4)

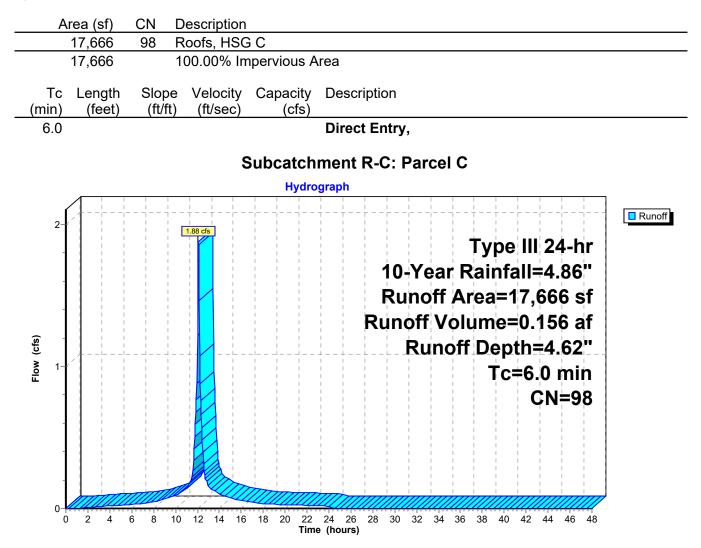
Volume	Invert	Avail.Sto	rage Storag	e Description		
#1	24.00'			m Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
24.0	00	497	0	0		
25.0	00	749	623	623		
25.5	53	1,316	547	1,170		
Device	Routing	Invert	Outlet Devic	es		
#1	Primary	22.00'	18.0" Rour	d Culvert		
				PP, square edge headwall, Ke= 0.500		
				Invert= 22.00' / 21.20' S= 0.0154 '/' Cc= 0.900		
				prrugated PE, smooth interior, Flow Area= 1.77 sf		
#2	Device 1					
	During 4			eir flow at low heads		
#3	Device 1	22.00'	4.0" Round			
				PP, square edge headwall, Ke= 0.500 Invert= 22.00' / 21.50' S= 0.0100 '/' Cc= 0.900		
#4	Device 3	24.00'		prrugated PE, smooth interior, Flow Area= 0.09 sf Exfiltration over Surface area Phase-In= 0.01'		
#4 #5	-	24.00 25.43'	-			
#5	Secondary	20.45		3.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00		
				0.20 0.40 0.00 0.80 1.00 1.20 1.40 1.00 1.80 2.00 0.50 4.00 4.50		
				sh) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68		
				2.92 2.97 3.07 3.32		
			2.72 2.01 2			
Primary	OutFlow Ma	ax=1.38 cfs (ᡚ 12.10 hrs I	HW=24.91' TW=0.00' (Dynamic Tailwater)		
			12.51 cfs pot			
	2=Orifice/Grate (Weir Controls 1.34 cfs @ 1.32 fps)					

-3=Culvert (Passes 0.04 cfs of 0.42 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=24.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond C-1: Rain Garden

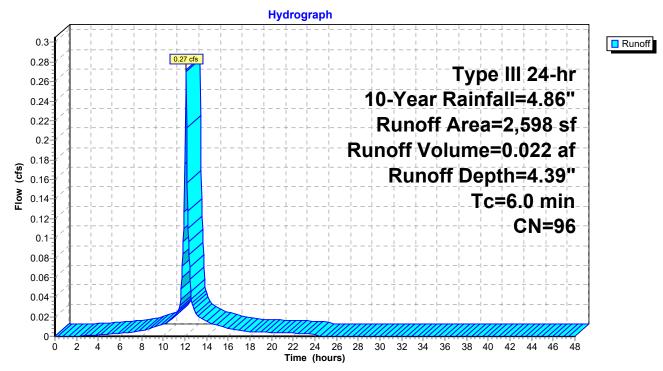

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentR-C: Parcel C	Runoff Area=17,666 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=1.88 cfs 0.156 af			
SubcatchmentS-C: Parcel C	Runoff Area=2,598 sf 92.07% Impervious Runoff Depth=4.39" Tc=6.0 min CN=96 Runoff=0.27 cfs 0.022 af			
SubcatchmentS-C-1: Parcel C	Runoff Area=2,724 sf 57.97% Impervious Runoff Depth=3.54" Tc=6.0 min CN=88 Runoff=0.25 cfs 0.018 af			
SubcatchmentS-C-2: Parcel C	Runoff Area=3,637 sf 5.99% Impervious Runoff Depth=2.51" Tc=6.0 min CN=77 Runoff=0.24 cfs 0.017 af			
Reach DP-C: Herring Brook	Inflow=2.37 cfs 0.196 af Outflow=2.37 cfs 0.196 af			
Reach DP-C-1: Broad Street	Inflow=0.25 cfs 0.018 af Outflow=0.25 cfs 0.018 af			
Pond C-1: Rain Garden Primary=2.14 cfs	Peak Elev=24.97' Storage=599 cf Inflow=2.15 cfs 0.178 af 0.178 af Secondary=0.00 cfs 0.000 af Outflow=2.14 cfs 0.178 af			
Total Runoff Area = 0.611 ac Runoff Volume = 0.214 af Average Runoff Depth = 4.20" 17.92% Pervious = 0.110 ac 82.08% Impervious = 0.502 ac				

Summary for Subcatchment R-C: Parcel C

Runoff = 1.88 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.156 af, Depth= 4.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

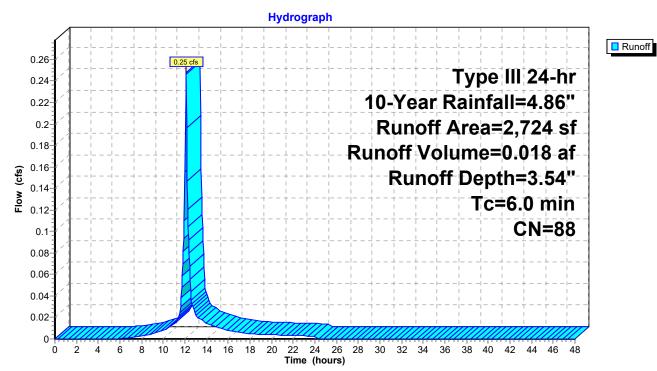

Summary for Subcatchment S-C: Parcel C

Runoff = 0.27 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.022 af, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description		
*		314	98	Pavement,	HSG C	
*		752	98	Sidewalk, H	ISG C	
*		113	74	Plantings, H	ISG C	
*		93	74	Plantings, H	ISG C (OF	FSITE)
*		534	98	Sidewalk, H	ISG C (OFI	FSITE
*		788	98	Pavement,	HSG C (OF	FFSITÉ)
*		4	98	Wall, HSG	Έ)	
		2,598	96	Weighted A	verage	
		206		7.93% Perv	ious Area	
		2,392		92.07% Imp	pervious Ar	rea
	Тс	Length	Slop	be Velocity	Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry,

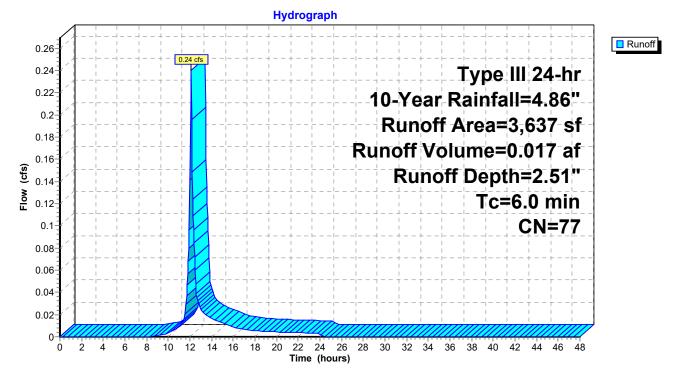
Subcatchment S-C: Parcel C


Summary for Subcatchment S-C-1: Parcel C

Runoff = 0.25 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.018 af, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

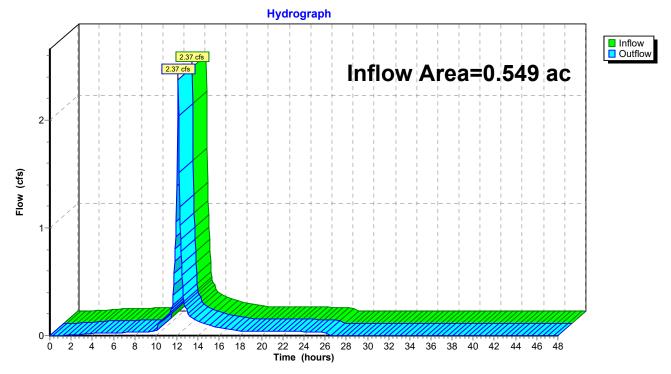
	A	rea (sf)	CN	Description				
*		1,472	98	Sidewalk, ⊦	ISG C			
*		1,145	74	Plantings, F	ISG C			
*		81	98	Wall, HSG	С			
*		26	98	Sidewalk, HSG C (OFFSITE)				
		2,724	88	Weighted A	verage			
		1,145		42.03% Pei	vious Area	a		
		1,579		57.97% Imp	pervious Ar	rea		
	Тс	Length	Slope		Capacity	Description		
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
	6.0					Direct Entry,		


Summary for Subcatchment S-C-2: Parcel C

0.24 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 2.51" Runoff = Routed to Reach DP-C : Herring Brook

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

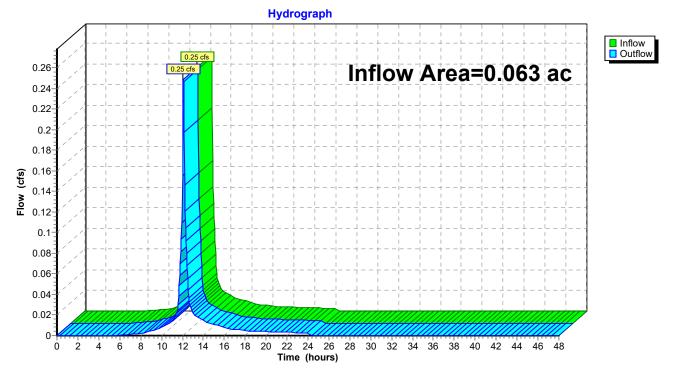
	Ar	rea (sf)	CN	Description			
*		72	98	Transformer	r, HSG C		
*		995	74	Plantings, H	SG C		
		236	96	Gravel surfa	ice, HSG C	C	
*		146	98	Wall, HSG C	2		
*		2,188	74	Plantings, HSG C (OFFSITE)			
		3,637	77	Weighted Av	verage		
		3,419		94.01% Per	vious Area	а	
		218		5.99% Impe	rvious Area	ea	
	Тс	Length	Slop		Capacity	Description	
(n	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
	6.0					Direct Entry,	


Subcatchment S-C-2: Parcel C

Summary for Reach DP-C: Herring Brook

Inflow Area	a =	0.549 ac, 84.83% Impervious, Inflow Depth = 4.28" for 10-Year event
Inflow	=	2.37 cfs @ 12.10 hrs, Volume= 0.196 af
Outflow	=	2.37 cfs $\overline{@}$ 12.10 hrs, Volume= 0.196 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

Inflow Are	a =	0.063 ac, 57.97% Impervious, Inflow Depth = 3.54" for 10-Year event
Inflow	=	0.25 cfs @ 12.09 hrs, Volume= 0.018 af
Outflow	=	0.25 cfs $\overline{@}$ 12.09 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.0 min

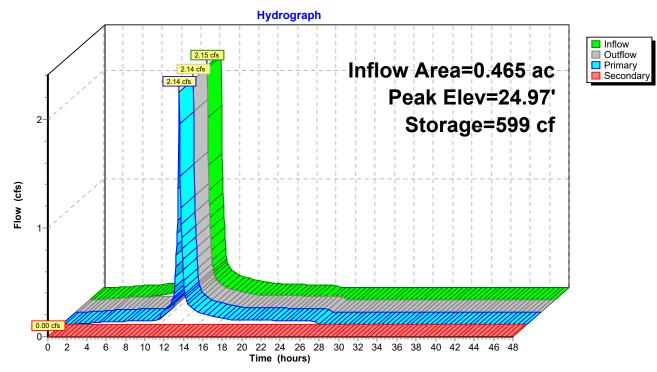
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

Summary for Pond C-1: Rain Garden

Inflow Area = 0.465 ac, 98.98% Impervious, Inflow Depth = 4.59" for 10-Year event Inflow = 2.15 cfs @ 12.09 hrs, Volume= 0.178 af 2.14 cfs @ 12.10 hrs, Volume= 2.14 cfs @ 12.10 hrs, Volume= Outflow 0.178 af, Atten= 1%, Lag= 0.9 min = Primary = 0.178 af Routed to Reach DP-C : Herring Brook Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach DP-C : Herring Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 24.97' @ 12.10 hrs Surf.Area= 741 sf Storage= 599 cf


Plug-Flow detention time= 52.2 min calculated for 0.178 af (100% of inflow) Center-of-Mass det. time= 52.1 min (802.4 - 750.3)

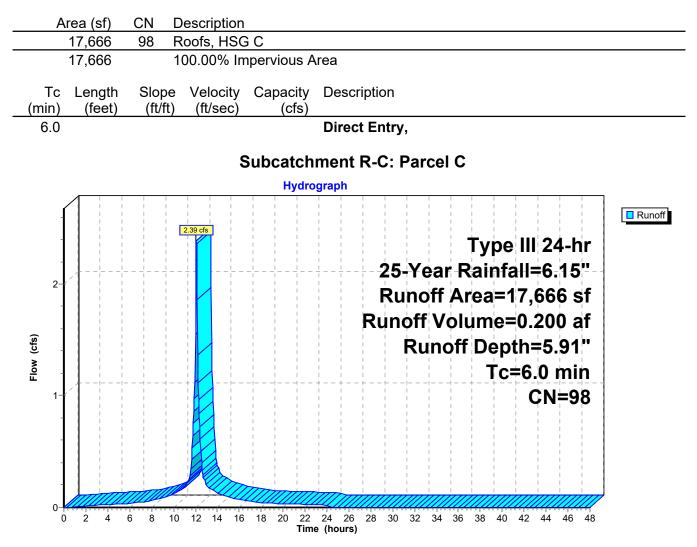
Volume	Invert	Avail.Sto	rage Storage	e Description
#1	24.00'	1,17	70 cf Custor	n Stage Data (Prismatic)Listed below (Recalc)
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
24.0	00	497	0	0
25.0	00	749	623	623
25.5	53	1,316	547	1,170
Device	Routing	Invert	Outlet Devic	es
#1	Primary	22.00'	18.0" Roun	d Culvert
				P, square edge headwall, Ke= 0.500
				Invert= 22.00' / 21.20' S= 0.0154 '/' Cc= 0.900
				prrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	24.75'		Orifice/Grate C= 0.600
				eir flow at low heads
#3	Device 1	22.00'	4.0" Round	
				P, square edge headwall, Ke= 0.500
				Invert= 22.00' / 21.50' S= 0.0100 '/' Cc= 0.900
	D · · ·	0 4 0 0		prrugated PE, smooth interior, Flow Area= 0.09 sf
#4	Device 3	24.00'	-	Exfiltration over Surface area Phase-In= 0.01'
#5	Secondary	25.43'		3.0' breadth Broad-Crested Rectangular Weir
				0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				.50 4.00 4.50
				sh) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2	.92 2.97 3.07 3.32
Primary	OutFlow M	ax=2 12 cfs (@ 12 10 hrs ⊢	IW=24.97' TW=0.00' (Dynamic Tailwater)
			12.67 cfs pote	
			trols 2.08 cfs (
			$rac{1}{2}$ of 0.42 of $rac{1}{2}$	

3=Culvert (Passes 0.04 cfs of 0.42 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=24.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond C-1: Rain Garden

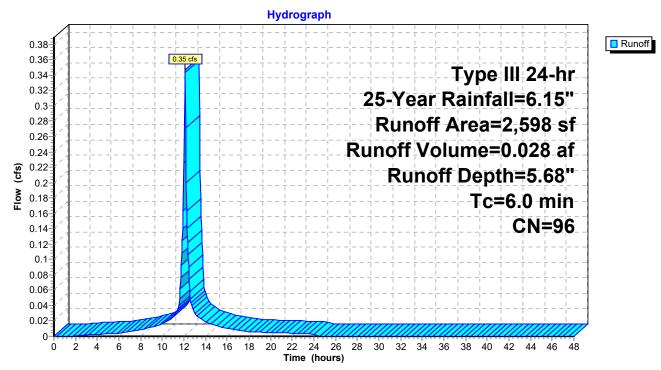

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentR-C: Parcel C	Runoff Area=17,666 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=2.39 cfs 0.200 af				
SubcatchmentS-C: Parcel C	Runoff Area=2,598 sf 92.07% Impervious Runoff Depth=5.68" Tc=6.0 min CN=96 Runoff=0.35 cfs 0.028 af				
SubcatchmentS-C-1: Parcel C	Runoff Area=2,724 sf 57.97% Impervious Runoff Depth=4.77" Tc=6.0 min CN=88 Runoff=0.33 cfs 0.025 af				
SubcatchmentS-C-2: Parcel C	Runoff Area=3,637 sf 5.99% Impervious Runoff Depth=3.61" Tc=6.0 min CN=77 Runoff=0.35 cfs 0.025 af				
Reach DP-C: Herring Brook	Inflow=3.06 cfs 0.253 af Outflow=3.06 cfs 0.253 af				
Reach DP-C-1: Broad Street	Inflow=0.33 cfs 0.025 af Outflow=0.33 cfs 0.025 af				
Pond C-1: Rain Garden Primary=2.72 cfs	Peak Elev=25.01' Storage=628 cf Inflow=2.73 cfs 0.228 af s 0.228 af Secondary=0.00 cfs 0.000 af Outflow=2.72 cfs 0.228 af				
Total Runoff Area = 0.611 ac Runoff Volume = 0.278 af Average Runoff Depth = 5.46" 17.92% Pervious = 0.110 ac 82.08% Impervious = 0.502 ac					

Summary for Subcatchment R-C: Parcel C

Runoff = 2.39 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.200 af, Depth= 5.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

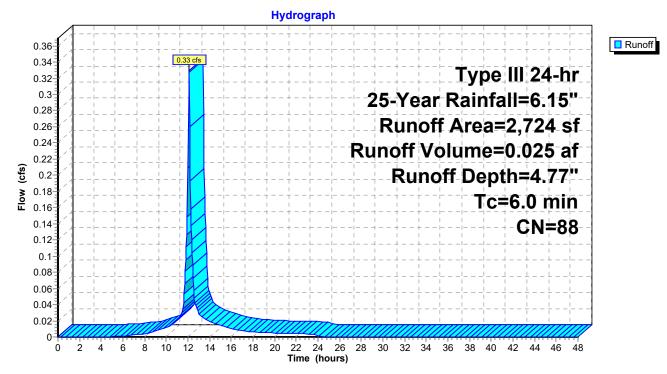

Summary for Subcatchment S-C: Parcel C

Runoff = 0.35 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.028 af, Depth= 5.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description		
*		314	98	Pavement,	HSG C	
*		752	98	Sidewalk, H	ISG C	
*		113	74	Plantings, l	HSG C	
*		93	74	Plantings, I	HSG C (OF	FFSITE)
*		534	98	Sidewalk, I	ISG C (OFI	FSITE
*		788	98	Pavement,	HSG C (OF	FFSITÉ)
*		4	98	Wall, HSG	C (OFFSIT	ΓE)
		2,598	96	Weighted A	verage	
		206		7.93% Per	/ious Area	
		2,392		92.07% lm	pervious Ar	rea
	Тс	Length	Slop	e Velocity	Capacity	Description
1)	min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment S-C: Parcel C


Summary for Subcatchment S-C-1: Parcel C

Runoff = 0.33 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.025 af, Depth= 4.77"

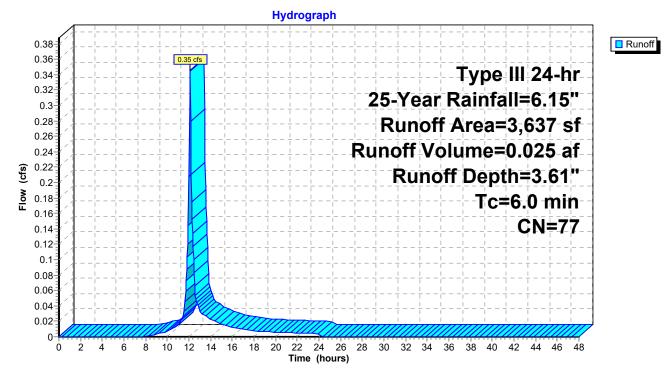
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description		
*		1,472	98	Sidewalk, F	ISG C	
*		1,145	74	Plantings, H	HSG C	
*		81	98	Wall, HSG	С	
*		26	98	Sidewalk, H	ISG C (OFI	FSITE)
		2,724	88	Weighted A	verage	
		1,145		42.03% Pe	rvious Area	a
		1,579		57.97% Im	pervious Ar	rea
	Тс	Length	Slope	e Velocity	Capacity	Description
_(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment S-C-1: Parcel C

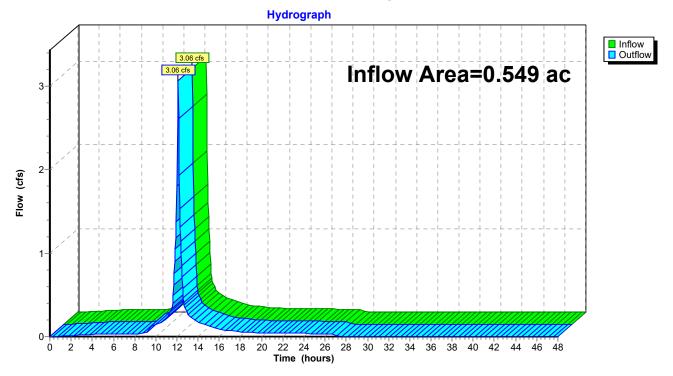
Summary for Subcatchment S-C-2: Parcel C

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.025 af, Depth= 3.61" Routed to Reach DP-C : Herring Brook


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description				
*		72	98	Transforme	r, HSG C			
*		995	74	Plantings, H	ISG C			
		236	96	Gravel surfa	ace, HSG C	С		
*		146	98	Wall, HSG	С			
*		2,188	74	Plantings, HSG C (OFFSITE)				
		3,637	77	Weighted A	verage			
		3,419		94.01% Per	rvious Area	а		
		218		5.99% Impe	ervious Area	ea		
	Тс	Length	Slop	e Velocity	Capacity	Description		
_	(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)			
	60					Direct Entry		

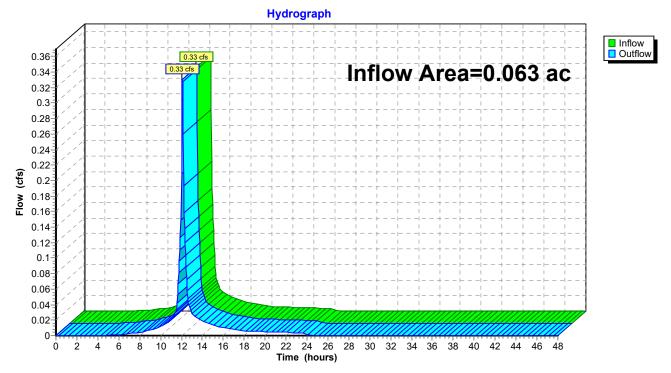
Direct Entry,


Subcatchment S-C-2: Parcel C

Summary for Reach DP-C: Herring Brook

Inflow Area =	0.549 ac, 84.83% Impervious,	Inflow Depth = 5.54" for 25-Year event
Inflow =	3.06 cfs @ 12.10 hrs, Volume	= 0.253 af
Outflow =	3.06 cfs @ 12.10 hrs, Volume	= 0.253 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

Inflow Area	a =	0.063 ac, 57.97% Impervious, Inflow Depth = 4.77" for 25-Year event
Inflow	=	0.33 cfs @ 12.09 hrs, Volume= 0.025 af
Outflow	=	0.33 cfs @ 12.09 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.0 min

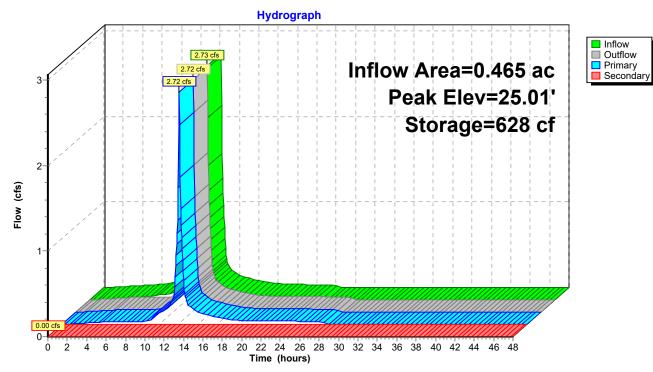
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

Summary for Pond C-1: Rain Garden

Inflow Area =	0.465 ac, 98.98% Impervious, Inflow	Depth = 5.88" for 25-Year event					
Inflow =	2.73 cfs @ 12.09 hrs, Volume=	0.228 af					
Outflow =	2.72 cfs @ 12.10 hrs, Volume=	0.228 af, Atten= 1%, Lag= 0.9 min					
Primary =	2.72 cfs @ 12.10 hrs, Volume=	0.228 af					
Routed to Reach DP-C : Herring Brook							
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af					
Routed to Reach DP-C : Herring Brook							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 25.01' @ 12.10 hrs Surf.Area= 756 sf Storage= 628 cf


Plug-Flow detention time= 47.4 min calculated for 0.228 af (100% of inflow) Center-of-Mass det. time= 47.4 min (793.8 - 746.4)

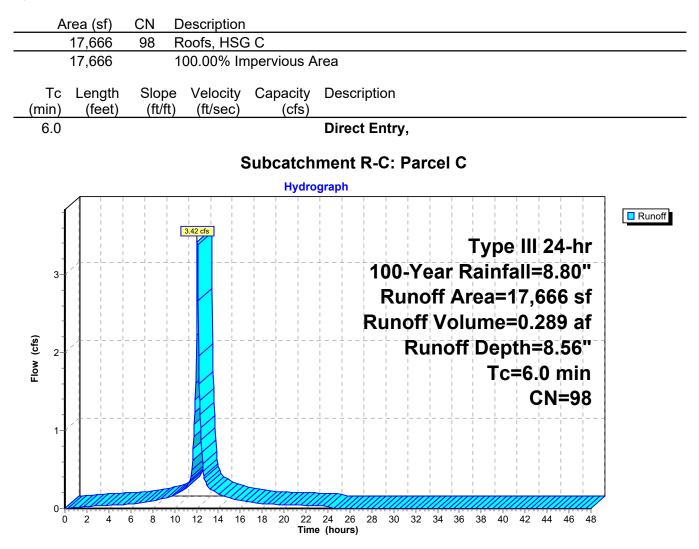
Volume	Invert	Avail.Sto	rage Storag	e Description	
#1	24.00' 1,170 cf			m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
24.0	00	497	0	0	
25.0	00	749	623	623	
25.5	53	1,316	547	1,170	
Device	Routing	Invert	Outlet Devic	ces	
#1	Primary	22.00'	18.0" Rour	nd Culvert	
			L= 52.0' C	PP, square edge headwall, Ke= 0.500	
				: Invert= 22.00' / 21.20' S= 0.0154 '/' Cc= 0.900	
				orrugated PE, smooth interior, Flow Area= 1.77 sf	
#2	Device 1	24.75'		Orifice/Grate C= 0.600	
			Limited to w	eir flow at low heads	
#3	Device 1	22.00'	4.0" Round		
				PP, square edge headwall, Ke= 0.500	
				: Invert= 22.00' / 21.50' S= 0.0100 '/' Cc= 0.900	
				orrugated PE, smooth interior, Flow Area= 0.09 sf	
#4	Device 3	24.00'	-	Exfiltration over Surface area Phase-In= 0.01'	
#5	Secondary	25.43'	U U	3.0' breadth Broad-Crested Rectangular Weir	
				0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00	
				3.50 4.00 4.50	
				sh) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68	
			2.72 2.81 2	2.92 2.97 3.07 3.32	
Driman		ov-2 71 ofo 4	බ 12 10 bro l	HW=25.01' TW=0.00' (Dynamic Tailwater)	
			12.78 cfs pot		
	-2=Orifice/Grate (Weir Controls 2.67 cfs @ 1.66 fps)				

3=Culvert (Passes 0.04 cfs of 0.42 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=24.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond C-1: Rain Garden

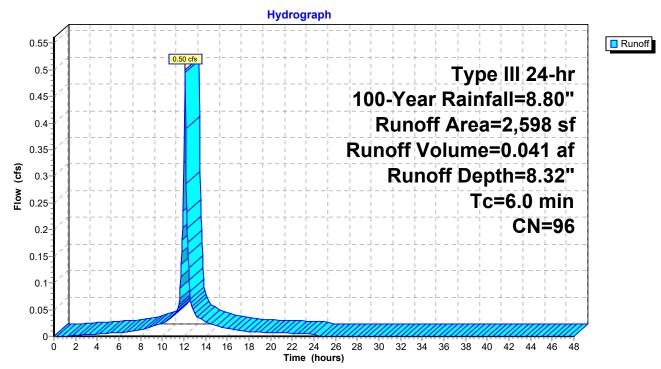

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentR-C: Parcel C	Runoff Area=17,666 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=3.42 cfs 0.289 af
SubcatchmentS-C: Parcel C	Runoff Area=2,598 sf 92.07% Impervious Runoff Depth=8.32" Tc=6.0 min CN=96 Runoff=0.50 cfs 0.041 af
SubcatchmentS-C-1: Parcel C	Runoff Area=2,724 sf 57.97% Impervious Runoff Depth=7.35" Tc=6.0 min CN=88 Runoff=0.50 cfs 0.038 af
SubcatchmentS-C-2: Parcel C	Runoff Area=3,637 sf 5.99% Impervious Runoff Depth=6.01" Tc=6.0 min CN=77 Runoff=0.57 cfs 0.042 af
Reach DP-C: Herring Brook	Inflow=4.46 cfs 0.372 af Outflow=4.46 cfs 0.372 af
Reach DP-C-1: Broad Street	Inflow=0.50 cfs 0.038 af Outflow=0.50 cfs 0.038 af
Pond C-1: Rain Garden Primary=3.90 o	Peak Elev=25.08' Storage=684 cf Inflow=3.92 cfs 0.331 af cfs 0.331 af Secondary=0.00 cfs 0.000 af Outflow=3.90 cfs 0.331 af
Total Runoff Area = 0.	.611 ac Runoff Volume = 0.411 af Average Runoff Depth = 8.06" 17.92% Pervious = 0.110 ac 82.08% Impervious = 0.502 ac

Summary for Subcatchment R-C: Parcel C

Runoff = 3.42 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.289 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"


Summary for Subcatchment S-C: Parcel C

Runoff = 0.50 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.041 af, Depth= 8.32"

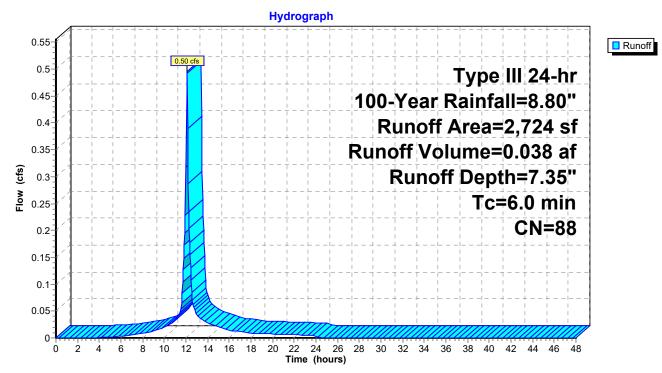
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Α	rea (sf)	CN	Description			
*		314	98	Pavement,	HSG C		
*		752	98	Sidewalk, H	ISG C		
*		113	74	Plantings, H	ISG C		
*		93	74	Plantings, H	ISG C (OF	FSITE)	
*		534	98	Sidewalk, H	ISG C (OF	FSITE	
*		788	98	Pavement,	HSG C (OF	FFSITÉ)	
*		4	98	Wall, HSG	C (OFFSIT	Έ)	
		2,598	96	Weighted Average			
		206		7.93% Perv	vious Area		
		2,392		92.07% Imp	pervious Ar	rea	
	Тс	Length	Slop	e Velocity	Capacity	Description	
(I	min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
	6.0					Direct Entry,	

Subcatchment S-C: Parcel C

Summary for Subcatchment S-C-1: Parcel C

Runoff = 0.50 cfs @ 12.09 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.038 af, Depth= 7.35"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

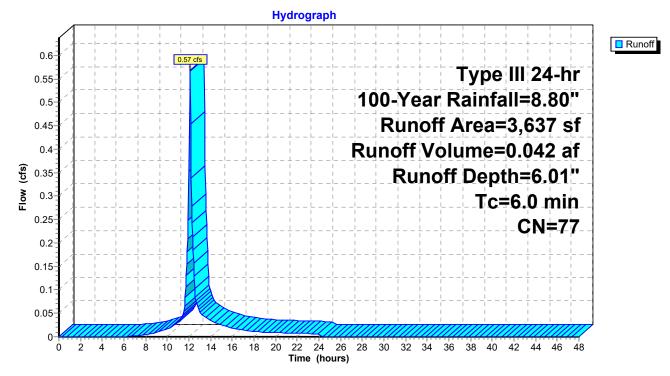
_	A	rea (sf)	CN	Description				
*		1,472	98	Sidewalk, H	ISG C			
*		1,145	74	Plantings, H	ISG C			
*		81	98	Wall, HSG	С			
*		26	98	Sidewalk, H	ISG C (OFF	FSITE)		
_		2,724	88	Weighted Average				
		1,145		42.03% Per	rvious Area	3		
		1,579		57.97% Impervious Area				
	Тс	Length	Slop	e Velocity	Capacity	Description		
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	~ ~					Diversed Fractions		

Direct Entry,

Subcatchment S-C-1: Parcel C

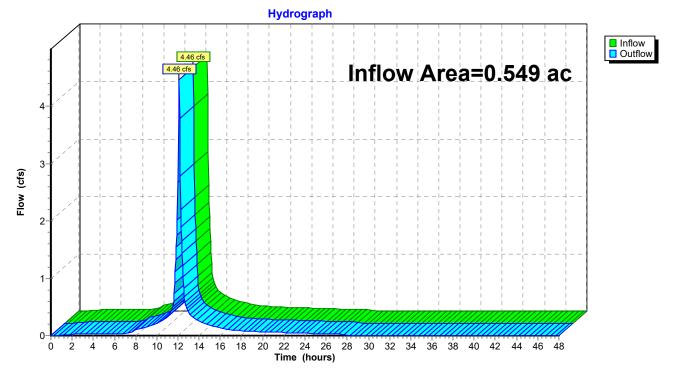
Summary for Subcatchment S-C-2: Parcel C

Runoff = 0.57 cfs @ 12.09 hrs, Volume= 0.042 af, Depth= 6.01" Routed to Reach DP-C : Herring Brook


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Α	rea (sf)	CN	Description				
*		72	98	Transforme	r, HSG C			
*		995	74	Plantings, H	ISG C			
		236	96	Gravel surfa	ace, HSG (C		
*		146	98	Wall, HSG	С			
*		2,188	74	Plantings, H	ISG C (OF	FFSITE)		
		3,637	77	Weighted Average				
		3,419		94.01% Pe	rvious Area	а		
		218		5.99% Impervious Area				
	Тс	Length	Slop	e Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft	ft) (ft/sec) (cfs)				
	60					Direct Entry		

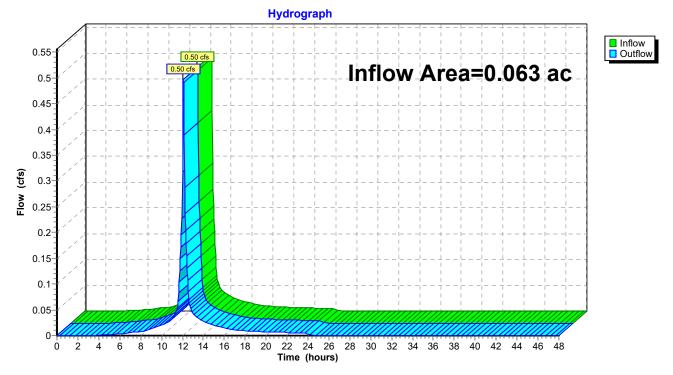
Direct Entry,


Subcatchment S-C-2: Parcel C

Summary for Reach DP-C: Herring Brook

Inflow Area	=	0.549 ac, 84.83% Impervious, Inflow Depth = 8.15" for 100-Year ev	/ent
Inflow :	=	4.46 cfs @ 12.10 hrs, Volume= 0.372 af	
Outflow =	=	4.46 cfs @ 12.10 hrs, Volume= 0.372 af, Atten= 0%, Lag= 0.0) min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

Inflow Area =	0.063 ac, 57.97% Impervious,	Inflow Depth = 7.35" for 100-Year event
Inflow =	0.50 cfs @ 12.09 hrs, Volume=	= 0.038 af
Outflow =	0.50 cfs @ 12.09 hrs, Volume=	= 0.038 af, Atten= 0%, Lag= 0.0 min

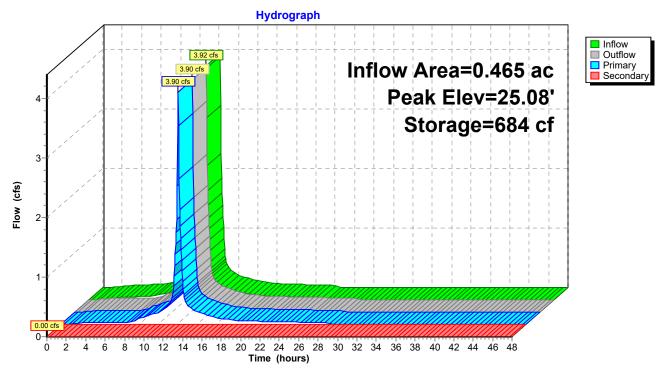
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

Summary for Pond C-1: Rain Garden

Inflow Area = 0.465 ac, 98.98% Impervious, Inflow Depth = 8.53" for 100-Year event Inflow 3.92 cfs @ 12.09 hrs, Volume= 0.331 af = 3.90 cfs @ 12.10 hrs, Volume= Outflow = 0.331 af, Atten= 1%, Lag= 0.8 min 3.90 cfs @ 12.10 hrs, Volume= Primary = 0.331 af Routed to Reach DP-C : Herring Brook Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach DP-C : Herring Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 25.08' @ 12.10 hrs Surf.Area= 832 sf Storage= 684 cf


Plug-Flow detention time= 38.5 min calculated for 0.331 af (100% of inflow) Center-of-Mass det. time= 38.5 min (779.9 - 741.4)

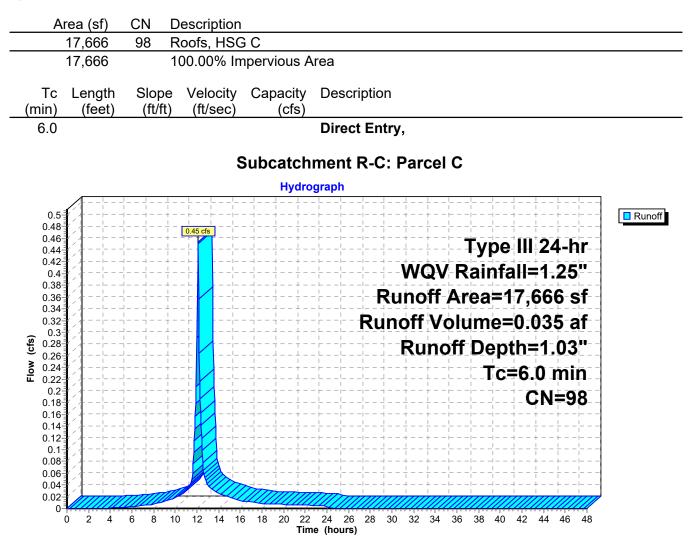
Volume	Invert	Avail.Sto	rage Storage	e Description		
#1	24.00'	1,17	70 cf Custor	n Stage Data (Prismatic)Listed below (Recalc)		
Elevatio (fee		f.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
24.0		497	0	0		
25.0		749	623	623		
25.5	53	1,316	547	1,170		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	22.00'	18.0" Roun	d Culvert		
	-		L= 52.0' CF	P, square edge headwall, Ke= 0.500		
				Invert= 22.00' / 21.20' S= 0.0154 '/' Cc= 0.900		
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf			
#2	Device 1	24.75'	24.0" Horiz. Orifice/Grate C= 0.600			
		~~ ~~	Limited to weir flow at low heads			
#3	Device 1	22.00'	4.0" Round Culvert			
				PP, square edge headwall, Ke= 0.500		
				Invert= 22.00' / 21.50' S= 0.0100 '/' Cc= 0.900		
#4	Device 3	24.00'		prrugated PE, smooth interior, Flow Area= 0.09 sf Exfiltration over Surface area Phase-In= 0.01'		
#4 #5	Secondary	24.00 25.43'	-	3.0' breadth Broad-Crested Rectangular Weir		
#3	Secondary	20.40		0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00		
				.50 4.00 4.50		
				sh) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68		
				.92 2.97 3.07 3.32		
Primary	OutFlow Ma	ax=3.89 cfs (@ 12.10 hrs ⊢	IW=25.08' TW=0.00' (Dynamic Tailwater)		
			12.98 cfs pote			
<u></u> <u>−</u> 2=	-2=Orifice/Grate (Weir Controls 3.85 cfs @ 1.87 fps)					

-3=Culvert (Passes 0.05 cfs of 0.43 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.05 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=24.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond C-1: Rain Garden

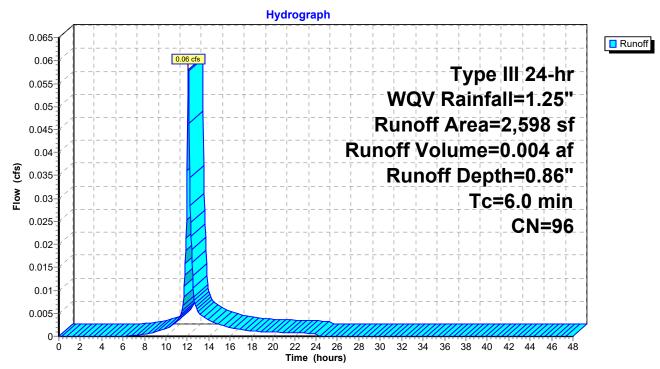

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentR-C: Parc	eIC Runoff Area=17,666 sf 100.00% Impervious Runoff Depth=1.03" Tc=6.0 min CN=98 Runoff=0.45 cfs 0.035 af
SubcatchmentS-C: Parc	eIC Runoff Area=2,598 sf 92.07% Impervious Runoff Depth=0.86" Tc=6.0 min CN=96 Runoff=0.06 cfs 0.004 af
SubcatchmentS-C-1: Par	rcel C Runoff Area=2,724 sf 57.97% Impervious Runoff Depth=0.41" Tc=6.0 min CN=88 Runoff=0.03 cfs 0.002 af
SubcatchmentS-C-2: Par	rcel C Runoff Area=3,637 sf 5.99% Impervious Runoff Depth=0.12" Tc=6.0 min CN=77 Runoff=0.00 cfs 0.001 af
Reach DP-C: Herring Bro	Inflow=0.32 cfs 0.040 af Outflow=0.32 cfs 0.040 af
Reach DP-C-1: Broad Str	eet Inflow=0.03 cfs 0.002 af Outflow=0.03 cfs 0.002 af
Pond C-1: Rain Garden	Peak Elev=24.81' Storage=484 cf Inflow=0.51 cfs 0.039 af Primary=0.32 cfs 0.039 af Secondary=0.00 cfs 0.000 af Outflow=0.32 cfs 0.039 af
Total Rur	noff Area = 0.611 ac Runoff Volume = 0.042 af Average Runoff Depth = 0.83" 17.92% Pervious = 0.110 ac 82.08% Impervious = 0.502 ac

Summary for Subcatchment R-C: Parcel C

Runoff = 0.45 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.035 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr WQV Rainfall=1.25"

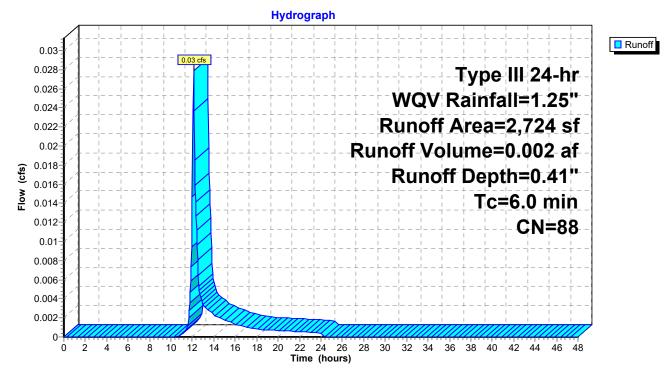

Summary for Subcatchment S-C: Parcel C

Runoff = 0.06 cfs @ 12.09 hrs, Volume= Routed to Pond C-1 : Rain Garden 0.004 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr WQV Rainfall=1.25"

	A	rea (sf)	CN	Description		
*		314	98	Pavement,	HSG C	
*		752	98	Sidewalk, H	ISG C	
*		113	74	Plantings, H	ISG C	
*		93	74	Plantings, H	ISG C (OF	FSITE)
*		534	98	Sidewalk, H	ISG C (OFI	FSITE
*		788	98	Pavement,	HSG C (OF	FFSITE)
*		4	98	Wall, HSG	C (OFFSIT	Έ)
		2,598	96	Weighted A	verage	
		206		7.93% Perv	ious Area	
		2,392		92.07% Imp	ervious Ar	rea
	Тс	Length	Slop		Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment S-C: Parcel C


Summary for Subcatchment S-C-1: Parcel C

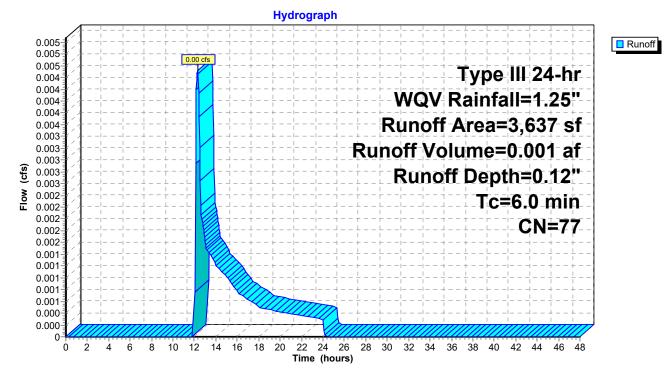
Runoff = 0.03 cfs @ 12.10 hrs, Volume= Routed to Reach DP-C-1 : Broad Street 0.002 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr WQV Rainfall=1.25"

	A	rea (sf)	CN	Description				
*		1,472	98	Sidewalk, HSG C				
*		1,145	74	Plantings, HSG C				
*		81	98	Wall, HSG C				
*		26	98	Sidewalk, HSG C (OFFSITE)				
		2,724	88	Weighted Average				
		1,145		42.03% Pervious Area				
		1,579		57.97% Impervious Area				
	Тс	Length	Slope		Capacity			
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment S-C-1: Parcel C

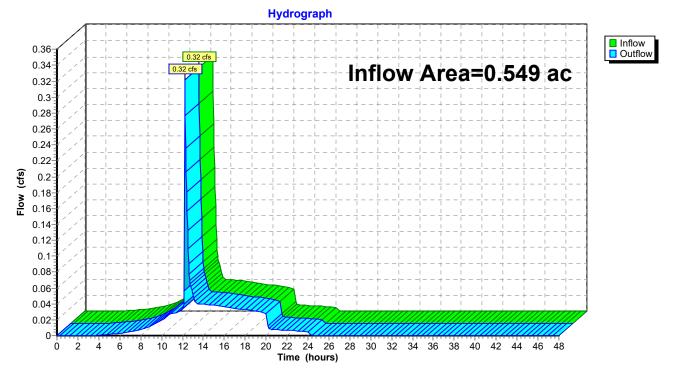
Summary for Subcatchment S-C-2: Parcel C


Runoff = 0.00 cfs @ 12.29 hrs, Volume= 0.0 Routed to Reach DP-C : Herring Brook

0.001 af, Depth= 0.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr WQV Rainfall=1.25"

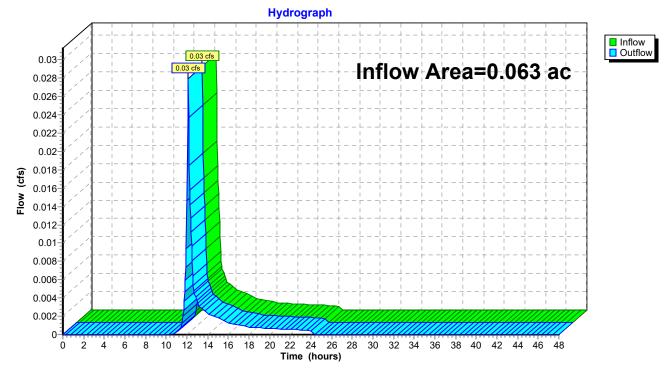
	Α	rea (sf)	CN	Description			
*		72	98	Transformer, HSG C			
*		995	74	Plantings, HSG C			
		236	96	Gravel surface, HSG C			
*		146	98	Wall, HSG C			
*		2,188	74	Plantings, HSG C (OFFSITE)			
		3,637	77	Weighted A	verage		
		3,419		94.01% Pe	rvious Area	а	
		218		5.99% Impe	ervious Area	ea	
	Тс	Length	Slope	e Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	6.0					Direct Entry,	


Subcatchment S-C-2: Parcel C

Summary for Reach DP-C: Herring Brook

Inflow Area =	0.549 ac, 84.83% Impervious, Inflow E	Depth = 0.88" for WQV event
Inflow =	0.32 cfs @ 12.22 hrs, Volume=	0.040 af
Outflow =	0.32 cfs @ 12.22 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Reach DP-C: Herring Brook

Summary for Reach DP-C-1: Broad Street

Inflow Area	a =	0.063 ac, 57.97% Impervious, Inflow Depth = 0.41" for WQV event
Inflow	=	0.03 cfs @ 12.10 hrs, Volume= 0.002 af
Outflow	=	0.03 cfs @ 12.10 hrs, Volume= 0.002 af, Atten= 0%, Lag= 0.0 min

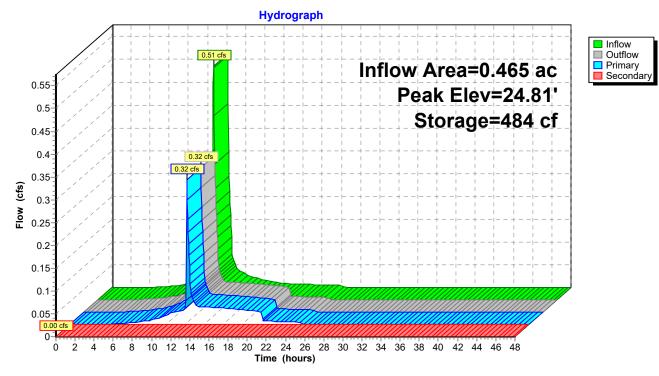
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach DP-C-1: Broad Street

Summary for Pond C-1: Rain Garden

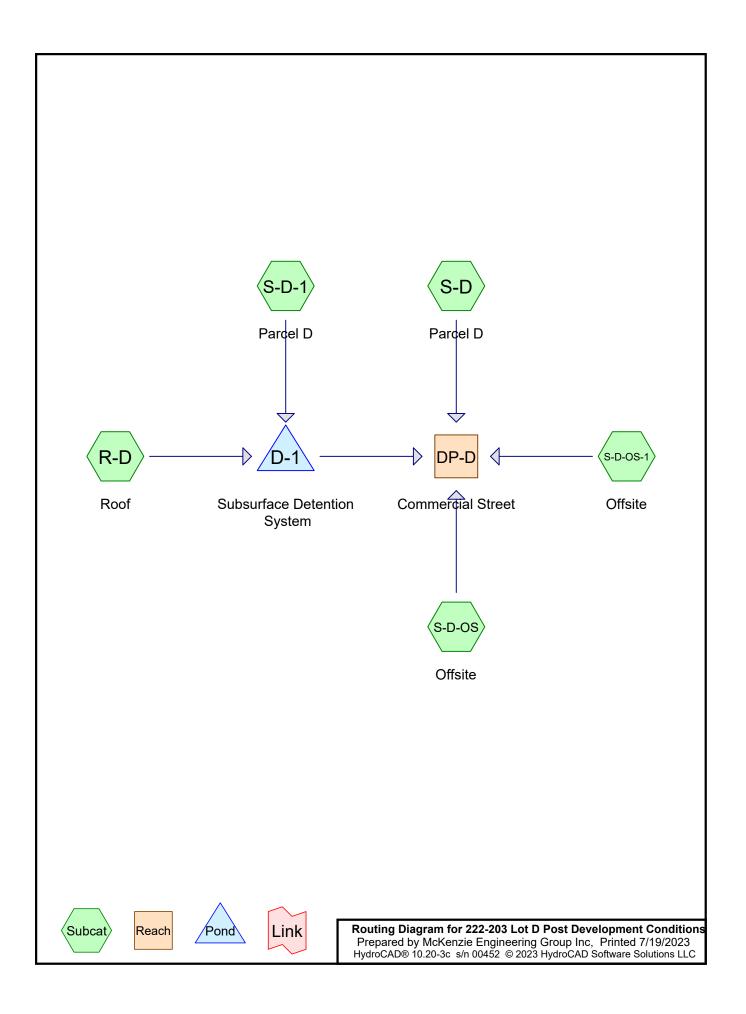
Inflow Area = 0.465 ac, 98.98% Impervious, Inflow Depth = 1.01" for WQV event Inflow = 0.51 cfs @ 12.09 hrs, Volume= 0.039 af 0.32 cfs @ 12.22 hrs, Volume= 0.32 cfs @ 12.22 hrs, Volume= Outflow = 0.039 af, Atten= 38%, Lag= 8.0 min Primary = 0.039 af Routed to Reach DP-C : Herring Brook Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach DP-C : Herring Brook

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 24.81' @ 12.22 hrs Surf.Area= 701 sf Storage= 484 cf


Plug-Flow detention time= 83.9 min calculated for 0.039 af (100% of inflow) Center-of-Mass det. time= 83.9 min (867.3 - 783.4)

Volume	Invert	Avail.Stor	rage Storage	e Description		
#1	24.00'	1,17	70 cf Custor	n Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	on Su	f.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
24.0	00	497	0	0		
25.0	00	749	623	623		
25.5	53	1,316	547	1,170		
Device	Routing	Invert	Outlet Devic	es		
#1	#1 Primary 22.00'		Inlet / Outlet	d Culvert PP, square edge headwall, Ke= 0.500 Invert= 22.00' / 21.20' S= 0.0154 '/' Cc= 0.900 prrugated PE, smooth interior, Flow Area= 1.77 sf		
#2	Device 1	24.75'	24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#3	Device 1	22.00'	4.0" Round L= 50.0' CF Inlet / Outlet			
#4 #5	#4 Device 3 24.00' 2 #5 Secondary 25.43' 5 F 2 0		2.410 in/hr Exfiltration over Surface area Phase-In= 0.01' 5.0' long x 3.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32			
Primary OutFlow Max=0.29 cfs @ 12.22 hrs HW=24.80' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.29 cfs of 12.19 cfs potential flow) 2=Orifice/Grate (Weir Controls 0.25 cfs @ 0.75 fps)						

-2=Orifice/Grate (Weir Controls 0.25 cfs @ 0.75 fps) -3=Culvert (Passes 0.04 cfs of 0.41 cfs potential flow)


4=Exfiltration (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=24.00' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond C-1: Rain Garden

SITE D

Prepared by McKenzie Engineering Group Inc	
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-Year	Type III 24-hr		Default	24.00	1	3.22	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.86	2
3	25-Year	Type III 24-hr		Default	24.00	1	6.15	2
4	100-Year	Type III 24-hr		Default	24.00	1	8.80	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.024	74	>75% Grass cover, Good, HSG C (S-D-OS-1)
0.126	74	>75% Grass cover, Good, HSG C (OFFSITE) (S-D-OS, S-D-OS-1)
0.005	96	Gravel surface, HSG C (S-D)
0.003	98	Pavement, HSG C (S-D-1)
0.014	92	Permeable paver sidewalk, HSG C (S-D)
0.035	74	Plantings, HSG C (S-D)
0.159	98	Roofs, HSG C (R-D)
0.016	98	Roofs, HSG C (OFFSITE) (S-D-OS)
0.006	98	Sidewalk, HSG C (S-D)
0.002	98	Transformer, HSG C (S-D)
0.002	98	Wall, HSG C (S-D)
0.393	86	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.393	HSG C	R-D, S-D, S-D-1, S-D-OS, S-D-OS-1
0.000	HSG D	
0.000	Other	
0.393		TOTAL AREA

222-203 Lot D Post Development Conditions

HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	Prepared by Mc	Kenzie Engineering	J Group Inc	
	HydroCAD® 10.20	<u>)-3c_s/n 00452_© 2023</u>	3 HydroCAD Softwa	re Solutions LLC

Printed 7/19/2023 Page 5

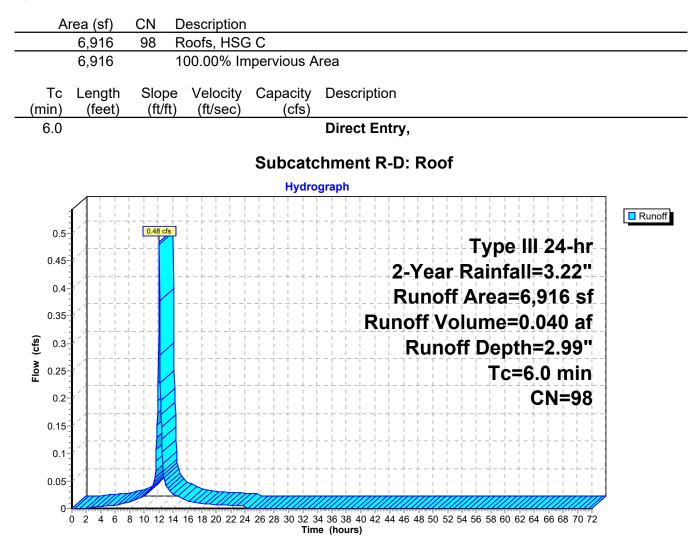
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.151	0.000	0.000	0.151	>75% Grass cover, Good	S-D-OS
							, S-D-OS -1
0.000	0.000	0.005	0.000	0.000	0.005	Gravel surface	S-D
0.000	0.000	0.003	0.000	0.000	0.003	Pavement	S-D-1
0.000	0.000	0.014	0.000	0.000	0.014	Permeable paver sidewalk	S-D
0.000	0.000	0.035	0.000	0.000	0.035	Plantings	S-D
0.000	0.000	0.175	0.000	0.000	0.175	Roofs	R-D,
							S-D-OS
0.000	0.000	0.006	0.000	0.000	0.006	Sidewalk	S-D
0.000	0.000	0.002	0.000	0.000	0.002	Transformer	S-D
0.000	0.000	0.002	0.000	0.000	0.002	Wall	S-D
0.000	0.000	0.393	0.000	0.000	0.393	TOTAL AREA	

Ground Covers (all nodes)

222-203 Lot D Post Development Conditions	
Prepared by McKenzie Engineering Group Inc	Printed 7/19/2023
HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC	Page 6
Pipe Listing (all nodes)	

Pipe Listing (a	all nodes)
-----------------	------------

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill	Node
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)	Name
 1	D-1	26.66	25.00	20.0	0.0830	0.013	0.0	12.0	0.0	


Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

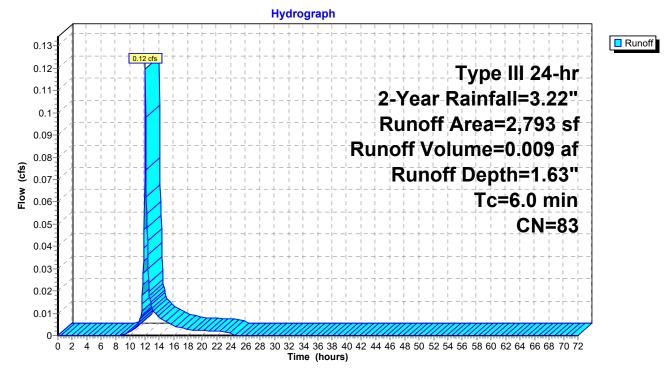
SubcatchmentR-D: Roof	Runoff Area=6,916 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.48 cfs 0.040 af
SubcatchmentS-D: Parcel D	Runoff Area=2,793 sf 15.32% Impervious Runoff Depth=1.63" Tc=6.0 min CN=83 Runoff=0.12 cfs 0.009 af
SubcatchmentS-D-1: Parcel D	Runoff Area=138 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.01 cfs 0.001 af
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=1.35" Tc=6.0 min CN=79 Runoff=0.11 cfs 0.008 af
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=1.05" Tc=6.0 min CN=74 Runoff=0.11 cfs 0.008 af
Reach DP-D: Commercial Street	Inflow=0.68 cfs 0.065 af Outflow=0.68 cfs 0.065 af
Pond D-1: Subsurface Detention System	Peak Elev=27.17' Storage=117 cf Inflow=0.49 cfs 0.040 af Outflow=0.36 cfs 0.040 af
Total Runoff Area = 0.393	ac Runoff Volume = 0.065 af Average Runoff Depth = 2.00" 52.16% Pervious = 0.205 ac 47.84% Impervious = 0.188 ac

Summary for Subcatchment R-D: Roof

Runoff = 0.48 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 2.99" Routed to Pond D-1 : Subsurface Detention System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

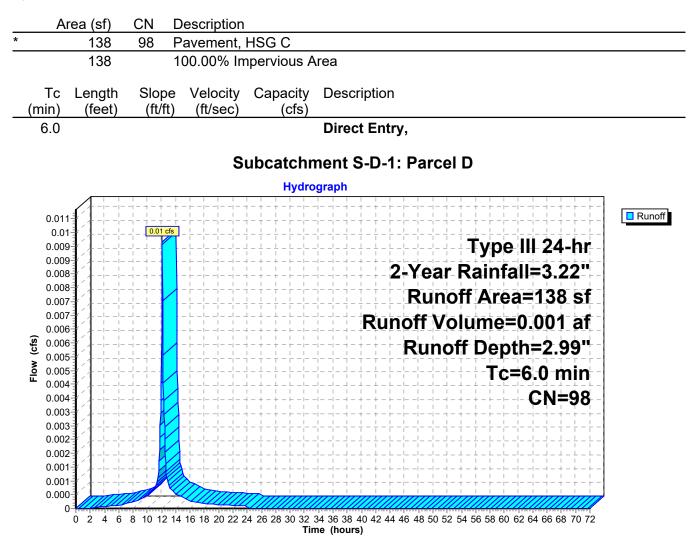
Summary for Subcatchment S-D: Parcel D


Runoff = 0.12 cfs @ 12.09 hrs, Volume= 0.00 Routed to Reach DP-D : Commercial Street

0.009 af, Depth= 1.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN	Description		
*		72	98	Transforme	r, HSG C	
		218	96	Gravel surfa	ace, HSG C	C
*		630	92	Permeable	paver side\	ewalk, HSG C
*		94	98	Wall, HSG	Ċ	
*		1,517	74	Plantings, H	ISG C	
*		262	98	Sidewalk, H	ISG C	
		2,793	83	Weighted A	verage	
		2,365		84.68% Per	vious Area	a
		428		15.32% Imp	ervious Ar	rea
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	6.0					Direct Entry,

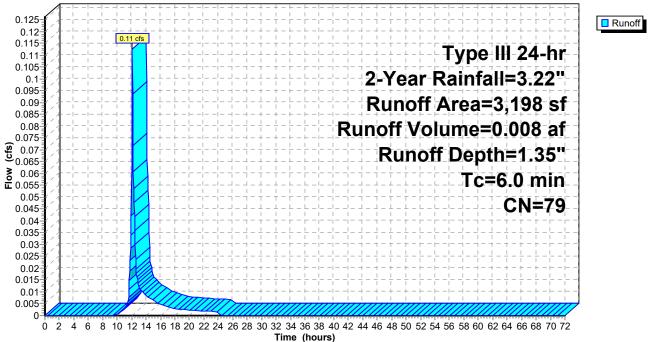

Subcatchment S-D: Parcel D

Summary for Subcatchment S-D-1: Parcel D

Runoff = 0.01 cfs @ 12.09 hrs, Volume= 0.001 af, Depth= 2.99" Routed to Pond D-1 : Subsurface Detention System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

Summary for Subcatchment S-D-OS: Offsite

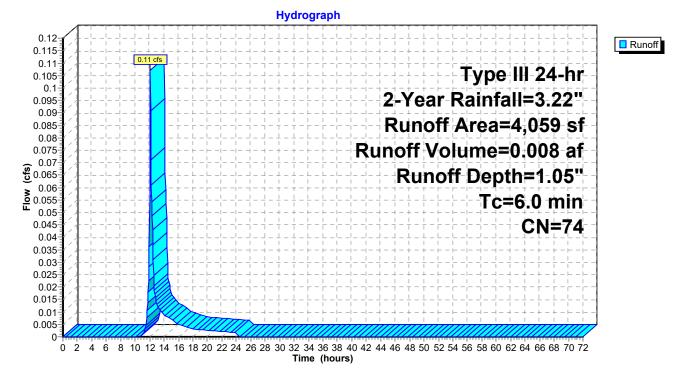

Runoff = 0.11 cfs @ 12.10 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.008 af, Depth= 1.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	A	rea (sf)	CN	Description							
*		700	98	Roofs, HSC	Roofs, HSG C (OFFSITE)						
*		2,498	74	>75% Gras	>75% Grass cover, Good, HSG C (OFFSITE)						
		3,198 2,498 700		Weighted A 78.11% Pe 21.89% Imp	rvious Area						
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description					
	6.0		,	//		Direct Entry,					

Subcatchment S-D-OS: Offsite

Hydrograph


Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.11 cfs @ 12.10 hrs, Volume= 0.008 af, Depth= 1.05" Routed to Reach DP-D : Commercial Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"

	А	rea (sf)	CN	Description		
*		1,051	74	>75% Grass cover, Good, HSG C		
*		3,008	74	>75% Grass cover, Good, HSG C (OFFSITE)		
		4,059	74	4 Weighted Average		
		4,059		100.00% Pervious Area		
	Тс	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	6.0					Direct Entry,
						- -

Subcatchment S-D-OS-1: Offsite

Summary for Reach DP-D: Commercial Street

Inflow Area =	0.393 ac, 47.84% Impervious, Inflow D	epth = 2.00" for 2-Year event
Inflow =	0.68 cfs @ 12.11 hrs, Volume=	0.065 af
Outflow =	0.68 cfs @ 12.11 hrs, Volume=	0.065 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Hydrograph Inflow 0.75 Outflow 0.68 rfe Inflow Area=0.393 ac 0.68 cfs 0.7 0.65 0.6 0.55 0.5 0.45 Flow (cfs) 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Reach DP-D: Commercial Street

Summary for Pond D-1: Subsurface Detention System

Inflow Area =		0.162 ac,10	0.00% Impervious, Int	flow Depth = 2.99" for 2-Year event		
Inflow	=	0.49 cfs @	12.09 hrs, Volume=	0.040 af		
Outflow	=	0.36 cfs @	12.17 hrs, Volume=	0.040 af, Atten= 27%, Lag= 4.7 min		
Primary	=	0.36 cfs @	12.17 hrs, Volume=	0.040 af		
Routed to Reach DP-D : Commercial Street						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 27.17' @ 12.17 hrs Surf.Area= 946 sf Storage= 117 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.6 min (757.9 - 756.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	26.33'	0 cf	22.09'W x 42.83'L x 2.17'H Field A
			2,050 cf Overall - 608 cf Embedded = 1,442 cf x 0.0% Voids
#2A	26.66'	457 cf	ADS N-12 15" x 18 Inside #1
			Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf
			Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf
			18 Chambers in 9 Rows
			20.76' Header x 1.20 sf x 1 = 24.9 cf Inside
		457 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	26.66'	12.0" Round Culvert
			L= 20.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 26.66' / 25.00' S= 0.0830 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	26.66'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	27.80'	4.0' long x 2.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.36 cfs @ 12.17 hrs HW=27.16' (Free Discharge)

-**1=Culvert** (Passes 0.36 cfs of 0.96 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.36 cfs @ 2.62 fps)

-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

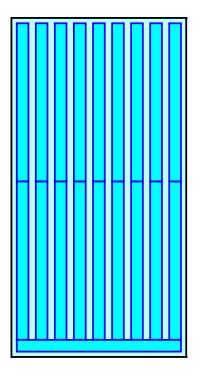
Pond D-1: Subsurface Detention System - Chamber Wizard Field A

Chamber Model = ADS N-12 15" (ADS N-12® Pipe)

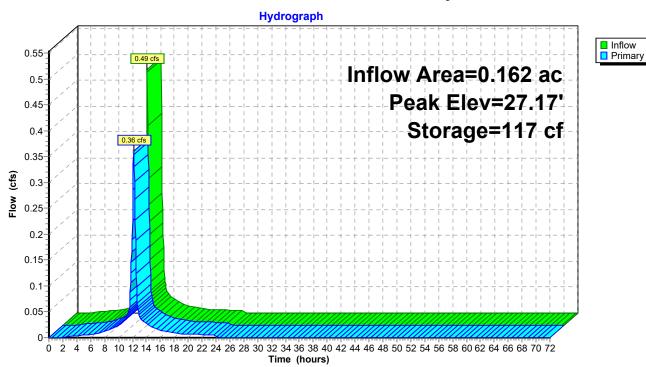
Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf

18.0" Wide + 10.9" Spacing = 28.9" C-C Row Spacing

2 Chambers/Row x 20.00' Long +1.50' Header x 1 = 41.50' Row Length +8.0" End Stone x 2 = 42.83' Base Length 9 Rows x 18.0" Wide + 10.9" Spacing x 8 + 8.0" Side Stone x 2 = 22.09' Base Width


4.0" Stone Base + 18.0" Chamber Height + 4.0" Stone Cover = 2.17' Field Height

18 Chambers x 24.0 cf + 20.76' Header x 1.20 sf = 456.9 cf Chamber Storage 18 Chambers x 31.9 cf + 20.76' Header x 1.60 sf = 607.8 cf Displacement


2,049.9 cf Field - 607.8 cf Chambers = 1,442.1 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

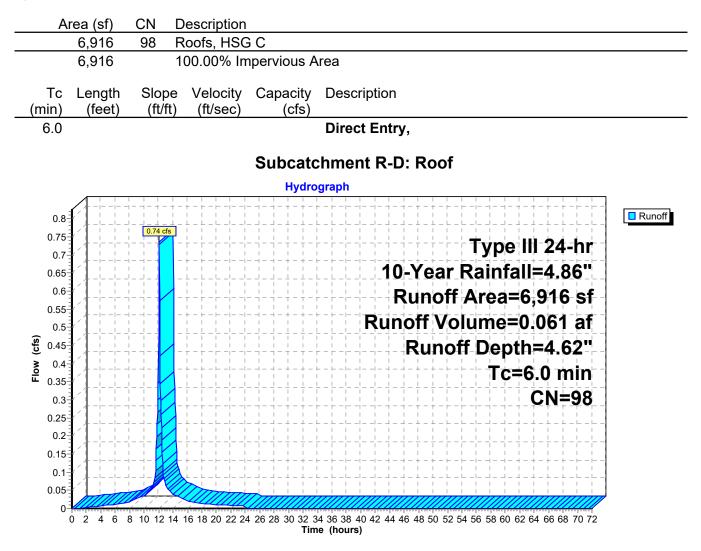
Chamber Storage = 456.9 cf = 0.010 af Overall Storage Efficiency = 22.3% Overall System Size = 42.83' x 22.09' x 2.17'

18 Chambers 75.9 cy Field 53.4 cy Stone

0000000000

Pond D-1: Subsurface Detention System

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

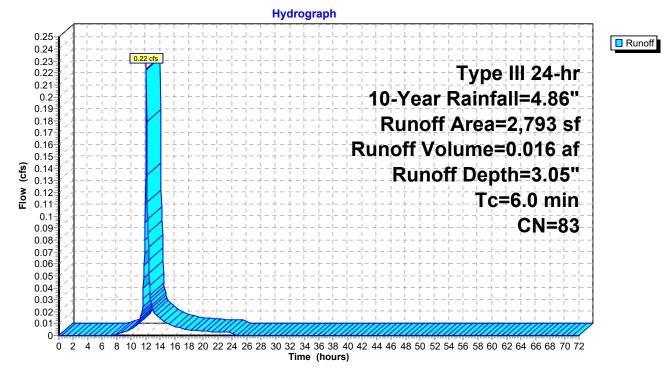

SubcatchmentR-D: Roof	Runoff Area=6,916 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.74 cfs 0.061 af			
SubcatchmentS-D: Parcel D	Runoff Area=2,793 sf 15.32% Impervious Runoff Depth=3.05" Tc=6.0 min CN=83 Runoff=0.22 cfs 0.016 af			
SubcatchmentS-D-1: Parcel D	Runoff Area=138 sf 100.00% Impervious Runoff Depth=4.62" Tc=6.0 min CN=98 Runoff=0.01 cfs 0.001 af			
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=2.68" Tc=6.0 min CN=79 Runoff=0.23 cfs 0.016 af			
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=2.25" Tc=6.0 min CN=74 Runoff=0.24 cfs 0.017 af			
Reach DP-D: Commercial Street	Inflow=1.13 cfs 0.113 af Outflow=1.13 cfs 0.113 af			
Pond D-1: Subsurface Detention System	Peak Elev=27.41' Storage=229 cf Inflow=0.75 cfs 0.062 af Outflow=0.49 cfs 0.062 af			
Total Runoff Area = 0.393 ac Runoff Volume = 0.113 af Average Runoff Depth = 3.44"				

52.16% Pervious = 0.205 ac 47.84% Impervious = 0.188 ac

Summary for Subcatchment R-D: Roof

Runoff = 0.74 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 4.62" Routed to Pond D-1 : Subsurface Detention System

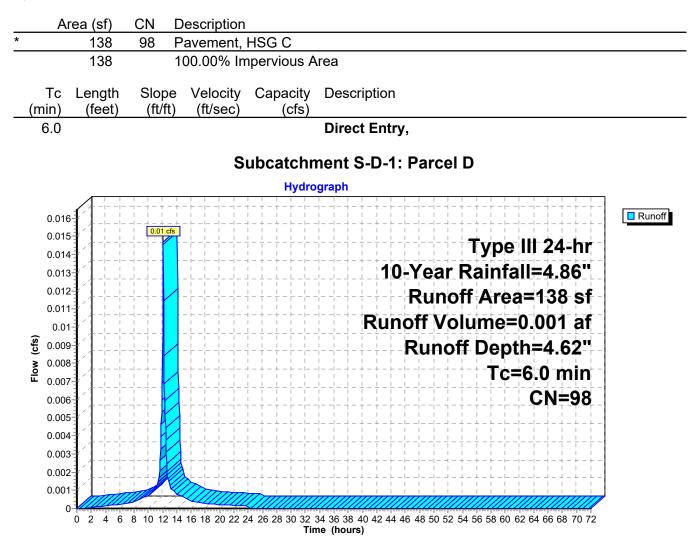
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"


Summary for Subcatchment S-D: Parcel D

Runoff = 0.22 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.016 af, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	Ar	rea (sf)	CN	Description			
*		72	98	Transforme	r, HSG C		
		218	96	Gravel surfa	ace, HSG (2	
*		630	92	Permeable	paver side	walk, HSG C	
*		94	98	Wall, HSG	Ċ		
*		1,517	74	Plantings, H	ISG C		
*		262	98	Sidewalk, HSG C			
		2,793	83	Weighted A	verage		
		2,365		84.68% Pe	rvious Area	l	
		428		15.32% Imp	pervious Ar	ea	
	Тс	Length	Slop		Capacity	Description	
(n	nin)	(feet)	(ft/f	:) (ft/sec)	(cfs)		
	6.0					Direct Entry,	
						•	

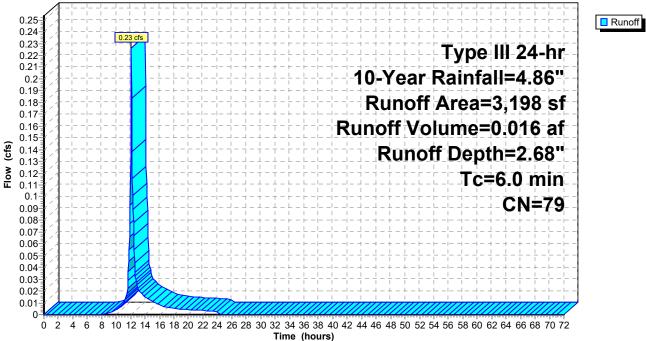

Subcatchment S-D: Parcel D

Summary for Subcatchment S-D-1: Parcel D

Runoff = 0.01 cfs @ 12.09 hrs, Volume= 0.001 af, Depth= 4.62" Routed to Pond D-1 : Subsurface Detention System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

Summary for Subcatchment S-D-OS: Offsite

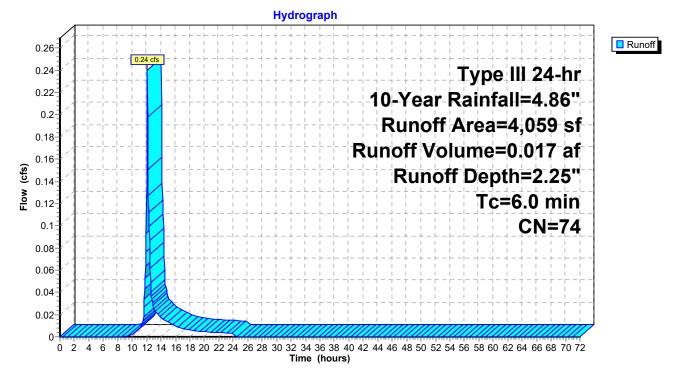

Runoff = 0.23 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.016 af, Depth= 2.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

_	A	rea (sf)	CN	Description		
*		700	98	Roofs, HSG C (OFFSITE)		
*		2,498	74	>75% Grass cover, Good, HSG C (OFFSITE)		
		3,198 2,498 700		Weighted A 78.11% Per 21.89% Imp	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
_	6.0					Direct Entry,

Subcatchment S-D-OS: Offsite

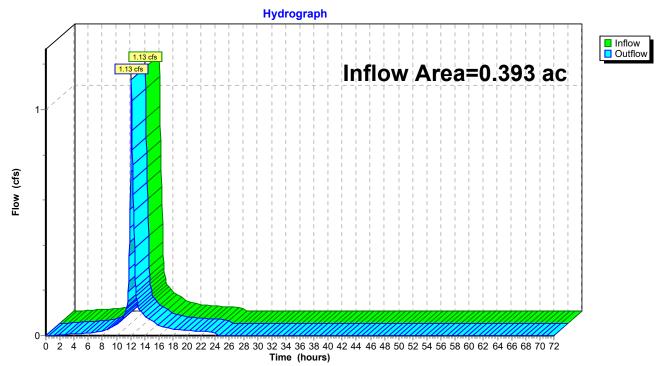
Summary for Subcatchment S-D-OS-1: Offsite


Runoff = 0.24 cfs @ 12.10 hrs, Volume= Routed to Reach DP-D : Commercial Street

0.017 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"

	A	rea (sf)	CN	Description					
*		1,051	74	>75% Gras	>75% Grass cover, Good, HSG C				
*		3,008	74	>75% Grass cover, Good, HSG C (OFFSITE)					
		4,059 4,059	74	Weighted A 100.00% P	0	a			
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
_	6.0					Direct Entry,			


Subcatchment S-D-OS-1: Offsite

Summary for Reach DP-D: Commercial Street

Inflow Area =	0.393 ac, 47.84% Impervious, Inflow	v Depth = 3.44" for 10-Year event	
Inflow =	1.13 cfs @ 12.10 hrs, Volume=	0.113 af	
Outflow =	1.13 cfs @ 12.10 hrs, Volume=	0.113 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-D: Commercial Street

Summary for Pond D-1: Subsurface Detention System

Inflow Area =		0.162 ac,10	0.00% Impervious, Inf	flow Depth = 4.62" for 10-Year event		
Inflow	=	0.75 cfs @	12.09 hrs, Volume=	0.062 af		
Outflow	=	0.49 cfs @	12.19 hrs, Volume=	0.062 af, Atten= 35%, Lag= 6.0 min		
Primary	=	0.49 cfs @	12.19 hrs, Volume=	0.062 af		
Routed to Reach DP-D : Commercial Street						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 27.41' @ 12.19 hrs Surf.Area= 946 sf Storage= 229 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 2.4 min (750.9 - 748.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	26.33'	0 cf	22.09'W x 42.83'L x 2.17'H Field A
			2,050 cf Overall - 608 cf Embedded = 1,442 cf x 0.0% Voids
#2A	26.66'	457 cf	ADS N-12 15" x 18 Inside #1
			Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf
			Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf
			18 Chambers in 9 Rows
			20.76' Header x 1.20 sf x 1 = 24.9 cf Inside
		457 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	26.66'	12.0" Round Culvert
			L= 20.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 26.66' / 25.00' S= 0.0830 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	26.66'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	27.80'	4.0' long x 2.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.48 cfs @ 12.19 hrs HW=27.41' (Free Discharge)

-**1=Culvert** (Passes 0.48 cfs of 1.86 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.48 cfs @ 3.55 fps)

-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

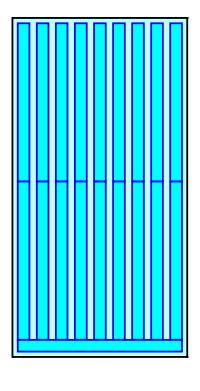
Pond D-1: Subsurface Detention System - Chamber Wizard Field A

Chamber Model = ADS N-12 15" (ADS N-12® Pipe)

Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf

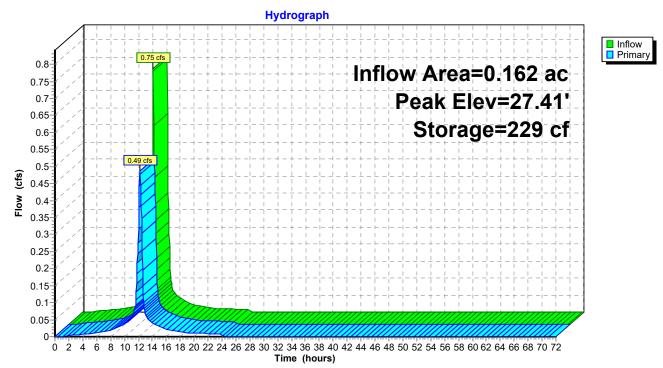
18.0" Wide + 10.9" Spacing = 28.9" C-C Row Spacing

2 Chambers/Row x 20.00' Long +1.50' Header x 1 = 41.50' Row Length +8.0" End Stone x 2 = 42.83' Base Length 9 Rows x 18.0" Wide + 10.9" Spacing x 8 + 8.0" Side Stone x 2 = 22.09' Base Width


4.0" Stone Base + 18.0" Chamber Height + 4.0" Stone Cover = 2.17' Field Height

18 Chambers x 24.0 cf + 20.76' Header x 1.20 sf = 456.9 cf Chamber Storage 18 Chambers x 31.9 cf + 20.76' Header x 1.60 sf = 607.8 cf Displacement

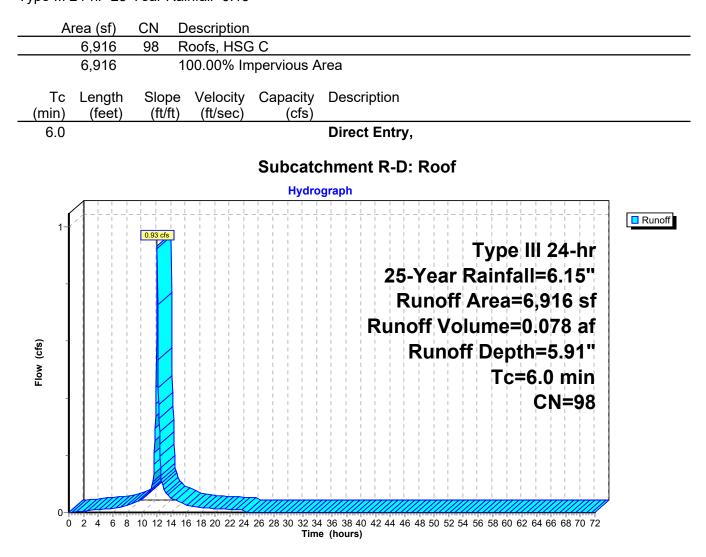
2,049.9 cf Field - 607.8 cf Chambers = 1,442.1 cf Stone x 0.0% Voids = 0.0 cf Stone Storage


Chamber Storage = 456.9 cf = 0.010 af Overall Storage Efficiency = 22.3% Overall System Size = 42.83' x 22.09' x 2.17'

18 Chambers 75.9 cy Field 53.4 cy Stone

0000000000

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

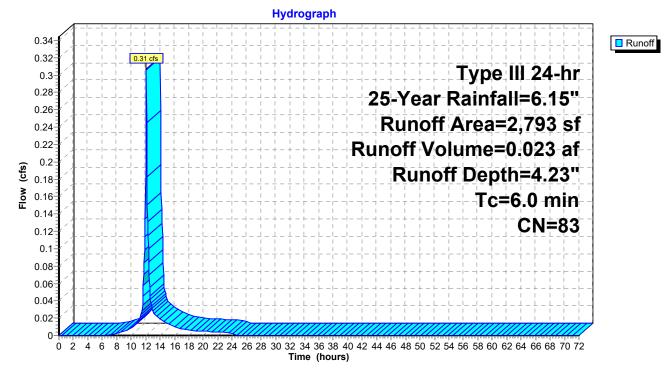

SubcatchmentR-D: Roof	Runoff Area=6,916 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.93 cfs 0.078 af
SubcatchmentS-D: Parcel D	Runoff Area=2,793 sf 15.32% Impervious Runoff Depth=4.23" Tc=6.0 min CN=83 Runoff=0.31 cfs 0.023 af
SubcatchmentS-D-1: Parcel D	Runoff Area=138 sf 100.00% Impervious Runoff Depth=5.91" Tc=6.0 min CN=98 Runoff=0.02 cfs 0.002 af
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=3.81" Tc=6.0 min CN=79 Runoff=0.32 cfs 0.023 af
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=3.31" Tc=6.0 min CN=74 Runoff=0.35 cfs 0.026 af
Reach DP-D: Commercial Street	Inflow=1.50 cfs 0.151 af Outflow=1.50 cfs 0.151 af
Pond D-1: Subsurface Detention System	Peak Elev=27.64' Storage=334 cf Inflow=0.95 cfs 0.080 af Outflow=0.58 cfs 0.080 af
Total Runoff Area = 0.393	ac Runoff Volume = 0.151 af Average Runoff Depth = 4.63"

52.16% Pervious = 0.205 ac 47.84% Impervious = 0.188 ac

Summary for Subcatchment R-D: Roof

Runoff = 0.93 cfs @ 12.09 hrs, Volume= 0.078 af, Depth= 5.91" Routed to Pond D-1 : Subsurface Detention System

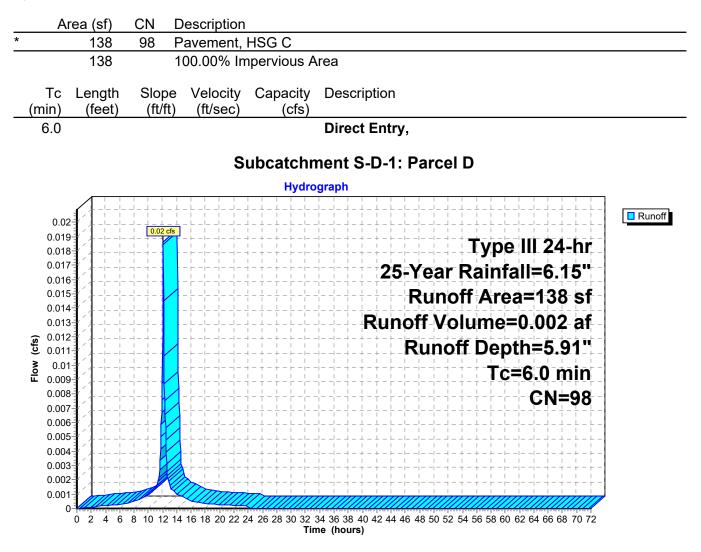
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"


Summary for Subcatchment S-D: Parcel D

Runoff = 0.31 cfs @ 12.09 hrs, Volume= 0.023 af, Depth= 4.23" Routed to Reach DP-D : Commercial Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description			
*		72	98	Transforme	r, HSG C		
		218	96	Gravel surfa	ace, HSG C	;	
*		630	92	Permeable	paver side	valk, HSG C	
*		94	98	Wall, HSG	Ċ		
*		1,517	74	Plantings, H	ISG C		
*		262	98	Sidewalk, HSG C			
		2,793	83	Weighted A	verage		
		2,365		84.68% Per	vious Area		
		428		15.32% Imp	pervious Ar	ea	
	Тс	Length	Slop		Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	6.0					Direct Entry,	
						-	

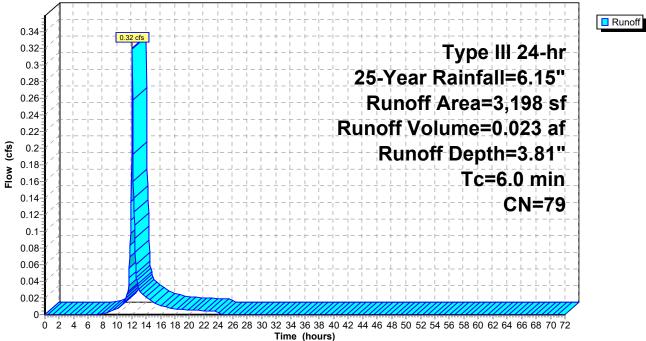

Subcatchment S-D: Parcel D

Summary for Subcatchment S-D-1: Parcel D

Runoff = 0.02 cfs @ 12.09 hrs, Volume= 0.002 af, Depth= 5.91" Routed to Pond D-1 : Subsurface Detention System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

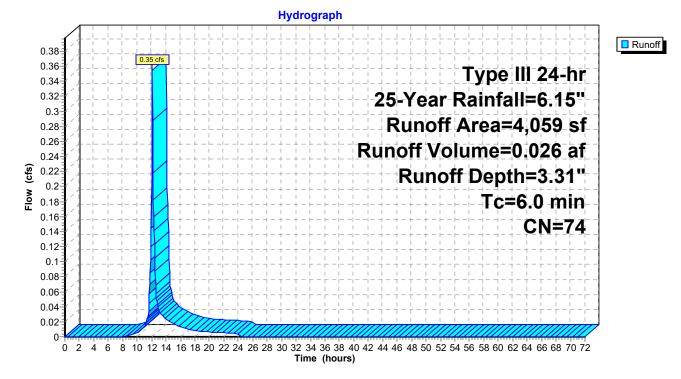
Summary for Subcatchment S-D-OS: Offsite


Runoff = 0.32 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.023 af, Depth= 3.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

Ar	rea (sf)	CN	Description			
	700	98	Roofs, HSG C (OFFSITE)			
	2,498	74	>75% Grass cover, Good, HSG C (OFFSITE)			
	3,198 2,498 700	79	78.11% Pe	rvious Area		
Tc	Length		,	Capacity	Description	
/	(leet)	וועונ) (Il/sec)	(CIS)		
6.0					Direct Entry,	
		2,498 3,198 2,498 700 Tc Length min) (feet)	700 98 2,498 74 3,198 79 2,498 700 Tc Length Slope nin) (feet) (ft/ft	700 98 Roofs, HSC 2,498 74 >75% Gras 3,198 79 Weighted A 2,498 78.11% Pe 2,498 78.11% Pe 700 21.89% Imp Tc Length Slope Nin) (feet) (ft/ft)	70098Roofs, HSG C (OFFS)2,49874>75% Grass cover, Gra	

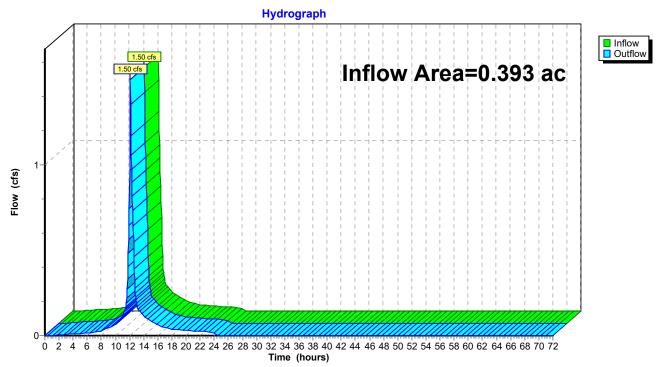
Subcatchment S-D-OS: Offsite


Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.35 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.026 af, Depth= 3.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"

	A	rea (sf)	CN	Description				
*		1,051	74	>75% Grass cover, Good, HSG C				
*		3,008	74	>75% Grass cover, Good, HSG C (OFFSITE)				
	Tc (min)	4,059 4,059 Length (feet)	74 Slop (ft/ft	,		a Description		
	6.0	(1001)	(1010) (10000)	(00)	Direct Entry,		


Subcatchment S-D-OS-1: Offsite

Summary for Reach DP-D: Commercial Street

Inflow Area	a =	0.393 ac, 47.84% Impervious, Inflow Depth = 4.63" for 25-Year event
Inflow	=	1.50 cfs @ 12.10 hrs, Volume= 0.151 af
Outflow	=	1.50 cfs @ 12.10 hrs, Volume= 0.151 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-D: Commercial Street

Summary for Pond D-1: Subsurface Detention System

Inflow Area =		0.162 ac,10	0.00% Impervious, Inflo	w Depth = 5.91" for 25-Year event
Inflow	=	0.95 cfs @	12.09 hrs, Volume=	0.080 af
Outflow	=	0.58 cfs @	12.20 hrs, Volume=	0.080 af, Atten= 39%, Lag= 6.8 min
Primary	=	0.58 cfs @	12.20 hrs, Volume=	0.080 af
Routed	to Read			

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 27.64' @ 12.20 hrs Surf.Area= 946 sf Storage= 334 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 3.1 min (747.9 - 744.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	26.33'	0 cf	22.09'W x 42.83'L x 2.17'H Field A
			2,050 cf Overall - 608 cf Embedded = 1,442 cf x 0.0% Voids
#2A	26.66'	457 cf	ADS N-12 15" x 18 Inside #1
			Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf
			Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf
			18 Chambers in 9 Rows
			20.76' Header x 1.20 sf x 1 = 24.9 cf Inside
		457 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	26.66'	12.0" Round Culvert
	-		L= 20.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 26.66' / 25.00' S= 0.0830 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	26.66'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	27.80'	4.0' long x 2.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=0.58 cfs @ 12.20 hrs HW=27.64' (Free Discharge)

-**1=Culvert** (Passes 0.58 cfs of 2.64 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.58 cfs @ 4.24 fps)

-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

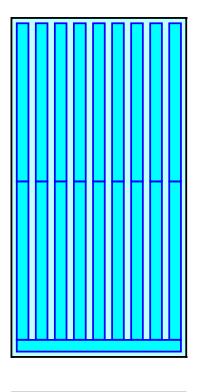
Pond D-1: Subsurface Detention System - Chamber Wizard Field A

Chamber Model = ADS N-12 15" (ADS N-12® Pipe)

Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf

18.0" Wide + 10.9" Spacing = 28.9" C-C Row Spacing

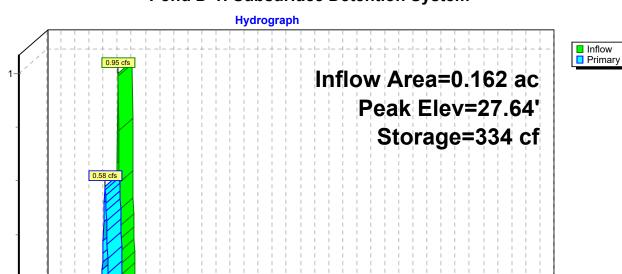
2 Chambers/Row x 20.00' Long +1.50' Header x 1 = 41.50' Row Length +8.0" End Stone x 2 = 42.83' Base Length 9 Rows x 18.0" Wide + 10.9" Spacing x 8 + 8.0" Side Stone x 2 = 22.09' Base Width


4.0" Stone Base + 18.0" Chamber Height + 4.0" Stone Cover = 2.17' Field Height

18 Chambers x 24.0 cf + 20.76' Header x 1.20 sf = 456.9 cf Chamber Storage 18 Chambers x 31.9 cf + 20.76' Header x 1.60 sf = 607.8 cf Displacement

2,049.9 cf Field - 607.8 cf Chambers = 1,442.1 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 456.9 cf = 0.010 af Overall Storage Efficiency = 22.3% Overall System Size = 42.83' x 22.09' x 2.17'


18 Chambers 75.9 cy Field 53.4 cy Stone

000000000

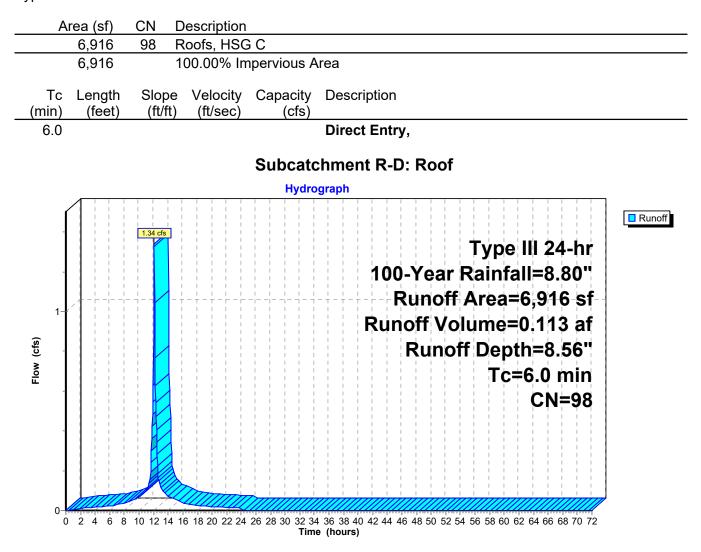
Flow (cfs)

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond D-1: Subsurface Detention System

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


SubcatchmentR-D: Roof	Runoff Area=6,916 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=1.34 cfs 0.113 af					
SubcatchmentS-D: Parcel D	Runoff Area=2,793 sf 15.32% Impervious Runoff Depth=6.74" Tc=6.0 min CN=83 Runoff=0.48 cfs 0.036 af					
SubcatchmentS-D-1: Parcel D	Runoff Area=138 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=0.03 cfs 0.002 af					
SubcatchmentS-D-OS: Offsite	Runoff Area=3,198 sf 21.89% Impervious Runoff Depth=6.26" Tc=6.0 min CN=79 Runoff=0.52 cfs 0.038 af					
SubcatchmentS-D-OS-1: Offsite	Runoff Area=4,059 sf 0.00% Impervious Runoff Depth=5.65" Tc=6.0 min CN=74 Runoff=0.60 cfs 0.044 af					
Reach DP-D: Commercial Street	Inflow=2.66 cfs 0.234 af Outflow=2.66 cfs 0.234 af					
Pond D-1: Subsurface Detention System	Peak Elev=27.93' Storage=440 cf Inflow=1.37 cfs 0.116 af Outflow=1.30 cfs 0.116 af					
Total Runoff Area = 0.393 ac Runoff Volume = 0.234 af Average Runoff Depth = 7.14"						

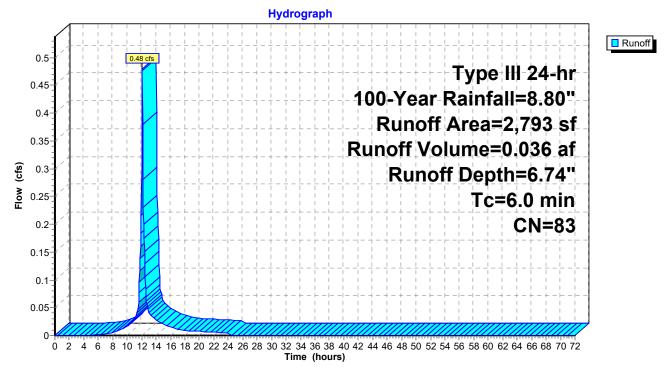
52.16% Pervious = 0.205 ac 47.84% Impervious = 0.188 ac

Summary for Subcatchment R-D: Roof

Runoff = 1.34 cfs @ 12.09 hrs, Volume= 0.113 af, Depth= 8.56" Routed to Pond D-1 : Subsurface Detention System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

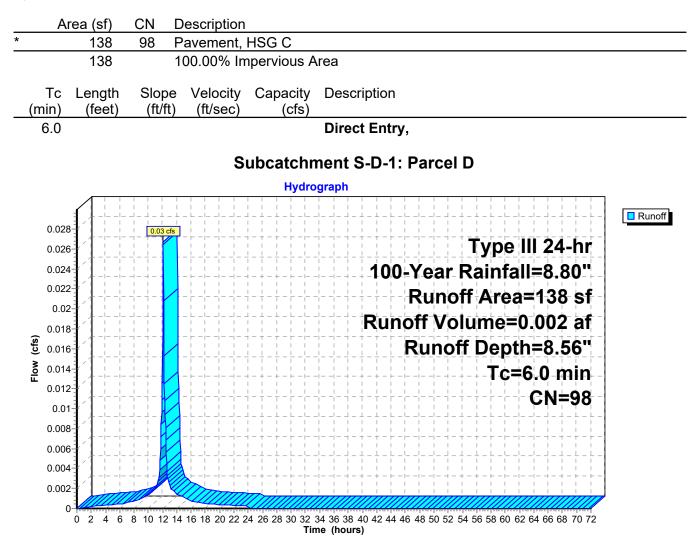
Summary for Subcatchment S-D: Parcel D


Runoff = 0.48 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street

0.036 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN	Description			
*		72	98	Transforme	r, HSG C		
		218	96	Gravel surfa	ace, HSG (:	
*		630	92	Permeable	paver side	valk, HSG C	
*		94	98	Wall, HSG	Ċ		
*		1,517	74	Plantings, H	ISG C		
*		262	98	Sidewalk, H	ISG C		
		2,793	83	Weighted A	verage		
		2,365		84.68% Per	vious Area		
		428		15.32% Imp	pervious Ar	a	
	Тс	Length	Slop		Capacity	Description	
(r	min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	6.0					Direct Entry,	
						2	

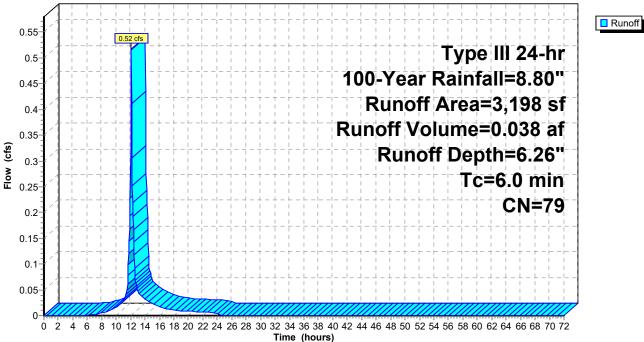

Subcatchment S-D: Parcel D

Summary for Subcatchment S-D-1: Parcel D

Runoff = 0.03 cfs @ 12.09 hrs, Volume= 0.002 af, Depth= 8.56" Routed to Pond D-1 : Subsurface Detention System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

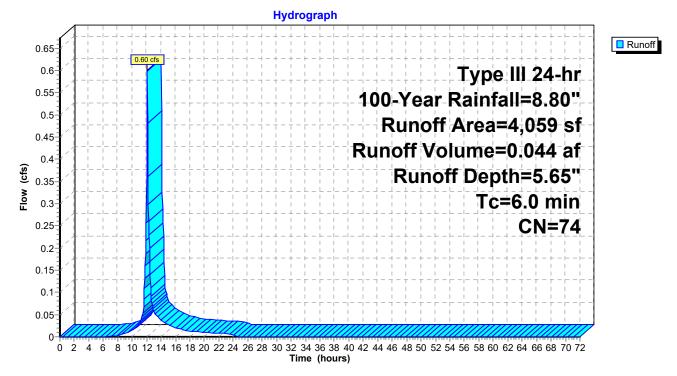
Summary for Subcatchment S-D-OS: Offsite


Runoff = 0.52 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.038 af, Depth= 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	Α	rea (sf)	CN	Description		
*		700	98	Roofs, HSC	G C (OFFSI	TE)
*		2,498	74	>75% Gras	s cover, Go	bod, HSG C (OFFSITE)
		3,198 2,498 700	79	Weighted A 78.11% Per 21.89% Imp	rvious Area	-
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
	6.0					Direct Entry,

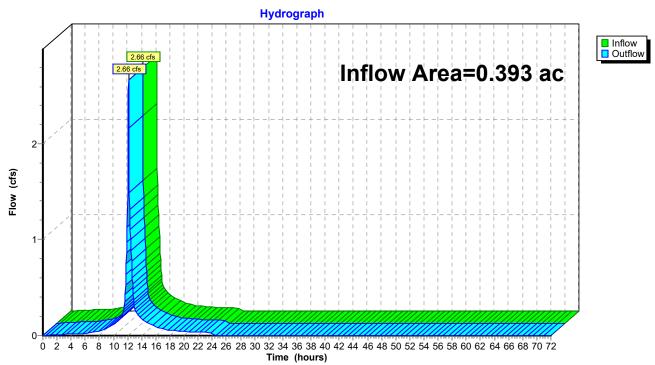
Subcatchment S-D-OS: Offsite


Summary for Subcatchment S-D-OS-1: Offsite

Runoff = 0.60 cfs @ 12.09 hrs, Volume= Routed to Reach DP-D : Commercial Street 0.044 af, Depth= 5.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80"

	A	rea (sf)	CN	Description		
*		1,051	74	>75% Gras	s cover, Go	bod, HSG C
*		3,008	74	>75% Gras	s cover, Go	ood, HSG C (OFFSITE)
	Tc (min)	4,059 4,059 Length (feet)	74 Slop (ft/ff		0	a Description
	6.0			••••		Direct Entry,


Subcatchment S-D-OS-1: Offsite

Summary for Reach DP-D: Commercial Street

Inflow Are	a =	0.393 ac, 47.84% Impervious, Inflow Depth = 7.14" for 100-Year event
Inflow	=	2.66 cfs @ 12.13 hrs, Volume= 0.234 af
Outflow	=	2.66 cfs @ 12.13 hrs, Volume= 0.234 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-D: Commercial Street

Summary for Pond D-1: Subsurface Detention System

Inflow Area	a =	0.162 ac,10	0.00% Impervious,	Inflow Depth =	8.56" fo	or 100-Year event
Inflow	=	1.37 cfs @	12.09 hrs, Volume	e= 0.116	af	
Outflow	=	1.30 cfs @	12.15 hrs, Volume	e 0.116	af, Atten:	= 5%, Lag= 3.6 min
Primary	=	1.30 cfs @	12.15 hrs, Volume	e= 0.116	af	
Routed	to Read	ch DP-D : Co	mmercial Street			

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 27.93' @ 12.14 hrs Surf.Area= 946 sf Storage= 440 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 3.6 min (743.7 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	26.33'	0 cf	22.09'W x 42.83'L x 2.17'H Field A
			2,050 cf Overall - 608 cf Embedded = 1,442 cf x 0.0% Voids
#2A	26.66'	457 cf	ADS N-12 15" x 18 Inside #1
			Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf
			Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf
			18 Chambers in 9 Rows
			20.76' Header x 1.20 sf x 1 = 24.9 cf Inside
		457 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	26.66'	12.0" Round Culvert
	-		L= 20.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 26.66' / 25.00' S= 0.0830 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	26.66'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	27.80'	4.0' long x 2.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)

Primary OutFlow Max=1.26 cfs @ 12.15 hrs HW=27.93' (Free Discharge)

1=Culvert (Passes 1.26 cfs of 3.31 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.68 cfs @ 4.95 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.59 cfs @ 1.17 fps)

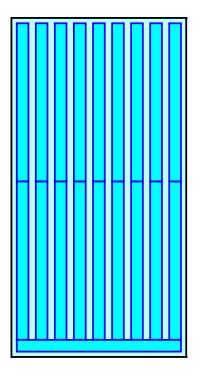
Pond D-1: Subsurface Detention System - Chamber Wizard Field A

Chamber Model = ADS N-12 15" (ADS N-12® Pipe)

Inside= 14.8"W x 14.8"H => 1.20 sf x 20.00'L = 24.0 cf Outside= 18.0"W x 18.0"H => 1.60 sf x 20.00'L = 31.9 cf

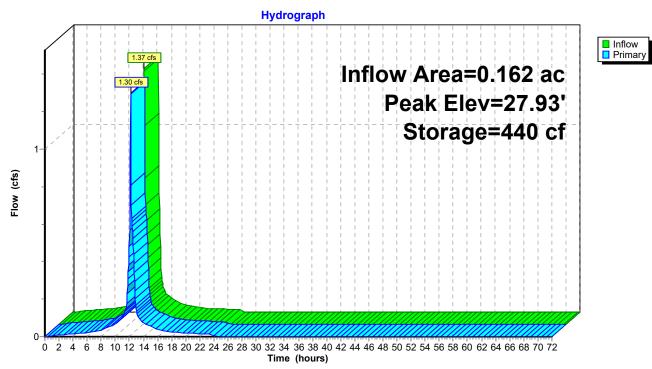
18.0" Wide + 10.9" Spacing = 28.9" C-C Row Spacing

2 Chambers/Row x 20.00' Long +1.50' Header x 1 = 41.50' Row Length +8.0" End Stone x 2 = 42.83' Base Length 9 Rows x 18.0" Wide + 10.9" Spacing x 8 + 8.0" Side Stone x 2 = 22.09' Base Width


4.0" Stone Base + 18.0" Chamber Height + 4.0" Stone Cover = 2.17' Field Height

18 Chambers x 24.0 cf + 20.76' Header x 1.20 sf = 456.9 cf Chamber Storage 18 Chambers x 31.9 cf + 20.76' Header x 1.60 sf = 607.8 cf Displacement

2,049.9 cf Field - 607.8 cf Chambers = 1,442.1 cf Stone x 0.0% Voids = 0.0 cf Stone Storage


Chamber Storage = 456.9 cf = 0.010 af Overall Storage Efficiency = 22.3% Overall System Size = 42.83' x 22.09' x 2.17'

18 Chambers 75.9 cy Field 53.4 cy Stone

0000000000

APPENDIX C

Checklist for Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

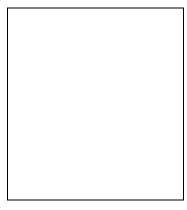
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

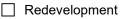

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\square	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
\boxtimes	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

 \square

Soil Analysis provided.	\boxtimes	Soil	Anal	ysis	provided.
-------------------------	-------------	------	------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🗌 Simple Dynamic
--------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs	have been sized	to infiltrate the	Required	Recharge V	olume.
-------------	---------------	-----------------	-------------------	----------	------------	--------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

	Property in	ncludes a	M.G.L.	c. 21E site	or a solid	waste lan	ndfill and	a mounding	analysis is inclu	ided.
--	-------------	-----------	--------	-------------	------------	-----------	------------	------------	-------------------	-------

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - \boxtimes is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	ct
-----------------	----

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

APPENDIX D

Illicit Discharge Compliance Statement Supplemental BMP Calculations

Illicit Discharge Compliance Statement

I, <u>Bradley C. McKenzie, P.E.</u>, hereby notify the Weymouthl Conservation Commission that I have not witnessed, nor am aware of any existing illicit discharges at the site known as Parcel IDs 23-253-14, 16 & 17, 23-305-1,4,9,10 & 11, 23-306-11 in Weymouth, Massachusetts. I also hereby certify that the development of said property as illustrated on the final plans entitled "NOI Site Plan Review, Jackson Square, Weymouth, Massachusetts," prepared by McKenzie Engineering Group. Inc. dated September 6, 2023 and as revised and approved by the Weymouth Conservation Commission and maintenance thereof in accordance with the "Construction Phase Operations and Maintenance Plan" and "Long-Term Operations and Maintenance Plan" prepared by McKenzie Engineering Group, Inc. dated July 31, 2023 and as revised and approved by the Weymouth Conservation Commission will not create any new illicit discharges. There is no warranty implied regarding future illicit discharges that may occur as a result of improper construction or maintenance of the stormwater management system or unforeseen accidents.

Name:	Bradley C. McKenzie, P.E.
Company:	McKenzie Engineering Group, Inc.
Title:	
Signature:	
Date:	

JACKSON SQUARE WEYMOUTH, MA

8/4/2023

SITES A & B

REQUIRED RECHARGE VOLUME (CF) "STATIC METHOD"

TOTAL	11,378				34,078				1,279
		0.60		0.35		0.25		0.10	0
		0.60		0.35		0.25		0.10	0
		0.60		0.35		0.25		0.10	0
R-B		0.60		0.35	11,143	0.25		0.10	232
S-B-2		0.60		0.35	1,082	0.25		0.10	23
S-B-1		0.60		0.35	1,399	0.25		0.10	29
S-A-3	91	0.60		0.35	1,853	0.25		0.10	43
S-A-2	437	0.60		0.35	62	0.25		0.10	23
R-A2		0.60		0.35	14,000	0.25		0.10	292
R-A1	10,606	0.60		0.35	4,263	0.25		0.10	619
S-A-1	244	0.60		0.35	276	0.25		0.10	18
WATERSHED #	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) A SOIL	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) B SOIL	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) C SOIL	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) D SOIL	REQUIRED RECHARGE VOLUME (CF

CAPTURE ADJUSTMENT

WATERSHED #	TOTAL IMPERVIOUS AREA (SF)	TOTAL IMPERVIOUS COLLECTED		STANDARD NO. 3 <100% - > 65% CAPTURED	CAPTURE ADJUSTMENT	ADJUSTED REQUIRED RECHARGE VOLUME (CF)
TOTAL SITE	45,456	31,845	70.06%	CAPTURE ADJUSTMENT REQUIRED	1.43	1,825

PROVIDED RECHARGE VOLUME (CF) BELOW LOWEST INVERT

	REQUIRED RECHARGE VOLUME (CF)	POND	STORAGE VOLUME PROVIDED (CF)	NET STORAGE VOLUME PROVIDED (CF)
	1,825	AB-2	3,131	
		AB-3	830	
TOTAL	1,825		3,961	2,136

JACKSON SQUARE WEYMOUTH, MA

8/4/2023

DRAWDOWN WITHIN 72 HOURS ANALYSIS

POND	RAWLS RATE (IN/HR)	STORAGE VOLUME PROVIDED (CF)	BOTTOM AREA (FT2)	DRAWDOWN (HR)
AB-2	2.41	3,131	1,813	9
AB-3	2.41	830	3,154	1

Prepared by McKenzie Engineering Group Inc HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond AB-2: Subsurface Infiltration System

Levration Surage Levration Surage Levration Surage Surage 18.75 3,133 0 21.35 3,133 4,795 18.80 3,133 125 21.46 3,133 4,795 18.80 3,133 125 21.45 3,133 4,795 18.95 3,133 133 125 21.65 3,133 4,795 19.00 3,133 376 21.65 3,133 4,795 19.05 3,133 778 21.60 3,133 4,795 19.20 3,133 778 21.80 3,133 4,795 19.20 3,133 1,099 21.96 3,133 4,795 19.30 3,133 1,099 21.96 3,133 4,795 19.40 3,133 1,607 22.10 3,133 4,795 19.45 3,133 1,607 22.15 3,133 4,795 19.65 3,133 1,607 22.15 3,1	Elevation	Surface	Storage	Elevation	Surface	Storage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
18.803.1336321.403.1334.79518.853.13312521.453.1334.79518.903.13325121.553.1334.79519.003.13331321.603.1334.79519.053.13337621.653.1334.79519.103.13369121.753.1334.79519.203.13371821.803.1334.79519.253.13371821.803.1334.79519.203.13371821.803.1334.79519.303.1331.09921.953.1334.79519.303.1331.22622.003.1334.79519.403.1331.22622.003.1334.79519.553.1331.60722.153.1334.79519.553.1331.60722.153.1334.79519.653.1331.86122.203.1334.79519.653.1331.86122.253.1334.79519.753.1332.49622.503.1334.79519.803.1332.24922.403.1334.79519.803.1332.62322.553.1334.79519.903.1332.62322.553.1334.79519.903.1332.62322.553.1334.79520.053.1333.63922.003.1334.79520						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.00	3,133	313	21.60	3,133	4,795
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3,133		21.65	3,133	4,795
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
19.55 $3,133$ $1,607$ 22.15 $3,133$ $4,795$ 19.60 $3,133$ $1,734$ 22.20 $3,133$ $4,795$ 19.65 $3,133$ $1,861$ 22.22 $3,133$ $4,795$ 19.70 $3,133$ $1,988$ 22.30 $3,133$ $4,795$ 19.75 $3,133$ $2,115$ 22.35 $3,133$ $4,795$ 19.80 $3,133$ $2,242$ 22.40 $3,133$ $4,795$ 19.85 $3,133$ $2,242$ 22.40 $3,133$ $4,795$ 19.90 $3,133$ $2,496$ 22.50 $3,133$ $4,795$ 19.95 $3,133$ $2,623$ 22.55 $3,133$ $4,795$ 20.00 $3,133$ $2,677$ 22.665 $3,133$ $4,795$ 20.05 $3,133$ $2,877$ 22.655 $3,133$ $4,795$ 20.10 $3,133$ $3,258$ 22.80 $3,133$ $4,795$ 20.20 $3,133$ $3,258$ 22.85 $3,133$ $4,795$ 20.30 $3,133$ $3,512$ 22.90 $3,133$ $4,795$ 20.30 $3,133$ $3,639$ 22.95 $3,133$ $4,795$ 20.40 $3,133$ $3,639$ 22.95 $3,133$ $4,795$ 20.40 $3,133$ $4,639$ 23.05 $3,133$ $4,795$ 20.40 $3,133$ $4,218$ 23.20 $3,133$ $4,795$ 20.50 $3,133$ $4,218$ 23.20 $3,133$ $4,795$ 20.66 $3,133$						
19.60 $3,133$ $1,734$ 22.20 $3,133$ $4,795$ 19.65 $3,133$ $1,861$ 22.25 $3,133$ $4,795$ 19.70 $3,133$ $1,988$ 22.30 $3,133$ $4,795$ 19.75 $3,133$ $2,115$ 22.35 $3,133$ $4,795$ 19.80 $3,133$ $2,242$ 22.40 $3,133$ $4,795$ 19.85 $3,133$ $2,242$ 22.40 $3,133$ $4,795$ 19.90 $3,133$ $2,623$ 22.55 $3,133$ $4,795$ 19.95 $3,133$ $2,623$ 22.55 $3,133$ $4,795$ 20.00 $3,133$ $2,677$ 22.60 $3,133$ $4,795$ 20.05 $3,133$ $2,877$ 22.65 $3,133$ $4,795$ 20.10 $3,133$ $3,004$ 22.70 $3,133$ $4,795$ 20.15 $3,133$ $3,258$ 22.80 $3,133$ $4,795$ 20.20 $3,133$ $3,258$ 22.80 $3,133$ $4,795$ 20.20 $3,133$ $3,639$ 22.95 $3,133$ $4,795$ 20.30 $3,133$ $3,639$ 22.95 $3,133$ $4,795$ 20.40 $3,133$ $3,639$ 22.95 $3,133$ $4,795$ 20.40 $3,133$ $4,218$ 23.20 $3,133$ $4,795$ 20.55 $3,133$ $4,218$ 23.25 $3,133$ $4,795$ 20.60 $3,133$ $4,218$ 23.25 $3,133$ $4,795$ 20.65 $3,133$ 4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
19.70 $3,133$ $1,988$ 22.30 $3,133$ $4,795$ 19.75 $3,133$ $2,115$ 22.35 $3,133$ $4,795$ 19.80 $3,133$ $2,242$ 22.40 $3,133$ $4,795$ 19.80 $3,133$ $2,369$ 22.45 $3,133$ $4,795$ 19.90 $3,133$ $2,623$ 22.55 $3,133$ $4,795$ 19.95 $3,133$ $2,623$ 22.56 $3,133$ $4,795$ 20.00 $3,133$ $2,623$ 22.60 $3,133$ $4,795$ 20.05 $3,133$ $2,877$ 22.65 $3,133$ $4,795$ 20.10 $3,133$ $3,004$ 22.70 $3,133$ $4,795$ 20.15 $3,133$ $3,258$ 22.80 $3,133$ $4,795$ 20.20 $3,133$ $3,258$ 22.80 $3,133$ $4,795$ 20.20 $3,133$ $3,512$ 22.90 $3,133$ $4,795$ 20.30 $3,133$ $3,512$ 22.90 $3,133$ $4,795$ 20.40 $3,133$ $3,639$ 22.95 $3,133$ $4,795$ 20.45 $3,133$ $4,020$ 23.10 $3,133$ $4,795$ 20.45 $3,133$ $4,218$ 23.20 $3,133$ $4,795$ 20.65 $3,133$ $4,218$ 23.20 $3,133$ $4,795$ 20.65 $3,133$ $4,281$ 23.25 $3,133$ $4,795$ 20.60 $3,133$ $4,281$ 23.25 $3,133$ $4,795$ 20.65 $3,133$ 4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				22.45		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.90					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.95	3,133	2,623	22.55	3,133	4,795
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.70					4,795
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
20.903,1334,59423.503,1334,79520.953,1334,65723.553,1334,79521.003,1334,72023.603,1334,79521.053,1334,78223.653,1334,79521.103,1334,79523.703,1334,79521.153,1334,79523.753,1334,79521.203,1334,79523.803,1334,79521.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795			,			
20.953,1334,65723.553,1334,79521.003,1334,72023.603,1334,79521.053,1334,78223.653,1334,79521.103,1334,79523.703,1334,79521.153,1334,79523.753,1334,79521.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795						
21.003,1334,72023.603,1334,79521.053,1334,78223.653,1334,79521.103,1334,79523.703,1334,79521.153,1334,79523.753,1334,79521.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795						
21.053,1334,78223.653,1334,79521.103,1334,79523.703,1334,79521.153,1334,79523.753,1334,79521.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795						
21.103,133 4,795 23.703,1334,79521.153,1334,79523.753,1334,79521.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795						
21.153,1334,79523.753,1334,79521.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795						
21.203,1334,79523.803,1334,79521.253,1334,79523.853,1334,795						
21.25 3,133 4,795 23.85 3,133 4,795						
			-			·

Prepared by McKenzie Engineering Group Inc HydroCAD® 10.20-3c s/n 00452 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond AB-3: Subsurface Infiltration System

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
21.50	3,154	0	24.10	3,154	2,649
21.55	3,154	63	24.15	3,154	2,649
21.60	3,154	126	24.20	3,154	2,649
21.65	3,154	189	24.25	3,154	2,649
21.70	3,154	252	24.30	3,154	2,649
21.75	3,154	315	24.35	3,154	2,649
21.80	3,154	378	24.40	3,154	2,649
21.85	3,154	465			
21.90	3,154	587			
21.95	3,154	708			
22.00	3,154	830			
22.05	3,154	952			
22.10	3,154	1,073			
22.15	3,154	1,195			
22.20	3,154	1,317			
22.25	3,154	1,439			
22.30	3,154	1,560			
22.35	3,154	1,682			
22.40	3,154	1,804			
22.45	3,154	1,925			
22.50	3,154	2,031			
22.55	3,154	2,094			
22.60	3,154	2,157			
22.65	3,154	2,220			
22.70	3,154	2,283			
22.75	3,154	2,346			
22.80	3,154	2,409			
22.85	3,154	2,472			
22.90	3,154	2,535			
22.95	3,154	2,598			
23.00	3,154	2,649			
23.05	3,154	2,649			
23.10	3,154	2,649			
23.15	3,154	2,649			
23.20	3,154	2,649			
23.25	3,154	2,649			
23.30	3,154	2,649			
23.35	3,154	2,649			
23.40	3,154	2,649			
23.45	3,154	2,649			
23.50	3,154	2,649			
23.55	3,154	2,649			
23.60	3,154	2,649			
23.65	3,154	2,649			
23.70	3,154	2,649			
23.75	3,154	2,649			
23.80	3,154	2,649			
23.85	3,154	2,649			
23.90	3,154	2,649			
23.95	3,154	2,649			
24.00	3,154	2,649			
24.05	3,154	2,649			
		l			

JACKSON SQUARE WEYMOUTH, MA

8/4/2023

WATER QUALITY VOLUME ANALYSIS - SITES A & B

WATERSHED	IMPERVIOUS AREA (SF) CN=98	PRECIPITATION (IN)	WATER QUALITY VOLUME REQUIRED (CF)	TREATMENT VOLUME PROVIDED (CF) UP TO INVERT ELEVATION	NET TREATMENT VOLUME PROVIDED (CF)
S-A-1	520	1.00	43		
R-A1	14,869	1.00	1,239		
R-A2	14,000	1.00	1,167		
S-A-2	499	1.00	42		
S-A-3	1,944	1.00	162		
S-B-1	1,399	1.00	117		
S-B-2	1,082	1.00	90		
R-B	11,143	1.00	929		
TOTAL	45,456		3,788	3,961	173

JACKSON SQUARE WEYMOUTH, MA

8/4/2023

WATER QUALITY VOLUME ANALYSIS - SITE C

	IMPERVIOUS AREA (SF) CN=98	PRECIPITATION (IN)	WATER QUALITY VOLUME REQUIRED (CF)	TREATMENT VOLUME PROVIDED (CF) IN RAIN GARDEN	NET TREATMENT VOLUME PROVIDED (CF)
S-C	2,392	1.00	199		
R-C	17,666	1.00	1,472		
TOTAL	20,058		1,672	1,709	38
*OFFSITE TO BROOK	256,299	1.00	21,358		
TOTAL	296,415		24,701		

* TO BE PROVIDED BY STORMCEPTOR STC 16000

JACKSON SQUARE WEYMOUTH, MA

8/4/2023

WATER QUALITY VOLUME ANALYSIS - SITE D

	IMPERVIOUS AREA (SF) CN=98	PRECIPITATION (IN)	WATER QUALITY VOLUME REQUIRED (CF)		
R-D	6,916	1.00	576		
S-D-1	138	1.00	12		
TOTAL	7,054		588	-	

* TO BE PROVIDED BY STORMCEPTOR STC 16000

JACKSON SQUARE WEYMOUTH, MA

8/4/2023 **REVISED 9/6/23**

		IMPERVIOUS AREA (SF)	0.1 INCH / IMPERVIOUS	WATER QUALITY VOLUME
_	WATERSHED	CN=98	ACRE	REQUIRED (CF)
	S-C	2,392	0.10	20
	R-C	17,666	0.10	147
AL		20,058		167

SEDIMENT FOREBAY SIZING (0.1-INCH / IMPERVIOUS ACRE) FOR BIO-RETENTION

TOTAL

SEDIMENT FOREBAY VOLUME PROVIDED

FOREBAY	ELEVATION	AREA (SF)	CUMULATIVE VOLUME (CF)	TREATMENT VOLUME PROVIDED (CF) ELEVATIONS 26 TO 27.00	NET TREATMENT VOLUME PROVIDED (CF)
C-1	24.00	113.91	0		
	25.00	285.17	200		
TOTAL				200	32

Assiniopi Office Park 150 Longwater Drive, Suite 101 Norwell, MA 02061		NAME:	Standard 4: Pretreatment: Tanks AB-2 Jackson Square - Sites A & B Weymouth, MA CMK Development Partners Norfolk	Proj. No.: 2 Date: 5 Revised: Computed by: 5 Checked by: 5	3/4/2023 SBS
Norweit, IV			_	_	_
	В	C TSS Removal	D Starting TSS	E Amount	F Remaining
	BMP	Rate	Load (*F)	Removed (C*D)	Load (D-E)
r			. ,		. ,
	Proprietary Treatment Practice STC 900	0.96	1.00	0.96	0.04
n t					
ы кетоval Calculation <u>Worksheet</u>					
ken ula ksł					
ы alc lor					
v Ω ₹					
Ľ		Tota	al TSS Removal =	96%	

		Subsurface Tanks AB-2 Jackson Square - Sites A & B Weymouth, MA CMK Development Partners	- Sites A & B Proj. No.: 222-203 Date: 8/4/2023		
	Office Park water Drive, Suite 101 /A 02061			Checked by:	BCM
	В	С	D	Е	F
	BMP	TSS Removal Rate	Starting TSS Load (*F)	Amount Removed (C*D)	Remaining Load (D-E)
	Proprietary Treatment Practice STC 900	0.96	1.00	0.96	0.04
vai on	Subsurface Infiltration Structure	0.80	0.04	0.03	0.01
ы кетоval Calculation Worksheet		0.00	0.01	0.00	0.01
ы к Calcu Mork		0.00	0.01	0.00	0.01
≥ ت <u>ہ</u>		0.00	0.01	0.00	0.01
		Tota	al TSS Removal =	99%	

MCKENZIE ENGINEERING GROUP		Standard 4: Pretreatment: Tanks AB-3 NAME: Jackson Square - Sites A & B Weymouth, MA Date: 8 CLIENT: CMK Development Partners Revised: COUNTY: Norfolk Checked by: E			8/4/2023 SBS
Assinibbi (150 Longw Norwell, M	vater Drive, Suite 101				
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP	Rate	Load (*F)	Removed (C*D)	Load (D-E)
_	Proprietary Treatment Practice STC 900	0.88	1.00	0.88	0.12
ova ion					
ence Pati					
א אפשטא Calculation <u>Worksheet</u>					
κ Ω Β					
Ŀ		Tota	II TSS Removal =	88%	,

MCKENZIE ENGINEERING GROUP		NAME: CLIENT:	Standard 4: Total Suspended Solids Calculation: Subsurface Tanks AB-3 ME: Jackson Square - Sites A & B Weymouth, MA ENT: CMK Development Partners Revised: NTY: Norfolk Computed by: SBS		8/4/2023 SBS
	Office Park vater Drive, Suite 101 IA 02061			Checked by:	ВСМ
	В	С	D	E	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP	Rate	Load (*F)	Removed (C*D)	Load (D-E)
	Proprietary Treatment Practice STC 900	0.88	1.00	0.88	0.12
vai on	Subsurface Infiltration Structure	0.80	0.12	0.10	0.02
ы кетоval Calculation Worksheet		0.00	0.02	0.00	0.02
SS R Calcu Mork		0.00	0.02	0.00	0.02
¢ü≯		0.00	0.02	0.00	0.02
		Tota	al TSS Removal =	98%	

MCKENZIE ENGINEERING GROUP		Standard 4: Total Suspended Solids Calculation: Bio-Retention / Rain Garden NAME: Jackson Square - Sites A & B Proj. No.: 222-203 Weymouth, MA Date: CLIENT: CMK Development Partners Revised: COUNTY: Norfolk Computed by: SBS Checked by: BCM			SBS
Assinippi C 150 Longw Norwell, M	vater Drive, Suite 101				
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP	Rate	Load (*F)	Removed (C*D)	Load (D-E)
	Bio-retention with Sediment Forebay	0.90	1.00	0.90	0.10
on et		0.00	0.10	0.00	0.10
ы кетоval Calculation <u>Worksheet</u>		0.00	0.10	0.00	0.10
oo к Calcu <u>Work</u>		0.00	0.10	0.00	0.10
		0.00	0.10	0.00	0.10
		Tota	l TSS Removal =	90%	

To treat off-site runoff that discharges from the existing 30" RCP at Herring Run Pool Park

ENGINEE Assiniddi (Diffice Park water Drive, Suite 101 IA 02061	NAME:	Standard 4: Total Suspended Stormceptor SC-C-1 Jackson Square - Sites A & B Weymouth, MA CMK Development Partners Norfolk	Proj. No.:	8/4/2023 SBS
	В	С	D	E	F
	BMP	TSS Removal Rate	Starting TSS Load (*F)	Amount Removed (C*D)	Remaining Load (D-E)
	Proprietary Treatment Practice STC 16000	0.82	1.00	0.82	0.18
vai on		0.00	0.18	0.00	0.18
ы кетоval Calculation <u>Worksheet</u>		0.00	0.18	0.00	0.18
		0.00	0.18	0.00	0.18
Cal Cal		0.00	0.18	0.00	0.18
		Tota	al TSS Removal =	82%	

*Equals remaining load from previous BMP (E) which enters the BMP

Detailed Stormceptor Sizing Report – Jackson Square SC-AB-1

	Project Information & Location				
Project Name Jackson Square		Project Number	222-203		
City	Weymouth	State/ Province	Massachusetts		
Country	United States of America	Date	7/13/2023		
Designer Information	Designer Information		ptional)		
Name	Susan Spratt	Name			
Company McKenzie Engineering		Company			
Phone # 781-792-3900		Phone #			
Email	sspratt@mckeng.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Jackson Square SC-AB-1
Recommended Stormceptor Model	STC 450i
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	97
PSD	Fine Distribution
Rainfall Station	BLUE HILL

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizi	ng Summary
Stormceptor Model	% TSS Removal Provided
STC 450i	97
STC 900	98
STC 1200	98
STC 1800	99
STC 2400	99
STC 3600	99
STC 4800	99
STC 6000	99
STC 7200	100
STC 11000	100
STC 13000	100
STC 16000	100

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- · Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station				
State/Province	Massachusetts	Total Number of Rainfall Events	8652	
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7	
Station ID #	0736	Average Annual Rainfall (in)	49.1	
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	157.0	
Elevation (ft)	630	Total Infiltration (in)	888.5	
Years of Rainfall Data	58	Total Rainfall that is Runoff (in)	1804.2	

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

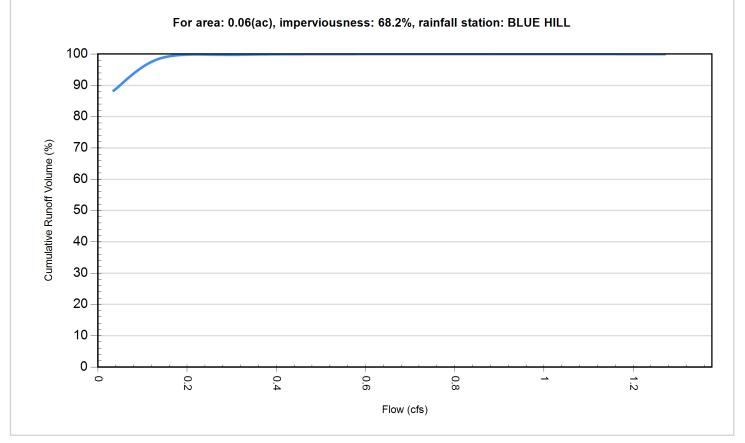
• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Drainage Area		Up Stream Storage		
Total Area (acres)	0.06	Storage (ac-ft)	Discha	arge (cfs)
Imperviousness %	68.2	0.000	0.	.000
Water Quality Objective	e	Up Stream	Flow Diversi	on
TSS Removal (%)	80.0	Max. Flow to Stormce	ptor (cfs)	
Runoff Volume Capture (%)		Desi	gn Details	•
Oil Spill Capture Volume (Gal)		Stormceptor Inlet Invert Elev (ft) 18.77		18.77
Peak Conveyed Flow Rate (CFS)		Stormceptor Outlet Invert Elev (ft) 18.77		18.77
Water Quality Flow Rate (CFS)		Stormceptor Rim Elev (ft) 21.80		21.80
		Normal Water Level Ele	evation (ft)	
		Pipe Diameter (in)	
		Pipe Material	l	
		Multiple Inlets ()	(/N)	No
		Grate Inlet (Y/I	N)	No
Particle Size Distribution (PSD)				

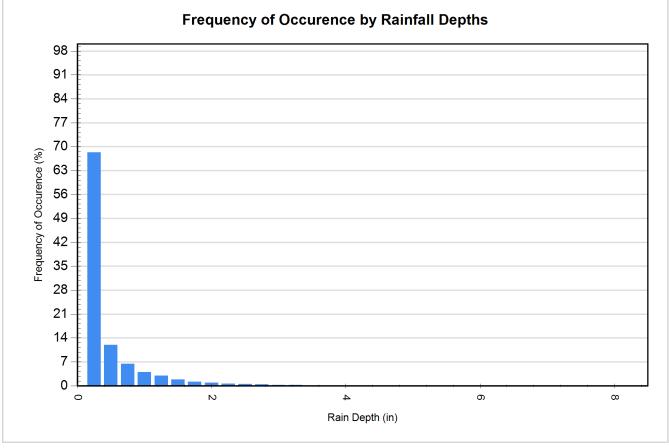
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

	Fine Distribution				
Particle Diameter (microns)	Distribution %	Specific Gravity			
20.0	20.0	1.30			
60.0	20.0	1.80			
150.0	20.0	2.20			
400.0	20.0	2.65			
2000.0	20.0	2.65			


Site Name		Jackson Square SC-AB-1	
Site Details			
Drainage Area		Infiltration Parameters	
Total Area (acres)	0.06	Horton's equation is used to estimate in	filtration
Imperviousness %	68.2	Max. Infiltration Rate (in/hr)	2.44
Surface Characteristics	5	Min. Infiltration Rate (in/hr)	0.4
Width (ft)	102.00	Decay Rate (1/sec)	0.00055
Slope %	2	Regeneration Rate (1/sec)	0.01
Impervious Depression Storage (in)	0.02	Evaporation	
Pervious Depression Storage (in)	0.2	Daily Evaporation Rate (in/day)	0.1
Impervious Manning's n	0.015	Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (cfs)	0
Maintenance Frequency	y	Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration	0
	TSS Loading	Parameters	
TSS Loading Function			
Buildup/Wash-off Parame	eters	TSS Availability Parameter	'S
Target Event Mean Conc. (EMC) mg/L		Availability Constant A	
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	

	Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (cfs)	Runoff Volume (ft ³)	Volume Over (ft ³)	Cumulative Runoff Volume (%)		
0.035	358503	47419	88.3		
0.141	400689	5224	98.7		
0.318	405115	797	99.8		
0.565	405803	109	100.0		
0.883	405911	0	100.0		
1.271	405911	0	100.0		

Cumulative Runoff Volume by Runoff Rate



Rainfall Event Analysis				
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)
0.25	5908	68.3	386	13.6
0.50	1039	12.0	381	13.4
0.75	555	6.4	344	12.1
1.00	349	4.0	301	10.6
1.25	262	3.0	292	10.3
1.50	154	1.8	211	7.4
1.75	104	1.2	168	5.9
2.00	75	0.9	140	4.9
2.25	48	0.6	102	3.6
2.50	43	0.5	102	3.6
2.75	33	0.4	87	3.0
3.00	17	0.2	49	1.7
3.25	18	0.2	56	2.0
3.50	8	0.1	27	0.9
3.75	7	0.1	25	0.9
4.00	4	0.0	15	0.5
4.25	1	0.0	4	0.1
4.50	4	0.0	18	0.6
4.75	3	0.0	14	0.5
5.00	1	0.0	5	0.2
5.25	1	0.0	5	0.2
5.50	4	0.0	21	0.7
5.75	2	0.0	11	0.4
6.00	4	0.0	23	0.8
6.25	0	0.0	0	0.0
6.50	0	0.0	0	0.0
6.75	1	0.0	7	0.2
7.00	1	0.0	7	0.2
7.25	2	0.0	14	0.5
7.50	0	0.0	0	0.0
7.75	1	0.0	8	0.3
8.00	1	0.0	8	0.3
8.25	0	0.0	0	0.0
8.25	2	0.0	17	0.6

For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Detailed Stormceptor Sizing Report – Jackson Square SC-AB-2

	Project Information & Location				
Project Name Jackson Square		Project Number	222-203		
City	Weymouth	State/ Province	Massachusetts		
Country	United States of America	Date	7/13/2023		
Designer Information	Designer Information		EOR Information (optional)		
Name	Susan Spratt	Name			
Company McKenzie Engineering		Company			
Phone # 781-792-3900		Phone #			
Email	sspratt@mckeng.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Jackson Square SC-AB-2
Recommended Stormceptor Model	STC 450i
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	94
PSD	Fine Distribution
Rainfall Station	BLUE HILL

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	94		
STC 900	96		
STC 1200	97		
STC 1800	97		
STC 2400	98		
STC 3600	98		
STC 4800	99		
STC 6000	99		
STC 7200	99		
STC 11000	99		
STC 13000	99		
STC 16000	100		

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- · Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station					
State/Province Massachusetts Total Number of Rainfall Events 8652					
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7		
Station ID #	0736	Average Annual Rainfall (in)	49.1		
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	93.9		
Elevation (ft)	630	Total Infiltration (in)	1630.1		
Years of Rainfall Data	58	Total Rainfall that is Runoff (in)	1125.7		

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

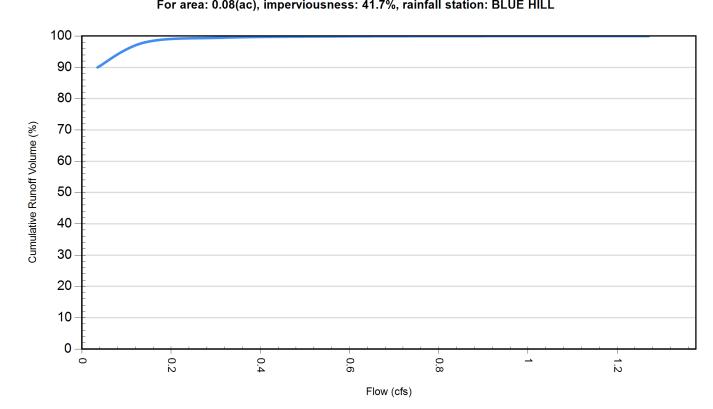
• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Drainage Area		Up Stream Storage		
Total Area (acres)	0.08	Storage (ac-ft) Discharge (cfs		arge (cfs)
Imperviousness %	41.7	0.000 0.000		.000
Water Quality Objective	e	Up Stream	Flow Diversi	on
TSS Removal (%)	80.0	Max. Flow to Stormce	eptor (cfs)	
Runoff Volume Capture (%)		Design Details		
Oil Spill Capture Volume (Gal)		Stormceptor Inlet Invert Elev (ft)		
Peak Conveyed Flow Rate (CFS)		Stormceptor Outlet Invert Elev (ft)		
Water Quality Flow Rate (CFS)		Stormceptor Rim Elev (ft)		
		Normal Water Level Ele	evation (ft)	
		Pipe Diameter	(in)	
		Pipe Materia	I	
		Multiple Inlets (Y/N) No		
	Grate Inlet (Y/N) Yes			
Particle Size Distribution (PSD)				

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

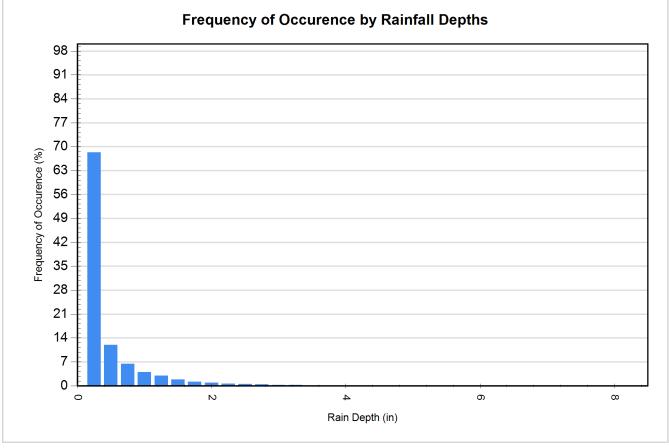
	Fine Distribution			
Particle Diameter (microns)	Distribution %	Specific Gravity		
20.0	20.0	1.30		
60.0	20.0	1.80		
150.0	20.0	2.20		
400.0	20.0	2.65		
2000.0	20.0	2.65		


Site Name Jackson Square SC-AB-2			
Site Details			
Drainage Area Infiltration Parameters			
Total Area (acres)	0.08	Horton's equation is used to estimate infiltration	
Imperviousness %	41.7	Max. Infiltration Rate (in/hr) 2.44	
Surface Characteristics		Min. Infiltration Rate (in/hr) 0.4	
Width (ft)	118.00	Decay Rate (1/sec) 0.00055	
Slope %	2	Regeneration Rate (1/sec)0.01	
· · · · · · · · · · · · · · · · · · ·	0.02		
Impervious Depression Storage (in)		Evaporation	
Pervious Depression Storage (in)	0.2	Daily Evaporation Rate (in/day) 0.1	
Impervious Manning's n	0.015	Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (cfs) 0	
Maintenance Frequency	y	Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration 0	
	TSS Loading	ng Parameters	
TSS Loading Function			
Buildup/Wash-off Parame	eters	TSS Availability Parameters	
Target Event Mean Conc. (EMC) mg/L		Availability Constant A	
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (cfs)	Runoff Volume (ft ³)	Volume Over (ft ³)	Cumulative Runoff Volume (%)	
0.035	302146	33389	90.0	
0.141	328826	6709	98.0	
0.318	333963	1573	99.5	
0.565	335248	287	99.9	
0.883	335516	19	100.0	
1.271	335535	0	100.0	

Cumulative Runoff Volume by Runoff Rate

For area: 0.08(ac), imperviousness: 41.7%, rainfall station: BLUE HILL



Rainfall Event Analysis				
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)
0.25	5908	68.3	386	13.6
0.50	1039	12.0	381	13.4
0.75	555	6.4	344	12.1
1.00	349	4.0	301	10.6
1.25	262	3.0	292	10.3
1.50	154	1.8	211	7.4
1.75	104	1.2	168	5.9
2.00	75	0.9	140	4.9
2.25	48	0.6	102	3.6
2.50	43	0.5	102	3.6
2.75	33	0.4	87	3.0
3.00	17	0.2	49	1.7
3.25	18	0.2	56	2.0
3.50	8	0.1	27	0.9
3.75	7	0.1	25	0.9
4.00	4	0.0	15	0.5
4.25	1	0.0	4	0.1
4.50	4	0.0	18	0.6
4.75	3	0.0	14	0.5
5.00	1	0.0	5	0.2
5.25	1	0.0	5	0.2
5.50	4	0.0	21	0.7
5.75	2	0.0	11	0.4
6.00	4	0.0	23	0.8
6.25	0	0.0	0	0.0
6.50	0	0.0	0	0.0
6.75	1	0.0	7	0.2
7.00	1	0.0	7	0.2
7.25	2	0.0	14	0.5
7.50	0	0.0	0	0.0
7.75	1	0.0	8	0.3
8.00	1	0.0	8	0.3
8.25	0	0.0	0	0.0
8.25	2	0.0	17	0.6

For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Detailed Stormceptor Sizing Report – Jackson Square SC-AB-3

Project Information & Location				
Project Name	Jackson Square	Project Number	222-203	
City	Weymouth	State/ Province	Massachusetts	
Country	United States of America	Date	7/13/2023	
Designer Information	signer Information (optional)		ptional)	
Name	Susan Spratt	Name		
Company	McKenzie Engineering	Company		
Phone #	781-792-3900	Phone #		
Email	sspratt@mckeng.com	Email		

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Jackson Square SC-AB-3	
Recommended Stormceptor Model	STC 450i	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	83	
PSD	Fine Distribution	
Rainfall Station	BLUE HILL	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	83		
STC 900	88		
STC 1200	88		
STC 1800	89		
STC 2400	91		
STC 3600	92		
STC 4800	93		
STC 6000	94		
STC 7200	95		
STC 11000	96		
STC 13000	96		
STC 16000	97		

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- · Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station					
State/Province Massachusetts Total Number of Rainfall Events 8652					
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7		
Station ID #	0736	Average Annual Rainfall (in)	49.1		
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	217.6		
Elevation (ft)	630	630 Total Infiltration (in)			
Years of Rainfall Data 58 Total Rainfall that is Runoff (in)			2319.0		

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

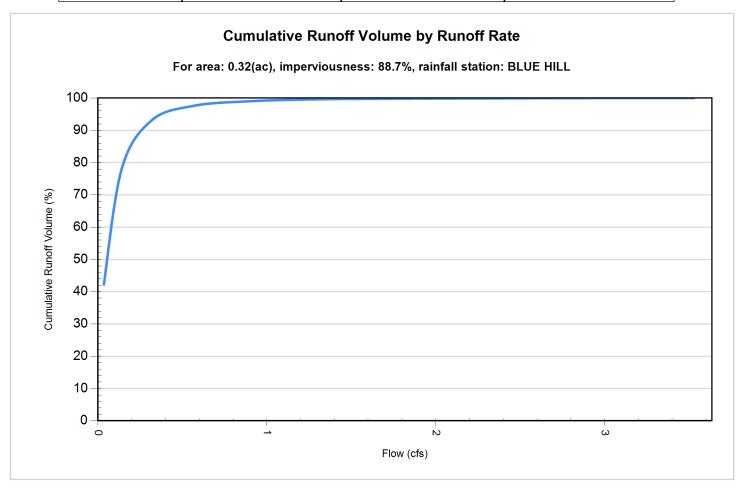
• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Drainage Area	Up Stream Storage			
Total Area (acres)	0.32	Storage (ac-ft) Discharge (cfs)		arge (cfs)
Imperviousness %	88.7	0.000 0.000		.000
Water Quality Objective		Up Stream Flow Diversion		on
TSS Removal (%)	80.0	Max. Flow to Stormce	eptor (cfs)	
Runoff Volume Capture (%)		Design Details		
Oil Spill Capture Volume (Gal)		Stormceptor Inlet Invert Elev (ft) 21.9		21.95
Peak Conveyed Flow Rate (CFS)		Stormceptor Outlet Invert Elev (ft) 21		21.95
Water Quality Flow Rate (CFS)		Stormceptor Rim Elev (ft) 24.		24.55
		Normal Water Level Ele	evation (ft)	
		Pipe Diameter ((in)	
		Pipe Materia	I	
	Multiple Inlets (Y/N)	No	
		Grate Inlet (Y/	N)	No
Particle Size Distribution (PSD)				

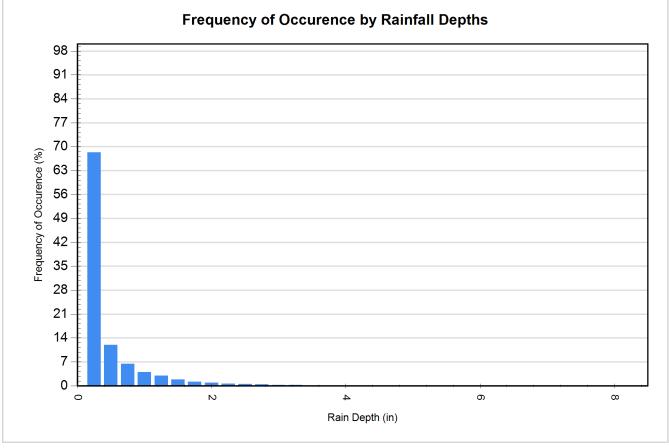
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

· · · · · · · · · · · · · · · · · · ·		
	Fine Distribution	
Particle Diameter (microns)	Distribution %	Specific Gravity
20.0	20.0	1.30
60.0	20.0	1.80
150.0	20.0	2.20
400.0	20.0	2.65
2000.0	20.0	2.65



Site Name Jackson Square SC-AB-3			
Site Details			
Drainage Area Infiltration Parameters			
Total Area (acres)	0.32	Horton's equation is used to estimate infiltration	
Imperviousness %	88.7	Max. Infiltration Rate (in/hr) 2.44	
Surface Characteristics	\$	Min. Infiltration Rate (in/hr) 0.4	
Width (ft)	236.00	Decay Rate (1/sec) 0.00055	
Slope %	2	Regeneration Rate (1/sec)0.01	
Impervious Depression Storage (in)	0.02	Evaporation	
Pervious Depression Storage (in)	0.2	Daily Evaporation Rate (in/day)0.1	
Impervious Manning's n	0.015	Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (cfs) 0	
Maintenance Frequency	y	Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration 0	
	TSS Loadin	ng Parameters	
TSS Loading Function			
Buildup/Wash-off Parame	eters	TSS Availability Parameters	
Target Event Mean Conc. (EMC) mg/L	· · · · · · · · · · · · · · · · · · ·		
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (cfs)	Runoff Volume (ft ³)	Volume Over (ft ³)	Cumulative Runoff Volume (%)	
0.035	1180324	1618911	42.2	
0.141	2184556	614467	78.1	
0.318	2606676	192197	93.1	
0.565	2730727	68022	97.6	
0.883	2770951	27785	99.0	
1.271	2786671	12055	99.6	
1.730	2793764	4960	99.8	
2.260	2796824	1897	99.9	
2.860	2797878	844	100.0	
3.531	2798482	240	100.0	



Rainfall Event Analysis				
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)
0.25	5908	68.3	386	13.6
0.50	1039	12.0	381	13.4
0.75	555	6.4	344	12.1
1.00	349	4.0	301	10.6
1.25	262	3.0	292	10.3
1.50	154	1.8	211	7.4
1.75	104	1.2	168	5.9
2.00	75	0.9	140	4.9
2.25	48	0.6	102	3.6
2.50	43	0.5	102	3.6
2.75	33	0.4	87	3.0
3.00	17	0.2	49	1.7
3.25	18	0.2	56	2.0
3.50	8	0.1	27	0.9
3.75	7	0.1	25	0.9
4.00	4	0.0	15	0.5
4.25	1	0.0	4	0.1
4.50	4	0.0	18	0.6
4.75	3	0.0	14	0.5
5.00	1	0.0	5	0.2
5.25	1	0.0	5	0.2
5.50	4	0.0	21	0.7
5.75	2	0.0	11	0.4
6.00	4	0.0	23	0.8
6.25	0	0.0	0	0.0
6.50	0	0.0	0	0.0
6.75	1	0.0	7	0.2
7.00	1	0.0	7	0.2
7.25	2	0.0	14	0.5
7.50	0	0.0	0	0.0
7.75	1	0.0	8	0.3
8.00	1	0.0	8	0.3
8.25	0	0.0	0	0.0
8.25	2	0.0	17	0.6

For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Detailed Stormceptor Sizing Report – Jackson Square SC-C-1

Project Information & Location			
Project Name	Jackson Square Proje		222-203
City	Weymouth	State/ Province	Massachusetts
Country	United States of America Date 7/13/20		7/13/2023
Designer Information		EOR Information (o	ptional)
Name	Susan Spratt	Name	
Company McKenzie Engineering		Company	
Phone #	Phone # 781-792-3900 Phone #		
Email	sspratt@mckeng.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Jackson Square SC-C-1	
Recommended Stormceptor Model	STC 16000	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	82	
PSD	Fine Distribution	
Rainfall Station	BLUE HILL	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	50		
STC 900	61		
STC 1200	62		
STC 1800	62		
STC 2400	67		
STC 3600	67		
STC 4800	72		
STC 6000	72		
STC 7200	75		
STC 11000	79		
STC 13000	79		
STC 16000	82		

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- · Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station			
State/Province	Massachusetts	Total Number of Rainfall Events	8652
Rainfall Station Name	BLUE HILL	Total Rainfall (in)	2849.7
Station ID #	0736	Average Annual Rainfall (in)	49.1
Coordinates	42°12'44"N, 71°6'53"W	Total Evaporation (in)	185.2
Elevation (ft)	630	Total Infiltration (in)	866.9
Years of Rainfall Data	58	Total Rainfall that is Runoff (in)	1797.6

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

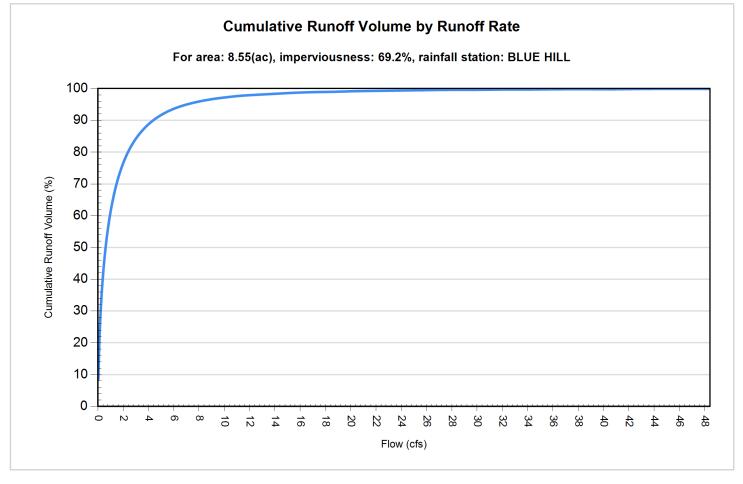
• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

55			
	Storage (ac-ft) Discharge (cfs)		irge (cfs)
9.2	0.000 0.000		000
	Up Stream	Flow Diversi	on
).0	Max. Flow to Stormce	ptor (cfs)	
	Design Details		
	Stormceptor Inlet Invert Elev (ft) 25.20		25.20
	Stormceptor Outlet Invert Elev (ft) 25.20		25.20
	Stormceptor Rim Elev (ft) 28.00		28.00
Normal Water Level Elevation (ft)			
	Pipe Diameter (įin)	
	Pipe Material		
Multiple Inlets (Y/N) No		No	
Grate Inlet (Y/N) No			
		.0 Max. Flow to Stormce .0 Designation Stormceptor Inlet Invention Stormceptor Outlet Invention Stormceptor Outlet Invention Stormceptor Rim E Normal Water Level Elector Pipe Diameter (Pipe Material Multiple Inlets (Design Details Stormceptor Inlet Invert Elev (ft) Stormceptor Outlet Invert Elev (ft) Stormceptor Rim Elev (ft) Normal Water Level Elevation (ft) Pipe Diameter (in) Pipe Material Multiple Inlets (Y/N) Grate Inlet (Y/N)

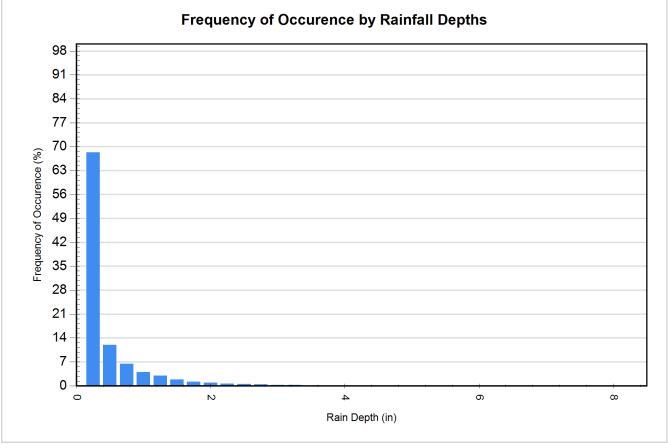
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Fine Distribution			
Particle Diameter (microns)	Distribution %	Specific Gravity	
20.0	20.0	1.30	
60.0	20.0	1.80	
150.0	20.0	2.20	
400.0	20.0	2.65	
2000.0	20.0	2.65	

Site Name Jackson Square SC-C-1			
Site Details			
Drainage Area Infiltration Parameters		Infiltration Parameters	
Total Area (acres)	8.55	Horton's equation is used to estimate infiltration	
Imperviousness %	69.2	Max. Infiltration Rate (in/hr)2.44	
Surface Characteristics	5	Min. Infiltration Rate (in/hr)0.4	
Width (ft)	1221.00	Decay Rate (1/sec) 0.00055	
Slope %	2	Regeneration Rate (1/sec)0.01	
Impervious Depression Storage (in)	0.02	Evaporation	
Pervious Depression Storage (in)	0.2	Daily Evaporation Rate (in/day)0.1	
Impervious Manning's n	0.015	Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (cfs) 0	
Maintenance Frequency	y	Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration 0	
	TSS Loading	g Parameters	
TSS Loading Function			
Buildup/Wash-off Parame	eters	TSS Availability Parameters	
Target Event Mean Conc. (EMC) mg/L		Availability Constant A	
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	



	Cumulative Runo	ff Volume by Runoff Ra	ite
Runoff Rate (cfs)	Runoff Volume (ft ³)	Volume Over (ft ³)	Cumulative Runoff Volume (%)
0.035	4896203	52169730	8.6
0.141	13203310	43865260	23.2
0.318	20904440	36116210	36.7
0.565	27624740	29416710	48.4
0.883	33310980	23717740	58.4
1.271	38055300	18999460	66.7
1.730	41911970	15130630	73.5
2.260	45044750	11987070	79.0
2.860	47573540	9459703	83.4
3.531	49578950	7446418	86.9
4.273	51172100	5855130	89.7
5.085	52424810	4600902	91.9
5.968	53391500	3630782	93.6
6.922	54129560	2892545	94.9
7.946	54694420	2327223	95.9
9.041	55129710	1892246	96.7
10.206	55470440	1550771	97.3
11.442	55742340	1278809	97.8
12.749	55956970	1064206	98.1
14.126	56126180	895165	98.4
15.574	56264190	757126	98.7
17.092	56379410	641530	98.9
18.681	56474380	546759	99.0
20.341	56553780	467226	99.2
22.072	56624110	396958	99.3
23.873	56683900	337037	99.4
25.744	56732280	288729	99.5
27.687	56773090	247860	99.6
29.700	56809840	210994	99.6
31.783	56843440	177391	99.7
33.937	56870160	150634	99.7
36.162	56891820	128936	99.8
38.458	56910340	110407	99.8
40.824	56927950	92785	99.8
43.261	56942310	78437	99.9
45.768	56954620	66134	99.9
48.346	56965090	55670	99.9



Rainfall Event Analysis								
Rainfall Depth (in)	No. of Events	Percentage of Total Events (%)	Total Volume (in)	Percentage of Annual Volume (%)				
0.25	5908	68.3	386	13.6				
0.50	1039	12.0	381	13.4				
0.75	555	6.4	344	12.1				
1.00	349	4.0	301	10.6				
1.25	262	3.0	292	10.3				
1.50	154	1.8	211	7.4				
1.75	104	1.2	168	5.9				
2.00	75	0.9	140	4.9				
2.25	48	0.6	102	3.6				
2.50	43	0.5	102	3.6				
2.75	33	0.4	87	3.0				
3.00	17	0.2	49	1.7				
3.25	18	0.2	56	2.0				
3.50	8	0.1	27	0.9				
3.75	7	0.1	25	0.9				
4.00	4.00 4		15	0.5				
4.25	1	0.0	4	0.1				
4.50	4	0.0	18	0.6				
4.75	3	0.0	14	0.5				
5.00	1	0.0	5	0.2				
5.25	1	0.0	5	0.2				
5.50	4	0.0	21	0.7				
5.75	2	0.0	11	0.4				
6.00	4	0.0	23	0.8				
6.25	0	0.0	0	0.0				
6.50	0	0.0	0	0.0				
6.75	1	0.0	7	0.2				
7.00	1	0.0	7	0.2				
7.25	2	0.0	14	0.5				
7.50	0	0.0	0	0.0				
7.75	1	0.0	8	0.3				
8.00	1	0.0	8	0.3				
8.25	0	0.0	0	0.0				
8.25	2	0.0	17	0.6				

For Stormceptor Specifications and Drawings Please Visit: https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Existing Storm Drainage Computations with Proposed Overflow Connections: Closed Drainage System

Name: Jackson Square, Weymouth, MA

Client:

Proj. No.: 222-203 Date: 8/4/23 Computed by: SBS

Checked by: BCM

Assinippi Office Park

150 Longwater Drive, Suite 101

Norwell, MA 02061

	LOCA	TION					FLOW	TIME (MIN)					DESIGN				CAPA	ACITY					
	FROM	TO	AREA	С	C x A	SUM	PIPE	CONC	i*	Q	Q Total	V	n	PIPE	SLOPE	MATERIAL	Q full	V full	LENGTH	FALL	RIM	INV	INV
			(AC.)			C x A		TIME		cfs	cfs	fps		SIZE			ft^3/s	ft/s	ft	ft	UPPER	UPPER	LOWER
	CB-1	DMH-2	0.06	0.90	0.05	0.05	0.39	6.0	5.7	0.3	0.3	2.3	0.013	12	0.014	HDPE	4.2	5.3	55	0.75	25.42	21.60	20.85
	CB-2	DMH-2	0.04	0.90	0.04	0.04	0.12	6.0	5.7	0.2	0.2	1.6	0.013	12	0.006	HDPE	2.7	3.5	12	0.07	23.38	19.70	19.63
LOVELL FIELD	DMH-2	DMH-1				0.21	0.19	6.4	5.7	1.2	1.2	3.5	0.013	12	0.010	HDPE	3.6	4.6	39	0.40	23.94	19.45	19.05
	DCB-4	DMH-3	0.88	0.52	0.00	0.09	0.89	6.0	5.7	0.5	0.5	2.7	0.013	12	0.010	HDPE	3.6	4.6	142	1.45	23.17	19.15	17.70
	CB-5	DMH-3	0.16	0.80	0.13	0.13	0.08	6.0	5.7	0.7	0.7	4.3	0.013	12	0.032	HDPE	6.3	8.1	20	0.63	23.66	17.63	17.00
	DMH-3	DMH-1				0.22	0.58	6.9	5.5	1.2	1.2	3.4	0.013	12	0.010	HDPE	3.5	4.4	120	1.15	23.66	17.63	16.48
LOVELL FIELD	DMH-1	HWALL				0.56	0.28	7.5	5.4	3.0	3.0	5.0	0.013	12	0.014	HDPE	4.2	5.4	85	1.19	23.00	16.38	15.19
	SWALE	DMH				1.46	0.11	6.0	5.7	8.4	8.4	6.0	0.013	18	0.011	HDPE	10.9	6.2	39	0.42	20.00	13.87	13.45
	AB-1	DMH-1				0.12	0.50	6.0	5.7	0.7	0.7	2.7	0.013	12	0.008	HDPE	3.1	4.0	80	0.62	23.90	16.75	16.13
	AB-2	DMH-1				0.01	0.01	6.0	5.7	0.05	0.1	1.4	0.013	12	0.020	HDPE	5.0	6.4	1	0.02	23.90	19.00	18.98
	AB3	DMH-2				0.12	0.11	6.0	5.7	0.7	0.7	4.1	0.013	12	0.030	HDPE	6.1	7.8	28	0.83	23.90	21.83	21.00
l																							

Design Parameters: 25 Year Storm Boston, MA

0.5

APPENDIX E

Soil Testing Data

P City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A.	Facility Information			
	Eric Papachristos			
	Owner Name			
	Broad Street			53-17, 253-18, 253-21, 305-1, 305-9,
	Street Address		305-10, 305-11, 305-4, 306-11	
	Weymouth	MA	02189 Zip Code	
	City	State		
B.	Site Information			
1.	(Check one) 🛛 New Construction	Upgrade		
2	Soil Survey Web Soil Survey	602 & 655	Urban Lar	nd & Udorthents, wet substratum
Z	Source	Soil Map Unit	Soil Series	
		None		
	Landform	Soil Limitations		
	Outwash			,
	Soil Parent material			
3.	our relation of the second s	al Materials of Massachusetts	Coarse de	eposits
	Year Published/S		Map Unit	
	gravel deposits, sand & gravel deposits and sand	deposits		
	Description of Geologic Map Unit:			
4.	Flood Rate Insurance Map Within a regula	atory floodway? 🗌 Yes 🛛	No	
5.	Within a velocity zone? 🗌 Yes 🛛 No			
~	Within a Mapped Wetland Area?	If yes, Ma	ssGIS Wetland Data Layer:	
6.				
7.	Current Water Resource Conditions (USGS):	01/08/23	Range: 🗌 Above Normal	🛛 Normal 🔲 Below Normal
~		Month/Day/ Year		
8.	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Portal, etc.)			

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	Hole Numbe	er: <u>TP-1</u>	02/08/	23	8:15 AM		lostly Cloud	/ - 43	42d 12'56.6' Latitude	<u>70d 55'23.1"</u> Longitude			
			Hole #	Date		Time		Veather		Latitude	1-3%			
1. Land		ential/Commer			Grass/weeds		None		cobbles sto	nes, boulders, et				
			ral field, vacant lot, e		Vegetation		Sunac	e Giories (e.g.,	CODDICS, 310					
Descriptio	n of Location	: va	cant gravel parking a	lea										
2. Soil P	arent Materia	al: Outwash			Land	form		Position on	andscape (SU, SH, BS, FS,	TS, Plain)			
3. Distar	nces from:	Open	Water Body 2	2 <u>5</u> feet	Land	Drainag	e Way 2				ds <u>N/A</u> feet			
		F	Property Line 3	<u>30</u> feet		Drinking Wate	r Well <u>N</u>	<u>I/A</u> feet		Oth	er feet			
4. Unsu	itable Materi	als Present: [🗋 Yes 🛛 No	If Yes:	Disturbed S	Soil/Fill Material	Ľ] Weathered/	Fractured	Rock 🗌 Bei	drock			
5. Grou	ndwater Obse	erved: 🗌 Yes	No No		-	Depth t	to Weeping	g in Hole		Depth to Sta	nding Water in Hole			
					5	Soil Log			·					
	Soil Horizon	n Soil Texture (USDA	Soil Texture	Soil Texture	Soil Matrix: Color-		Redoximorphic Features		Coarse Fragments % by Volume		Soil	Soil Consistence (Moist)	Other	
Depth (in)	/Layer		Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure					
					Cnc :		-							
0"-42"	F	Fill			Dpl:									
		Fill			Cnc :									
42"-66"	F	T IN			Dpl:					ļ				
66"-108"	C1	Loamy sand /Sand	10YR3/4	66"	Cnc :10YR4/6 Dpl:		30	30	Single grain	Loose	Coarse/ many cobbles/ Trace of fines			
					Cnc:			-	1					
					Dpl:									
					Cnc :									
					Dpl:									
	<u> </u>			1	Cnc :									

Additional Notes:

C1 horizon looks to be oxidized - perhaps high iron content.

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

D	eep Obs	ervation	Hole Numbe	r: <u>TP-2</u> Hole #	02/08 Date	/23 <u>8</u> :: Tir	50 AM ne		lostly Cloudy	/-45	42d 12'56.7" Latitude	70d 55'24.2" Longitude
1. La	and Use:		idential/Comm woodland, agricu	nercial Iltural field, vacant k	ot, etc.)	Grass/weeds Vegetation		None Surface	e Stones (e.g.,	cobbles, stor	es, boulders, etc.)	1-3% Slope (%)
D	escriptio	n of Loca	tion:	Vacant gravel parki	ng area							_
2. So	oil Paren	nt Materia	I: Outwash			Landform			Position on	Landscape (SU, SH, BS, FS, T	S, Plain)
3. Di	stances	from:	Open	Water Body 1	<u>05</u> feet	Landoni	Drainage	e Way <u>1</u>			Wetland	
			P	roperty Line 5	feet	Drit	nking Wate	r Well <u>N</u>	I/A feet		Othe	r feet
4. Un:	suitable	Materials	Present:	Yes 🛛 No 🛛	fYes: [Disturbed Soil/Fil	Material		Weathered/Fr	actured Roo	ck 🗍 Bedroci	k
5. G	roundwa	ater Obse	rved: 🗌 Yes	🛛 No		lf	yes:	_ Depth to	Weeping in Ho	le	Depth Stand	ding Water in Hole
						Soi	l Log	Caser	e Fragments	r~1		· · · · · · · · · · · · · · · · · · ·
Dout	So So	il Horizon		Soil Matrix: Color-		Redoximorphic Feat	ures	% b	y Volume	Soil	Soil Consistence	Other
Dept	1 (IN)	/Layer	(USDA)	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	
0"-:	32"	F	Fill			Cnc : Dpl:	-					
32"-	42"	A	Sandy loam	10YR2/2		Cnc :	+			Massive	Friable	
42"-	52"	Bw	Sandy loam	7.5YR4/6		Cnc: Dpl:				Massive	Friable	
52"-	108"	C1	Sand/loamy sand	10YR3/4	60"	Cnc :10YR4/6 Dpl:	-	30	25	Single grain	Loose	Coarse/some fines
-						Cnc: Dpl:	-					
						Cnc :						
						Dpl:						

Additional Notes:

Entire C1 horizon appears to be oxidized - perhaps high iron content.

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used (Choose one): Depth to soil redoximorphic features	Obs. Hole # <u>TP-1</u> <u>66</u> inches	Obs. Hole # <u>TP-2</u> <u>60</u> inches	
	Depth to observed standing water in observation hole	inches	inches	
	 Depth to adjusted seasonal high groundwater (Sh) (USGS methodology) 	inches	inches	
	Index Well Number Reading Date			
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$			
	Obs. Hole/Well# Sc Sr	O₩c	OW _{max} OW _r S _h	-

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
 - 🛛 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	52 inches	Lower boundary:	108 inches
c.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107

Signature of Soil Evaluat	or
---------------------------	----

Alan Loomis / SE #1405

Typed or Printed Name of Soil Evaluator / License #

Feb. 8, 2023 Date June 30, 2025 Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information

	Eric Papachristos							
	Owner Name		Demail Nee 052 44 052 46 05	2 17 252 19 253 21 205 1 305-0				
	Broad Street		Parcel Nos.253-14, 253-16, 253-17, 253-18, 253-21, 305-1, 305-8 305-10, 305-11, 305-4, 306-11					
	Street Address	MA	02189					
	Weymouth City	State	Zip Code					
	Gity							
B.	Site Information							
1.	(Check one) 🛛 New Construction 🗌 U	pgrade						
2	Soil Survey Web Soil Survey	602 & 655	Urban Lar	nd & Udorthents, wet substratum				
*	Source	Soil Map Unit	Soil Series					
		None						
	Landform	Soil Limitations						
	Outwash							
	Soil Parent material							
3.		Materials of Massachusetts	Coarse de	eposits				
	Year Published/Sc		Map Unit					
	gravel deposits, sand & gravel deposits and sand	deposits						
	Description of Geologic Map Unit:							
4.	Flood Rate Insurance Map Within a regulat	ory floodway? 🔲 Yes 🛛 N	0					
-								
5.	Within a velocity zone? 🗌 Yes 🛛 No							
6.	Within a Mapped Wetland Area?	☑ No If yes, Mass	sGIS Wetland Data Layer:	Wetland Type				
_		01/08/23	Range: 🔲 Above Normal	Normal Below Normal				
7.	Current Water Resource Conditions (USGS):	Month/Day/ Year	Range. El Above Roman					
8	Other references reviewed:							
U.	(Zone II, IWPA, Zone A, EEA Data Portal, etc.)							

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	er: <u>TP-3</u> Hole #	02/08/ Date	23	9:20 AM Time		Nostly Cloud	y - 45	42d 12'56.5" Latitude	Longitude
1. Land Descriptio		=	rcial Iral field, vacant lot, o cant gravel parking a		Grass/weeds Vegetation		None Surfac		cobbles, sto	ones, boulders, et	1-3% c.) Stope (%)
2. Soil P	arent Mater	ial: Outwash			Land	form		Position on	andscane (SU, SH, BS, FS,	TS Plain)
3. Distar	nces from:	Oper	Water Body	<u>160</u> feet	Candi		e Way <u>1</u>		Landodapo (Wetlan	
		í	Property Line	<u>20</u> feet		Drinking Wate	er Well <u>N</u>	<u>N/A</u> feet		Othe	er feet
4. Unsu	itable Mater	rials Present:	🗌 Yes 🛛 No	If Yes:	Disturbed S	Soil/Fill Material] Weathered/	Fractured	Rock 🗌 Bed	drock
5. Grour	ndwater Obs	erved: 🛛 Yes	i 🗌 No		If yes:	Depth	to Weeping	g in Hole	<u>102</u>	2" Depth to Stand	ling Water in Hole
					9	Soil Log					
Depth (in)	Soil Horizon		Soil Matrix: Color-	-	Redoximorphic Features		Coarse Fragments % by Volume		Soil	Soil Consistence	Other
Deput (iii)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	
0"-38"	F	Fill			Cnc : Dpl:			50			
38"-47"	C1	Fill	10YR3/4		Cnc: Dpl:		30	25	Single grain	Loose	
47"-67"	C2	Loamy sand /Sand	10YR2/1		Cnc : Dpl:		30	25	Single grain	Cemented in place	Bog iron
67"-108	C3		10YR3/3	70"	Cnc :10YR4/6 Dpl:		30	25	Single grain	Loose	Coarse/ many cobbles/
					Cnc : Dpl:						
				1	Cnc : Dpl:						

Additional Notes:

Bright band of redox at 70"

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	h Hole Numbe	er: <u>TP-4</u> Hole #	02/08 Date		10:00 AM Time		Nostly Cloud	<u>y-45</u>	42d 12'56.8" Latitude	70d 55'24.7" Longitude
1. Land l		idential/Comn , woodland, agric	nercial ultural field, vacant lo	ot, etc.)	Grass/weed Vegetation	S	None Surface		cobbles, stor	nes, boulders, etc.	1-3%) Slope (%)
Descri	iption of Loca	ation:	Vacant gravel parki	ng area							
2. Soil Pa	arent Materia	al: Outwash	<u></u>		Landfo			Position on	Landscape	(SU, SH, BS, FS, *	rs Plain)
3. Distan	ces from:	Open	Water Body <u>1</u>	<u>35</u> feet	Landic	Drainage	e Way <u>1</u>		Lanuscape	Wetland	
		F	Property Line 5	feet	C	rinking Wate	rWell <u>N</u>	<u>I/A</u> feet		Othe	f feet
4. Unsuita	ble Materials	s Present:	Yes 🛛 No I	fYes:	Disturbed Soil/	Fill Material		Weathered/Fr	actured Roo	ck 🗌 Bedroc	k
5. Groun	dwater Obse	erved: 🗌 Yes	🛛 No			lf yes:		Weeping in Ho e Fragments	le	Depth Stan	ding Water in Hole
Depth (in)	Soil Horizon		Soil Matrix: Color-		Redoximorphic Fe	atures		y Volume	SAIL .	Soil Consistence	Other
	/Layer	(USDA)	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	
0"-57"	F	Fill			Cnc Dpl						
57"-63"	В	Sandy loam	7.5YR4/6		Cnc : Dpl:		30	25	Massive	Friable	
					opi.			=0	macono	Паріс	
63"-102"	C1	Sand/loamy sand	10YR3/4	63"	Cnc :10YR4/6 Dpl:		30	25	Single grain	Loose	Coarse/some fines
63"-102"	C1		10YR3/4	63"	Cnc :10YR4/6 Dpl: Cnc :	_			Single		Coarse/some fines
63"-102"	C1		10YR3/4	63"	Cnc :10YR4/6 Dpl:				Single		Coarse/some fines
63"-102"	C1		10YR3/4	63"	Cnc :10YR4/6 Dpl: Cnc : Dpl:				Single		Coarse/some fines
63"-102"	C1		10YR3/4	63"	Cnc :10YR4/6 Dpl: Cnc : Dpl: Cnc :				Single		Coarse/some fines

Bog iron lenses & redox throughout C1 horizon

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

I. N	Method Used (Choose one):	Obs. Hole # <u>TP-3</u>	Obs. Hole # TP-3 Obs. Hole # TP-4			
[Depth to soil redoximorphic features	70 inches	<u>63</u> inches			
[Depth to observed standing water in observation hole	inches	inches			
[Depth to adjusted seasonal high groundwater (Sh) (USGS methodology) 	inches	inches			
	Index Well Number Reading Date					
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$					
	Obs. Hole/Well# Sc Sr	OWc	OW _{max} OW _r	Sh		

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
 - 🛛 Yes 🗌 No
 - b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?
 Upper boundary:
 67
 Lower boundary:
 108

 c. If no, at what depth was impervious material observed?
 Upper boundary:
 108
 inches
 inches

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through

15.107. Che (J).

Signature of Soil Evaluator

Alan Loomis / SE #1405

Typed or Printed Name of Soil Evaluator / License #

Feb. 8, 2023 Date June 30, 2025 Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams: Use this area for field diagrams:

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information

	Eric Papachristos					
	Owner Name		_			CO 04 005 4 005 0
	Broad Street					253-21, 305-1, 305-9,
	Street Address			-11, 305-4, 306-11		
	Weymouth	<u>MA</u>	02189			
	City	State	Zip Code			
B.	Site Information		·	· · · · · · · · · · · · · · · · · · ·		
1.	(Check one) 🛛 New Constr	ruction 🗌 Upgrade				
2.	Soil Survey Web Soil Surv	vev 602 & 655		Urban Lar	nd & Udorthents	, wet substratum
	Source	Soil Map Unit		Soil Series		<u> </u>
		None				
	Landform	Soil Limitations				
	Outwash					
	Soil Parent material					
3.	Surficial Geological Report	2018/ Surficial Materials of Mass	sachusetts	Coarse de	posits	
		Year Published/Source		Map Unit		
	gravel deposits, sand & gravel of	deposits and sand deposits				
	Description of Geologic Map Unit:					
4.	Flood Rate Insurance Map	Within a regulatory floodway?	🗌 Yes 🛛 No			
5.	Within a velocity zone?	Yes 🛛 No				
6.	Within a Mapped Wetland Area	n? 🗌 Yes 🛛 No	If yes, MassGIS Wetland	Data Layer:	Wetland Type	
			Benger (Above Normal	Normal	Below Normal
7.	Current Water Resource Condit	tions (USGS): 01/08/23 Month/Day/ Year		Above Normal		
8.	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Port	tal, etc.)				

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	er: <u>TP-5</u> Hole #	02/08/ Date	23	10:50 AM Time		Mostly Cloudy Weather	y 45	42d 12'57.0" Latitude	70d 55'26.0" Longitude
1. Land			iral field, vacant lot,		Grass/weeds Vegetation		Non Surfa		cobbles, sto	nes, boulders, etc.	1-3% Slope (%)
Descriptio		I									_
2. Soil P	arent Materi	al: Outwash			Landi			Desition on I	andecane (SU, SH, BS, FS, T	S Plain)
3. Distar	nces from:	Oper	n Water Body	<u>>100</u> feet			e Way	> <u>100</u> feet	Landsoupe (s <u>N/A</u> feet
		F	Property Line	<u>10</u> feet		Drinking Wate	er Well	<u>N/A</u> feet		Other	feet
4. Unsu	itable Mater	ials Present:	🗌 Yes 🛛 No	if Yes:	Disturbed S	Soil/Fill Material	[] Weathered/	Fractured I	Rock 🔲 Bedr	ock
5. Grour	ndwater Obs	erved: 🛛 Yes	🗌 No		If yes:	Depth :	to Weepin	g in Hole	<u>81"</u>	Depth to Standing	Water in Hole
					9	Soil Log					
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color	-	Redoximorphic Fe	eatures		e Fragments by Volume	Soil	Soil Consistence	Other
Depth (m)	/Layer	(USDA	(USDA Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	
0"-12"	Ap	Sandy loam	10YR2/2		Cnc : Dpl:		15	5	Massive	Friable	. <u></u>
12" - 27"	Bw	Loamy sand	10YR3/6		Cnc : Dpl:		20	10	Massive	Very friable	
27"-96"	C1	Sand	10YR3/4	64"	Cnc :10YR4/6 Dpl:		30	25	Single grain	Cemented in place	Coarse
					Cnc :						
		<u> </u>			Dpl: Cnc :						
					Dpl:						
					Cnc :						
					Dpl:						

Additional Notes:

Band of redox at 64"

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

De	ep Obse	ervation	Hole Numbe	er: <u>TP-6</u> Hole #	02/08/ Date		11:05 AM Time		lostly Cloudy leather	/-45	42d 12'57.3" Latitude	70d 55'26.4" Longitude
1. La	nd Use:		_	ultural field, vacant lo	ot, etc.)	Grass/weed Vegetation	ls	None Surface	e Stones (e.g., o	cobbles, ston	ies, boulders, etc.	1-3%) Slope (%)
De	escription	of Loca	tion:	Wooded area								
2. Sc	oil Parent	Materia	I: Outwash						Destination	Landacana (SU, SH, BS, FS,	
3. Di	stances fi	rom:	Open	Water Body >	<u>100</u> feet	Landfo		eWay <u>></u>			Wetland	
			F	Property Line 1	5 feet	C	Drinking Wate	r Well <u>N</u>	I/A feet		Othe	er feet
4. Uns	uitable M	laterials	Present:		_	Disturbed Soil/	Fill Material	Πv	Veathered/Fr	actured Roo	ck 🗌 Bedroo	k
5. Gi	roundwate	er Obse	rved: 🛛 Yes	🗌 No			If yes:	_ Depth to '	Weeping in Ho	le <u>9</u> (5" Depth Standin	g Water in Hole
						S	Soil Log					
	" Soil	Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic Fe	eatures		e Fragments y Volume	Soil	Soil Consistence	Other
Depth		Layer	(USDA)	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	•
0"-1	3"	А	Sandy loam	10YR2/2		Cnc : Dpl:		10	5	Massive	Friable	
13"-2	28"	Bw	Loamy sand	10YR3/6		Cnc: Dpl:		25	10	Massive	Very friable	
28"-(64"	C1	Loamy sand	Variegated*	64"**	Cnc :10YR4/6 Dpl:		30	25	Single grain	Cemented lenses	See comments below
		C2	Sand	10YR3/4		Cnc : Dpl:		30	25	Single grain	Loose	Coarse
62"-1	105"	0L										
62"-1	105"	UL				Cnc :						
62"-1	105"					Cnc : Dpl: Cnc :						

*Bog iron lenses & various colors & textures throughout C1 horizon **Bright band of redox @ 64'

Commonwealth of Massachusetts P City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Me	thod Used (Choose one):			Obs. Hole #TP-5		Obs. Hole # <u>TP-6</u>		
	\bowtie	Depth to soil redoximorphic fea		64 inches		<u>64</u> inches			
		Depth to observed standing water in observation hole			inches		inches		
		Depth to adjusted seasonal high groundwater (Sh) (USGS methodology)			inches		inches		
		Index Well Number		Reading Date					
		$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$							
		Obs. Hole/Well#	Sc	Sr	OWc	OW _{max} _	OW _r	Sh	

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	27 inches	Lower boundary:	96 inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Weymouth

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator

Alan Loomis / SE #1405

Typed or Printed Name of Soil Evaluator / License #

Feb. 8, 2023	
Date	
June 30, 2025	
Expiration Date of License	

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

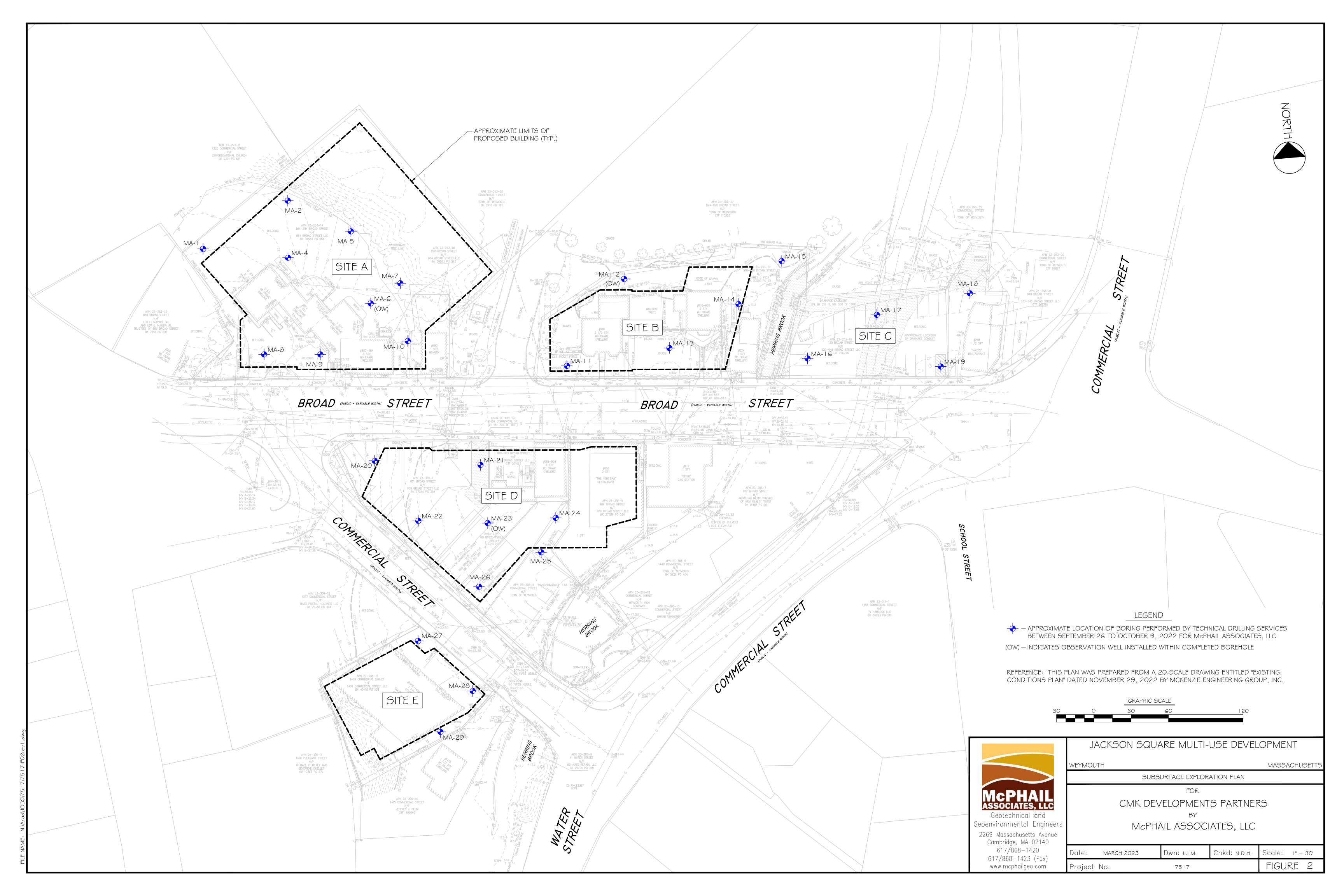
City/Town of Weymouth

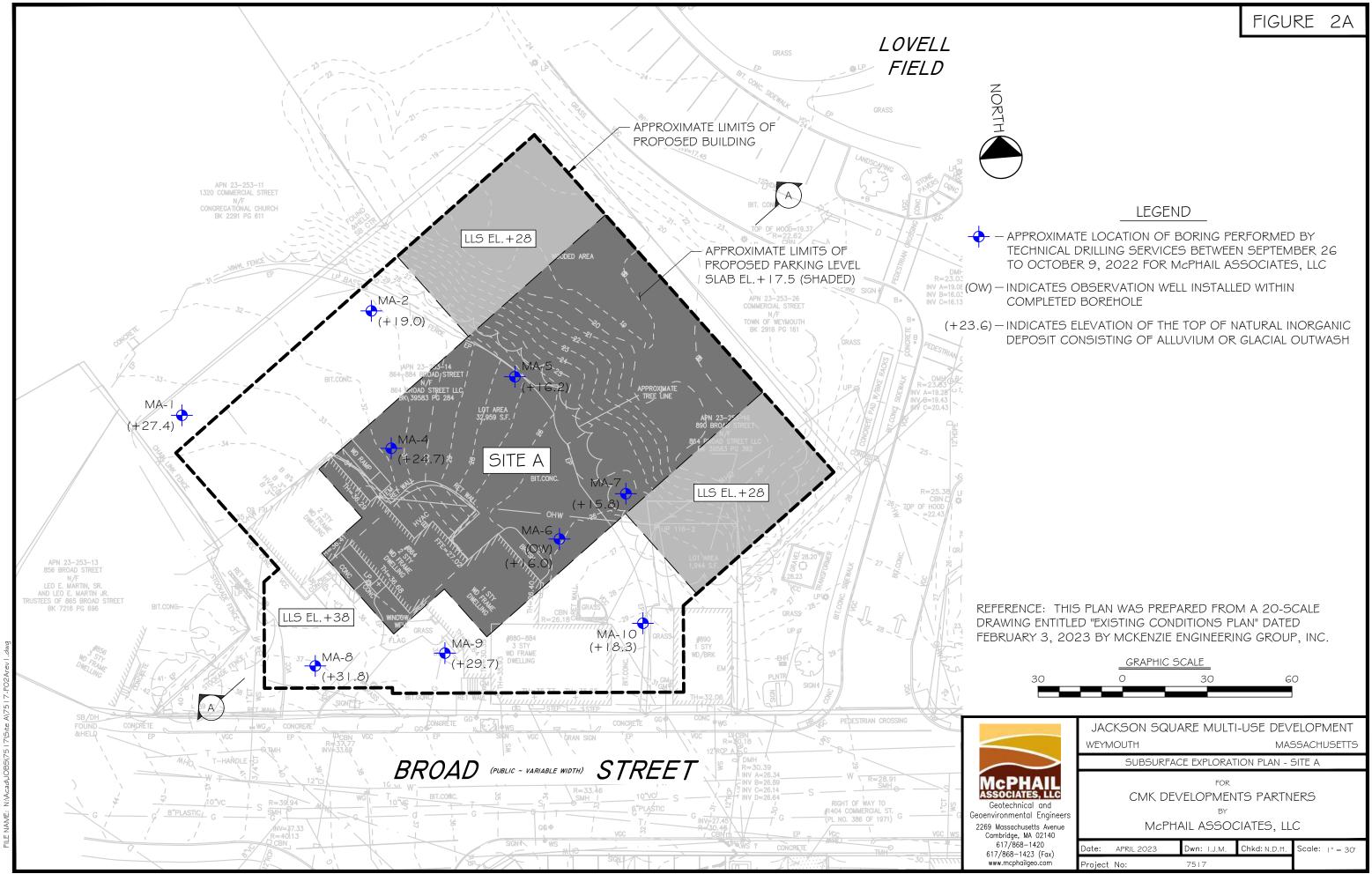
Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

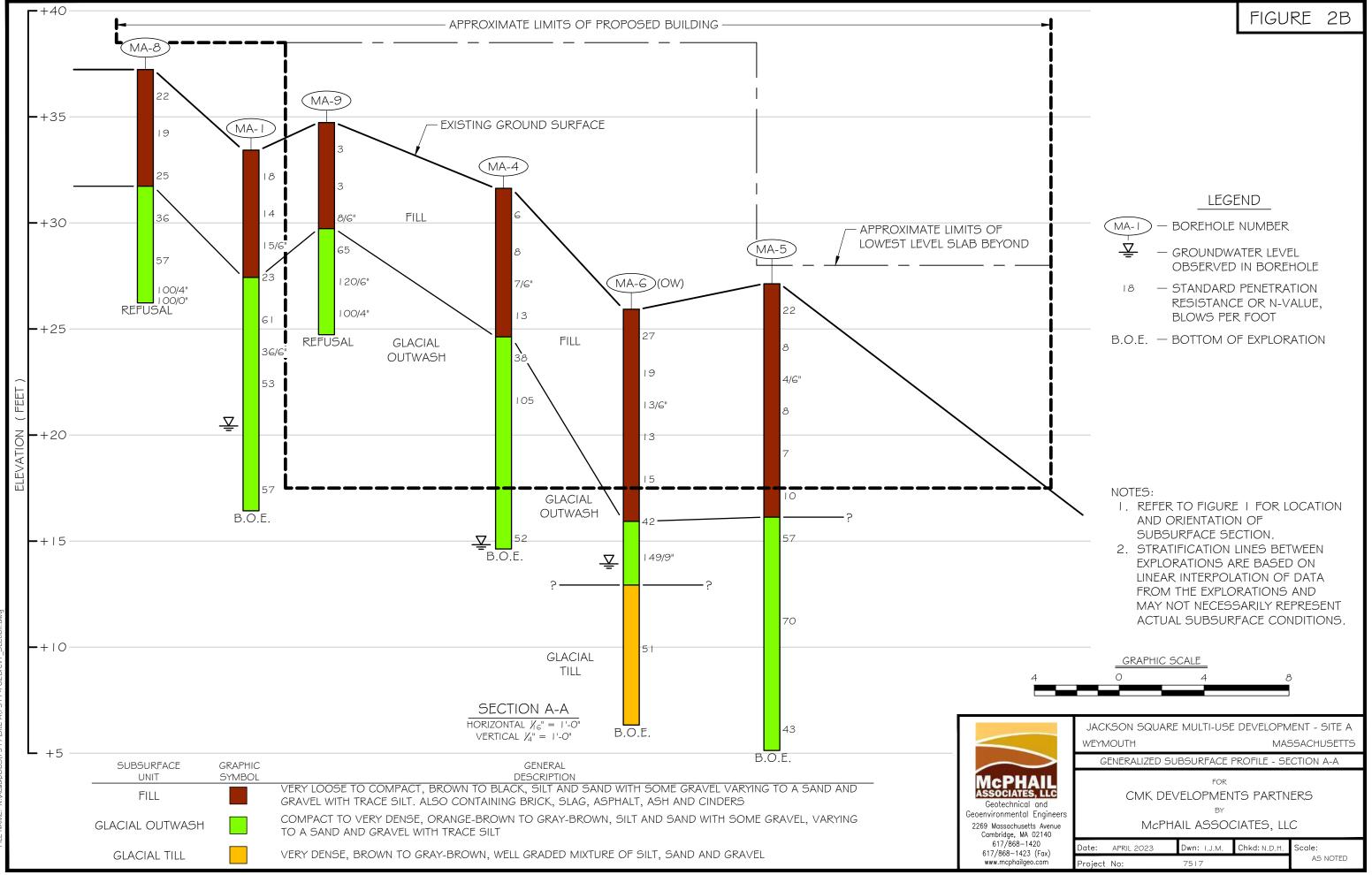
A. Facility Information

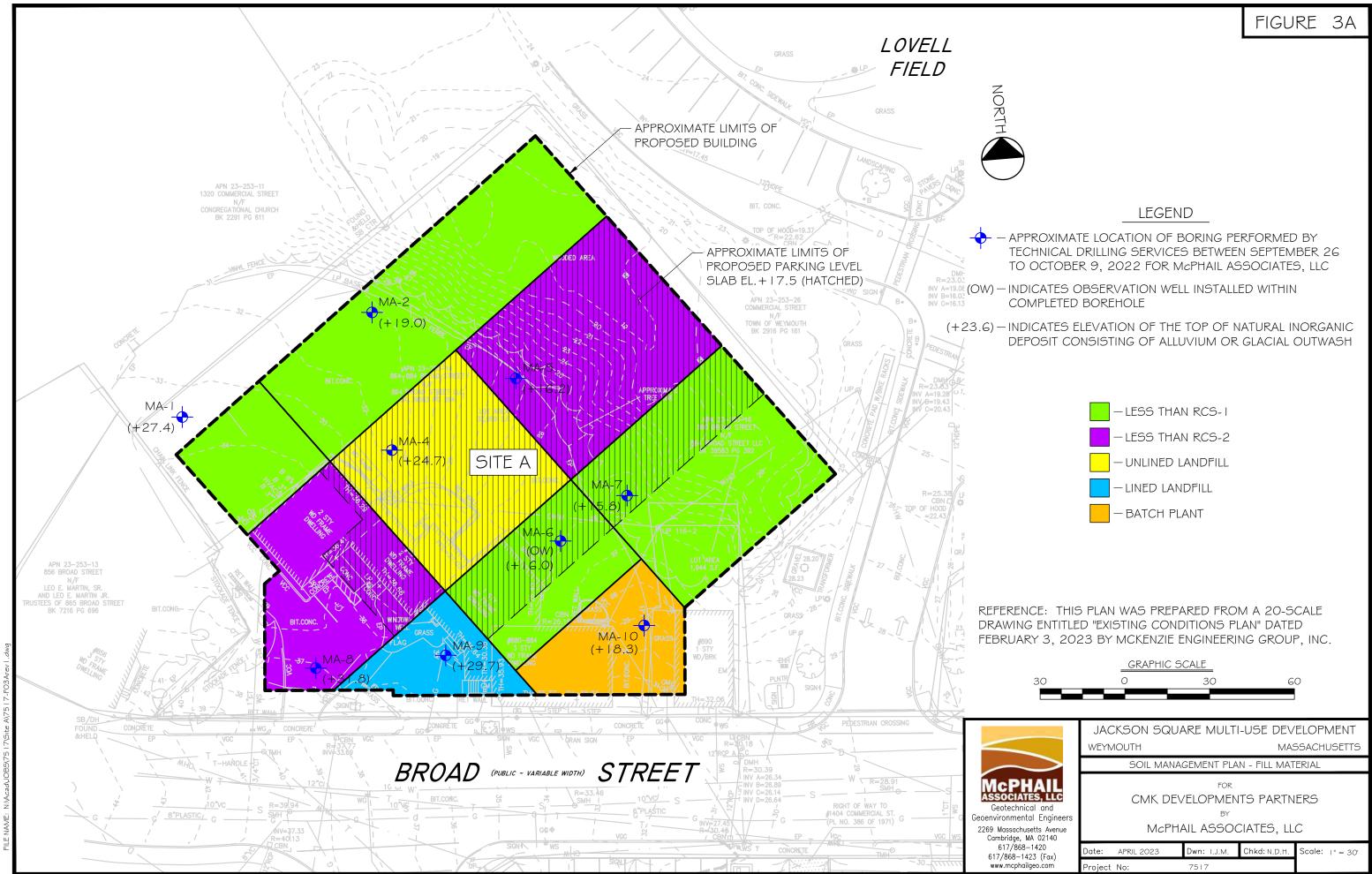
	Eric Papachristos			
	Owner Name			
	Broad Street Street Address	, <u>, , , , , , , , , , , , , , , , </u>	Parcel Nos.253-14, 253-16, 2 305-10, 305-11, 305-4, 306-1	53-17, 253-18, 253-21, 305-1, 305-9,
	Weymouth	МА	02189	1
	City	State	Zip Code	
B.	Site Information			
1.	(Check one) 🛛 New Construction 🗌 U	pgrade		
2.	Soil Survey Web Soil Survey	602 & 655	Urban La	nd & Udorthents, wet substratum
	Source	Soil Map Unit	Soil Series	· · · · ·
		None		
	Landform	Soil Limitations		
	Outwash			
<u>_</u>	Soil Parent material	Materials of Massachusetts	Coorroo d	onosita
3.	Surficial Geological Report 2018/ Surficial Year Published/So		Coarse de Map Unit	eposits
	gravel deposits, sand & gravel deposits and sand	deposits	···	
	Description of Geologic Map Unit:	· · · · · · · · · · · · · · · · · · ·		
4.	Flood Rate Insurance Map Within a regulat	ory floodway? 🗌 Yes 🛛 N	o	
5.	Within a velocity zone? 🗌 Yes 🛛 No			
6.	Within a Mapped Wetland Area?	☑ No If yes, Mass	GIS Wetland Data Layer:	Wetland Type
7.	Current Water Resource Conditions (USGS):	01/08/23 Month/Day/ Year	Range: 🔲 Above Normal	🛛 Normal 🔲 Below Normal
8.	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Portal, etc.)			

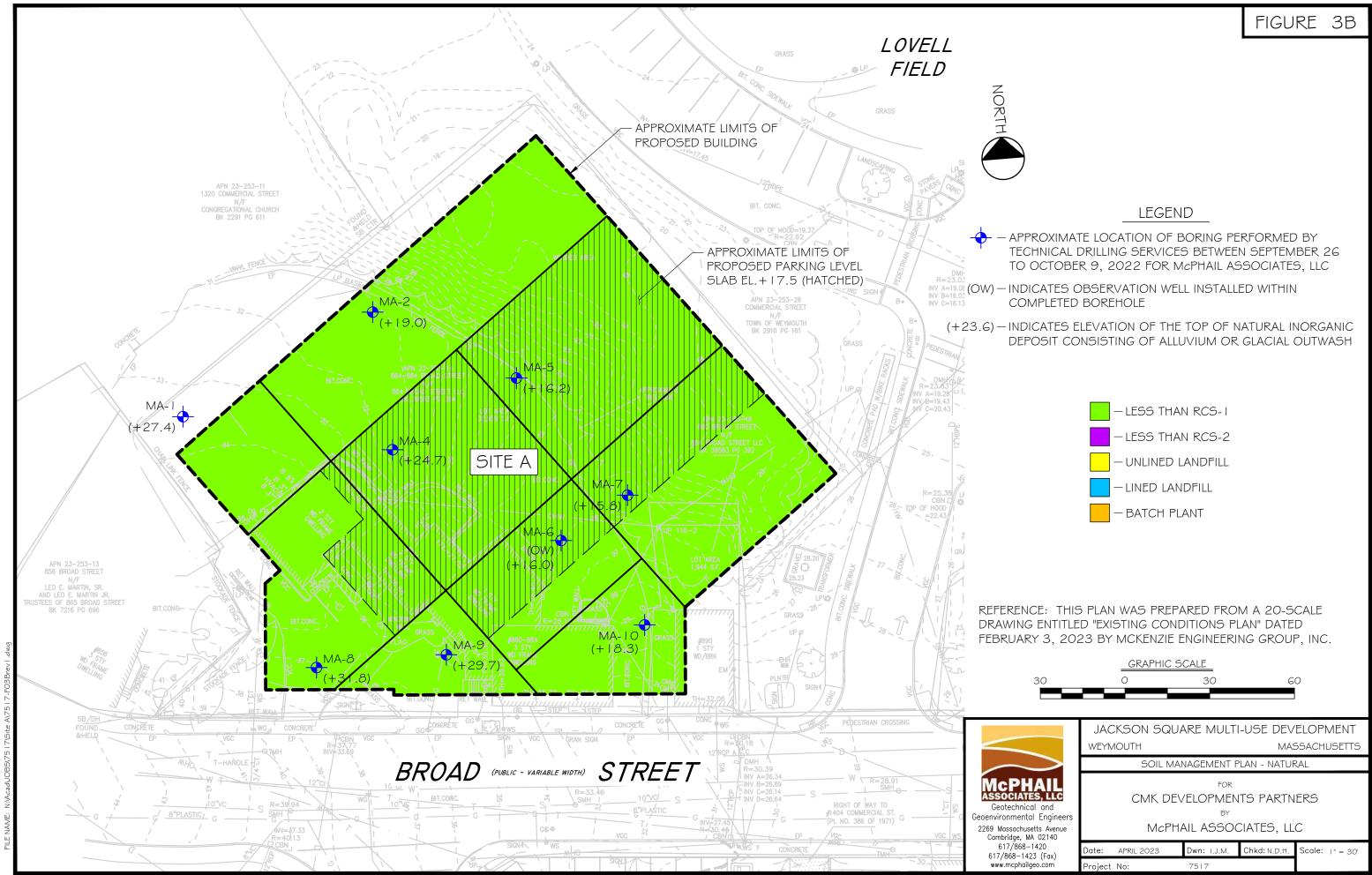
City/Town of Weymouth


Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal


C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)


	Deep (Observation	Hole Numb	er: <u>TP-7</u> Hole #	02/08/ Date		11:25 AM Time		Aostly Cloud	y - 45	42d 12'57.6" Latitude	<u>70d 55'26.7"</u> Longitude
	Land L			iral field, vacant lot, e	etc.)	Oak, briar Vegetation		None Surfac		cobbles, sto	nes, boulders, etc.	1-3% Slope (%)
2.	Soil Pa	arent Materia	l: Outwash						Decilian on l	andreene (SU, SH, BS, FS, T	C Diain)
3.	Distan	ces from:	Oper	Water Body	<u>>100</u> feet	Landfo		e Way <u>≥</u>	Position on 1 2100 feet	Lanoscape (s <u>N/A</u> feet
			I	Property Line	<u>10</u> feet	ſ	Drinking Wate	er Well <u>I</u>	<u>N/A</u> feet		Othe	r feet
4.	Unsuit	table Materi	als Present:	🗌 Yes 🛛 No	If Yes:	Disturbed So	oil/Fill Material	E] Weathered/	Fractured	Rock 🔲 Bedr	rock
5.	Groun	dwater Obse	erved: 🛛 Yes	No		If yes:	Depth	to Weeping	g in Hole	<u>51"</u>	Depth to Standing	g Water in Hole
						S	ioil Log					
	4h (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic Fea	atures		e Fragments y Volume	Soil	Soil Consistence	Other
Dep	th (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	
0"	-22"	F	Fill			Cnc: Dpl:						
22	"-51"	C1	Sand	10YR3/4		Cnc: Dpl:		30	20	Single grain	Loose	
51	"-60"	C2	Sand*	10YR2/1	51"	Cnc :10YR2/1 Dpl:	100	30	20	Single grain	Cemented	Bog iron
60	"-96"	C3	Sand	10YR3/4		Cnc : Dpl:		30	20	Single grain	Loose	Coarse
						Cnc: Dpl:						
						Cnc : Dpl:						


Additional Notes:

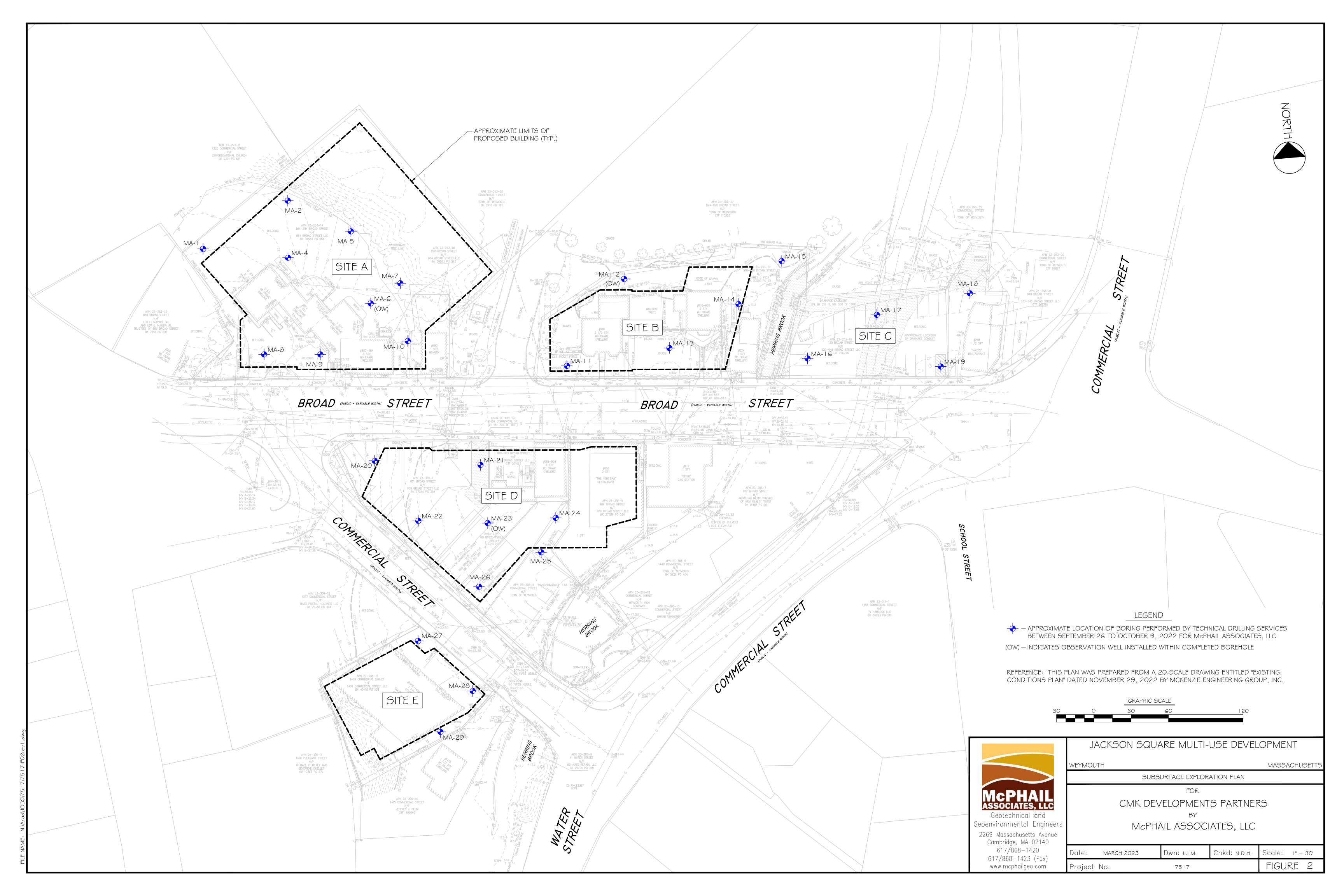

*C2 horizon is cemented coarse sand & gravel-bog iron-groundwater is weeping over bog iron.

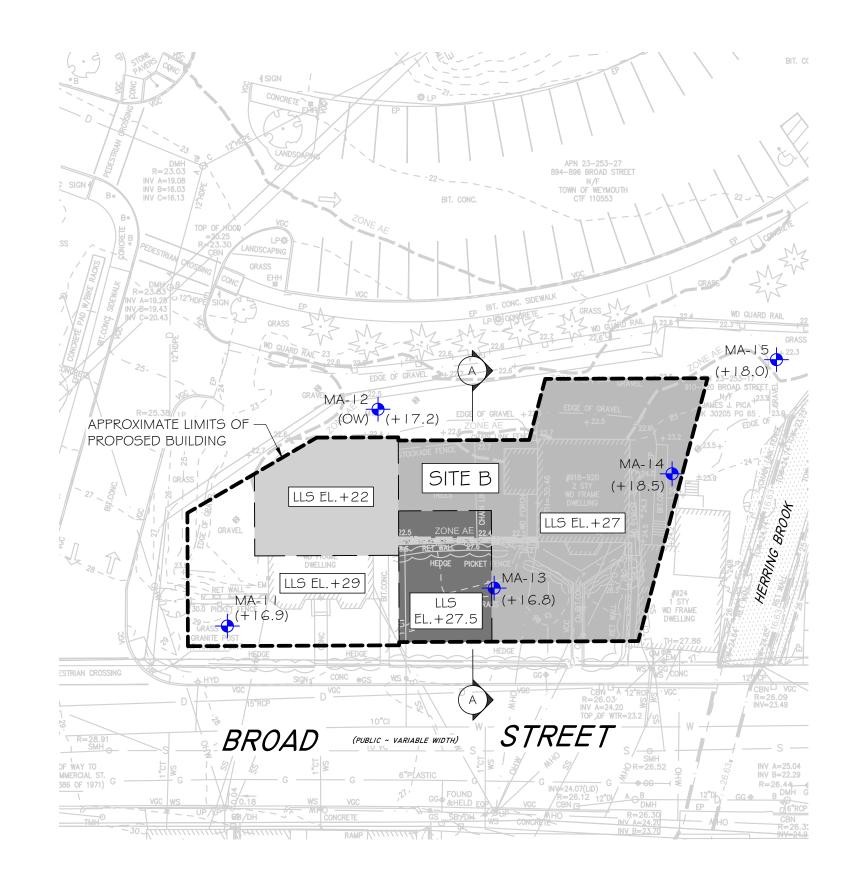
Surface E Depth E (ft) - 1 - 2 - 3 - 4 - 5 - 6 -	elper: By/Rev	D. N viewe	d By: ⊤.	Lee M. Cormican Stratum ASPHALT FILL	Ca Sa Sa TVOC (ppm) 0.0	ising Ha Impler S	mmer (l ize/Type	bs)/Dro p e: 1-3/8 '	Depth	poon	9-	Groundwater Observations Date Depth Elev. Notes 30-22 13 20.4
(ft) - 1 - - 2 - - 3 - - 4 - - 5 - 6 -	(ft) 33 32 31 30 29 28			ASPHALT	(ppm)	RQD	No.	Pen. /Rec.	Depth	Blows/6"		
- 1 - - 2 - - 3 - - 4 - - 5 - - - 6 -	32 31 30 29 28		0.3/33.1			18			(ft)	Min/ft		Sample Description and Boring Notes
- 3 - - 4 - - 5 - - 6 -	30 29 28			FILL			S-1	18/9	0.5-2.0	12 11 7	Compact brown gra	velly SAND, some silt. (FILL)
· 5 -	28	\bigotimes			0.0	14	S-2	24/11	2.0-4.0	5 5 9 8	Compact brown gra	velly SAND, some silt, with brick. (FILL)
- 6 -		\bigotimes			0.1	22	S-3	12/8	4.0-5.0	7 15	Compact dark brow	n SILT and SAND, some gravel, with brick. (FILL)
	27	גאאו			0.0	21	S-4	12/7	5.0-6.0	11	Compact dark brow	n SILT and SAND, some gravel, with brick. (FILL)
- 7 -			6.0 / 27.4		0.0	26	S-4A	12/7	6.0-7.0	10 13 13 12	OUTWASH)	own silty SAND and GRAVEL. (GLACIAL
8 -	26 25				0.1	61	S-5	24/14	7.0-9.0	24 37 33	OUTWASH)	UNIT DAIND AIN GIVAVEL, NACE SIR. (GLACIAL
	24				0.1	60	S-6	12/10	9.0-10.0	24 36	Dense to very dens (GLACIAL OUTWA	e gray-brown SAND and GRAVEL, trace silt. \SH)
11 -	23 22			GLACIAL OUTWASH	0.1	53	S-7	24/16	10.0-12.0	36 17 22 31 27		own SAND and GRAVEL, trace silt. (GLACIAL
13 - 14 -	21 20 19											
16 -	18 17		17.0 / 16.4		0.2	57	S-8	24/15	15.0-17.0	12 27 30 60	Very dense gray-br (GLACIAL OUTWA	own SAND and GRAVEL, trace to some silt. SH)
18 - 19 - 20 - 21 - 22 - 23 -	16 15 14 13 12 11 10			Bottom of borehole 17.0 feet below ground surface.								-
BLOWS/F 0-4 4-10 10-30 30-50 >50	IESIVE	DENSI V.LOO LOOS COMPA DENS V.DEN	TY SE ACT SE SE SE FENCY N	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" otes: sed automatic hammer		TY)	0-10 10-2 20-3 35-5	0% 5%	COMP WHICI 25% C CLASS	PONENTS H COMPR OF THE TC SIFIED AS	ISE AT LEAST DTAL ARE	MCPHAIL ASSOCIATES, LLC 2269 MASSACHUSETTS AVENUE CAMBRIDGE, MA 02140
2-4 4-8 8-15		SOF FIR STIF	-Τ Μ Τα -F Τ\	otal Volatile Organic Co VOC Background: ppm	ompound			ed w/ PID	Model:			TEL: 617-868-1420 FAX: 617-868-1423
15-30 >30		V.ST HAF	IFF W	eather: Variable								Page 1 of 1

Projec Locat City/S	ion:	Pa	/ed Pa	Square Developm rking Lot h, Massachusetts					#: Started: Finished	7517 9-29 : 9-29	-22	Boring No MA-2	
Contrac Driller/ Logged Surface	Helper I By/Re	D.N	d By: t): 31.0	T. M. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop 9: 1-3/8 ' (Ibs)/Dro	4.25 " I.D. Ho o (in): NE " I.D. Split-S op (in): 140	poon	9	Date Depth Eler -29-22 18 13.	v. Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		Sample Description and Boring Notes	
- 1 -	- 30		0.3/30		0.1	10	S-1	18/7	0.5-2.0	5 4	Loose to compact	brown gravelly SAND, trace silt. (FILL)
- 2 - - 3 -	- 29 - 28				0.1	12	S-2	24/12	2.0-4.0	6 5 4 8 7	Compact light brov (FILL)	wn fine to medium SAND, some gra	avel, trace silt.
- 4 -	- 27 - 26			FILL	0.0	14	S-3	24/13	4.0-6.0	7 4 6 8 6	Compact brown gr	avelly SAND, trace silt. (FILL)	
- 6 -	- 25 - 24				0.1	15	S-4	24/6	6.0-8.0	9 9 6 8	Compact brown gr	avelly SAND, trace silt. (FILL)	
- 8 -	- 23 - 22		10.0 / 21	.0	0.0	36	S-5	24/15	8.0-10.0	11 14 22 24	Dense dark brown glass. (FILL)	SILT and SAND, some gravel, wit	h organics and
- 10 + - 11 -	- 21 - 20 - 19	7. 77. 7. 77. 7. 77. 7. 77.	12.0 / 19	SUBSOIL	0.0	24	S-6	24/18	10.0-12.0	11 10 14 15	Compact yellow-br Sand and gravel in	rown SILT and SAND, some grave n split-spoon nose.	. (SUBSOIL)
- 12 - - 13 - - 14 - - 15 -	- 19 - 18 - 17 - 16												
16 - 17 -	- 15 - 14			GLACIAL OUTWASH	0.0	121	S-7	24/16	15.0-17.0	22 50 71 36	Very dense gray-b OUTWASH)	prown sandy GRAVEL, trace silt.(GLACIAL
18 - 19 -	- 13 - 12		19.0 / 12	Bottom of borehole		100/0"	S-8	0/0	19.0-19.0	100/0"	NO RECOVERY		
20 - 21 - 22 - 23 -	- 11 - 10 - 9 - 8			19.0 feet below ground surface.							Split-spoon and au	iger refusal 19 feet below ground s	urface.
GR BLOWS 0-4 4-10 10-30 30-50 >50	GRANULAR SOILS VS/FT. DENSITY I-4 V.LOOSE DESCRIPTIVE I-10 LOOSE I-30 COMPACT "TRACE" I-50 DENSE "AD LECTIVE"				NDY, SIL		0-10 10-2 20-3	0% 5%	COMF WHIC 25% C	PONENTS H COMPR	NG THREE EACH OF ISE AT LEAST DTAL ARE "A	McPH. Associates	
	HESIV	E SOILS	G TENCY OFT T	"AND" Notes: Used automatic hammer Total Volatile Organic Co					WELL		MIXTURE OF"	McPHAIL ASSOCI 2269 MASSACHUSE CAMBRIDGE, M TEL: 617-86 FAX: 617-86	TTS ÁVENUE A 02140 3-1420
8-15 15-30 >30		STIF V.ST HAF	FF	TVOC Background: ppm Weather: Variable Temperature:		(1.00)						Page 1 d	of 1

Projec Locat City/S	ion:	Pav	ved Pa	Square Developm rking Lot h, Massachusetts				Date	Started: Finished		-22 -22	Gro	Boring MA	-4	ions
Logged	Helper d By/Re	∵D.N eviewe	t): 31.7	Г. М. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop ə: 1-3/8 ' (Ibs)/Dro	4.25 " I.D. Ho 9 (in): NE " I.D. Split-Sp pp (in): 140	ooon	-	Date 9-29-22	Depth 16.8	Elev. 14.9	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		•	le Descrip Boring Not		
- 1 -	- 31 - 30		0.2/31.5	5 ASPHALT	0.0	6	S-1	18/10	0.5-2.0	2 4 2	Loose gray-	black ASH and CI	NDERS, with I	prick and mor	ar. (FILL)
- 2 -	- 29 - 28			FILL	0.1	8	S-2	24/10	2.0-4.0	4 4 4 6		black to dark gray , and brick. (FILL		ND and GRA	VEL, with
• 4 -	- 27				0.0	14	S-3	12/10	4.0-5.0	7	Compact da cinders. (FI	rk gray-brown silty LL)	SAND and G	RAVEL, with I	orick, ash an
- 5 - - 6 -	- 26 - 25		7.0 / 24.7	7	0.0	13	S-4	24/9	5.0-7.0	4 5 8 7	Compact ye (FILL)	llow-brown silty SA	ND, some gra	ivel, with ash a	and cinders.
- 7 -	- 24 - 23	× × ···			0.1	38	S-5	24/6	7.0-9.0	11 15 23 17	Dense gray-	-brown SAND and	GRAVEL, trad	ce silt. (FILL)	
9 -	- 22 - 21				0.1	94	S-6	24/16	9.0-11.0	88 72 22 50	Very dense	gray-brown SAND	and GRAVEL	., trace silt. (F	FILL)
· 11 - · 12 - · 13 - · 14 -	- 20 - 19 - 18			GLACIAL OUTWASH											
15 - 16 - 17 -	- 17 - 16 - 15		17.0 / 14.		0.0	52	S-7	25/13	15.0-17.1	47 22 30 30	Very dense OUTWASH	gray SAND and G)	RAVEL, trace	to some silt.	(GLACIAL
- 18 - - 19 -	- 14 - 13 - 12			Bottom of borehole 17.0 feet below ground surface.											
20 -	- 11 - 10														
22 -	- 9 - 8														
BLOWS 0-4	/FT.	AR SOIL DENS V.LOC	ITY DSE	SOIL COMPONENT DESCRIPTIVE TERM		PRO	PORTIO	N OF TOT	TAL SOIL C	CONTAINI	NG THREE				
4-10 10-30 30-50 >50	0	LOOS COMP/ DENS V.DEN E SOILS	ACT SE ISE	"TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	NDY, SIL	TY)	0-10 10-2 20-3 35-5	0% 5%	WHICI 25% C CLASS	H COMPR OF THE TO SIFIED AS	EACH OF ISE AT LEA TAL ARE "A MIXTURE	OF"	MC	PHAI	
BLOWS <2 2-4 4-8	/FT. C	CONSIS V.SC SOI FIR	TENCY DFT U FT	Notes: Jsed automatic hammer Fotal Volatile Organic Co	ompound			ed w/ PID	Model:				TEL: 6		ÁVENUE 2140 20
8-15 15-3 >30	0	STII V.ST HAF	FF 1	TVOC Background: ppm Weather: Variable Femperature:		. ,							Pag	e 1 of 1	

Projec Locat City/S	ion:	Pa	/ed Pa	Square Developm rking Lot h, Massachusetts					#: Started: Finished		-22		Boring MA	-5	tiona
Logged	Helper d By/Re	D.N eviewed	t): 27.2	T. M. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop ə: 1-3/8 '	4.25 " I.D. He o (in): NE " I.D. Split-S op (in): 140	poon		Date	undwater Depth	Elev.	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft			e Descrip oring Not		
1 -	- 27 - 26		0.3/26.	9 PAVEMENT	0.1	22	S-1	18/11	0.5-2.0	10 10 12	Compact brown	ngravelly SAND,	trace silt. (F	FILL)	
2 -	- 25 - 24				0.0	8	S-2	24/16	2.0-4.0	9 4 4 4	Loose gray-bron cinders. (FILL)	wn SAND and G	RAVEL, trac	e silt , with a	ish and
· 4 -	- 23				0.2	9	S-3	12/10	4.0-5.0	5 4	Loose brown SA (FILL)				nd cinders.
6 -	- 22 - 21			FILL	0.1	8	S-4	24/11	5.0-7.0	5 4 4 4	Loose brown gra	avelly SAND, so	ome silt. (FIL	L)	
8 -	- 20 - 19				0.1	7	S-5	24/8	7.0-9.0	5 4 3 3	Loose dark gray	y-brown silty SA	ND and GRA	VEL. (FILL)
9 -	- 18 - 17				0.1	10	S-6	24/14	9.0-11.0	2 1 9	Loose to compa (FILL)	act dark brown S	ILT and SAN	ID, some gra	avel, with brick
· 11 - · 12 - · 13 -	- 16 - 15 - 14		<u>11.0 / 16</u>		0.2	57	S-7	24/15	11.0-13.0	12 30 41 16 14	Very dense gray OUTWASH)	y-brown SAND a	and GRAVEL	., trace silt.	(GLACIAL
· 14 - · 15 - · 16 -	- 13 - 12 - 11 - 10			GLACIAL OUTWASH	0.1	70	S-8	22/14	15.0-16.8	43 27 43 120/4"	Very dense graa OUTWASH) Boulder encoun				
18 - 19 - 20 -	- 9 - 8 - 7									28	Dense gray-bro	wwn SAND and G		ne silt (GL	
21 -	- 6		22.0 / 5.	2	0.0	43	S-9	24/13	20.0-22.0	20 22 21 44	OUTWASH)		SRAVEL, SOI	ne siil. (GLA	
- 22 - - 23 -	- 5 - 4			Bottom of borehole 22.0 feet below ground surface.											
BLOWS 0-4 4-10 10-30 30-50 >50 CC BLOWS <2 2-4	/FT. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R SOIL DENS V.LOO LOOS COMP/ DENS V.DEN E SOILS CONSIS V.SC SOF	ITY ISE ACT SE ISE ISE TENCY IFT FT	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Notes: Used automatic hammer		TY)	0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR DF THE TO SIFIED AS	ISE AT LEAST DTAL ARE	-" M(2269	CAMBRID	HUSETT	S ÁVENUE 02140 420
4-8 8-15 15-30 >30	5 D	FIR STIF V.ST HAF	FF	Total Volatile Organic Co TVOC Background: ppm Weather: Variable Temperature:		s (TVOC)	measure	ed w/ PID	Model:					e 1 of	


Projec Locat City/S	ion:	Pav	ved Pa	Square Developm rking Lot h, Massachusetts					♯: Started: Finished:	7517 9-27 9-27	-22			g No. (OW	
Logged	Helper I By/Re	: D.N eviewe	t): 26.0	T. M. Cormican	Ca Sa	sing Ha mpler S	mmer (l ize/Type	bs)/Drop 9: 1-3/8 ' (Ibs)/Dro	I.25 " I.D. Ho (in): NE ' I.D. Split-Sp op (in): 140	oon	-	Date 9-27-22	Depth 12	Elev. 14.0	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft		•	le Descrij Boring No		
			0.3 / 25.	7PAVEMENT						12	Compost brou	wn SAND and GF		sitt (EUL)	
1 - 2 -	- 25 - 24				0.6	27	S-1	18/8	0.5-2.0	13 14					
3 -	- 23				0.4	19	S-2	24/9	2.0-4.0	11 10 9 7	Compact brov (FILL)	wn SAND and GF	RAVEL, trace	silt with ash a	ind cinders.
4 +	- 22				0.3	21	S-3	12/8	4.0-5.0	8	Compact brow (FILL)	wn SAND and GF	RAVEL, trace	silt, with ash a	and cinders.
5 - 6 -	- 21 - 20			FILL	0.7	13	S-4	24/13	5.0-7.0	13 6 7 6	, ,	k gray-brown silty	SAND and C	GRAVEL. (FIL	L)
- 7 - - 8 -	- 19 - 18				0.4	15	S-5	24/14	7.0-9.0	9 12 8 7	Compact dark	k gray-brown silty	SAND, som	e gravel, with b	prick (FILL)
9 -	- 17				0.4	26	S-6	12/10	9.0-10.0	8 12	Compact dark	k gray-brown silty	SAND and C	RAVEL. (FIL	L)
10 +	- 16		10.0 / 16	.0	0.6	63	S-6A	12/10	10.0-11.0	14 28		nottled orange-bro LACIAL OUTWA		rown, sandy G	GRAVEL,
- 11 + - 12 +	- 15 - 14				0.6	149/9"	S-7	15/3	11.0-12.3	35 27 49		ray-brown SAND	,	L, trace silt.(GLACIAL
- 13 - - 14 -	- 13 - 12		15.0 / 11	GLACIAL OUTWASH	<u></u>					120/3"	Boulder encor	untered 12 to 13	feet below gr	ound surface.	
15 -	- 11 - 10		17.0 / 9.	GLACIAL TILL	0.2	51	S-8	24/14	15.0-17.0	72 26 25 31		ray-brown silty S. 19.6 feet below			CIAL TILL)
17 - 18 - 19 -	- 9 - 8 - 7			Bottom of borehole 19.6 feet below ground surface.											
20 -	- 6														
· 21 + · 22 +	- 5 - 4														
23 -	- 3														
				SOIL COMPONENT		I		1		1					_
BLOWS 0-4 4-10		DENS V.LOC LOOS	SE	DESCRIPTIVE TERM		PRO		<u>N OF TOT</u>			NG THREE EACH OF			<	
10-30 30-50 >50	D	COMP/ DENS V.DEN	SE ISE	"TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	NDY, SIL ⁻	ΓY)	0-10 10-2 20-3 35-5	0% 5%	WHICH 25% O CLASS	H COMPR F THE TO SIFIED AS	ISE AT LEAS DTAL ARE		Mc	PHA CIATES, L	LC
BLOWS <2 2-4 4-8		ONSIS V.SC SOI FIR	TENCY DFT -T M ·	Notes: Used automatic hammer Total Volatile Organic Co	ompound		on					N	9 MASSA CAMBRI TEL:	SSOCIATE CHUSETTS DGE, MA 0 617-868-14 617-868-14	3 AVENUE 2140 120
8-15 15-30 >30	o	STII V.ST HAF	IFF	TVOC Background: ppm Weather: Variable Temperature:	1	,							Paç	ge 1 of ^r	1


Proje Locat		Ja	ckson	Square Developm	ent			Job # Date	#: Started:	7517 10-3-			Boring	-	
City/S	State:	We	eymout	th, Massachusetts	i			Date	Finished	I: 10-3	-22		MA	X- /	
	Helpe	r: D. I	Newton/E		Ca	ising Ha	mmer (l	bs)/Drop	1.25 " I.D. H) (in): NE		n augers	G Date 10-3-22	Depth		ions Notes
•••	•		-	T. M. Cormican					"I.D. Split-S						
Surfac			ft): 25.8		58	Impler H	ammer		op (in): 140	IDS./30 INC	cnes				
Depth	Elev.	log	EL to	Otratura				Samp				San	nple Descri	ption	
(ft)	(ft)	Symbol	Depth/EL to Strata Change (ff)	E Stratum	TVOC (ppm)	N-Value RQD	No.	Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		an	d Boring No	otes	
1 -	- 25 - 24	1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.0 / 23	TOPSOIL	0.0	6	S-1	24/18	0.0-2.0	1 3 3 3	Loose dark b	prown SILT and	SAND, with or	ganics. (TOPS	SOIL)
2 - 3 -	- 23 - 22				0.0	2	S-2	24/14	2.0-4.0	1 1 1 1	Very loose lig	ght gray ASH a	nd CINDERS.	(FILL)	
4 -					0.0	2	S-3	12/6	4.0-5.0	1	Very loose lig cinders. (FIL	ght gray SAND .L)	and GRAVEL,	some silt, with	ash and
5 - 6 -	- 21 - 20			FILL	0.0	5	S-4	24/8	5.0-7.0	2 2 3			INDERS. (FIL	L)	
7 - 8 -	- 19 - 18				0.0	20	S-5	24/16	7.0-9.0	4 4 9 11	Compact bro	wn silty SAND	trace gravel, w	<i>i</i> ith ash and cin	ders. (FILL
9 -	- 17		>							12					
10 - 11 -	- 16 - 15		10.0 / 15	5.8	0.0	55	S-6	24/16	10.0-12.0	22 24 31	Very dense r GRAVEL, tra	nottled orange- ace silt. (GLAC	brown and gray IAL OUTWASI	/-brown SAND H)	and
12 - 13 -	- 14 - 13		• • •	GLACIAL OUTWASH						25					
14 - 15 -	- 12 - 11									11					
16 -	- 10 - 9		17.0/8	.8	0.0	33	S-7	24/10	15.0-17.0	14 19 22	OUTWASH)	DIOWITSAND a	nd GRAVEL, tra	ace to some si	IL (GLACI)
17 - 18 -	- 8			Bottom of borehole 17.0 feet below ground surface.											
19 - 20 -	- 7 - 6														
21 - 22 -	- 5 - 4														
- 23 -	- 3														
	RANUL	AR SOIL		SOIL COMPONENT	1	I	1	1	1	1					_
<u>BLOWS</u> 0-4 4-10)	DENS V.LOO LOO	DSE SE	DESCRIPTIVE TERM		PRO		N OF TOT	001L	CONTAINII PONENTS	NG THREE EACH OF			5	>
10-3 30-5 >50	0	COMP DEN V.DEN	SE NSE	"TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	NDY, SIL	TY)	0-10 10-2 20-3 35-5	0% 5%	WHIC 25% (CLAS	H COMPR OF THE TO SIFIED AS	ISE AT LEA)TAL ARE		Mc	PHA CIATES, L	LC
BLOWS <2 2-4	6/FT. (CONSIS V.SC SO	DFT FT	Notes: Used automatic hammer									TEL:		AVENU 2140 20
4-8 8-15 15-3	5 0	FIF STI V.ST	IFF TIFF	Total Volatile Organic Co TVOC Background: ppm Weather: Variable Temperature:		s (TVOC)	measure	ed w/ PID	Model:			\vdash		ge 1 of ²	
>30		HA	κυ	i omporature.										-	

Projec Locat City/S	ion:	Pa	/ed Driv	quare Developm eway ı, Massachusetts					#: Started: Finished	7517 9-30 : 9-30	-22		Boring MA	-8	
	Helper I By/Re	: D.N viewe	t): 37.3	Lee . M. Cormican	Ca Sa	sing Ha mpler S	mmer (l ize/Type	bs)/Drop 9: 1-3/8 ' (Ibs)/Dro	4.25 " I.D. Ho • (in): NE " I.D. Split-Sp • (in): 140 I	oon	-	Gro Date 9-30-22	undwater Depth NE	Observa Elev.	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft			e Descrip Boring Not		
	- 37		0.3/37.0	PAVEMENT							0	04110 100	A) (=1)		
1 -	- 36				0.0	21	S-1	18/13	0.5-2.0	10 11 10		own SAND and GR			
3 -	- 35 - 34			FILL	0.1	19	S-2	24/8	2.0-4.0	8 8 11 10	Compact bro	own SAND and GR	AVEL, trace s	silt. (FILL)	
- 4 - - 5 -	- 33 - 32		5.5 / 31.8		0.2	25	S-3	18/13	4.0-5.5	10 14 15 10	Compact gra	ay-black SAND and	GRAVEL, so	ome silt. (FIL	L)
6 -			0.07 01.0		0.0	13/6"	S-3a	6/4	5.5-6.0	13	Compact or	ange-brown silty SA	AND and GRA	VEL. (GLA	CIAL
- 7 -	- 31 - 30				0.1	36	S-4	24/16	6.0-8.0	23 17 19 22		, -brown to yellow-bro DUTWASH)	own SAND an	d GRAVEL,	trace silt.
· 8 - · 9 -	- 29 - 28			GLACIAL OUTWASH	0.0	57	S-5	24/11	8.0-10.0	13 21 36	Very dense OUTWASH	gray-brown SAND (and GRAVEL	., trace silt.(GLACIAL
• 10 -	- 27				0.1	140/10"	S-6	10/7	10.0-10.8	62 40	Very dense	gray-brown SAND	and GRAVEL	, trace silt. (GLACIAL
11 -	- 26		11.0 / 26.3	Bottom of borehole	N .1	100/0"	S-7	0/0	11.0-11.0	100/4" 100/0"	OUTWASH NO RECOV)			
- 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 17 - - 18 - - 20 - - 21 - - 22 - - 23 - - 23 -	- 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 XANULA	R SOIL	s	ground surface.							Auger refusa	al 11 feet below gro	ound surface.		
BLOWS 0-4 4-10 10-30 30-50 >50	/FT.	DENS V.LOO LOOS COMP/ DENS V.DEN SOILS ONSIS V.SC SOF FIR	TY SE SE SE SE SE TENCY NFT U T	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" lotes: lsed automatic hammer otal Volatile Organic Co	to drive	ΓΥ) Split Spoo	0-10 10-2 20-3 35-5	0% 5% 0%	COMP WHICH 25% O CLASS WELL-	ONENTS H COMPR F THE TC SIFIED AS	NG THREE EACH OF ISE AT LEA TAL ARE "A MIXTURE	AST OF" M	CPHAIL AS MASSAC CAMBRID TEL: 6 FAX: 6	HUSETTS	S ÁVENUE 2140 120
8-15 15-30 >30		STIF V.ST HAF	F T	VOC Background: ppm /eather: Variable emperature:		(20)							Pag	e 1 of	1

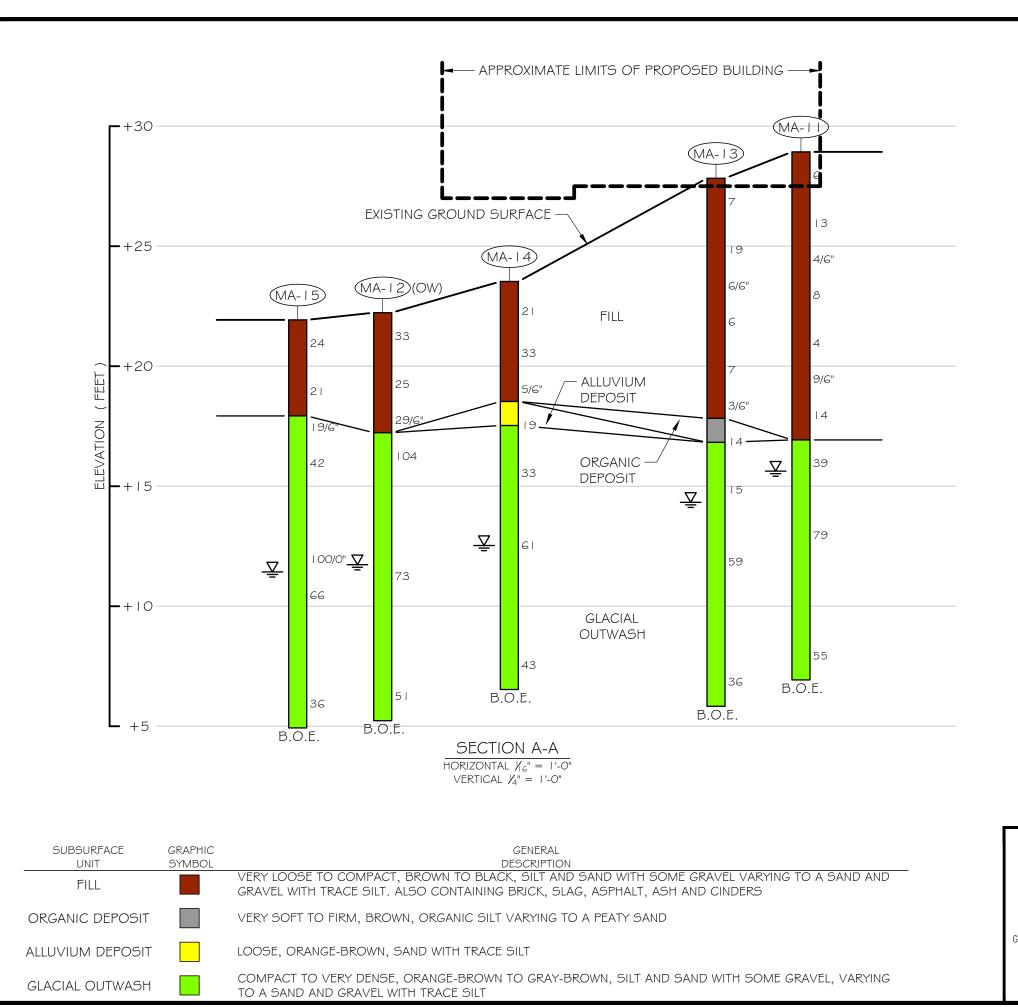
Projec Locat City/S	ion:	Pa	/ed Driv	quare Developm /eway n, Massachusetts					#: Started: Finished		-22		Boring MA		
Logged	Helper I By/Re	: D.N	lewton/B. d By: T t): 34.7	Lee . M. Cormican	Ca Sa	ising Ha Impler S	mmer (l ize/Type	bs)/Dro p e: 1-3/8 '	4.25 " I.D. Ho o (in): NE " I.D. Split-S op (in): 140	poon	-	Gro Date 10-3-22	Depth NE	Observa Elev.	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft			le Descrip Boring Not		
		XXX	თ _0.1/34.6		,			(11)							
· 1 -	- 34 - 33				0.0	3	S-1	18/6	0.5-2.0	3 2 1	Very loose of cinders. (Fl	dark gray-brown SI ILL)	LT and SAND	, some grave	el, with ash an
- 2 -	- 32 - 31			FILL	0.1	3	S-2	24/8	2.0-4.0	1 1 2 2	Very loose I (fFILL)	brown SILT and SA	ND, some gra	avel, with bric	k, mortar.
- 4 - - 5 -	- 30		5.0 / 29.7		0.0	12	S-3	12/4	4.0-5.0	2 4 8	Compact da	ark gray-brown SIL	F, SAND and	GRAVEL. (F	ILL)
- 6 -	- 29 - 28				0.1	65	S-4	24/9	5.0-7.0	26 28 37 50	Very dense OUTWASH	gray-brown SAND)	and GRAVEL	., trace silt.(GLACIAL
- 7 - - 8 -	- 27			GLACIAL OUTWASH	0.1	120/6"	S-5	12/64	7.0-8.0	120	OUTWASH	,			
- 9 -	- 26				0.1	135/10"	S-6	10/4	8.5-9.3	35 100/4"		gray-brown SAND			
- 10 - - 11 -	- 25 - 24	<u> </u>	10.0 / 24.7	7 Bottom of borehole 10.0 feet below ground surface.											
- 12 - - 13 -	- 23 - 22														
- 14 -	- 21 - 20														
15 - 16 -	- 19														
17 -	- 18														
18 -	- 17 - 16														
· 19 - · 20 -	- 15														
21 -	- 14														
- 22 -	- 13 - 12														
23 -	- 11														
GF BLOWS	RANULA	R SOIL		SOIL COMPONENT											
0-4 4-10		V.LOO	SE	DESCRIPTIVE TERM		PRO		N OF TOT	30IL (CONTAINI	NG THREE EACH OF		<		
10-30 30-50 >50	D	COMPA DENS V.DEN	SE ISE	"TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	IDY, SIL	TY)	0-10 10-2 20-3 35-5	0% 5%	WHIC 25% C CLAS	H COMPR DF THE TO SIFIED AS	ISE AT LEA DTAL ARE "A		Mc	PHA	
CC BLOWS <2 2-4 4-8			TENCY N DFT L T	lotes : Ised automatic hammer			on			-GRADED	MIXTURE	M	ICPHAIL AS 9 MASSAC CAMBRID TEL: 6 FAX: 6	HUSETTS	S ÁVENUE 2140 120
8-15 15-30	5 D	STIF V.ST	F T	otal Volatile Organic Co VOC Background: ppm Veather: Variable emperature:	npound	s (1 VUC)	measure	a w/ PID					Pag	e 1 of	1
>30		HAF		emperature.									· J	-	

Projec Locat City/S	ion:	Gra	assed a	quare Developm rea , Massachusetts					#: Started: Finished		-22		Boring	10	
Logged	'Helper d By/Re	: D.V viewe tion (f	t): 29.3	Junoville . M. Cormican	Ca Sa	ising Ha Impler S	mmer (l ize/Type	bs)/Dro p e: 1-3/8 '	4.25 " I.D. Ho o (in): NE " I.D. Split-S op (in): 140	poon	10	Grou Date)-5-22	ndwater Depth 13.5	Observa Elev. 15.8	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		•	Descrip		
1 -	- 29 - 28	次 - 小 - 小 - 小 - 小 - 小	1.5 / 27.8	TOPSOIL	0.0	8	S-1	24/16	0.0-2.0	3 4 4 2	Loose dark brown S cinders. (FILL)	GILT and SAN	ID, some or	ganics, with	ash and
2 -	- 27 - 26				0.0	3	S-2	24/13	2.0-4.0	2 2 1	Very loose gray-bla	ck ASH and (CINDERS.	(FILL)	
4 -	- 25				0.0	9	S-3	12/10	4.0-5.0	4	Loose to compact d organics, ash, and c			D, some gra	avel, with
5 - 6 -	- 24 - 23			FILL	0.0	2	S-4	24/15	5.0-7.0	5 1 1 1 3	Very loose dark bro		,	ash and cin	ders. (FILL)
7 -	- 22 - 21				0.1	9	S-5	24/10	7.0-9.0	4 4 5 6	Loose black SILT a	nd SAND, wit	h ash, cinde	ers, and slag	. (FILL)
9 -	- 20				0.0	15	S-6	18/16	9.0-10.5	5	Compact gray-brow	n silty SAND,	, some grave	el. (FILL)	
10 -	- 19		10.5 / 18.8		0.0	6/6"	S-6A	6/6	10.5-11.0	6	5			(0.5.0.1.1.0	
11 - 12 - 13 -	- 18 - 17 - 16		11.0 / 18.3	ORGANIC DEPOSIT	0.0	31	S-7	24/11	11.0-13.0	69 15 16 22	Firm brown ORGAN Dense orange-brow to orange-brown SA OUTWASH)	vn SILT and S	AND, some	gravel, to lig	ght gray SILT
14 - 15 - 16 - 17 -	- 15 - 14 - 13 - 12			GLACIAL OUTWASH	0.2	78	S-8	24/18	15.0-17.0	26 32 46 60	Very dense gray-bro OUTWASH)	own SAND ar	nd GRAVEL	, trace silt.(GLACIAL
18 - 19 - 20 -	- 11 - 10														
21 -	- 9 - 8		22.0 / 7.3		0.0	66	S-9	24/13	20.0-22.0	42 33 33 88	Very dense gray-bro OUTWASH)	own SAND ar	nd GRAVEL	, trace silt. (GLACIAL
22 - 23 -	- 7 - 6			Bottom of borehole 22.5 feet below ground surface.											
				SOIL COMPONENT		1	1	1	I	1	1				_
BLOWS <2 2-4) 0 0 0 0 0 0 0 0 0 0 7 7 7 C	ONSIS V.SC SOF	ISE ACT BE ISE ISE TENCY NFT U FT	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" lotes: Ised automatic hammer		ΤΥ)	0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR DF THE TO SIFIED AS	ISE AT LEAST DTAL ARE	2269	MASSAC CAMBRID TEL: 6	PHA DIATES, I SSOCIATI HUSETTS GE, MA (17-868-1 17-868-1	S ÁVENUE)2140 420
4-8 8-15 15-3	5 0	FIR STIF V.ST	F T	otal Volatile Organic Co VOC Background: ppm /eather: Variable emperature:		s (TVOC)	measure	ed w/ PID	Model:					e 1 of	
>30		HAF	KD I	emperature.									3		

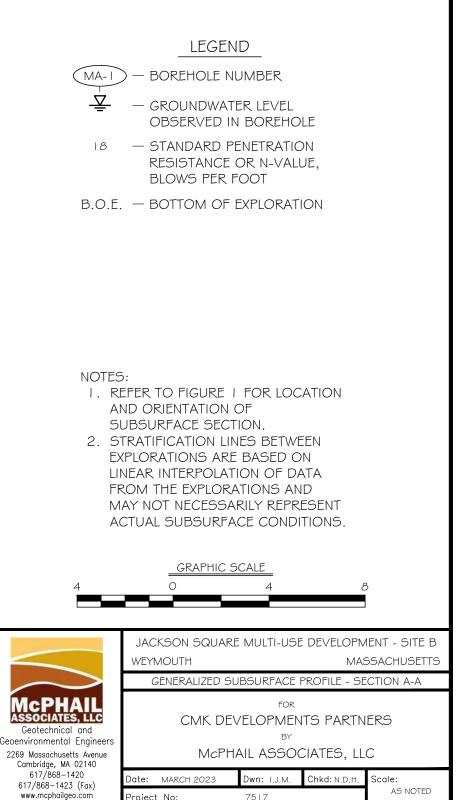
•

FIGURE 2A

LEGEND

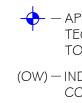

- APPROXIMATE LOCATION OF BORING PERFORMED BY TECHNICAL DRILLING SERVICES BETWEEN SEPTEMBER 26 TO OCTOBER 9, 2022 FOR MCPHAIL ASSOCIATES, LLC

(OW) - INDICATES OBSERVATION WELL INSTALLED WITHIN COMPLETED BOREHOLE


(+23.6) - INDICATES ELEVATION OF THE TOP OF NATURAL INORGANIC DEPOSIT CONSISTING OF ALLUVIUM OR GLACIAL OUTWASH

REFERENCE: THIS PLAN WAS PREPARED FROM A 20-SCALE DRAWING ENTITLED "EXISTING CONDITIONS PLAN" DATED FERBUARY 3, 2023 BY MCKENZIE ENGINEERING GROUP, INC.

		GRAPHIC	SCALE		
30		0	30	6	0
	JAC	CKSON SQI	JARE MULT	I-USE DEV	ELOPMENT
	WEYN	IOUTH		MAS	6SACHUSETTS
\sim		SUBSURF	ACE EXPLORAT	ION PLAN - S	GITE B
Cal and cal Engineers setts Avenue WA 02140			FOR EVELOPMEN BY HAIL ASSO(
-1420 423 (Fax)	Date:	APRIL 2023	Dwn: I.J.M.	Chkd: N.D.H.	Scale: " = 30'
lgeo.com	Project	No:	7517		



617/868-1420 www.mcphailgeo.com FIGURE 2B

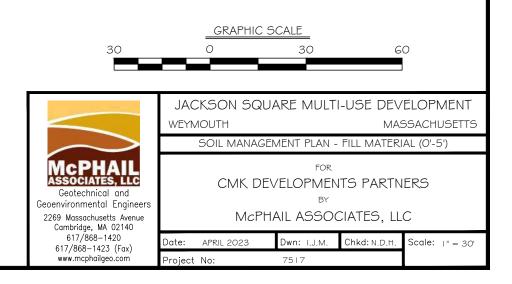
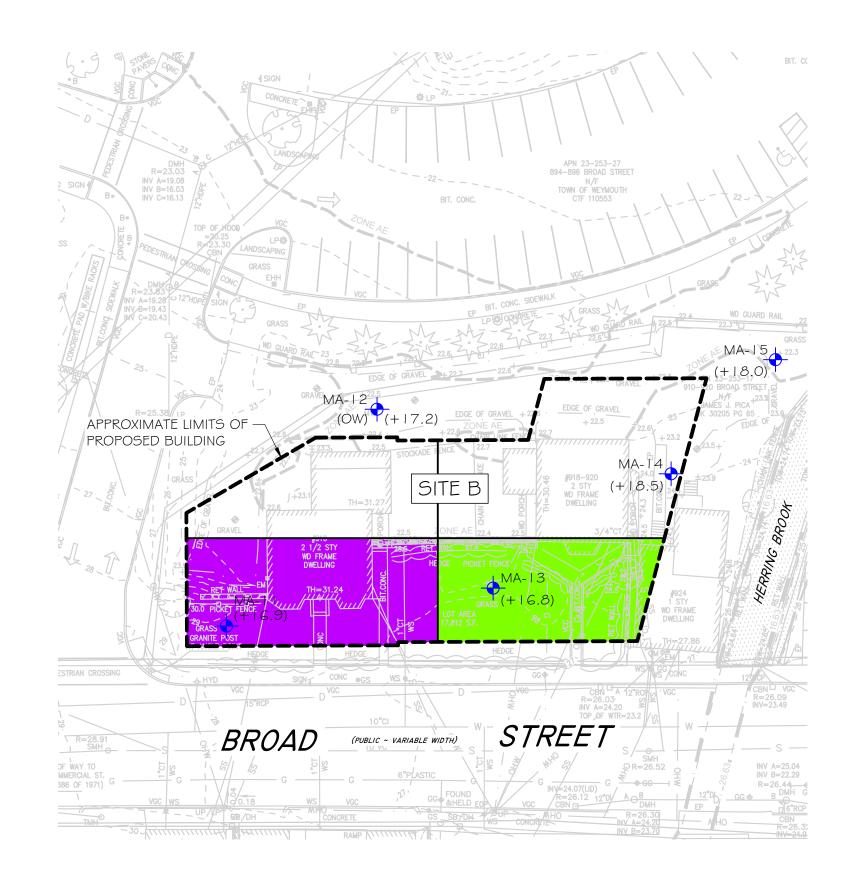


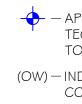
FIGURE 3A

LEGEND

- APPROXIMATE LOCATION OF BORING PERFORMED BY TECHNICAL DRILLING SERVICES BETWEEN SEPTEMBER 26 TO OCTOBER 9, 2022 FOR MCPHAIL ASSOCIATES, LLC


(OW) - INDICATES OBSERVATION WELL INSTALLED WITHIN COMPLETED BOREHOLE

(+23.6) - INDICATES ELEVATION OF THE TOP OF NATURAL INORGANIC DEPOSIT CONSISTING OF ALLUVIUM OR GLACIAL OUTWASH


-LESS THAN RCS-1 LESS THAN RCS-2

- UNLINED LANDFILL
- LINED LANDFILL
- BATCH PLANT

REFERENCE: THIS PLAN WAS PREPARED FROM A 20-SCALE DRAWING ENTITLED "EXISTING CONDITIONS PLAN" DATED FEBRUARY 3, 2023 BY MCKENZIE ENGINEERING GROUP, INC.

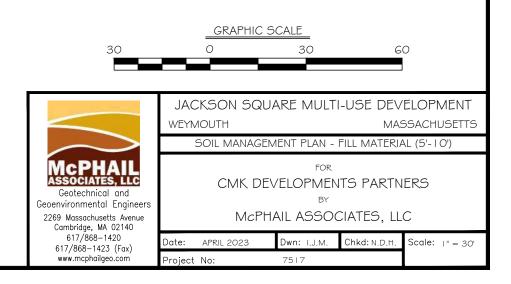


FIGURE 3B

LEGEND

- APPROXIMATE LOCATION OF BORING PERFORMED BY TECHNICAL DRILLING SERVICES BETWEEN SEPTEMBER 26 TO OCTOBER 9, 2022 FOR MCPHAIL ASSOCIATES, LLC

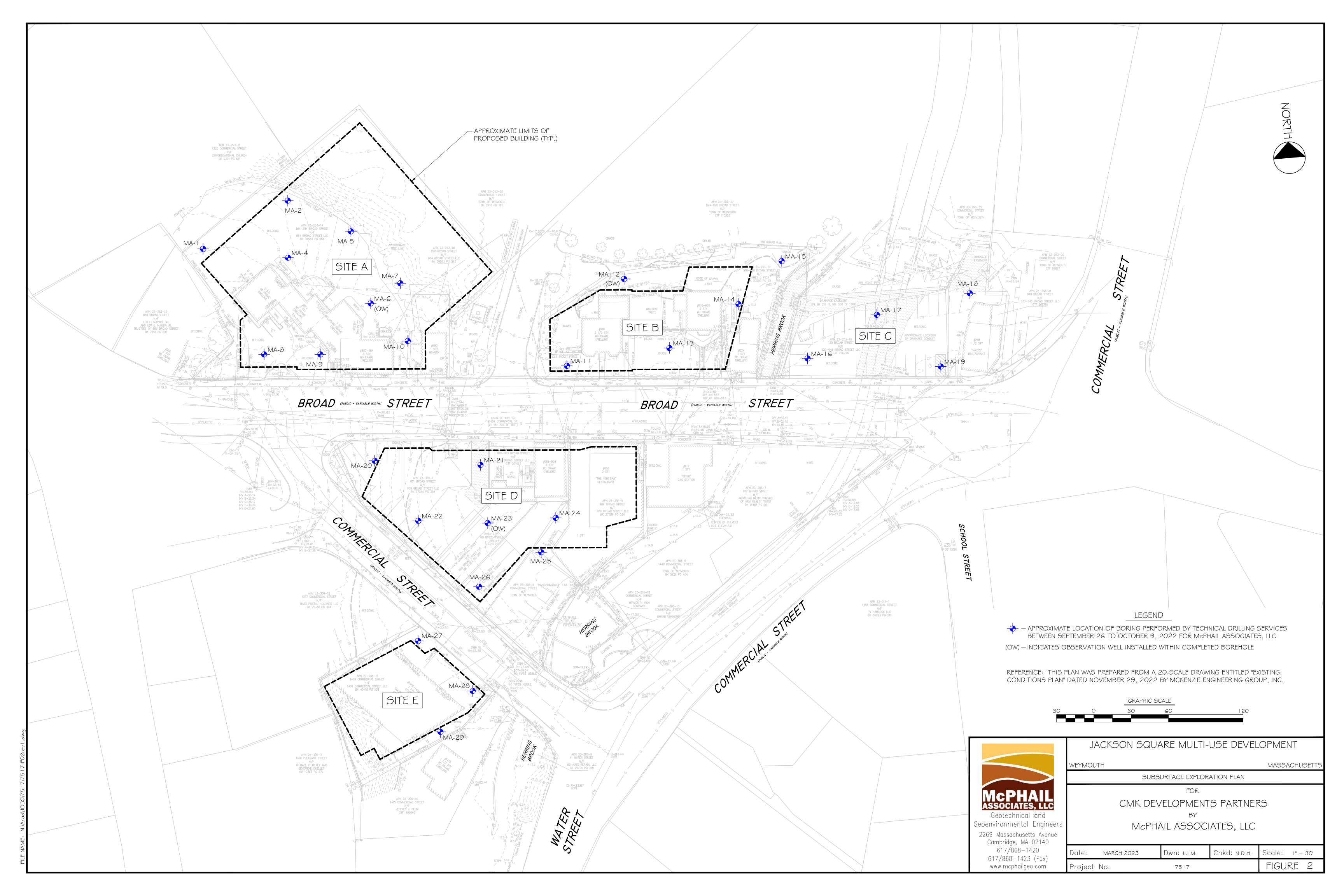
(OW) - INDICATES OBSERVATION WELL INSTALLED WITHIN COMPLETED BOREHOLE

(+23.6) - INDICATES ELEVATION OF THE TOP OF NATURAL INORGANIC DEPOSIT CONSISTING OF ALLUVIUM OR GLACIAL OUTWASH

- LESS THAN RCS-1 LESS THAN RCS-2

- UNLINED LANDFILL
- LINED LANDFILL
- BATCH PLANT

REFERENCE: THIS PLAN WAS PREPARED FROM A 20-SCALE DRAWING ENTITLED "EXISTING CONDITIONS PLAN" DATED FEBRUARY 3, 2023 BY MCKENZIE ENGINEERING GROUP, INC.


Projec Locat City/S	ion:	Gra	assed	Square Developm area h, Massachusetts					#: Started: Finished	7517 10-5 : 10-5	-22		Boring	-11	
	Helpei I By/Ro	r: D.V eviewe	d By: t): 28.9	I. Junoville T. M. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop ə: 1-3/8 ' (Ibs)/Dro	4.25 " I.D. Ho p (in): NE " I.D. Split-S pp (in): 140	poon	-	Gro Date 10-5-22	Depth 13.3	Observa Elev. 15.6	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		•	le Descrip 3oring Not		
- 1 -	- 28		1.0 / 27	TOPSOIL	0.1	6	S-1	24/16	0.0-2.0	2 2 4 6	Loose brown (gravelly SAND, tr	ace silt. (FILI	L)	
2 -	- 27 - 26 - 25				0.3	13	S-2	24/10	2.0-4.0	8 7 6 6	Compact brow CINDERS and	vn SAND and GR d SLAG. (FILL)	AVEL, trace :	silt, with blac	k ASH and
• 4 -					0.4	11	S-3	12/10	4.0-5.0	7	Compact blacl	k ASH, CINDER	S and SLAG.	(FILL)	
5 - 6 -	- 24 - 23 - 22			FILL	0.6	8	S-4	24/18	5.0-7.0	4 3 3 5 5 5	Loose black A	ASH, CINDERS a	and SLAG. (F	ILL)	
- 7	- 22 - 21 - 20				03	4	S-5	24/13	7.0-9.0	4 2 2 4	Very loose to	loose black ASH	I, CINDERS a	and SLAG. (FILL)
9 -					0.4	18	S-6	12/9	9.0-10.0	9		pact mottled dark and brick. (FILL)		wn SILT and	SAND, with
· 10 - ·	- 19 - 18		40.0 / 40		3.8	14	S-7	24/16	10.0-12.0	9 8 7 7 12		tled dark brown to		and SAND, s	ome gravel,
· 12 -	- 17 - 16 - 15		12.0 / 16	.9	0.1	59	S-8	24/16	12.0-14.0	12 18 24 35 44	Very dense br (GLACIAL OU	rown to gray-brov JTWASH)	vn SAND and	GRAVEL, tra	ace silt.
14 15 16 17	- 14 - 13 - 12			GLACIAL OUTWASH	0.5	69	S-9	24/14	15.0-17.0	11 27 42 37	Very dense gr OUTWASH)	ray-brown SAND	and GRAVEL	., trace silt.(GLACIAL
18 - 19 - 20 -	- 11 - 10 - 9														
21 -	- 8		22.0 / 6	9	0.3	55	S-10	24/14	20.0-22.0	12 23 32 46	Very dense gr OUTWASH)	ray-brown SAND	and GRAVEL	., trace silt.(GLACIAL
- 22 - - 23 -	- 7 - 6			Bottom of borehole 22.0 feet below ground surface.											
BLOWS 0-4 4-10 10-30 30-50 >50 CC	/FT.	AR SOIL DENS V.LOO LOOS COMP/ DENS V.DEN E SOILS	ITY ISE GE ACT GE ISE G	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	IDY, SIL ⁻		<u>PORTIO</u> 0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR OF THE TO SIFIED AS	ISE AT LEAS DTAL ARE)F"		PHA CIATES, I	
BLOWS <2 2-4 4-8		V.SC SOF FIR	DFT FT M	Notes: Used automatic hammer Total Volatile Organic Co	mpound			ed w/ PID	Model:) Massac Cambrid Tel: (HUSETT	S ÁVENUE)2140 420
8-15 15-30 >30	D	STIF V.ST HAF	IFF	TVOC Background: ppm Weather: Variable Temperature:									Pag	e 1 of	1

Projec Locat City/S	ion:	Gra	avel driv	Square Developm veway n, Massachusetts	Date Started: 9-27-22 Date Finished: 9-27-22						MA	Boring No. MA-12 (OW) Groundwater Observations				
Contractor: TDS Driller/Helper: D. Newton/B. Lee Logged By/Reviewed By: T. M. Cormican Surface Elevation (ft): 22.2						Casing Type/Depth (ft): 4.25 " I.D. Hollow Stem augers Casing Hammer (Ibs)/Drop (in): NE Sampler Size/Type: 1-3/8 " I.D. Split-Spoon Sampler Hammer (Ibs)/Drop (in): 140 lbs./30 inches							Depth 10.5	Observa Elev. 11.7	tions Notes	
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum TVOC N-Value Pen. Depth Blows/6" (ppm) RQD No. (in) (ft) Min/ft								Sample Description and Boring Notes				
- 1 -	- 22 - 21	\bigotimes			0.1	33	S-1	24/7	0.0-2.0	14 15 18 11		Dense gray-black GRAVEL and CRUSHED PAVEMENT, with ash cinders. (FILL)				
- 2 -	- 20 - 19			FILL	0.1	25	S-2	24/6	2.0-4.0	9 10 15 20	Compact bro	prown SAND and GRAVEL, trace silt. (FILL)				
- 4 -	- 18				0.1	74	S-3	12/6	4.0-5.0	45	Very dense	brown SAND and (e silt. (FILL))		
- 5 -	- 17 - 16	×××	5.0 / 17.2	2	0.0	104	S-4	24/11	5.0-7.0	29 30 64 40 43	Very dense OUTWASH	ense gray-brown SAND and GRAVEL, trace silt. (GLACIAL /ASH)				
- 8 -	- 15 - 14 - 13															
- 10 - - 11 - - 12 -	- 12 - 11 - 10			GLACIAL OUTWASH	0.1	73	S-5	24/16	10.0-12.0	24 40 33 26	Very dense OUTWASH	Very dense gray-brown SAND and GRAVEL, trace silt. (GLACIAL OUTWASH)				
- 13 - - 14 - - 15 -	- 9															
- 16 - - 16 -	- 7 - 6		17.0 / 5.2	2	0.1	51	S-6	24/12	15.0-17.0	21 22 29 20	Very dense OUTWASH	brown SAND and ()	GRAVEL, trac	e silt. (GLA	CIAL	
- 18 - - 19 -	- 5 - 4 - 3			Bottom of Borehole 17.0 feet below ground surface.												
- 20 - - 21 -	- 2 - 1															
- 22 - - 23 -	- 0 1															
C P		R SOU	s I													
GRANULAR SOILS SOIL COMPONENT BLOWS/FT. DENSITY DESCRIPTIVE TERM 0-4 V.LOOSE DESCRIPTIVE TERM 4-10 LOOSE "TRACE" 10-30 COMPACT "SOME" 30-50 DENSE "ADJECTIVE" (eg SA >50 V.DENSE "AND"				0-10% COMPONENTS EACH OF 0-10% WHICH COMPRISE AT LEAS 10-20% 25% OF THE TOTAL ARE NDY, SILTY) 20-35% CLASSIFIED AS "A							AST	McPHAIL ASSOCIATES, LLC				
COHESIVE SOILS BLOWS/FT. CONSISTENCY <2 V.SOFT 2-4 SOFT 2-4 SOFT					WELL-GRADED MIXTURE OF								McPHAIL ASSOCIATES, LLC 2269 MASSACHUSETTS AVENU CAMBRIDGE, MA 02140 TEL: 617-868-1420 FAX: 617-868-1423			
8-15 15-30 >30	5	STIF V.ST HAF	F 1	IVOC Background: ppm Veather: Variable Femperature:	n , , , , , , , , , , , , , , , , , , ,								Page 1 of 1			

Projec Locat City/S	ion:	Gra	assed	Square Developm area th, Massachusetts	Date Started: 10-5-22							Boring No. MA-13					
	Helpe I By/R	r: D.V eviewe	d By:	J. Junoville T. M. Cormican								Gro Date 10-5-22	Depth 13.5	Observa Elev. 14.3	tions Notes		
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change	E Stratum	Stratum TVOC N-Value Pen. (ppm) RQD No. //Rec.							ws/6" Iin/ft Sample Description and Boring Notes					
· 1 -	- 27 - 26		1.0 / 26	TOPSOIL	0.0	7	S-1	24/20	0.0-2.0	1 1 6 9	Loose brown to black SAND, some gravel, trace silt, with ash and cinders. (FILL)						
2 -	- 25 - 24				0.1	19	S-2	24/15	2.0-4.0	9 6 13 9	Compact bla	Compact black ASH, CINDERS and SLAG. (FILL) Compact black ASH, CINDERS and SLAG. (FILL) Loose black ASH, CINDERS and SLAG. (FILL)					
4 -					0.2	14	S-3	12/9	4.0-5.0	8	Compact bla						
6 -	- 23 - 22 - 21			FILL	0.3	6	S-4	24/7	5.0-7.0	5 3 3 2	Loose black						
7 -	- 20 - 19				0.4	7	S-5	24/10	7.0-9.0	5 4 3 2	Loose black	Loose black ASH, CINDERS and SLAG. (FILL)					
9 -	- 18		10.0 / 1	7.8	1.2	8	S-6	12/8	9.0-10.0	5	Loose black	ASH, CINDERS a	and SLAG. (F	ILL)			
10 -	- 17		11.0 / 1		0.4	4	S-7	12/10	10.0-11.0	1 3	Soft to firm of	ark brown ORGA	n ORGANIC SILT. (ORGANIC DEPOSIT)				
11 -	- 16		11.07	0.0	0.2	22	S-7A	12/6	11.0-12.0	11	Compact bro OUTWASH	Compact brown SAND and GRAVEL, trace silt. (GLACIAL OUTWASH)					
12 - 13 - 14 -	- 15 - 14				0.0	15	S-8	24/12	12.0-14.0	10 8 7 19		Compact gray-brown SAND and GRAVEL, trace silt. (GLACIAL OUTWASH)					
14 15 - 16 - 17 -	- 13 - 12 - 11			GLACIAL OUTWASH	0.1	59	S-9	24/13	15.0-17.0	11 26 33 34	Very dense OUTWASH	Very dense gray SAND and GRAVEL, trace silt. (GLACIAL OUTWASH)					
18 - 19 - 20 -	- 10 - 9 - 8																
21 -	- 7 - 6		22.0 / 5	5.8	0.1	36	S-10	23/14	20.0-21.9	14 18 18 15	Dense gray)UTWASH)					
22 -	- 5 - 4			Bottom of borehole 22.0 feet below ground surface.													
	RANUL	AR SOIL		SOIL COMPONENT	I	1	1	1	<u> </u>	1	I						
BLOWS 0-4 4-10 10-30 30-50 >50 CC BLOWS <2))))HESIN	DENS V.LOC LOOS COMP DENS V.DEN <u>E SOILS</u> CONSIS	DSE SE ACT SE ISE S TENCY	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Notes: Used automatic hammer	0-10% COMPONENTS EACH OF 0-10% WHICH COMPRISE AT LEAS 10-20% 25% OF THE TOTAL ARE NDY, SILTY) 20-35% CLASSIFIED AS "A 35-50% WELL-GRADED MIXTURE OF							AST OF" M	MCPHAIL ASSOCIATES, LLC MCPHAIL ASSOCIATES, LLC 2269 MASSACHUSETTS AVEN CAMBRIDGE, MA 02140				
2-4 4-8 8-15	;	SOI FIR STI V.ST	M FF	Total Volatile Organic Co TVOC Background: ppm Weather: Variable	ompounds (TVOC) measured w/ PID Model: n								TEL: 617-868-1420 FAX: 617-868-1423				
15-30 >30		V.ST HAF		Temperature:									Page 1 of 1				

Projec Locat City/S	ion:	Gra	avel driv	iquare Developm veway n, Massachusetts	Date Started: 10-3-22							Boring No. MA-14 Groundwater Observations					
Contractor: TDS Driller/Helper: D. Newton/B. Lee Logged By/Reviewed By: T. M. Cormican Surface Elevation (ft): 23.5						Casing Type/Depth (ft): 4.25 " I.D. Hollow Stem augers Casing Hammer (Ibs)/Drop (in): NE Sampler Size/Type: 1-3/8 " I.D. Split-Spoon Sampler Hammer (Ibs)/Drop (in): 140 lbs./30 inches							oundwater Depth 11	Observa Elev. 12.5	ions Notes		
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC N-Value Pen. Depth Blows/6" (ppm) RQD No. //Rec. (ft) Min/ft							Sample Description and Boring Notes					
- 1 -	- 23 - 22				0.0	23	S-1	18/13	0.5-2.0	7 11 12		Compact brown SAND and GRAVEL, some silt, with pavement. (F Dense brown SAND and GRAVEL, some silt, with shells, slag, and brick. (FILL)					
- 3 -	- 21 - 20			FILL	0.1	33	S-2	24/15	2.0-4.0	18 18 15 9							
	- 19		5.0 / 18.5	5	0.1	10	S-3	12/8	4.0-5.0	5 5	Loose to co	mpact black ASH	, CINDERS an	d SLAG. (FI	_L)		
- 5 -			6.0 / 17.5		0.1	8	S-4	12/5	5.0-6.0	4 4	Loose oran DEPOSIT)	ge-brown fine to r	nedium SAND,	trace silt. (A	LLUVIUM		
- 6 -	- 17		0.0717.5	,	0.0	25	S-4a	12/7	6.0-7.0	15	- ,	own SAND and G	n SAND and GRAVEL, trace silt. (GLACIAL				
- 7 - - 8 - - 9 -	- 16 - 15				0.1	33	S-5	24/10	7.0-9.0	10 18 16 17 22		-brown SAND and	i GRAVEL, tra	ce silt. (GLA	CIAL		
- 10 - - 11 - - 12 -	- 13 - 12			GLACIAL OUTWASH	0.1	61	S-6	24/13	10.0-12.0	15 30 31 30	Very dense gray-brown SAND and GRAVEL, trace silt. (GLACIAL OUTWASH)						
- 13 - - 14 - - 15 -	- 11 - 10 - 9 - 8									10		-brown SAND and	I GRAVEL, tra	ce silt. (GLA	CIAL		
- 16 - - 17 -	- 7		17.0 / 6.5		0.0	43	S-7	24/14	15.0-17.0	20 23 26	OUTWÁSH)					
- 18 - - 19 - - 20 -	- 6 - 5 - 4 - 3			Bottom of borehole 17.0 feet below ground surface.													
- 21 - - 22 - - 23 -	- 2 - 1 - 0																
GR BLOWS	RANULA	R SOIL DENS		SOIL COMPONENT													
0-4 V.LOOSE DESCRIPTIVE TERM 4-10 LOOSE 10-30 COMPACT "TRACE" 30-50 DENSE "SOME" >50 V.DENSE "ADJECTIVE" (eg S COHESIVE SOILS "AND"				"SOME" "ADJECTIVE" (eg SAN "AND"	0-10% 0-10% 0-20% 0-10% 0-							AST OF"	MCPHAIL ASSOCIATES, LLC				
BLOWS <2 2-4 4-8	V.SC SOI FIR	DFT U FT M T		r to drive Split Spoon ompounds (TVOC) measured w/ PID Model:								2269 MASSACHUSETTS AVENUE CAMBRIDGE, MA 02140 TEL: 617-868-1420 FAX: 617-868-1423					
8-15 15-30 >30	0	STII V.ST HAF	FF T	VOC Background: ppm Veather: Variable Femperature:									Page 1 of 1				

Projec Locat City/S	ion:	Gra	avel driv	iquare Developm /eway n, Massachusetts					♯: Started: Finished	7517 9-30 : 10-3	-22		Boring MA-		
Logged	Helper d By/Re	: D.N eviewe	lewton/B d By: T t): 22.0	Lee . M. Cormican	Ca Sa	ising Ha Impler Si	mmer (l ize/Type	bs)/Dro p ə: 1-3/8 '	I.25 " I.D. Ho (in): NE ' I.D. Split-S p p (in): 140	poon	-	Gro Date 10-3-22	undwater Depth 10.5	Observa Elev. 11.5	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC	N-Value	No.	Samp Pen. /Rec.	le Depth	Blows/6"		•	e Descrip 3oring Not		
- 1 -	- 21	S S	0.4 / 21.6	TOPSOIL	(ppm) 0.1	RQD 24	S-1	(in)	(ft) 0.0-2.0	Min/ft 5 10 14	Compact dark and GRAVEL	k gray-brown to bla	0		SILT, SAND,
- 2 - - 3 - - 4 -	- 20 - 19 - 18		4.0 / 18.0	FILL	0.0	21	S-2	24/18	2.0-4.0	12 12 12 9 14	Compact brov mortar. (FILL	wn SAND and GR .)	AVEL, trace s	silt, with ash,	cinders, and
- 5 -	- 17 - 16				0.0	35 52	S-3 S-4	12/10 24/13	4.0-5.0 5.0-7.0	16 19 21 29 23 19	trace silt. (GL	ense mottled brov LACIAL OUTWAS nottled orange-bro JTWASH)	SH)		
- 7 - - 8 - - 9 -	- 15 - 14 - 13														
· 10 - · 11 - · 12 - · 13 -	- 12 - 11 - 10 - 9			GLACIAL OUTWASH	0.1	66	<u>S-5</u> S-6	0/0 24/11	10.0-10.0	100/0" 36 35 31 33	NO RECOVE Cobble encou Very dense gi (GLACIAL OL	untered 9.9 to 10.4 ray-brown SAND	4 feet below g and GRAVEL	round surfac , trace to so	e. me silt.
14 - 15 - 16 -	- 8 - 7 - 6				0.0	36	S-7	24/14	15.0-17.0	24 17 19	Dense gray-b OUTWASH)	prown SAND and (GRAVEL, trac	ce silt. (GLA	CIAL
17 - 18 - 19 -	- 5 - 4 - 3		17.0 / 5.0	Bottom of borehole 17.0 feet below ground surface.						21					
20 - 21 - 22 -	- 2 - 1 - 0														
		AR SOIL		SOIL COMPONENT											
BLOWS 0-4 4-10 10-30 30-50 >50 CC BLOWS) 0 0 DHESIV	DENSI V.LOO LOOS COMPA DENS V.DEN E SOILS	ISE SE ACT SE ISE	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	NDY, SIL		0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR OF THE TO SIFIED AS	ISE AT LEAS DTAL ARE	DF" M	CPHAIL AS		ES, LLC
<2 2-4 4-8 8-15		V.SO SOF FIR STIF	РFТ U -Т М Т -F Т	Jsed automatic hammer otal Volatile Organic Co VOC Background: ppm	ompound			ed w/ PID	Model:				CAMBRID TEL: 6)2140 420
15-30 >30	0	V.ST HAF		Veather: Variable emperature:									Pag	e 1 of	1

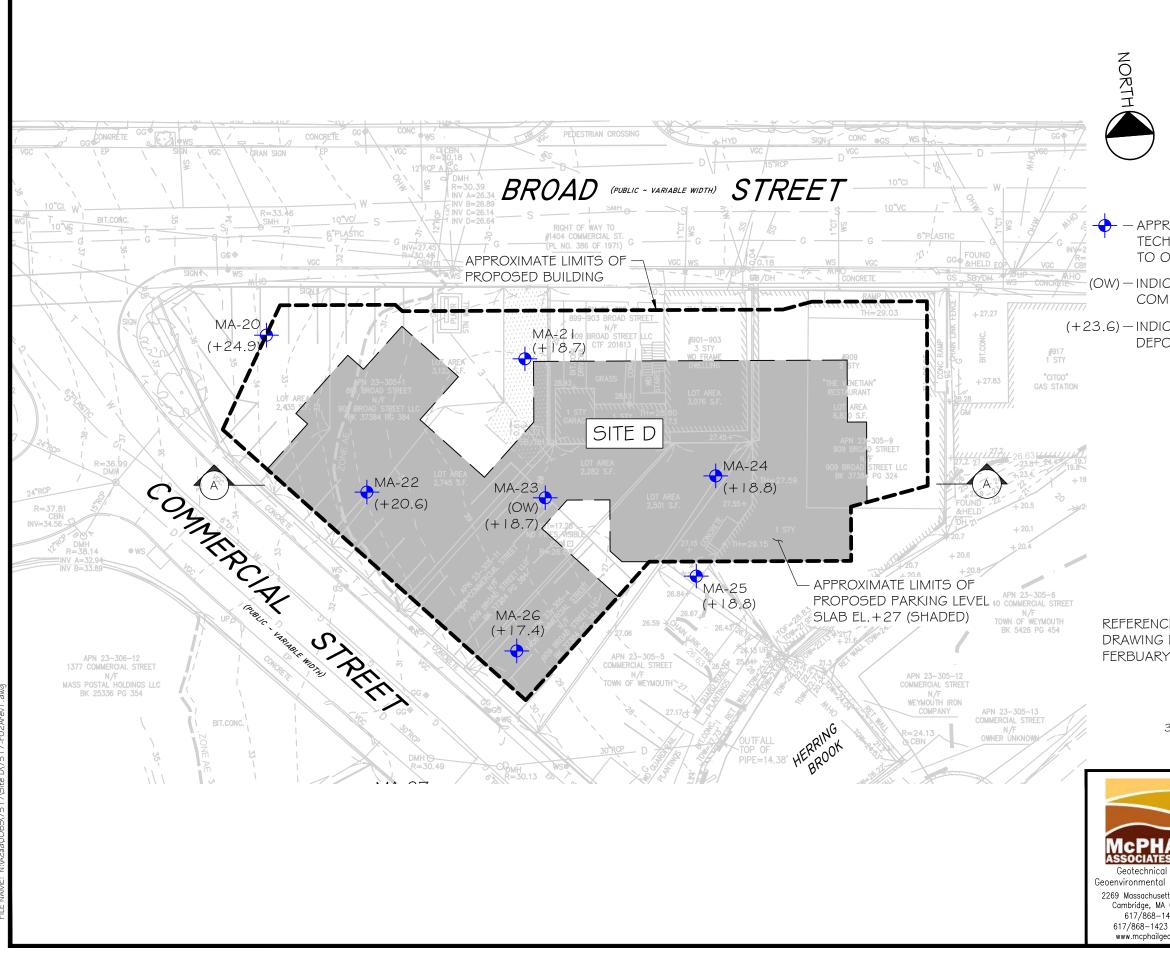
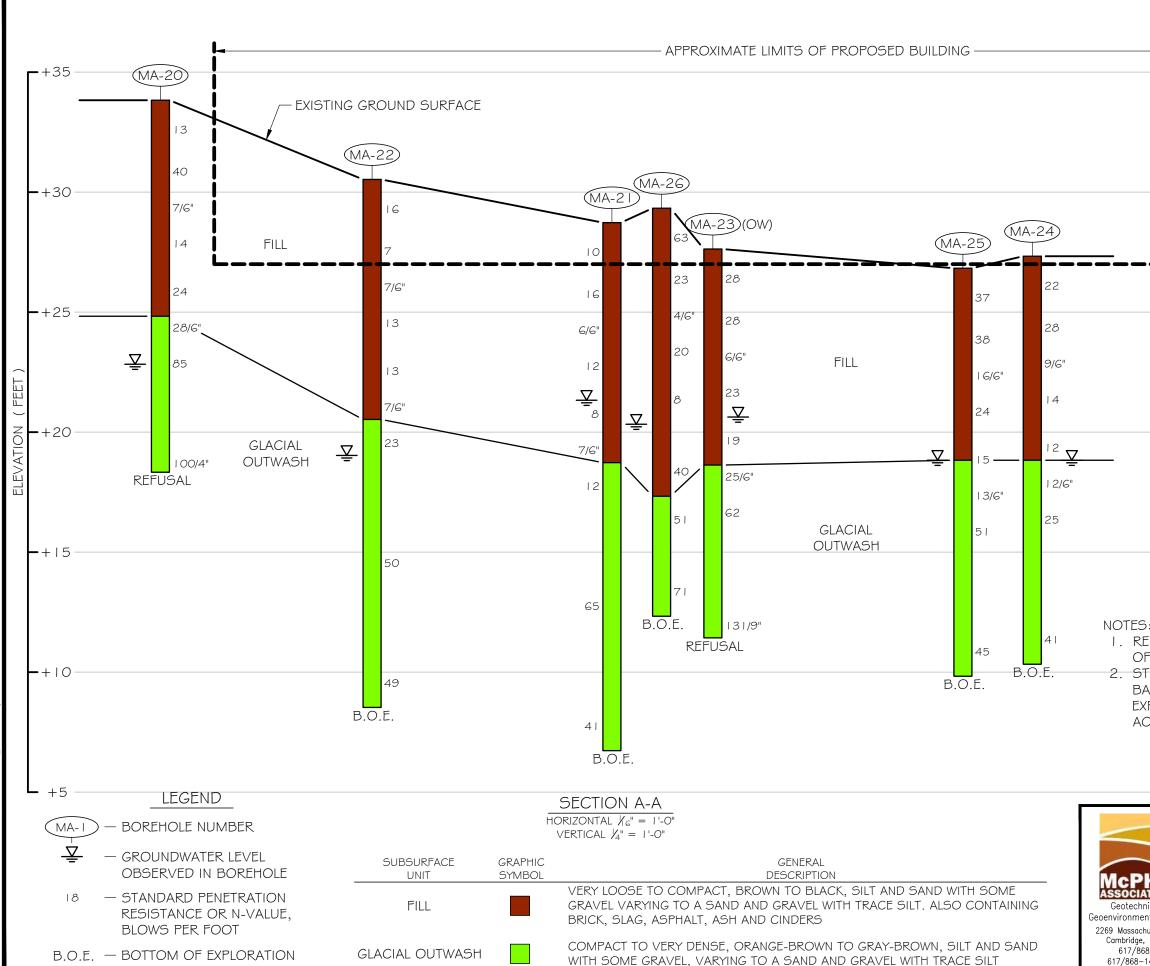


FIGURE 2A

LEGEND


 APPROXIMATE LOCATION OF BORING PERFORMED BY TECHNICAL DRILLING SERVICES BETWEEN SEPTEMBER 26 TO OCTOBER 9, 2022 FOR McPHAIL ASSOCIATES, LLC

(OW) – INDICATES OBSERVATION WELL INSTALLED WITHIN COMPLETED BOREHOLE

(+23.6) – INDICATES ELEVATION OF THE TOP OF NATURAL INORGANIC DEPOSIT CONSISTING OF ALLUVIUM OR GLACIAL OUTWASH

REFERENCE: THIS PLAN WAS PREPARED FROM A 20-SCALE DRAWING ENTITLED "EXISTING CONDITIONS PLAN" DATED FERBUARY 3, 2023 BY MCKENZIE ENGINEERING GROUP, INC.

		GRAPHIC S	6CALE		
30		0	30	6	0
	JAC	CKSON SQU	ARE MULTI	-USE DEV	ELOPMENT
	WEYN	NOUTH		MAS	6SACHUSETTS
		SUBSURFA	CE EXPLORAT	'ION PLAN - S	SITE D
Cal and cal Engineers setts Avenue WA 02140			FOR VELOPMEN BY AIL ASSOC		
–1420 423 (Fax)	Date:	APRIL 2023	Dwn: I.J.M.	Chkd: N.D.H.	Scale: " = 30'
lgeo.com	Project	No:	7517		

www.mcpha

		FIGU	RE 2B
		[
		İ	
	ľ		
	l		
:			
	IGURE 1 FOR LOCATION AND FACE SECTION.	ORIENTA	ATION
RATIFICA	TION LINES BETWEEN EXPLOR		
	LINEAR INTERPOLATION OF DA		
TUAL SUE	BSURFACE CONDITIONS.		
4	GRAPHIC SCALE 0 4	8	3
	JACKSON SQUARE MULTI-USE	DEVELOPN	1ENT - SITE D
			6SACHUSETTS
	GENERALIZED SUBSURFACE PI	KUFILE - SE	CIION A-A
TES, LLC	CMK DEVELOPMENT	S PARTN	ERS
tal Engineers usetts Avenue	BY MCPHAIL ASSOC	IATES, LL	С
MA 02140 3–1420 423 (Fax)	Date: MARCH 2023 Dwn: I.J.M.	Chkd: N.D.H.	Scale:
ilgeo.com	Project No: 7517		AS NOTED

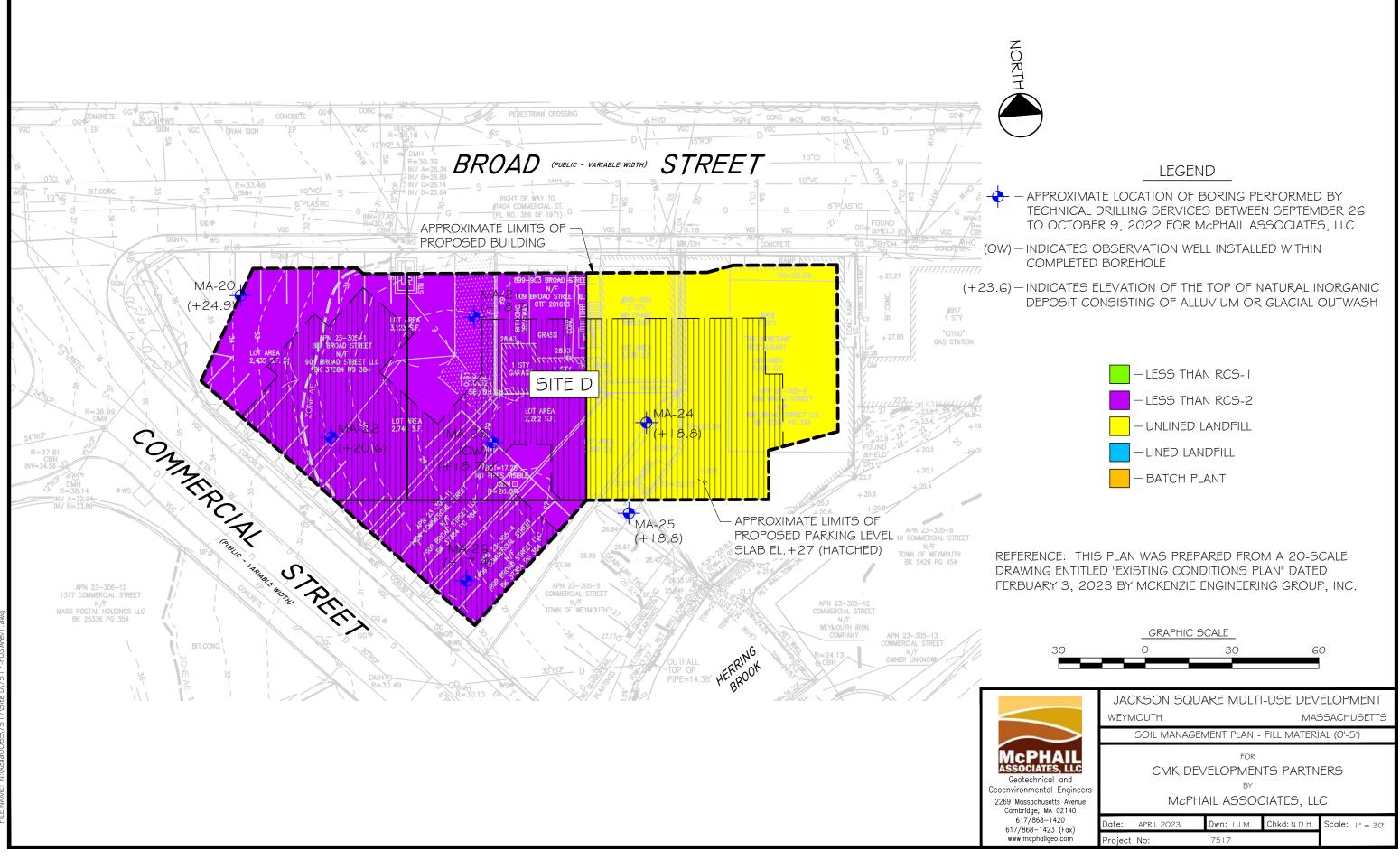


FIGURE 3A

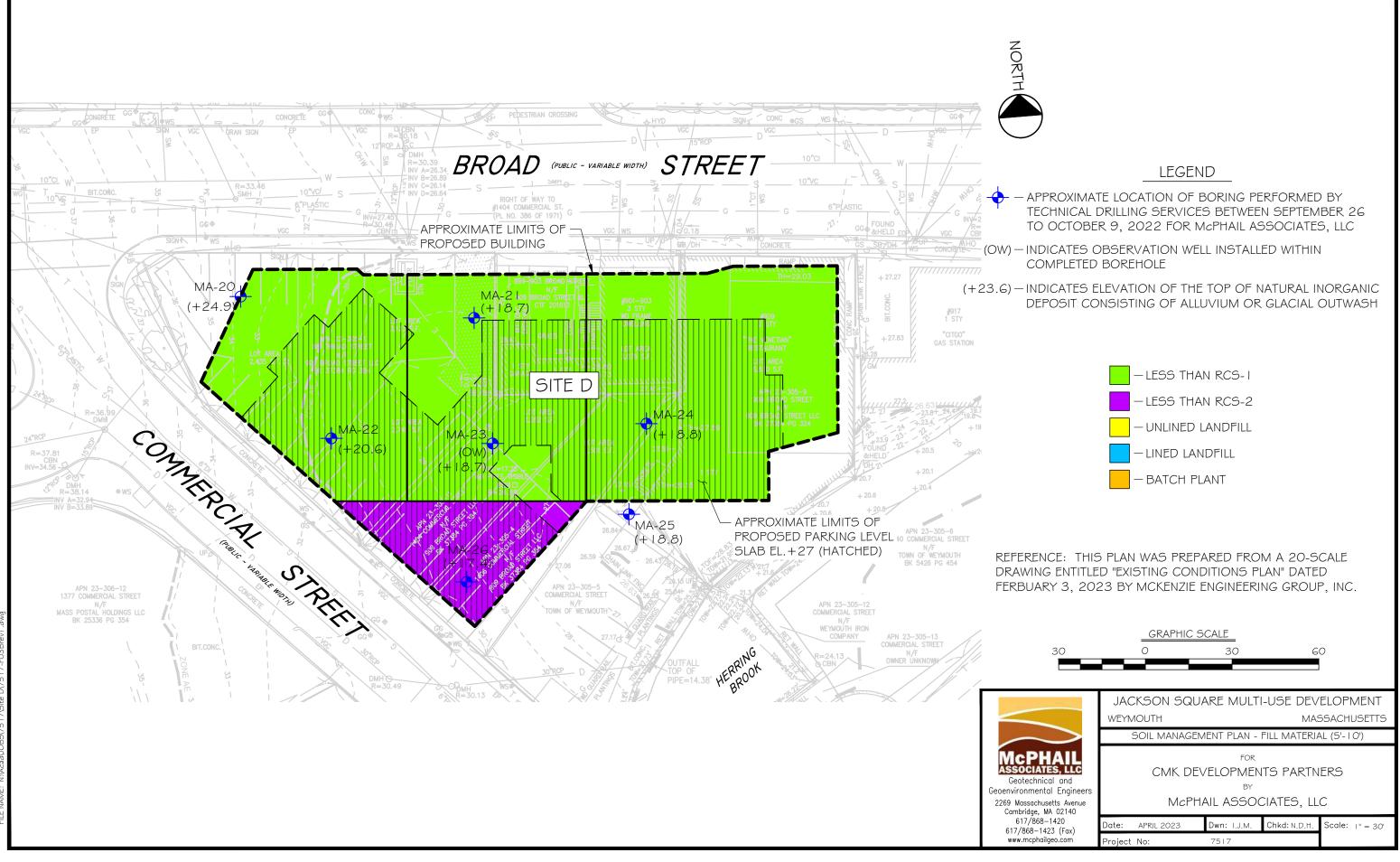
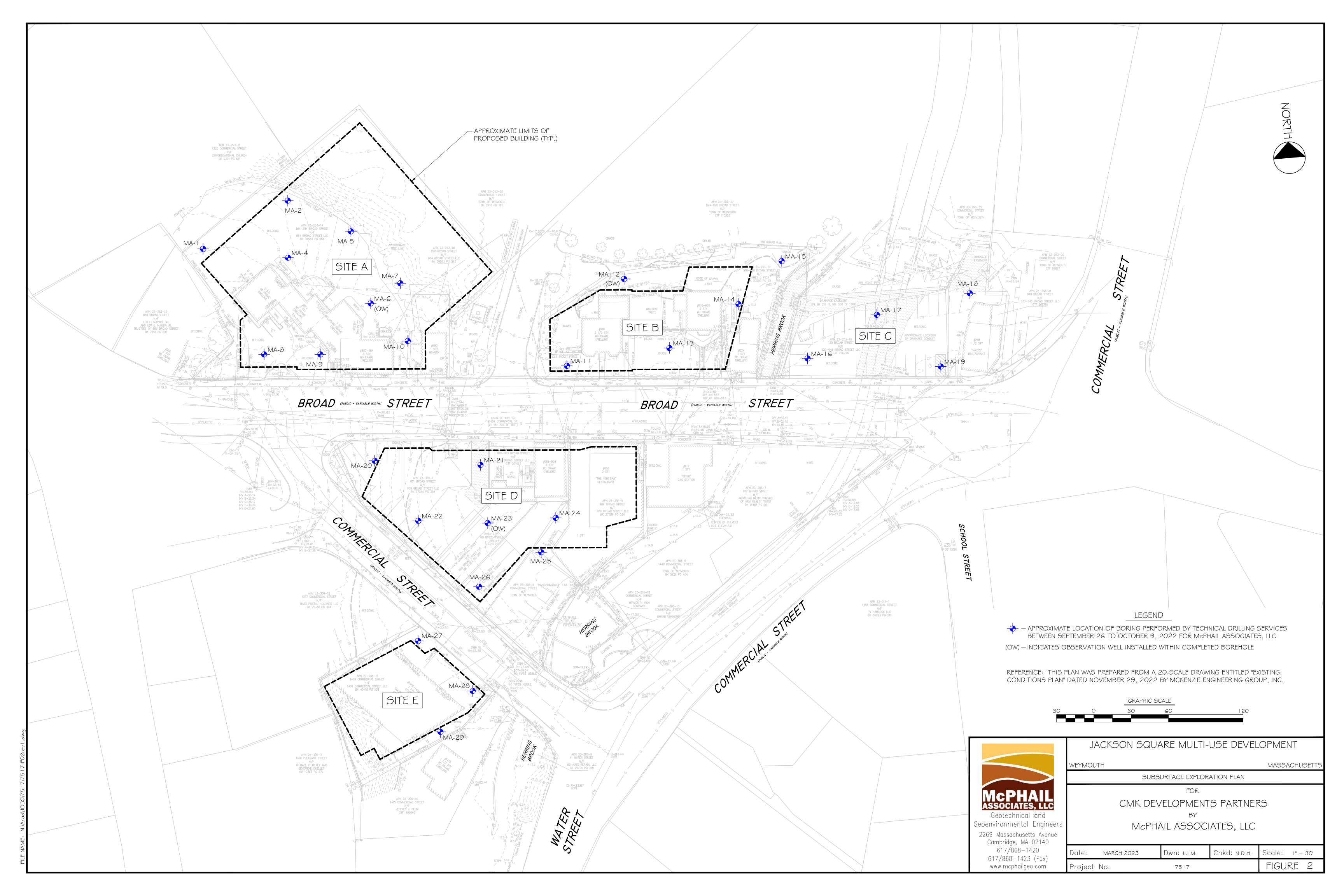


FIGURE 3B

City/S	ct: ion: State:	Pa	/ed Parl	quare Developm king Lot , Massachusetts					⊭: Started: Finished	7517 9-28 : 9-29	-22		Boring	20	
Logged	'Helper: d By/Re	: D.N viewee	lewton/B. d By: T. t): 33.9	Lee M. Cormican	Ca Sa	sing Hai mpler Si	mmer (l ize/Type	bs)/Dro p 9: 1-3/8 '	.25 " I.D. Ho (in): NE ' I.D. Split-S∣ p p (in): 140	poon	-	Grc Date 9-28-22	Depth 11	Observa Elev. 22.9	tions Notes
Depth	Elev.	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC	N-Value		Samp Pen.	le Depth	Blows/6"		Samp	le Descrip	tion	
(ft)	(ft)	Syr	Depth Strata (0. dddini	(ppm)	RQD	No.	/Rec. (in)	(ft)	Min/ft		and E	Boring Not	es	
			0.3 / 33.6	PAVEMENT /											
1 -	- 33 - 32				0.0	13	S-1	18/9	0.5-2.0	8 5 8		own gravelly SAND			
3 -	- 31				0.1	40	S-2	24/18	2.0-4.0	8 25 15 7	Dense gray- with brick, co	brown well-graded oncrete, ash and ci	mixture of SIL inders. (FILL)	T, SAND a	nd GRAVEL,
4 -	- 30			FILL	0.4	14	S-3	12/9	4.0-5.0	7 7	Loose to co concrete. (F	mpact gray-brown FILL)	SAND and GF	RAVEL, trac	e silt, with
- 5 - - 6 -	- 29 - 28				0.0	14	S-4	24/13	5.0-7.0	2 3 11	Compact gra wood. (FILL	ay-brown SAND ar .)	nd GRAVEL, tr	ace silt, with	n concrete and
- 7 -	- 27 - 26				0.0	24	S-5	24/14	7.0-9.0	15 13 10 14	Compact gra	ay-brown SAND ar	nd GRAVEL, tr	ace silt. (F	LL)
9 -	- 25		9.0 / 24.9		0.0	49	S-6	12/10	9.0-10.0	20 21		brown SAND and	GRAVEL, trac	e silt. (GLA	CIAL
· 10 - · 11 -	- 24 - 23				0.0	85	S-7	24/15	10.0-12.0	28 22 45 40	OUTWASH Very dense OUTWASH	gray-brown SAND	and GRAVEL	, some silt.	(GLACIAL
· 12 - · 13 -	- 22 - 21			GLACIAL OUTWASH						31					
· 14 -	- 20 - 19														
16 -	- 18	··	15.5 / 18.4	Bottom of Borehole	0.0	100/4"	S-8	4/4	15.0-15.3	100/4"	Very dense some silt. (0	mottled gray-browr GLACIAL OUTWA	n to orange-bro SH)	own SAND a	and GRAVEL,
17 -	- 17			15.5 feet below ground surface.							Split-spoon a	and auger refusal '	15.5 feet belov	v ground su	face.
18 -	- 16														
19 -	- 15														
20 -	- 14														
21 -	- 13														
- 22 -	- 12														
- 23 -	- 11														
GF		R SOIL DENSI		SOIL COMPONENT		1	1	I							
0-4 4-10		V.LOO LOOS	SE			PROP		<u>N OF TOT</u>			NG THREE EACH OF				
10-3 30-5 >50	0	COMPA DENS V.DEN	SE ISE	"TRACE" "SOME" "ADJECTIVE" (eg SAI "AND"	NDY, SIL	ΓY)	0-10 10-2 20-3 35-5	0% 5%	WHIC 25% C CLAS	H COMPR OF THE TO SIFIED AS	ISE AT LEA DTAL ARE		MC	PHA	
CC BLOWS <2 2-4 4-8			FT U	otes: sed automatic hammer			on					M		HUSETT	S ÁVENUE)2140 420
8-15 15-3 >30	5 0	STIF V.ST HAF	F T	otal Volatile Organic Co VOC Background: ppn /eather: Variable emperature:		s (1VOC)	measure	ea w/ PID	IVIOQEI:				Pag	e 1 of	1

Projec Locat City/S	ion:	Pa	/ed Pa	Square Developm rking Lot h, Massachusetts					#: Started: Finished	7517 9-28 : 9-28	-22	M	ng No. A-21	ations
	Helper I By/Re	D.N	t): 28.7	T. M. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Dro p e: 1-3/8 '	4.25 " I.D. Ho o (in): NE " I.D. Split-S _l op (in): 140	poon		Date Der D-28-22 7.		Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		Sample Des and Boring		
· 1 -	- 28 - 27		0.3/28.4		0.1	10	S-1	18/13	0.5-2.0	5 5 5	Loose to compact	t brown SAND, some	silt, gravel. (FIL	L)
2 -	- 26 - 25				0.1	16	S-2	24/16	2.0-4.0	5 6 10 6 5	Compact black Sli and SLAG. (FILL)	LT and SAND, some)	gravel to ASH a	nd CINDERS
4 -					1.9	9	S-3	12/10	4.0-5.0	3	Loose to compact	t black ASH, CINDER	S and SLAG. (F	FILL)
5 - 6 -	- 24 - 23 - 22			FILL	0.2	12	S-4	24/8	5.0-7.0	6 4 6 6 3	Compact black SI	LT and SAND, with as	sh, cinders, and s	slag. (FILL)
8 -	- 21 - 20				0.3	8	S-5	24/10	7.0-9.0	5 4 4 4	Loose black SILT	and SAND, with ash,	cinders, and sla	g. (FILL)
9 -	- 19		10.0 / 18	-	0.1	11	S-6	12/10	9.0-10.0	4		t dark brown to black v SAND and GRAVEL.		ure of
10 - 11 - 12 -	- 18 - 17		10.07 18.		0.1	12	S-7	24/11	10.0-12.0	5 6 6 4		brown silty SAND and		wn gravelly
· 13 - · 14 - · 15 -	- 16 - 15 - 14 - 13									26	Very dense gray-t OUTWASH)	prown SAND and GR.	AVEL, trace silt.	(GLACIAL
16 - 17 - 18 - 19 -	- 12 - 11 - 10			GLACIAL OUTWASH	0.1	65	S-8	24/17	15.0-17.0	38 27 26				
20 -	- 9 - 8 - 7		22.0 / 6.	7	0.0	41	S-9	24/8	20.0-22.0	10 16 25 22	Dense brown SAN	ND and GRAVEL, trac	ce silt. (GLACIA	L OUTWASH)
- 22 - - 23 -	- 6 - 5		22.070.	Bottom of borehole 22.0 feet below ground surface.										
	ANULA			SOIL COMPONENT		1	1	1	1	1	1	_		
BLOWS 0-4 4-10 10-30 30-50 >50 CC BLOWS <2 2-4))) DHESIVE		SE SE ACT SE SE SE FENCY	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Notes: Used automatic hammer		TY)	0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLASS	PONENTS H COMPR OF THE TO SIFIED AS	ISE AT LEAST DTAL ARE	MCPHAI 2269 MAS CAME TEL	CPHA sociates, L ASSOCIAT SACHUSETT BRIDGE, MA :: 617-868-	S ÁVENUE 02140 1420
4-8 8-15 15-30 >30		FIR STIF V.ST HAF	M - FF ⁻	Total Volatile Organic Co TVOC Background: ppm Weather: Variable Temperature:		s (TVOC)	measure	ed w/ PID	Model:				age 1 of	


Proje Locat City/S	ion:	Pav	/ed Pai	Square Developm rking Lot n, Massachusetts					#: Started: Finished	7517 9-28 : 9-28	-22		Boring	22	
Logged	Helpe d By/R	r: D.N eviewe	t): 30.6	Г. М. Cormican	Ca Sa	ising Ha Impler S	mmer (l ize/Type	bs)/Dro p e: 1-3/8 '	I.25 " I.D. Ho (in): NE ' I.D. Split-Sp (in): 140	ooon		Grou Date 9-28-22	undwater Depth 11.5	Observa Elev. 19.1	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft		•	e Descrip Boring Not		
· 1 -	- 30 - 29		0.3 / 30.3	3 PAVEMENT	0.0	16	S-1	18/8	0.5-2.0	8 10 6	Compact brow MORTAR, and	n gravelly SAND, d CONCRETE.(, some silt, to FILL)	CRUSHED	BRICK,
- 2 -	- 28 - 27				0.0	7	S-2	24/13	2.0-4.0	4 3 4 14	Loose gray-bla	ack SILT and SAN	ND, with ash a	and cinders.	(FILL)
• 4 -	- 26				0.0	13	S-3	12/6	4.0-5.0	6	Compact SILT	and SAND, with	ash and cind	ers. (FILL)	
- 5 - - 6 -	- 25 - 24			FILL	0.1	13	S-4	24/16	5.0-7.0	7 8 5 8 15		-brown well-grade ers and slag. (FIL		SILT, SAND	and GRAVEL
- 7 -	- 23 - 22				0.0	13	S-5	24/13	7.0-9.0	11 8 5 4	Compact gray- with brick, ash,	-brown well-grade , cinders, and slag	ed mixture of a g. (FILL)	SILT, SAND	and GRAVEL
9 -	- 21		10.0 / 00		0.0	12	S-6	12/9	9.0-10.0	5	Compact dark and GRAVEL.	brown well-grade (FILL)	ed mixture of (ORGANIC S	ILT, SAND,
10 - 11 - 12 -	- 20 - 19		10.0 / 20.	6	0.0	23	S-7	24/11	10.0-12.0	7 14 12 11 10		/n SAND and GR.	AVEL, trace s	silt. (GLACI.	AL
· 13 - · 14 - · 15 -	- 18 - 17 - 16 - 15			GLACIAL OUTWASH	0.0	50	S-8	24/15	15.0-17.0	16 23 27	Dense to very (GLACIAL OU	dense gray-brow ITWASH)	vn SAND and	GRAVEL, tr	ace silt.
17 - 18 - 19 - 20 -	- 14 - 13 - 12 - 11									24					
21 -	- 10 - 9		22.0 / 8.6	5	0.0	49	S-9	24/16	20.0-22.0	15 25 24 26	Dense gray-br	rown silty SAND a	and GRAVEL	(GLACIAL	OUTWASH)
- 22 - - 23 -	- 8 - 7			Bottom of borehole 22.0 feet below ground surface.											
		AR SOIL		SOIL COMPONENT		1	1	I	1	1			_		
BLOWS 0-4 4-10 10-3 30-5 >50 CC BLOWS <2 2-4) 0 0 0 0 0 0 0 0 0 0 7 7 7	DENSI V.LOO LOOS COMP/ DENS V.DEN (E SOILS CONSIS V.SC SOF	ISE ACT BE ISE TENCY I	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Notes: Jsed automatic hammer		TY)	0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLASS	ONENTS H COMPR OF THE TO SIFIED AS	NG THREE EACH OF ISE AT LEAS DTAL ARE "A MIXTURE O	^{IF"} M(2269	CAMBRID TEL: 6	HUSETT: GE, MA (17-868-1	S ÁVENUE 02140 420
4-8 8-15 15-3	5	FIR STIF V.ST	M 7 FF 7	Fotal Volatile Organic Co FVOC Background: ppm Weather: Variable Femperature:	ompound เ	s (TVOC)	measure	ed w/ PID	Model:					e 1 of	
>30		HAF	KU I	i cinperature.									· J	-	

Projec Locat City/S	ion:	Pav	/ed Pa	Square Developm rking Lot h, Massachusetts					⊭: Started: Finished:	7517 9-27 9-27	-22	MA	Boring \-23	(OV	•
Logged	Helper I By/Re	: D.N eviewe	t): 27.7	T. M. Cormican	Ca Sa	asing Ha Impler Si	mmer (l ize/Type	bs)/Drop 9: 1-3/8 ' (Ibs)/Dro	I.25 " I.D. Ho (in): NE ' I.D. Split-Sp (in): 140	oon	-	Gro Date 9-27-22	undwater Depth 7	Elev. 20.7	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft		•	e Descrip Boring No		
	- 27	\times	0.3/27.	4 PAVEMENT						45	Commenting				-1
1 - 2 -	- 26				0.1	28	S-1	18/14	0.5-2.0	15 12 16	(FILL)	own sandy GRAVE			cinders.
3 -	- 25 - 24				0.3	28	S-2	24/10	2.0-4.0	20 13 15 15	Compact bla	ICK ASH, CINDERS	5, and SLAG.	(FILL)	
4 -	- 23			FILL	0.2	16	S-3	12/8	4.0-5.0	10	Compact bla	ick ASH, CINDERS	S, and SLAG.	(FILL)	
5 - 6 -	- 23 - 22 - 21				0.1	23	S-4	24/10	5.0-7.0	6 14 11 12	Compact bla	ick ASH, CINDERS	S, and SLAG.	(FILL)	
7 - 8 -	- 20 - 19		9.0 / 18.	7	0.6	19	S-5	24/12	7.0-9.0	9 12 8 11 11	Compact bla	ick ASH, CINDERS	S, and SLAG.	(FILL)	
9 -			9.07 16.		0.0	39	S-6	12/9	9.0-10.0	14	Dense brow OUTWASH	n to gray-brown SA	ND and GRA	VEL, trace s	silt. (GLACIA
10 - 11 -	- 18 - 17				0.1	62	S-7	24/15	10.0-12.0	25 20 29 33		brown GRAVEL, so	ome sand, tra	ce silt. (GL/	ACIAL
· 12 - · 13 - · 14 -	- 16 - 15 - 14 - 13			GLACIAL OUTWASH						36					
15 - 16 -	- 12		16.2 / 11	.5 Bottom of borehole	0.1	131/9"	S-8	15/12	15.0-16.3	14 31 100/3"	OUTWASH	gray-brown silty SA) and auger refusal 1			
17 - 18 - 19 - 20 - 21 - 22 - 23 -	- 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4			16.2 feet below ground surface.										, ground du	
GR BLOWS		R SOIL		SOIL COMPONENT											
0-4 4-10 10-30 30-50 >50) 0 0 DHESIV //FT. C	V.LOC LOOS COMP/ DENS V.DEN E SOILS CONSIS V.SC	ISE SE ACT SE ISE S TENCY	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Notes: Used automatic hammer		TY)	0-10 10-2 20-3 35-5	0% 5%	COMPO WHICH 25% OI CLASS	ONENTS I COMPR F THE TC SIFIED AS	NG THREE EACH OF ISE AT LEA DTAL ARE "A MIXTURE	AST OF" M	CAMBRIE TEL: (HUSETTS OGE, MA (517-868-14	S ÁVENUE)2140 420
4-8 8-15 15-30 >30	5	FIR STII V.ST HAF	M · FF ·	Total Volatile Organic Co TVOC Background: ppm Weather: Variable Temperature:		ls (TVOC)	measure	ed w/ PID	Model:					e 1 of	

Projec Locat City/S	ion:	Pav	ved Parl	quare Developm king Lot , Massachusetts					#: Started: Finished	7517 10-4 1: 10-4	-22		Boring MA-	24	tions
Logged	Helper I By/Re	: D.N eviewe	t): 27.3	Lee M. Cormican	Ca Sa	ising Ha Impler Si	mmer (l ize/Type	bs)/Dro p ə: 1-3/8 '	I.25 " I.D. Ho (in): NE ' I.D. Split-S p p (in): 140	poon		Gro Date 10-4-22	undwater Depth 8.5	Observa Elev. 18.8	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft		•	e Descrip 3oring Not		
· 1 -	- 27 - 26		0.3/27.0	PAVEMENT ,	0.0	22	S-1	18/12	0.5-2.0	4 10 12	Compact bro with ash and	own gravelly SAND cinders. (FILL)	, some silt, to	black SILT a	and SAND,
- 3 - - 4 -	- 25 - 24				0.7	28	S-2	24/16	2.0-4.0	22 11 17 4		ck ASH, CINDERS			
5 -	- 23 - 22 - 21			FILL	0.4	17	S-3 S-4	12/6 24/12	4.0-5.0 5.0-7.0	8 9 8 7 7 7 5		mpact black ASH, (LL)
8 -	- 20 - 19		8.5 / 18.8		0.2	12	S-5 S-5A	18/8 6/6	7.0-8.5 8.5-9.0	6 6 6	-	ck ASH, and CIND		. ,	
9 - 10 - 11 -	- 18 - 17 - 16				0.0	20	S-6 S-7	12/6 24/13	9.0-10.0	155 8 12 6 8 17	trace silt. (G Compact gra OUTWASH)	ay-brown SAND an	SH) d GRAVEL, tr	ace silt. (G	LACIAL
12 - 13 - 14 -	- 15 - 14 - 13			GLACIAL OUTWASH						22					
15 - 16 -	- 12 - 11		17.0 / 10.3		0.0	41	S-8	24/10	15.0-17.0	21 20 21 24	Dense gray- OUTWASH)	brown SAND and (GRAVEL, trac	e silt. (GLA	CIAL
17 - 18 - 19 - 20 - 21 -	- 10 - 9 - 8 - 7 - 6			Bottom of borehole 17.0 feet below ground surface.											
22 -	- 5 - 4														
BLOWS 0-4 4-10 10-30 30-50 >50 CC	GRANULAR SOILS SOIL COMPONEN LOWS/FT. DENSITY DESCRIPTIVE TE 0-4 V.LOOSE DESCRIPTIVE TE 4-10 LOOSE "TRACE" 10-30 COMPACT "SOME" 30-50 DENSE "ADJECTIVE" (eg >50 V.DENSE "AND" COHESIVE SOILS Notes:						PORTION 0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR DF THE TC SIFIED AS	ISE AT LEA)TAL ARE	AST OF"		PHA DIATES, L	
<2 2-4 4-8		V.SC SOI FIR	DFT U FT M T	sed automatic hammer otal Volatile Organic Co	ompound			ed w/ PID	Model:				MASSAC CAMBRID TEL: 6	HUSETTS	S ÁVENUE)2140 420
8-15 15-30 >30	0	STII V.ST HAF	IFF W	VOC Background: ppn /eather: Variable emperature:	ו								Pag	e 1 of	1

Projec Locat City/S	ion:	Pav	ed Park	quare Developm king Lot , Massachusetts					#: Started: Finished	7517 10-4 : 10-4	-22		Boring MA-		
	Helper I By/Re	: D.N viewed	-	Lee M. Cormican	Ca Sa	asing Ha Impler Si	mmer (l ize/Type	bs)/Drop 9: 1-3/8 '	I.25 " I.D. Ho ⊅ (in): NE ' I.D. Split-S∣ ⊅ p (in): 140	poon	_	Gro Date 10-4-22	undwater Depth 8	Observa Elev. 18.8	tions Notes
		_	to Jge					Samp	le						
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		•	e Descrip Boring Not		
- 1 -	- 26 - 25		0.3/26.5	ASPHALT	0.0	37	S-1	18/16	0.5-2.0	7 15 22	Dense brow and SLAG.	n SAND and GRA\ (FILL)	/EL, some sil	, to black As	6H, CINDERS
- 3 -	- 24 - 23				0.5	38	S-2	24/14	2.0-4.0	31 22 16 16	Dense black	ASH, CINDERS a	and SLAG. (F	ILL)	
	- 22			FILL	0.1	28	S-3	12/8	4.0-5.0	12 16	Compact bla	ick ASH, CINDERS	S, and SLAG.	(FILL)	
- 5 -	- 21 - 20				0.1	24	S-4	24/11	5.0-7.0	16 17 7 4	Compact bla	ICK ASH, CINDER	S, and SLAG.	(FILL)	
- 7 -	- 19		8.0 / 18.8		0.0	12	S-5	12/8	7.0-8.0	5	Loose to cor (FILL)	mpact brown to dar	k brown silty \$	SAND, some	e gravel.
8 -	- 18		0.07 10.0		0.0	17	S-5a	12/9	8.0-9.0	8	Compact ligh	nt gray silty fine to r	medium SANE). (GLACIA	LOUTWASH
9 -	- 17				0.0	38	S-6	12/9	9.0-10.0	25 13	Compact yel OUTWASH)	llow-gray SAND an)	d GRAVEL, ti	ace silt. (G	LACIAL
- 10 -	- 16 - 15				0.1	51	S-7	24/14	10.0-12.0	17 30 21 24	Very dense OUTWASH)	yellow-gray SAND)	and GRAVEL	, trace silt.	GLACIAL
- 12 - - 13 - - 14 -	- 14 - 13 - 12			GLACIAL OUTWASH											
· 15 -	- 11 - 10		17.0 / 9.8		0.1	45	S-8	24/13	15.0-17.0	30 28 17 19	Dense yellov OUTWASH)	w-gray SAND and ()	GRAVEL, trac	e silt. (GLA	CIAL
- 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 -	- 9 - 8 - 7 - 6 - 5 - 4			Bottom of borehole 17.0 feet below ground surface.											
	- 3 RANULA			SOIL COMPONENT						1			_		_
BLOWS 0-4 4-10 10-30 30-50 >50 CC BLOWS <2 2-4) 0 DHESIVI /FT. C		TY SE SE SE SE ENCY FT	DESCRIPTIVE TERM 'TRACE" 'SOME" 'ADJECTIVE" (eg SAI 'AND" btes: sed automatic hammer		TY)	0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR OF THE TC SIFIED AS	ISE AT LEA)TAL ARE	AST OF" M	CAMBRID TEL: 6	HUSETT	S ÁVENUE)2140 420
4-8 8-15 15-30 >30	5 D	FIRI STIF V.STI HAR	FF TV	otal Volatile Organic Co /OC Background: ppn eather: Variable emperature:		s (TVOC)	measure	ed w/ PID	Model:					e 1 of	

Projec Locat City/S	ion:	Pav	ved Pa	Square Developm rking Lot n, Massachusetts					#: Started: Finished		-22		Boring	26	
Logged	Helpei d By/Re	: D.N eviewe	t): 29.4	. Lee Г. M. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop 9: 1-3/8 ' (Ibs)/Dro	1.25 " I.D. Ho (in): NE " I.D. Split-S op (in): 140	poon	-	Gro Date 10-3-22	Undwater Depth 9	Observa Elev. 20.4	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft			e Descrip Boring Not		
- 1 -	- 29 - 28		0.2 / 29.:	2 <u>ASPHALT</u>	0.4	63	S-1	18/8	0.5-2.0	15 28 35	Very dense I	brown gravelly SAN	ID, some silt,	with brick.(FILL)
- 2 -	- 27 - 26				0.0	23	S-2	24/14	2.0-4.0	10 12 11 6	Compact sar (FILL)	ndy GRAVEL, trace	e silt, with cru	shed brick a	nd mortar.
- 4 -	- 25				0.0	15	S-3	12/6	4.0-5.0	9	Compact bro	wn SAND, some s	ilt, with brick.	(FILL)	
- 5 -	- 24 - 23			FILL	0.1	20	S-4	24/13	5.0-7.0	6 7 10 10 10		own SAND, some s and SLAG. (FILL)	ilt, with brick a	and mortar to	o black ASH,
- 7 - - 8 - - 9 -	- 22 - 21				0.0	8	S-5	24/9	7.0-9.0	5 6 2 2	Loose gray-l	black ASH, CINDE	RS, and SLA	G. (FILL)	
- 10 - - 11 -	- 20 - 19 - 18		10.0.1.17		0.0	40	S-7	24/6	10.0-12.0	14 20 20 20	Dense dark	brown silty SAND a	and GRAVEL.	(FILL)	
- 12 - - 13 - - 14 -	- 17 - 16		12.0 / 17.	4	0.0	51	S-8	24/8	12.0-14.0	20 17 22 29 41	Very dense ((GLACIAL C	gray-brown SAND ; DUTWASH)	and GRAVEL	, trace to so	me silt.
· 15 -	- 15 - 14 - 13		17.0 / 12	GLACIAL OUTWASH	0.0	71	S-9	24/14	15.0-17.0	88 42 29 26	Very dense (OUTWASH)	gray SAND and GF	RAVEL, trace	to some silt.	(GLACIAL
- 18 - - 19 -	- 12 - 11 - 10			Bottom of borehole 17.0 feet below ground surface.											
- 20 - - 21 -	- 9 - 8														
- 22 - - 23 -	- 7 - 6														
				SOIL COMPONENT			•								
BLOWS 0-4 4-10 10-30 30-50 >50) D D	DENS V.LOC LOOS COMP/ DENS V.DEN E SOILS	DSE SE ACT SE ISE	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	NDY, SIL		0-10 0-10 10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR DF THE TC SIFIED AS	ISE AT LEA DTAL ARE	AST		PHA Itates, I	
BLOWS <2 2-4 4-8	/FT. C	ONSIS V.SC SOF FIR	TENCY DFT -T M -	Notes: Used automatic hammer Fotal Volatile Organic Co	ompound			ed w/ PID	Model:				MASSAC CAMBRID TEL: 6	HUSETTS	S ÁVENUE)2140 420
8-15 15-30 >30	0	STII V.ST HAF	IFF	FVOC Background: ppn Weather: Variable Femperature:	ı								Pag	e 1 of	1

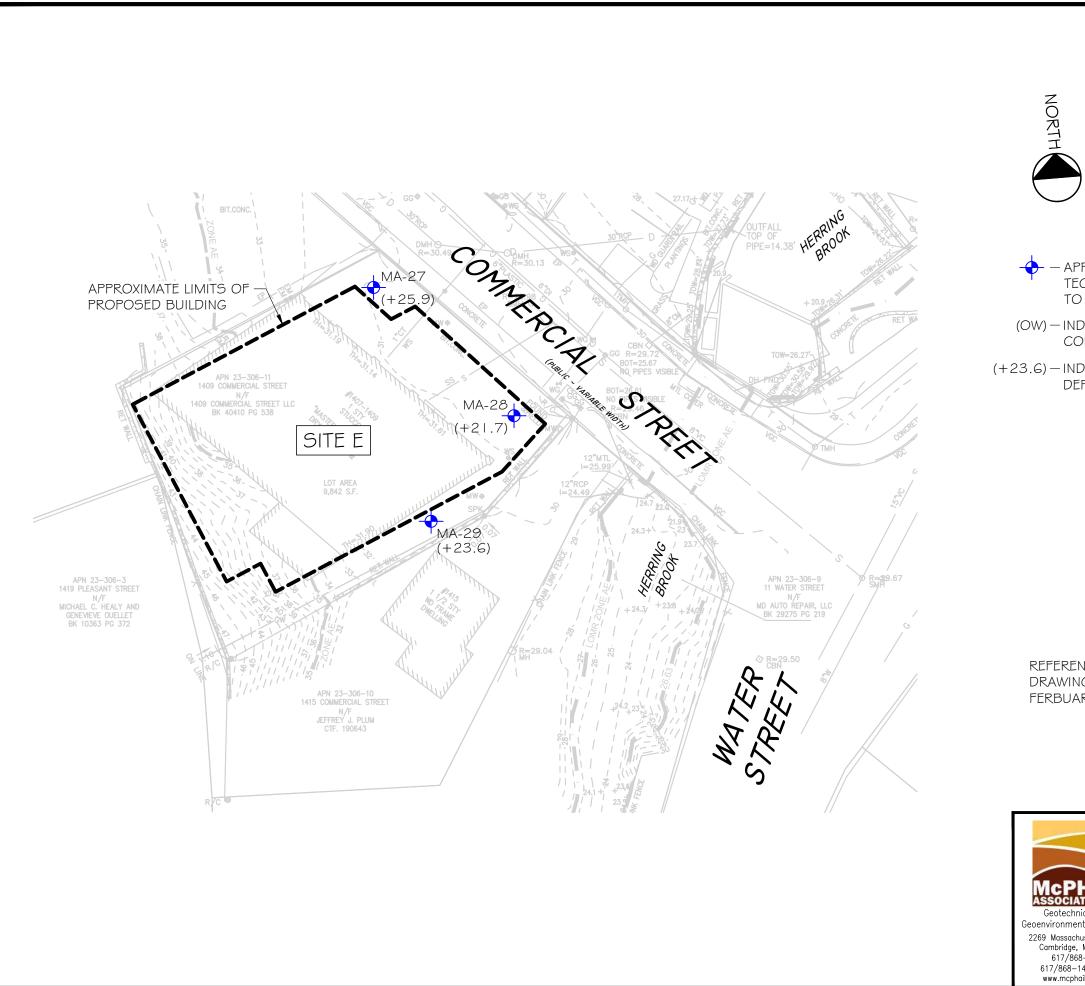
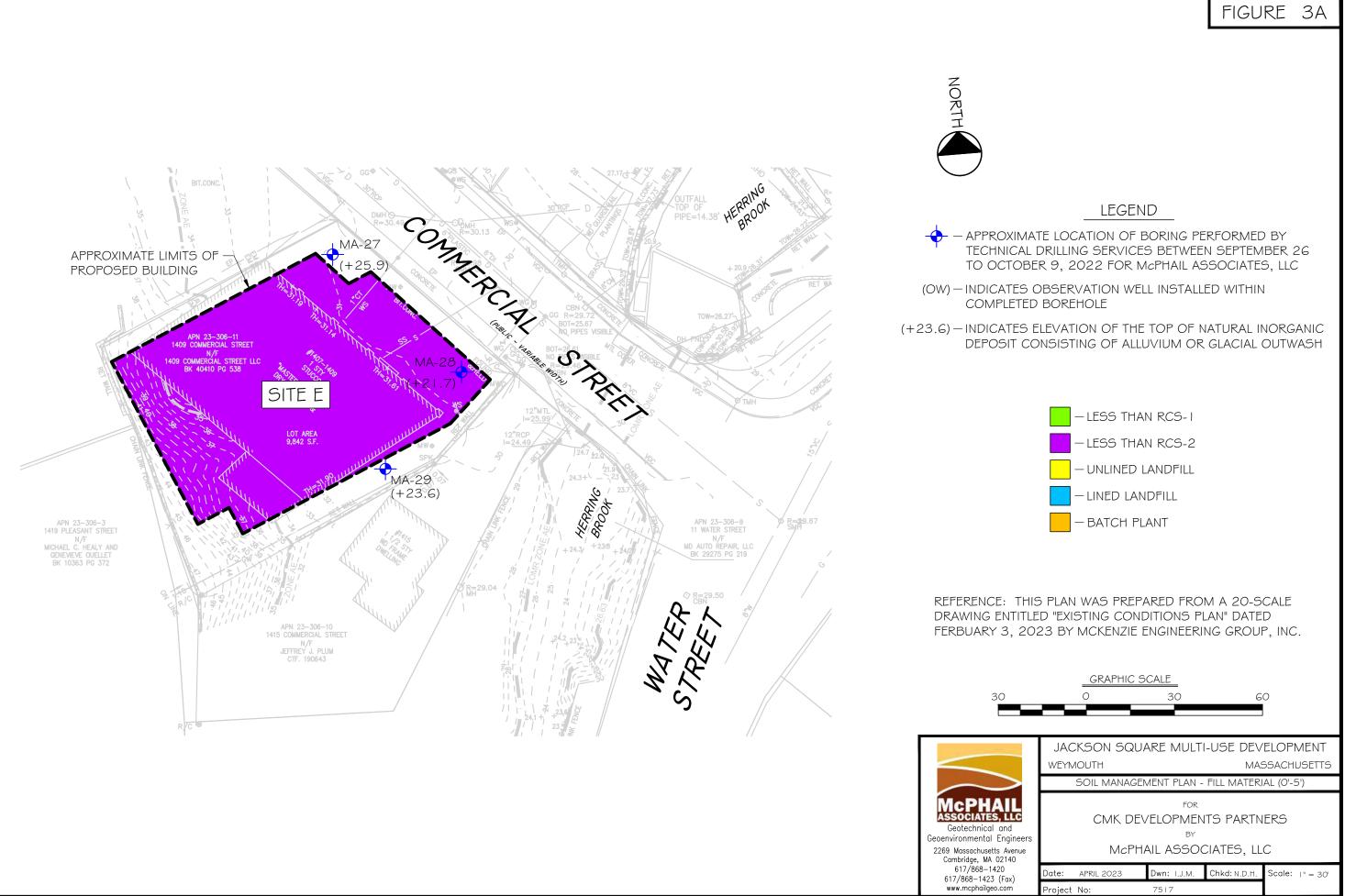


FIGURE 2A

LEGEND


 APPROXIMATE LOCATION OF BORING PERFORMED BY TECHNICAL DRILLING SERVICES BETWEEN SEPTEMBER 26 TO OCTOBER 9, 2022 FOR McPHAIL ASSOCIATES, LLC

(OW) – INDICATES OBSERVATION WELL INSTALLED WITHIN COMPLETED BOREHOLE

(+23.6) – INDICATES ELEVATION OF THE TOP OF NATURAL INORGANIC DEPOSIT CONSISTING OF ALLUVIUM OR GLACIAL OUTWASH

REFERENCE: THIS PLAN WAS PREPARED FROM A 20-SCALE DRAWING ENTITLED "EXISTING CONDITIONS PLAN" DATED FERBUARY 3, 2023 BY MCKENZIE ENGINEERING GROUP, INC.

		GRAPHIC S	6CALE		
30		0	30	6	0
	JAC	CKSON SQL	ARE MULT	-USE DEV	ELOPMENT
	WEYN	NOUTH		MAS	6SACHUSETTS
>		SUBSURFA	.CE EXPLORAT	ION PLAN - S	SITE E
Cal and cal Engineers setts Avenue MA 02140			FOR VELOPMEN BY AIL ASSO(
–1420 423 (Fax)	Date:	APRIL 2023	Dwn: I.J.M.	Chkd: N.D.H.	Scale: " = 30'
Igeo.com	Project	No:	7517		

Projec Locat City/S	ion:	Pa	/ed Par	quare Developm king Lot ı, Massachusetts					#: Started: Finished		-22		Boring		
Logged	Helper I By/Re	: D.N	Newton/B. d By: T t): 30.9	Lee . M. Cormican	Ca Sa	ising Ha Impler S	mmer (l ize/Type	bs)/Drop 9: 1-3/8 '	4.25 " I.D. He o (in): NE " I.D. Split-S op (in): 140	poon	-	Gro Date 10-4-22	Depth 10	Observa Elev. 20.9	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft			le Descrip Boring Not		
- 1 - - 2 -	- 30 - 29		0.2/30.7	PAVEMENT /	0.2	14	S-1	18/8	0.5-2.0	7 9 5	Compact SA SLAG. (FIL	ND, some silt, soi L)	ne gravel, to b	black ASH, C	INDERS, and
- 3 -	- 28 - 27			FILL	0.3	8	S-2	24/11	2.0-4.0	6 5 3 3	Loose black	ASH, CINDERS,	and SLAG. (F	FILL)	
- 4 -			/		0.3	12	S-3	12/7	4.0-5.0	5	Compact bla SAND, som	ack ASH, CINDER e silt_(FILL)	S and SLAG t	o dark brown	gravelly
- 5 -	- 26 - 25 - 24		5.0 / 25.9		0.1	10	S-4	24/13	5.0-7.0	7 3 4 6 6		mpact yellow-brow	n SAND, som	e gravel, trac	e silt.
- 7 - - 8 - - 9 -	- 23 - 22			ALLUVIUM DEPOSIT	0.1	16	S-5	24/18	7.0-9.0	9 9 7 6	Compact str trace silt to S	atified yellow-brow SAND, trace silt, tr	n to gray-brov ace gravel. (vn fine to me ALLUVIUM [dium SAND, DEPOSIT)
9 - 10 - - 11 -	- 21 - 20		10.0 / 20.9	,	0.2	20	S-6	24/14	10.0-12.0	15 12	Compact ye OUTWASH	llow-brown SAND	and GRAVEL	trace silt. (C	GLACIAL
- 12 - - 13 - - 14 -	- 19 - 18 - 17			GLACIAL OUTWASH						8					
- 15 - - 16 -	- 16 - 15		17.0 / 13.9		0.2	35	S-7	24/12	15.0-17.0	13 18 15	Dense gray- OUTWASH	brown SAND and)	GRAVEL, trad	ce silt. (GLA	CIAL
- 17 - - 18 - - 19 - - 20 - - 21 - - 22 -	- 14 - 13 - 12 - 11 - 10 - 9	<u></u>	17.07 13.8	Bottom of borehole 17.0 feet below ground surface.						12					
- 23 -	- 8		<u> </u>												
BLOWS 0-4 4-10 10-30 30-50 >50	GRANULAR SOILS SOIL COMPONEN LOWS/FT. DENSITY DESCRIPTIVE TEI 0-4 V.LOOSE DESCRIPTIVE TEI 4-10 LOOSE "TRACE" 10-30 COMPACT "SOME" 30-50 DENSE "ADJECTIVE" (eg >50 V.DENSE "AND" COHESIVE SOILS Notes:				NDY, SIL		PORTION 0-1(10-2 20-3 35-5	0% 5%	COMF WHIC 25% C CLAS	PONENTS H COMPR OF THE TO SIFIED AS	ISE AT LEA DTAL ARE	AST		PHA CIATES, L SSOCIATE	
<2 2-4 4-8		V.SC SOF FIR	FT U T M T	sed automatic hammer otal Volatile Organic Co	ompound			ed w/ PID	Model:				9 MASSAC CAMBRIE TEL: 6	HUSETTS	S ÁVENUE 2140 420
8-15 15-30 >30	5	STIF V.ST HAF	F T	VOC Background: ppm /eather: Variable emperature:		. ,							Pag	e 1 of	1

Project:Jackson Square DevelopnLocation:Paved Parking LotCity/State:Weymouth, Massachusetts									#: Started: Finished	7517 10-6 I: 10-6	-22	Boring No. MA-28			
	Helpe d By/R	r: D.V eviewe	d By: i t): 30.7		Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop ə: 1-3/8 ' (Ibs)/Dro	4.25 " I.D. Ho o (in): NE " I.D. Split-S op (in): 140	poon	-	Gro Date 10-6-22	Depth 6	Observa Elev. 24.7	tions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ff)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft	Sample Description and Boring Notes				
· 1 -	- 30 - 29		0.2/30	.5FILL	0.1	16	S-1	18/12	0.5-2.0	6 8 8	Compact da	rk gray SAND and	GRAVEL, so	me silt. (FIL	L)
3 -	- 28 - 27				0.0	26	S-2	14/17	2.0-3.2	21 14 12	Compact gra	ay-brown SAND ar	nd GRAVEL, t	race silt. (Fl	LL)
· 4 -	- 26			FILL	0.0	26	S-3	12/10	4.0-5.0	10 16	Compact gra	ay-brown SAND ar	nd GRAVEL, s	ome silt. (F	ILL)
- 5 -	- 25 - 24				0.0	36	S-4	24/9	5.0-7.0	25 19 17 20	Dense gray-	brown SAND and	GRAVEL, trac	ce to some s	ilt. (FILL)
- 7 -	- 23 - 22		9.0 / 21	7	0.0	13	S-5	24/15	7.0-9.0	14 5 8 14	Compact gra	ay-brown SAND ar	nd GRAVEL, t	race to som	ə silt. (FILL)
9 - 10 -	- 21 - 20		9.0721		0.0	55	S-6	24/13	9.0-11.0	24 22 33 31	Very dense OUTWASH)	gray SAND and GI)	RAVEL, trace	silt. (GLAC	IAL
12 - 13 - 14 -	- 19 - 18 - 17														
15 - 16 - 17 -	- 16 - 15 - 14			GLACIAL OUTWASH	0.0	40	S-7	24/12	15.0-17.0	8 16 24 28	Dense gray- OUTWASH)	brown SAND and ()	GRAVEL, trac	ce silt. (GLA	CIAL
18 - 19 - 20 -	- 13 - 12 - 11														
21 -	- 10 - 9		22.0 / 8	.7	0.0	40	S-8	24/12	20.0-22.0	16 21 19 19	Dense gray- OUTWASH)	brown SAND and (GRAVEL, trac	ce silt. (GLA	CIAL
22 -	- 8 - 7			Bottom of borehole 22.0 feet below ground surface.											
	RANULA	AR SOIL		SOIL COMPONENT	<u> </u>	<u>I</u>	1	1	I	1	I				
BLOWS/FT. DENSITY 0-4 V.LOOSE 4-10 LOOSE 10-30 COMPACT 30-50 DENSE >50 V.DENSE COHESIVE SOILS "AND"			0-10% COMPONENTS EACH OF 0-10% WHICH COMPRISE AT LEAS 10-20% 25% OF THE TOTAL ARE					AST OF" M	MCPHAIL ASSOCIATES, LLC MCPHAIL ASSOCIATES, LLC 2269 MASSACHUSETTS AVENI						
<2 2-4 4-8 8-15		V.SC SOI FIR STI	FT M	Used automatic hamme Total Volatile Organic O TVOC Background: pp	Compound	ompounds (TVOC) measured w/ PID Model:							CAMBRIDGE, MA 02140 TEL: 617-868-1420 FAX: 617-868-1423		
15-30 >30	0	V.ST HAF	IFF	Weather: Variable Temperature:									Pag	e 1 of	1

Project:Jackson Square DevelopmLocation:Paved DrivewayCity/State:Weymouth, Massachusetts								Job #: 7517.9 Date Started: 10-6-22 Date Finished: 10-6-22				Boring No. MA-29			
	Helper I By/Re	: D.V eviewe	d By: T t): 31.6	Junoville . M. Cormican	Ca Sa	asing Ha Impler S	mmer (l ize/Type	bs)/Drop 9: 1-3/8 ' (Ibs)/Dro	4.25 " I.D. Ho p (in): NE " I.D. Split-Sp pp (in): 140	poon	-	Gro Date 10-6-22	Undwater Depth 8.5	Observat Elev. 23.1	ions Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows/6" Min/ft		Sample Description and Boring Notes			
- 1 -	- 31 - 30		0.2/31.4	PAVEMENT	0.2	12	S-1	18/11	0.5-2.0	3 4 8	Compact brown	n SAND and GR	AVEL, trace :	silt. (FILL)	
- 3 -	- 29 - 28			FILL	0.2	15	S-2	24/12	2.0-4.0	9 8 7 8	Compact black	ASH, CINDER	S, and SLAG.	(FILL)	
- 4 - - 5 -	- 27 - 26				0.2	15 7	S-3 S-4	12/9 18/10	4.0-5.0	7 8 4	Compact ASH, Loose gray to b				
- 6 -	- 25		6.5 / 25.1		0.1	2/6"	S-4 S-4A	18/10 6/6	5.0-6.5 6.5-7.0	4 3 2	Very loose to lo	oose, brown, SIL	T and SAND	trace gravel	. (SUBSOIL)
- 8 -	- 24 - 23	<u>17 - 515</u> - <u>5-17 - 5.1</u>	8.0 / 23.6	SUBSOIL	0.1	5 20	S-5 S-5A	12/6 12/9	7.0-8.0 8.0-9.0	2 3 8 12	Loose, brown, S Compact orang OUTWASH)				
- 9 - - 10 - - 11 - - 12 -	- 22 - 21 - 20				0.3	28	S-6	24/10	10.0-12.0	12 10 12 16 19	Compact brown OUTWASH)	n SAND and GR	AVEL, trace :	silt. (GLACIA	sL.
- 13 - - 14 - - 15 - - 16 -	- 19 - 18 - 17 - 16			GLACIAL OUTWASH	0.2	41	S-7	24/8	15.0-17.0	14 16 05	Dense brown SA	AND and GRA	/EL, trace silt	. (GLACIAL	OUTWASH)
- 17 - - 18 - - 19 - - 20 -	- 15 - 14 - 13 - 12									25 36					
- 21 -	- 11 - 10		22.0 / 9.6		0.2	35	S-8	24/13	20.0-22.0	19 20 15 18	Dense brown S	AND and GRA	/EL, trace silt	. (GLACIAL	OUTWASH)
- 22 - - 23 -	- 9 - 8			Bottom of Borehole 22.0 feet below ground surface.											
GRANULAR SOILS SOIL COMPONENT BLOWS/FT. DENSITY OLA 0-4 V.LOOSE DESCRIPTIVE TERM 4-10 LOOSE IOOSE 10-30 COMPACT "TRACE" 30-50 DENSE "SOME"			DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAM "AND"	PROPORTION OF TOTAL SOIL CONTAINING THREE 0-10% COMPONENTS EACH OF 10-20% 25% OF THE TOTAL ARE NDY, SILTY) 20-35% CLASSIFIED AS "A 35-50% WELL-GRADED MIXTURE OF					м	McPHAIL ASSOCIATES, LLC					
BLOWS <2 2-4 4-8		V.SC SOF FIR	PFT U FT M T		ompound	o drive Split Spoon npounds (TVOC) measured w/ PID Model:					2269	CAMBRID	HUSETTS IGE, MA 0 17-868-14 17-868-14	20	
8-15 15-30 >30		STIF V.ST HAF	IFF V	VOC Background: ppm Veather: Variable emperature:	1								Page 1 of 1		

APPENDIX F

Best Management Practices Operation and Maintenance Plans

SITES A & B

CONSTRUCTION PHASE POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (BEST MANAGEMENT PRACTICES OPERATION AND MAINTENANCE PLAN)

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building A (Assessor's Parcel IDs 23-253-14 & 23-253-16)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

	Page
Project Narrative	
- Project Description	1
- Pre-development Condition	2
- Post-development Condition	2
Erosion and Sedimentation Controls - Best Management Practices	(BMP's)
- Structural Practices	2
- Stabilization Practices	5
- Dust Control	10
- Non-Stormwater Discharges	11
- Soil Stockpiling	11
- Pollution Prevention	11
- Inspection/Maintenance	12
- Inspection Schedule and Evaluation Checklist	14
- Spill Containment and Management Plan	
Diana	

Plans

- Figure-1 USGS Locus Map (Refer to Drainage Report)
- Site Topographic Map (Existing Conditions Plans within Plan Set)
- Site Development Map (Grading and Drainage Plans within Plan Set)
- Site Erosion and Sedimentation Plan (Grading and Drainage Plans within Plan Set)
- Construction Detail Plan (Construction Details within Plan Set)

Construction Phase Best Management Practices (BMP's)

Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control.

Responsible Party Contact Information:	
Stormwater Management System Owner:	Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693
Town of Weymouth Contact Information:	Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100
	Weymouth Conservation Commission Town Hall 75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5007
	Weymouth Department of Municipal Licenses and Inspections Jeffrey E. Richards, C.B.O., Director Town Hall

Structural Practices:

 <u>Compost Filter Tube Barrier Controls</u> – A compost filter tube barrier will be constructed along downward slopes at the limit of work in locations shown on the plans. This control will be installed prior to major soil disturbance on the site. The sediment silt sack barrier should be installed as shown on the Construction Detail Plan.

Compost Filter Tube Design/Installation Requirements *

- a) Locate the compost filter tube where identified on the plans.
- b) The compost filter tube line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the silt sack should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.

75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5004

- c) The compost filter tube shall be staked every 8 linear feet with 1-inch by 1-inch stakes.
- d) Compost filter tubes should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season. Retained sediment must be removed and properly disposed of or mulched and seeded.

Compost Filter Tube Inspection/Maintenance *

- a) Compost filter tubes should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the compost filter tube. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all compost filter tube materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform with the existing topography and vegetated.
- 2) Sediment Fence Controls A sediment fence will be constructed along the limit of work as needed to prevent the spreading of fine sediments from the site. This control will be installed prior to major soil disturbance on the site. The sediment fence should be installed as shown on the Erosion Control Detail Plan and be Amoco woven polypropylene 1198 or equivalent.

Sediment Fence Design/Installation Requirements *

- a) Locate the fence upland of the hay bale barriers and where identified on the plans.
- b) The fence line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the fence should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.
- c) Excavate a trench approximately 8 inches deep and 4 inches wide, or a V-trench; along the line of the fence, upslope side.
- d) Fasten support wire fence (14 gauge with 6-inch mesh) securely to the upslope side of the fence posts with wire ties or staples. Wire should extend 6 inches into the trench.

- e) Attach continuous length of fabric to upslope side of fence posts. Avoid joints, particularly at low points in the fence line. Where joints are necessary, fasten fabric securely to support posts and overlap to the next post.
- f) Place the bottom one foot of fabric in the trench. Backfill with compacted earth or gravel.
- g) Filter cloth shall be fastened securely to the woven wire fence with ties spaced every 24 inches at the top, mid-section, and bottom.
- h) Sediment fences should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season and only following approval by the Engineering Department or their representative. Retained sediment must be removed and properly disposed of, or mulched and seeded.

Sediment Fence Inspection/Maintenance *

- a) Silt fences should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the fence. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all fencing materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform to the existing topography and vegetation.
- 3) <u>Stabilized Construction Entrance</u> A stabilized construction entrance will be placed at the proposed entrance at Lovell Field. The construction entrance will keep mud and sediment from being tracked off the construction site by vehicles leaving the site. The stabilized construction entrance will be installed immediately after the clearing and grubbing of the roadway entrance and associated roadway fill to maintain access to the site are completed. The stabilized construction entrance shall be constructed as shown on the Construction Detail Plans.

Construction Entrance Design/Construction Requirements *

a) Stone for a stabilized construction entrance shall consist of 1 to 3-inch stone placed on a stable foundation.

- b) Pad dimensions: The minimum length of the gravel pad should be 50 feet. The pad should extend the full width of the proposed roadway, or wide enough so that the largest construction vehicle will fit in the entrance with room to spare; whichever is greater.
- c) A geotextile filter fabric shall be placed between the stone fill and the earth surface below the pad to reduce the migration of soil particles from the underlying soil into the stone and vice versa. The filter fabric should be Amoco woven polypropylene 1198 or equivalent.
- d) Washing: If the site conditions are such that the majority of mud is not removed from the vehicle tires by the gravel pad, then the tires should be washed before the vehicle enters the street. The wash area shall be located at the stabilized construction entrance.
- e) Water employed in the washing process shall be directed to the temporary dewatering area as shown on the plans prior to discharge. Sediment should be prevented from entering any watercourses.

Construction Entrance Inspection/Maintenance *

- a) The entrance should be maintained in a condition that will prevent tracking or flowing of sediment onto Lovell Field and Commercial Street. This may require periodic topdressing with additional stone.
- b) The construction entrance and sediment disposal area shall be inspected weekly and after heavy rains or heavy use.
- c) Mud and sediment tracked or washed onto public road shall be immediately removed by sweeping.
- d) Once mud and soil particles clog the voids in the gravel and the effectiveness of the gravel pad is no longer satisfactory, the pad must be topdressed with new stone. Replacement of the entire pad may be necessary when the pad becomes completely clogged.
- e) If washing facilities are used, the dewatering area should be cleaned out as often as necessary to assure that adequate trapping efficiency and storage volume is available.
- f) The pad shall be reshaped as needed for drainage and runoff control.
- g) Broken road pavement on Lovell Field and Commercial Street shall be repaired immediately.
- h) All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization is achieved or after the temporary practices are no longer needed and only following approval by the Public Works Department or their representative. Trapped sediment shall be removed or stabilized on site. Disturbed soil areas resulting from removal shall be permanently stabilized.

Stabilization Practices:

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

- Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.
- Where construction activity will resume on a portion of the site within 21 days from when activities ceased, (e.g. the total time period that construction activity is temporarily ceased is less than 21 days) then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased.
- The contractor shall provide erosion control measures around all soil stockpiles.
- 1) <u>Temporary Seeding</u> Temporary seeding will allow short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stockpiles and disturbed portions of the site where construction activity will temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

Temporary Seeding Planting Procedures *

- a) Planting should preferably be done between April 1st and June 30th, and September 1st through September 31st. If planting is done in the months of July and August, irrigation may be required. If planting is done between October 1st and March 31st, mulching should be applied immediately after planting. If seeding is done during the summer months, irrigation of some sort will probably be necessary.
- b) Before seeding, install structural practice controls. Utilize Amoco supergro or equivalent.

Species	Seeding Rate	Seeding Rate	Recommended Seeding	Seed Cover
	(lbs/1,000 sq.ft.)	(lbs/acre)	Dates	required
Annual	1	40	April 1 st to June 1 st	1∕₄ inch
Ryegrass			August 15 th to Sept. 15 th	
Foxtail	0.7	30	May 1 st to June 30 th	1/2 to 3/4 inch
Millet			-	
Oats	2	80	April 1 st to July 1 st	1 to 1-1/2 inch
			August 15 th to Sept. 15 th	
Winter	3	120	August 15 th to Oct. 15 th	1 to 1-1/2 inch
Rye			-	

c) Select the appropriate seed species for temporary cover from the following table.

Apply the seed uniformly by hydroseeding, broadcasting, or by hand.

d) Use effective mulch, tacked and/or tied with netting to protect seedbed and encourage plant growth.

Temporary Seeding Inspection/Maintenance *

- a) Inspect within 6 weeks of planting to see if stands are adequate. Check for damage within 24 hours of the end to heavy rainfall, defined as a 2-year storm event (i.e., 3.2 inches of rainfall within a twenty-four-hour period). Stands should be uniform and dense. Reseed and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary.
- b) Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather. Water application rates should be controlled to prevent runoff.
- 2) <u>Geotextiles</u> Geotextiles such as jute netting will be used in combination with other practices such as mulching to stabilize slopes. The following geotextile materials or equivalent are to be utilized for structural and nonstructural controls as shown in the following table.

Practice	Manufacturer	Product	Remarks
Sediment Fence	Amoco	Woven polypropylene	0.425 mm opening
		1198 or equivalent	
Construction	Amoco	Woven polypropylene	0.300 mm opening
Entrance		2002 or equivalent	_
Outlet	Amoco	Nonwoven polypropylene	0.150 mm opening
Protection		4551 or equivalent	_
Erosion Control	Amoco	Supergro or equivalent	Erosion control
(slope stability)			revegetation mix, open
、 · · · · · · · · · · · · · · · · · · ·			polypropylene fiber on
			degradable
			polypropylene net
			scrim

Amoco may be reached at (800) 445-7732

Geotextile Installation

a) Netting and matting require firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil and erosion will occur underneath the material.

Geotextile Inspection/Maintenance *

- a) In the field, regular inspections should be made to check for cracks, tears, or breaches in the fabric. The appropriate repairs should be made.
- 3) <u>Mulching and Netting</u> Mulching will provide immediate protection to exposed soils during the period of short construction delays, or over winter months through the application of plant residues, or other suitable materials, to exposed soil areas. In areas, which have been seeded either for temporary or permanent cover, mulching should immediately follow seeding. On steep slopes, mulch must be supplemented with netting.

Mulch Maintenance *

- a) Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting.
- b) Grass mulches that blow or wash away should be repaired promptly.
- c) If plastic netting is used to anchor mulch, care should be taken during initial mowings to keep the mower height high. Otherwise, the netting can wrap up on the mower blade shafts. After a period of time, the netting degrades and becomes less of a problem.
- d) Continue inspections until vegetation is well established.
- 4) <u>Land Grading</u> Grading on fill slopes, cut slopes, and stockpile areas will be done with full siltation controls in place.

Land Grading Design/Installation Requirements

- a) Areas to be graded should be cleared and grubbed of all timber, logs, brush, rubbish, and vegetated matter that will interfere with the grading operation. Topsoil should be stripped and stockpiled for use on critical disturbed areas for establishment of vegetation. Cut slopes to be topsoiled should be thoroughly scarified to a minimum depth of 3-inches prior to placement of topsoil.
- b) Fill materials should be generally free of brush, rubbish, rocks, and stumps. Frozen materials or soft and easily compressible materials should not be used in fills intended to support buildings, parking lots, roads, conduits, or other structures.
- c) Earth fill intended to support structural measures should be compacted to a minimum of 90 percent of Standard Proctor Test density with proper moisture control, or as otherwise specified by the engineer responsible for the design. Compaction of other fills should be to the density required to control sloughing, erosion or excessive moisture content. Maximum thickness of fill layers prior to compaction should not exceed 9 inches.
- d) The uppermost one foot of fill slopes should be compacted to at least 85 percent of the maximum unit weight (based on the modified AASHTO compaction test). This is usually accomplished by running heavy equipment over the fill.
- e) Fill should consist of material from borrow areas and excess cut will be stockpiled in areas shown on the Site Plans. All disturbed areas should be free draining, left with a neat and finished appearance, and should be protected from erosion.
- f) Infiltration basins shall be excavated, graded and shaped to subgrade elevation and shall then be suitably protected with installation of erosion control measures to prevent sediment-laden runoff from washing into the basins. The basins shall also be protected from heavy equipment activity from this point forward. Prior to application of loam and seed to infiltration basin surfaces, the contractor shall

remove any unsuitable soil such as silt or clay that may have been deposited during construction. The surface shall be scarified with a York rake or other small tractor mounted equipment. The loam and seed shall then be applied as required by this document.

Land Grading Stabilization Inspection/Maintenance *

- a) All slopes should be checked periodically to see that vegetation is in good condition. Any rills or damage from erosion and animal burrowing should be repaired immediately to avoid further damage.
- b) If seeps develop on the slopes, the area should be evaluated to determine if the seep will cause an unstable condition. Subsurface drains or a gravel mulch may be required to solve seep problems. However, no seeps are anticipated.
- c) Areas requiring revegetation should be repaired immediately. Control undesirable vegetation such as weeds and woody growth to avoid bank stability problems in the future.
- 5) <u>Topsoiling</u> * Topsoiling will help establish vegetation on all disturbed areas throughout the site during the seeding process. The soil texture of the topsoil to be used will be a sandy loam to a silt loam texture with 15% to 20% organic content.

Topsoiling Placement

- a) Topsoil should not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or when conditions exist that may otherwise be detrimental to proper grading or proposed seeding.
- b) Do not place topsoil on slopes steeper than 2.5:1, as it will tend to erode.
- c) If topsoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and it will be difficult to establish vegetation. The best method is to actually work the topsoil into the layer below for a depth of at least 6 inches.
- 6) <u>Permanent Seeding</u> Permanent Seeding should be done immediately after the final design grades are achieved. Native species of plants should be used to establish perennial vegetative cover on disturbed areas. The revegetation should be done early enough in the fall so that a good cover is established before cold weather comes and growth stops until the spring. A good cover is defined as vegetation covering 75 percent or more of the ground surface.

Permanent Seeding Seedbed Preparation

a) In infertile or coarse-textured subsoil, it is best to stockpile topsoil and re-spread it over the finished slope at a minimum 2 to 6-inch depth and roll it to provide a firm seedbed. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content. If construction fill operations have left soil exposed with a loose, rough, or irregular surface, smooth with blade and roll.

- b) Loosen the soil to a depth of 3-5 inches with suitable agricultural or construction equipment.
- c) Areas not to receive topsoil shall be treated to firm the seedbed after incorporation of the lime and fertilizer so that it is depressed no more than ½ - 1 inch when stepped on with a shoe. Areas to receive topsoil shall not be firmed until after topsoiling and lime and fertilizer is applied and incorporated, at which time it shall be treated to firm the seedbed as described above.

Permanent Seeding Grass Selection/Application

- a) Select an appropriate cool or warm season grass based on site conditions and seeding date. Apply the seed uniformly by hydro-seeding, broadcasting, or by hand. Uniform seed distribution is essential. On steep slopes, hydroseeding may be the most effective seeding method. Surface roughening is particularly important when preparing slopes for hydroseeding.
- b) Lime and fertilize. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.
- c) Mulch the seedings with straw applied at the rate of ½ tons per acre. Anchor the mulch with erosion control netting or fabric on sloping areas. Amoco supergro or equivalent should be utilized.

Permanent Seeding Inspection/Maintenance *

- a) Frequently inspect seeded areas for failure and make necessary repairs and reseed immediately. Conduct or follow-up survey after one year and replace failed plants where necessary.
- b) If vegetative cover is inadequate to prevent rill erosion, overseed and fertilize in accordance with soil test results.
- c) If a stand has less than 40% cover, reevaluate choice of plant materials and quantities of lime and fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations, omitting lime and fertilizer in the absence of soil test results. If the season prevents resowing, mulch or jute netting is an effective temporary cover.
- d) Seeded areas should be fertilized during the second growing season. Lime and fertilize thereafter at periodic intervals, as needed.

Fueling and Maintenance of Equipment and Vehicles:

 Refueling/maintenance Rules – The site supervisor shall produce a written document received by all subcontractors and employees that delineates their responsibilities on site. This document shall include language that shall permit the maintenance of vehicles only in designated locations on the job site. In the event of mechanical failure of a vehicle, the vehicle shall be moved to the designated maintenance area on the site to perform maintenance. The site supervisor shall document receipt of these instructions by obtaining the signatures of subcontractors and individuals that may enter the site and the date in which they were notified of their responsibilities. Refueling for vehicles or equipment shall occur either within the designated washout area or shall utilize temporary drip protection measures at the location of fueling. The site supervisor or their representative shall be present at the time of any fueling procedure. The site supervisor shall have a fuel spill plan and measures on site to initiate containment and clean-up in the event a fuel spill occurs.

- 2. Installation Schedule: Prior to start of Work
- 3. Maintenance and Inspection: The site supervisor shall maintain a log of individuals receiving these instructions.
- 4. Specific Pollution Prevention Practices

Pollution Prevention Practice # 1

- a. Description: Fueling operations shall take place in designated area(s) as shown on site maps. Provide temporary drip protection during fueling operations which take place outside of designated area(s). Materials necessary to address a spill shall be made readily available in a location known to the site supervisor or his/her designee.
- b. Installation: Fueling operation procedures shall be in effect throughout the project duration.
- c. Maintenance Requirements: All emergency response equipment listed in the Emergency Response Equipment Inventory shall be made readily available and kept in a designated location known to the site supervisor or his/her designee. All such materials shall be replenished as necessary to the listed amounts.

Dust Control:

Dust control will be utilized throughout the entire construction process of the site. For example, keeping disturbed surfaces moist during windy periods will be an effective control measure, especially for construction access roads. The use of dust control will prevent the movement of soil to offsite areas. However, care must be taken to not create runoff from excessive use of water to control dust. The following are methods of Dust Control that may be used on-site:

- Vegetative Cover The most practical method for disturbed areas not subject to traffic.
- Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
- Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
- Stone Stone will be used to stabilize construction roads; will also be effective for dust control.

The general contractor shall employ an on-site water vehicle for the control of dust as necessary.

Non-Stormwater Discharges:

The construction de-watering and all non-stormwater discharges will be directed into a sediment dirt bag (or equivalent inlet protection) or a sediment basin. Sediment material removed shall be disposed of in accordance with all applicable local, state, and federal regulations.

The developer and site general contractor will comply with the E.P.A.'s Final General Permit for Construction De-watering Discharges, (N.P.D.E.S., Section 402 and 40 C.F.R. 122.26(b)(14)(x).

Inspection/Maintenance:

Operator personnel must inspect the construction site at least once every 14 calendar days and within 24 hours of a storm event of ½-inch or greater. The applicant shall be responsible to secure the services of a design professional or similar professional (inspector) on an on-going basis throughout all phases of the project. Refer to the Inspection/Maintenance Requirements presented earlier in the "Structural and Stabilization Practices." The inspector should review the erosion and sediment controls with respect to the following:

- Whether or not the measure was installed/performed correctly.
- Whether or not there has been damage to the measure since it was installed or performed.
- What should be done to correct any problems with the measure.

The inspector should complete the Stormwater Management Construction Phase BMP Inspection Schedule and Evaluation Checklist, as attached, for documenting the findings and should request the required maintenance or repair for the pollution prevention measures when the inspector finds that it is necessary for the measure to be effective. The inspector should notify the appropriate person to make the changes and submit copies of the form to the Weymouth Highway Department.

Construction Practices

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed: (List Items)	Date of Cleaning/ Repair	Performed by
Silt Sock and Sediment Fence	After heavy rainfall events (minimum			 Sediment Fence Design/Installation Requirements 	⊡yes ⊡no		
Controls	weekly)			2. Sediment Fence Inspection/Maintenance			
Stabilized	After heavy rainfall			1. Construction Entrance Design/	yesno		
Construction Entrance	events (minimum weekly)			Construction Requirements 2. Construction Entrance Inspection/ Maintenance			
Temporary	After heavy rainfall			1. Temporary Seeding Planting Procedures			
Seeding	events (minimum weekly)			2. Temporary Seeding Inspection/ Maintenance	⊟yes		
Geotextiles	After heavy rainfall events (minimum			1. Geotextile Inspection/Maintenance			
Geolexilles	weekly)				⊡yes		
Mulching & Netting	After heavy rainfall events (minimum weekly)			1. Mulch Maintenance	yesno		
Land Grading	After heavy rainfall events (minimum weekly)			 Land Grading Stabilization Inspection/ Maintenance 	yesno		

Date:

Construction Practices

Permanent Seeding	After heavy rainfall events (minimum weekly)	1. Permanent Seeding Inspection/ Maintenance	⊡yes ⊡no	_	
Dust Control	After heavy rainfall events (minimum weekly)		_]yes _]no	-	
Soil Stockpiling	After heavy rainfall events (minimum weekly)		yesno	-	

(1) Refer to the Massachusetts Stormwater Handbook issued January 2, 2008.

Notes (Include deviations from : Definitive Subdivision Decision and Special Conditions and Approved Plan):

Stormwater Control Manager

M:\MEG\2022 Projects\222-203 Papachristos, Eric - Jackson Square, Weymouth\DOCS\Stormwater\Submission 1\BMP O&M\Building A\222-203-A Construction Phase BMP Evaluation Checklist.doc

Date:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	<u>Irakis N. Papachristos, Manager</u>
	1 Franklin Street, Boston, MA 02110
Facility Manager (phone)	<u>203-230.1693</u>

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u> /		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill	· —				
Measures taken to	contain or clea	n up spill			
Amount of chemica	I / oil recovered	1	Method		
Material collected a	is a result of cle	ean up			
dru	ims containing_				
dru	ims containing				
dru	ims containing				
Location and metho	od of debris dis	posal			
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precauti	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /	/	Time	AM / PM	Inspector	
NRC Date /	/	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151	
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212	
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007	
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN
3.	MASSACHUSETTS DEPARTMENT OF EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEV	
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY

POST-DEVELOPMENT BEST MANAGEMENT PRACTICE OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building A (Assessor's Parcel IDs 23-253-14 & 23-253-16)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

Long Term Best Management Practices (BMP's)	Page
- Responsible Party Contact Information	1
- Long-Term Operation and Maintenance	1
- BMP Operation and Maintenance	2
- Maintenance Responsibilities	4
- Long-Term Pollution Prevention Plan	4
- Inspection Schedule and Evaluation Checklist	7
- Spill Containment and Management Plan	
- Stormceptor Operation & Maintenance Manual	
- ADS Landmax Operation & Maintenance Manual	

Post-Development Best Management Practice Operation and Maintenance Plan & Long-Term Pollution Prevention Plan

Post-Development Best Management Practices (BMPs) Operation and Maintenance Plan

Responsible Party/Property Owner/Developer contact information:

Property Owner: Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

Developer Contact Information:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

City of Weymouth Contact Information:

Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100

Best Management Practices (BMPs) of the Commonwealth of Massachusetts Department of Environmental Protection's (DEP's) Stormwater Management Policy (SMP) have been implemented and utilized for the project. The following information provided is to be used as a guideline for monitoring and maintaining the performance of the drainage facilities and to ensure that the quality of water runoff meets the standards set forth by the SMP. The structural Best Management Practices (BMPs) shall be inspected during rainfall conditions during the first year of operation to verify functionality.

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

BMPs included in the design consist of the use of:

- Stormceptor Treatment Units
- Subsurface Infiltration System
- Subsurface Pipe Storage System
- Access Drive Pavement Maintenance

Operation:

Once the stormwater management systems have been constructed and site has been permanently stabilized and put into action, the operation of the stormwater management system will function as intended. Stormwater runoff is directed into the trench drain to the First Defense unit, and lastly to the subsurface infiltration system. The stormwater management systems have been designed to attenuate peak flows for the 2-year through 100-year storm events.

Maintenance:

 Paved Areas –Sweepers shall sweep paved areas periodically during dry weather to remove excess sediments and to reduce the amount of sediments that the drainage system shall have to remove from the runoff. The sweeping shall be conducted primarily between March 15th and November 15th. Special attention should be made to sweeping paved surfaces in March and April before spring rains wash residual sand into the drainage system.

The frequency of sweeping shall average:

- Monthly if by a high-efficiency vacuum sweeper
- Bi-weekly if by a regenerative air sweeper
- Weekly if by a mechanical sweeper

Salt used for de-icing on the parking lot during winter months shall be limited as much as possible as this will reduce the need for removal and treatment. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities.

Cost: The property owner should consult local sweeping contractors for detailed cost estimates.

2. Proprietary Pretreatment Units – The proprietary pretreatment units shall be inspected and maintained from the surface, without entry into the unit a minimum of annually and following heavy rain events. Perform maintenance once the stored volume reaches 15% of the unit capacity, or immediately in the event of a spill. Perform Maintenance at quarterly intervals during the first year of installation, so an accurate maintenance schedule can be established. Sediment and debris should be removed through the 12-inch diameter outlet pipe. Alternatively, oil and floatables should be removed through the 12-inch oil inspection port. The requirements for the disposal from the units should be in compliance with all local, state and federal regulations. Consult the Natick Board of Health for transfer station locations prior to disposing the separator contents. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the First Defense units.

Cost: Cleaning should be included along with the routine maintenance of the catch basins. The property owner should consult local vacuum cleaning contractors for detailed cost estimates.

3. Subsurface Infiltration Tank System –Proper maintenance of the subsurface infiltration system is essential to the long-term effectiveness of the infiltration function. The subsurface infiltration system shall have inspection ports and additional inspections should be scheduled during the first few months to ensure

proper stabilization and function. Thereafter, they shall be checked semiannually and following heavy rainfalls, defined as a 1-year storm event exceeding 2.5 inches of rainfall within a twenty-four-hour period. Water levels in the chambers shall be checked to verify proper drainage. Ponding water in a chamber indicates failure from the bottom. If water remains within the chambers after 48-hours following a storm event, steps to restore the infiltration function shall be taken, as directed by a qualified stormwater management professional. In order to rectify the problem, accumulated sediment must be removed from the bottom of the chamber. The stone aggregate and filter fabric must be removed and replaced, and the underlying soil layer must be scarified to encourage proper infiltration. Material removed from the system shall be disposed of in accordance with all applicable local, state, and federal regulations. Please refer to the Manufacturer's Manual for additional details on proper inspection and maintenance of the R-Tank chambers.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

4. Subsurface Detention Pipe System – Proper maintenance of the subsurface detention systems is essential to the long-term effectiveness of the system. The subsurface detention system shall have inspection ports. Additional inspections should be scheduled during the first few months to ensure proper stabilization and function. After that, they shall be checked semiannually, following heavy rainfalls, defined as a 1-year storm exceeding 2.5 inches of rainfall within twenty-four hours, and periodically during the spring seasonally high groundwater periods to confirm no groundwater intrusion. Water levels in the chambers shall be checked to verify proper drainage. Material removed from the system shall be disposed of in accordance with all applicable local, state, and federal regulations.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

5. Trench Drains - Trench drain grates shall be checked quarterly and following heavy rainfalls to verify that the inlet openings are not clogged by debris. Debris shall be removed from the grates and disposed of in accordance with all applicable regulations.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

6. Pesticides, Herbicides, and Fertilizers - Pesticides and herbicides shall be used sparingly. Fertilizers should be restricted to the use of organic fertilizers only.

All structural BMP's as identified on the site plans will be owned and maintained by the homeowner's association of the development and shall run with the title of the property.

Cost: Included in the routine landscaping maintenance schedule. The Owner should consult local landscaping contractors for details.

7. Snow Removal - Snow accumulations removed from access road should be placed in upland areas only, where sand and other debris will remain after snowmelt for later removal. Excess snow should be removed from the site and properly disposed of in an approved snow disposal facility. Care must be exercised not to deposit snow in the in areas where sand and debris can get into the watercourse.

Cost: The owner should consult local snow removal contractors for a detailed cost estimate.

Maintenance Responsibilities:

All post construction maintenance activities will be documented and kept on file. Annual inspection reports in the form of an Evaluation Checklist, see attached form, will be submitted to the City of Weymouth. Inspections shall be performed by a licensed engineer or similar professional (inspector).

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

Long-Term Pollution Prevention Plan

Good Housekeeping:

To develop and implement an operation and maintenance program with the goal of preventing or reducing pollutant runoff by keeping potential pollutants from coming into contact with stormwater or being transported off site without treatment, the following efforts will be made:

- Property Management awareness and training on how to incorporate pollution prevention techniques into maintenance operations.
- Follow appropriate best management practices (BMPs) by proper maintenance and inspection procedures.
- Homeowner education outreach, including promoting recycling through the City of Weymouth Transfer Station.

Storage and Disposal of Household Waste and Toxics:

This management measure involves educating the general public on the management considerations for hazardous materials. Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Many people have hazardous chemicals stored throughout their homes, especially in garages and storage sheds. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts. Property owners are encouraged to support the household hazardous product collection events sponsored by the City of Weymouth.

MADEP has prepared several materials for homeowners on how to properly use and dispose of household hazardous materials:

http://www.mass.gov/dep/recycle/reduce/househol.htm

For consumer questions on household hazardous waste call the following number:

DEP Household Hazardous Waste Hotline 800-343-3420

The following is a list of management considerations for hazardous materials as outlined by the EPA:

• Ensuring sufficient aisle space to provide access for inspections and to improve the ease of material transport;

- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.
- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

The following is a list of commonly used hazardous materials used in the household:

Batteries – automotive and rechargeable nickel cadmium batteries (no alkaline batteries) Gasoline Oil-based paints Fluorescent light bulbs and lamps Pool chemicals Propane tanks Lawn chemicals. fertilizers and weed killers Turpentine Bug sprays Antifreeze Paint thinners, strippers, varnishes and stains Arts and crafts chemicals Charcoal lighter fluid

Disinfectant Drain clog dissolvers Driveway sealer Flea dips, sprays and collars Houseplant insecticides Metal polishes Mothballs Motor oil and filters Muriatic acid (concrete cleaner) Nail polishes and nail polish removers Oven cleaner Household pest and rat poisons Rug and upholstery cleaners Shoe polish Windshield wiper fluid

Landscape Maintenance:

This management measure seeks to control the storm water impacts of landscaping and lawn care practices through education and outreach on methods that reduce nutrient loadings and the amount of storm water runoff generated from lawns. Nutrient loads generated by fertilizer use on suburban lawns can be significant, and recent research has shown that lawns produce more surface runoff than previously thought.

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawns at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Collect rainwater for landscaping/gardening needs (rain barrels and cisterns to capture roof runoff).

- Raise public awareness for promoting the water efficient maintenance practices by informing users of water efficient irrigation techniques and other innovative approaches to water conservation.
- Abide by water restrictions and other conservation measures implemented by the City of Weymouth.
- Water only when necessary.
- Use automatic irrigation systems to reduce water use.

Integrated Pest Management (IPM):

This management measure seeks to limit the adverse impacts of insecticides and herbicides by providing information on alternative pest control techniques other than chemicals or explaining how to determine the correct dosages needed to manage pests.

The presence of pesticides in stormwater runoff has a direct impact on the health of aquatic organisms and can present a threat to humans through contamination of drinking water supplies. The pesticides of greatest concern are insecticides, such as diazinon and chloropyrifos, which even at very low levels can be harmful to aquatic life. The major source of pesticides to urban steams is home application of products designed to kill insects and weeds in the lawn and garden. The following IPM practices will be encouraged:

- Lawn care and landscaping management programs including appropriate pesticide use management as part of program.
- Raise public awareness by referring homeowners to "A Homeowner's Guide to Environmentally Sound Lawncare, Maintaining a Healthy Lawn the IPM Way", Massachusetts Department of Food and Agriculture, Pesticide Bureau or link <u>http://www.mass.gov/dep/water/resources/nonpoint.htm#megaman</u>>

Illicit Discharges:

Illicit discharges are non-stormwater discharges to the storm drain system which typically contain bacteria and other pollutants. All illicit discharges are prohibited. Any illicit discharges should be reported to MassDOT and/or the DPW as applicable to be addressed in accordance with their respective policies.

The following is a list of EPA allowed non-stormwater discharges. If the non-stormwater discharge is not listed, it is prohibited.

- 1. Water line flushing,
- 2. Landscape irrigation,
- 3. Diverted stream flows,
- 4. Rising ground waters,
- 5. Uncontaminated ground water infiltration (as defined at 40 CFR 35.2005(20)),
- 6. Uncontaminated pumped ground water,
- 7. Discharge from potable water sources,
- 8. Foundation drains,
- 9. Air conditioning condensation,
- 10. Irrigation water, springs,
- 11. Water from crawl space pumps,
- 12. Footing drains,
- 13. Lawn watering,

- 14. Flows from riparian habitats and wetlands,
- 15. Street wash water,
- 16. Discharges or flows from firefighting activities occur during emergency conditions.

Project Location: Jackson Square, Assessor's Parcel IDs 23-253-14 & 23-253-16, Weymouth, MA Stormwater Management – Post Construction Phase Best Management Practices – Inspection Schedule and Evaluation Checklist

Long Term Practices

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed: ☐yes ☐no (List Items)	Date of Cleaning/ Repair	Performed by
Street Sweeping Maintenance	4-times annually - specifically in Spring and Fall			 Sediment build-up Trash and debris Minor Spills (vehicular) 			
Proprietary Pretreatment Units	After heavy rainfall events (minimum annually)			 Sediment level exceeds Manufacturer's specification Trash and debris Floatable oils or hydrocarbons Outlet blockages 			
Subsurface Infiltration Chambers	After heavy rainfall events (minimum semi- annually)			 Sediment build-up Standing Water greater than 48 hours 			
Subsurface Detention System	After heavy rainfall events (minimum semi- annually)			1. Sediment build-up			
Trench Drains	After heavy rainfall events (minimum quarterly)			 Sediment level exceeds 8" Trash and debris Floatable oils or hydrocarbons Grate or outlet blockages 			

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook (February 2008) for recommendations regarding frequency for inspection and maintenance of specific BMP's.

Notes (Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan):

1. Stormwater Control Manager

Stamp:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	<u>Irakis N. Papachristos, Manager</u>
	1 Franklin Street, Boston, MA 02110
Facility Manager (phone)	<u>203-230.1693</u>

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

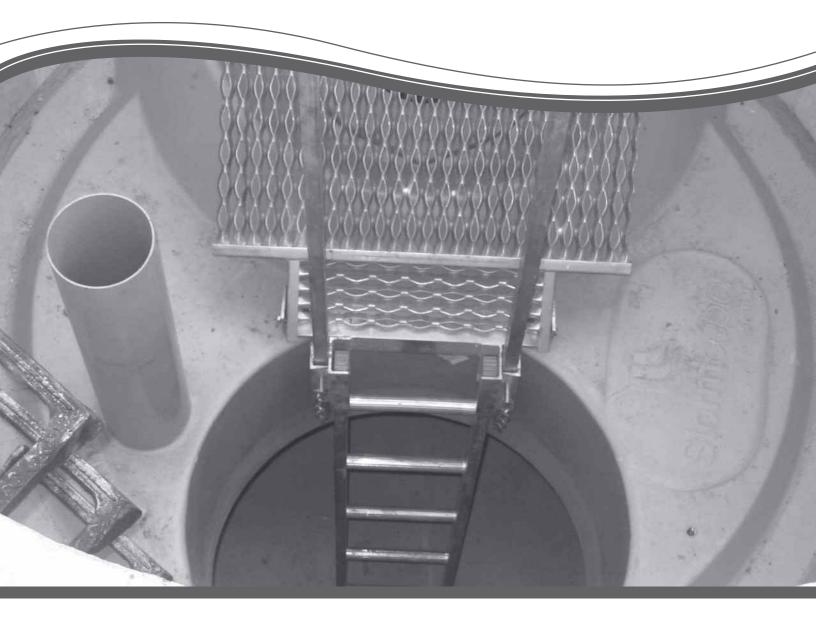
Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u> /		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill	· —				
Measures taken to	contain or clea	n up spill			
Amount of chemica	I / oil recovered	1	Method		
Material collected a	is a result of cle	ean up			
dru	ims containing_				
dru	ims containing				
dru	ims containing				
Location and metho	od of debris dis	posal			
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precauti	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /	/	Time	AM / PM	Inspector	
NRC Date /	/	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.


 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151	
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212	
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007	
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN
3.	MASSACHUSETTS DEPARTMENT OF EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEV	
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY

Stormceptor[®] STC Operation and Maintenance Guide

Stormceptor Design Notes

- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.

Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences			
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in. (75 mm)	1 in. (25 mm)	3 in. (75 mm)
Multiple inlet pipes	3 in. (75 mm)	3 in. (75 mm)	Only one inlet pipe.

Maximum inlet and outlet pipe diameters:

Inlet/Outlet Configuration	Inlet Unit STC 450i	In-Line Unit STC 900 to STC 7200	Series* STC 11000 to STC 16000
Straight Through	24 inch (600 mm)	42 inch (1050 mm)	60 inch (1500 mm)
Bend (90 degrees)	18 inch (450 mm)	33 inch (825 mm)	33 inch (825 mm)

- The inlet and in-line Stormceptor units can accommodate turns to a maximum of 90 degrees.
- Minimum distance from top of grade to crown is 2 feet (0.6 m)
- Submerged conditions. A unit is submerged when the standing water elevation at the proposed location of the Stormceptor unit is greater than the outlet invert elevation during zero flow conditions. In these cases, please contact your local Stormceptor representative and provide the following information:
- Top of grade elevation
- Stormceptor inlet and outlet pipe diameters and invert elevations
- Standing water elevation
- Stormceptor head loss, K = 1.3 (for submerged condition, K = 4)

Stormceptor®

OPERATION AND MAINTENANCE GUIDE Table of Content

1.	About Stormceptor	4
2.	Stormceptor Design Overview	4
3.	Key Operation Features	6
	Stormceptor Product Line	
5.	Sizing the Stormceptor System	10
	Spill Controls	
7.	Stormceptor Options	14
8.	Comparing Technologies	17
9.	Testing	18
10.	Installation	18
11.	Stormceptor Construction Sequence	18
12.	Maintenance	19

1. About Stormceptor

The Stormceptor® STC (Standard Treatment Cell) was developed by Imbrium[™] Systems to address the growing need to remove and isolate pollution from the storm drain system before it enters the environment. The Stormceptor STC targets hydrocarbons and total suspended solids (TSS) in stormwater runoff. It improves water quality by removing contaminants through the gravitational settling of fine sediments and floatation of hydrocarbons while preventing the re-suspension or scour of previously captured pollutants.

The development of the Stormceptor STC revolutionized stormwater treatment, and created an entirely new category of environmental technology. Protecting thousands of waterways around the world, the Stormceptor System has set the standard for effective stormwater treatment.

1.1. Patent Information

The Stormceptor technology is protected by the following patents:

- Australia Patent No. 693,164 693,164 707,133 729,096 779401
- Austrian Patent No. 289647
- Canadian Patent No 2,009,208 2,137,942 2,175,277 2,180,305 2,180,383 2,206,338 2,327,768 (Pending)
- China Patent No 1168439
- Denmark DK 711879
- German DE 69534021
- Indonesian Patent No 16688
- Japan Patent No 9-11476 (Pending)
- Korea 10-2000-0026101 (Pending)
- Malaysia Patent No PI9701737 (Pending)
- New Zealand Patent No 314646
- United States Patent No 4,985,148 5,498,331 5,725,760 5,753,115 5,849,181 6,068,765 6,371,690
- Stormceptor OSR Patent Pending Stormceptor LCS Patent Pending

2. Stormceptor Design Overview

2.1. Design Philosophy

The patented Stormceptor System has been designed to focus on the environmental objective of providing long-term pollution control. The unique and innovative Stormceptor design allows for continuous positive treatment of runoff during all rainfall events, while ensuring that all captured pollutants are retained within the system, even during intense storm events.

An integral part of the Stormceptor design is PCSWMM for Stormceptor - sizing software developed in conjunction with Computational Hydraulics Inc. (CHI) and internationally acclaimed expert, Dr. Bill James. Using local historical rainfall data and continuous simulation modeling, this software allows a Stormceptor unit to be designed for each individual site and the corresponding water quality objectives.

By using PCSWMM for Stormceptor, the Stormceptor System can be designed to remove a wide range of particles (typically from 20 to 2,000 microns), and can also be customized to remove a specific particle size distribution (PSD). The specified PSD should accurately reflect what is in the stormwater runoff to ensure the device is achieving the desired water quality objective. Since stormwater runoff contains small particles (less than 75 microns), it is important to design a treatment system to remove smaller particles in addition to coarse particles.

2.2. Benefits

The Stormceptor System removes free oil and suspended solids from stormwater, preventing spills and non-point source pollution from entering downstream lakes and rivers. The key benefits, capabilities and applications of the Stormceptor System are as follows:

- Provides continuous positive treatment during all rainfall events
- Can be designed to remove over 80% of the annual sediment load
- Removes a wide range of particles
- Can be designed to remove a specific particle size distribution (PSD)
- Captures free oil from stormwater
- Prevents scouring or re-suspension of trapped pollutants
- Pre-treatment to reduce maintenance costs for downstream treatment measures (ponds, swales, detention basins, filters)
- Groundwater recharge protection
- Spills capture and mitigation
- Simple to design and specify
- Designed to your local watershed conditions
- Small footprint to allow for easy retrofit installations
- Easy to maintain (vacuum truck)
- Multiple inlets can connect to a single unit
- Suitable as a bend structure
- Pre-engineered for traffic loading (minimum AASHTO HS-20)
- Minimal elevation drop between inlet and outlet pipes
- Small head loss
- Additional protection provided by an 18" (457 mm) fiberglass skirt below the top of the insert, for the containment of hydrocarbons in the event of a spill.

2.3. Environmental Benefit

Freshwater resources are vital to the health and welfare of their surrounding communities. There is increasing public awareness, government regulations and corporate commitment to reducing the pollution entering our waterways. A major source of this pollution originates from stormwater runoff from urban areas. Rainfall runoff carries oils, sediment and other contaminants from roads and parking lots discharging directly into our streams, lakes and coastal waterways.

The Stormceptor System is designed to isolate contaminants from getting into the natural environment. The Stormceptor technology provides protection for the environment from spills that occur at service stations and vehicle accident sites, while also removing contaminated sediment in runoff that washes from roads and parking lots.

3. Key Operation Features

3.1. Scour Prevention

A key feature of the Stormceptor System is its patented scour prevention technology. This innovation ensures pollutants are captured and retained during all rainfall events, even extreme storms. The Stormceptor System provides continuous positive treatment for all rainfall events, including intense storms. Stormceptor slows incoming runoff, controlling and reducing velocities in the lower chamber to create a non-turbulent environment that promotes free oils and floatable debris to rise and sediment to settle.

The patented scour prevention technology, the fiberglass insert, regulates flows into the lower chamber through a combination of a weir and orifice while diverting high energy flows away through the upper chamber to prevent scouring. Laboratory testing demonstrated no scouring when tested up to 125% of the unit's operating rate, with the unit loaded to 100% sediment capacity (NJDEP, 2005). Second, the depth of the lower chamber ensures the sediment storage zone is adequately separated from the path of flow in the lower chamber to prevent scouring.

3.2. Operational Hydraulic Loading Rate

Designers and regulators need to evaluate the treatment capacity and performance of manufactured stormwater treatment systems. A commonly used parameter is the "operational hydraulic loading rate" which originated as a design methodology for wastewater treatment devices.

Operational hydraulic loading rate may be calculated by dividing the flow rate into a device by its settling area. This represents the critical settling velocity that is the prime determinant to quantify the influent particle size and density captured by the device. PCSWMM for Stormceptor uses a similar parameter that is calculated by dividing the hydraulic detention time in the device by the fall distance of the sediment.

$$v_{sc} = \frac{H}{6_{H}} = \frac{Q}{A_{s}}$$

Where:

 v_{sc} = critical settling velocity, ft/s (m/s)

H = tank depth, ft (m)

 $Ø_{\rm H}$ = hydraulic detention time, ft/s (m/s)

Q = volumetric flow rate, ft3/s (m3/s)

 $A_s = surface area, ft^2 (m^2)$

(Tchobanoglous, G. and Schroeder, E.D. 1987. Water Quality. Addison Wesley.)

Unlike designing typical wastewater devices, stormwater systems are designed for highly variable flow rates including intense peak flows. PCSWMM for Stormceptor incorporates all of the flows into its calculations, ensuring that the operational hydraulic loading rate is considered not only for one flow rate, but for all flows including extreme events.

3.3. Double Wall Containment

The Stormceptor System was conceived as a pollution identifier to assist with identifying illicit discharges. The fiberglass insert has a continuous skirt that lines the concrete barrel wall for a depth of 18 inches (457 mm) that provides double wall containment for hydrocarbons storage. This protective barrier ensures that toxic floatables do not migrate through the concrete wall into the surrounding soils.

4. Stormceptor Product Line

4.1. Stormceptor Models

A summary of Stormceptor models and capacities are listed in Table 1.

Table 1. Stormceptor Models				
Stormceptor Model	Total Storage Volume U.S. Gal (L)	Hydrocarbon Storage Capacity U.S. Gal (L)	Maximum Sediment Capacity ft³ (L)	
STC 450i	470 (1,780)	86 (330)	46 (1,302)	
STC 900	952 (3,600)	251 (950)	89 (2,520)	
STC 1200	1,234 (4,670)	251 (950)	127 (3,596)	
STC 1800	1,833 (6,940)	251 (950)	207 (5,861)	
STC 2400	2,462 (9,320)	840 (3,180)	205 (5,805)	
STC 3600	3,715 (1,406)	840 (3,180)	373 (10,562)	
STC 4800	5,059 (1,950)	909 (3,440)	543 (15,376)	
STC 6000	6,136 (23,230)	909 (3,440)	687 (19,453)	
STC 7200	7,420 (28,090)	1,059 (4,010)	839 (23,757)	
STC 11000	11,194 (42,370)	2,797 (10, 590)	1,086 (30,752)	
STC 13000	13,348 (50,530)	2,797 (10, 590)	1,374 (38,907)	
STC 16000	15,918 (60,260)	3,055 (11, 560)	1,677 (47,487)	

NOTE: Storage volumes may vary slightly from region to region. For detailed information, contact your local Stormceptor representative.

4.2. Inline Stormceptor

The Inline Stormceptor, Figure 1, is the standard design for most stormwater treatment applications. The patented Stormceptor design allows the Inline unit to maintain continuous positive treatment of total suspended solids (TSS) year-round, regardless of flow rate. The Inline Stormceptor is composed of a precast concrete tank with a fiberglass insert situated at the invert of the storm sewer pipe, creating an upper chamber above the insert and a lower chamber below the insert.

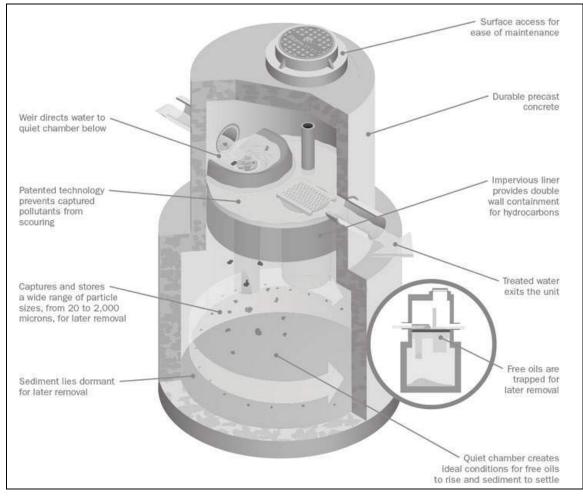


Figure 1. Inline Stormceptor

Operation

As water flows into the Stormceptor unit, it is slowed and directed to the lower chamber by a weir and drop tee. The stormwater enters the lower chamber, a non-turbulent environment, allowing free oils to rise and sediment to settle. The oil is captured underneath the fiberglass insert and shielded from exposure to the concrete walls by a fiberglass skirt. After the pollutants separate, treated water continues up a riser pipe, and exits the lower chamber on the downstream side of the weir before leaving the unit. During high flow events, the Stormceptor System's patented scour prevention technology ensures continuous pollutant removal and prevents re-suspension of previously captured pollutants.

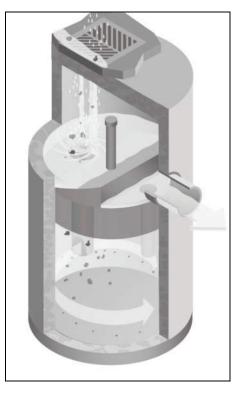


Figure 2. Inlet Stormceptor

4.3. Inlet Stormceptor

The Inlet Stormceptor System, Figure 2, was designed to provide protection for parking lots, loading bays, gas stations and other spill-prone areas. The Inlet Stormceptor is designed to remove sediment from stormwater introduced through a grated inlet, a storm sewer pipe, or both.

The Inlet Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

4.4. Series Stormceptor

Designed to treat larger drainage areas, the Series Stormceptor System, Figure 3, consists of two adjacent Stormceptor models that function in parallel. This design eliminates the need for additional structures and piping to reduce installation costs.

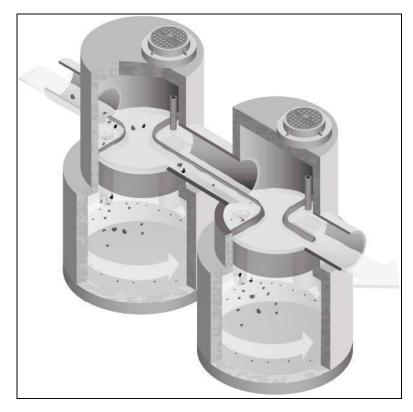


Figure 3. Series System

The Series Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

5. Sizing the Stormceptor System

The Stormceptor System is a versatile product that can be used for many different aspects of water quality improvement. While addressing these needs, there are conditions that the designer needs to be aware of in order to size the Stormceptor model to meet the demands of each individual site in an efficient and cost-effective manner.

PCSWMM for Stormceptor is the support tool used for identifying the appropriate Stormceptor model. In order to size a unit, it is recommended the user follow the seven design steps in the program. The steps are as follows:

STEP 1 – Project Details

The first step prior to sizing the Stormceptor System is to clearly identify the water quality objective for the development. It is recommended that a level of annual sediment (TSS) removal be identified and defined by a particle size distribution.

STEP 2 – Site Details

Identify the site development by the drainage area and the level of imperviousness. It is recommended that imperviousness be calculated based on the actual area of imperviousness based on paved surfaces, sidewalks and rooftops.

STEP 3 – Upstream Attenuation

The Stormceptor System is designed as a water quality device and is sometimes used in conjunction with onsite water quantity control devices such as ponds or underground detention systems. When possible, a greater benefit is typically achieved when installing a Stormceptor unit upstream of a detention facility. By placing the Stormceptor unit upstream of a detention structure, a benefit of less maintenance of the detention facility is realized.

STEP 4 – Particle Size Distribution

It is critical that the PSD be defined as part of the water quality objective. PSD is critical for the design of treatment system for a unit process of gravity settling and governs the size of a treatment system. A range of particle sizes has been provided and it is recommended that clays and silt-sized particles be considered in addition to sand and gravel-sized particles. Options and sample PSDs are provided in PCSWMM for Stormceptor. The default particle size distribution is the Fine Distribution, Table 2, option.

Particle Size	Distribution	Specific Gravity
20	20%	1.3
60	20%	1.8
150	20%	2.2
400	20%	2.65
2000	20%	2.65

Table 2. Fine Distribution

If the objective is the long-term removal of 80% of the total suspended solids on a given site, the PSD should be representative of the expected sediment on the site. For example, a system designed to remove 80% of coarse particles (greater than 75 microns) would provide relatively poor removal efficiency of finer particles that may be naturally prevalent in runoff from the site.

Since the small particle fraction contributes a disproportionately large amount of the total available particle surface area for pollutant adsorption, a system designed primarily for coarse particle capture will compromise water quality objectives.

STEP 5 – Rainfall Records

Local historical rainfall has been acquired from the U.S. National Oceanic and Atmospheric Administration, Environment Canada and regulatory agencies across North America. The rainfall data provided with PCSMM for Stormceptor provides an accurate estimation of small storm hydrology by modeling actual historical storm events including duration, intensities and peaks.

STEP 6 – Summary

At this point, the program may be executed to predict the level of TSS removal from the site. Once the simulation has completed, a table shall be generated identifying the TSS removal of each Stormceptor unit.

STEP 7 – Sizing Summary

Performance estimates of all Stormceptor units for the given site parameters will be displayed in a tabular format. The unit that meets the water quality objective, identified in Step 1, will be highlighted.

5.1. PCSWMM for Stormceptor

The Stormceptor System has been developed in conjunction with PCSWMM for Stormceptor as a technological solution to achieve water quality goals. Together, these two innovations model, simulate, predict and calculate the water quality objectives desired by a design engineer for TSS removal.

PCSWMM for Stormceptor is a proprietary sizing program which uses site specific inputs to a computer model to simulate sediment accumulation, hydrology and long-term total suspended solids removal. The model has been calibrated to field monitoring results from Stormceptor units that have been monitored in North America. The sizing methodology can be described by three processes:

- 1. Determination of real time hydrology
- 2. Buildup and wash off of TSS from impervious land areas
- 3. TSS transport through the Stormceptor (settling and discharge). The use of a calibrated model is the preferred method for sizing stormwater quality structures for the following reasons:
 - » The hydrology of the local area is properly and accurately incorporated in the sizing (distribution of flows, flow rate ranges and peaks, back-to-back storms, inter-event times)
 - » The distribution of TSS with the hydrology is properly and accurately considered in the sizing
 - » Particle size distribution is properly considered in the sizing
 - » The sizing can be optimized for TSS removal
 - » The cost benefit of alternate TSS removal criteria can be easily assessed
 - » The program assesses the performance of all Stormceptor models. Sizing may be selected based on a specific water quality outcome or based on the Maximum Extent Practicable

For more information regarding PCSWMM for Stormceptor, contact your local Stormceptor representative, or visit www.imbriumsystems.com to download a free copy of the program.

5.2. Sediment Loading Characteristics

The way in which sediment is transferred to stormwater can have a considerable effect on which type of system is implemented. On typical impervious surfaces (e.g. parking lots) sediment will build over time and wash off with the next rainfall. When rainfall patterns are examined, a short intense storm will have a higher concentration of sediment than a long slow drizzle. Together with rainfall data representing the site's typical rainfall patterns, sediment loading characteristics play a part in the correct sizing of a stormwater quality device.

Typical Sites

For standard site design of the Stormceptor System, PCSWMM for Stormceptor is utilized to accurately assess the unit's performance. As an integral part of the product's design, the program can be used to meet local requirements for total suspended solid removal. Typical installations of manufactured stormwater treatment devices would occur on areas such as paved parking lots or paved roads. These are considered "stable" surfaces which have non – erodible surfaces.

Unstable Sites

While standard sites consist of stable concrete or asphalt surfaces, sites such as gravel parking lots, or maintenance yards with stockpiles of sediment would be classified as "unstable". These types of sites do not exhibit first flush characteristics, are highly erodible and exhibit atypical sediment loading characteristics and must therefore be sized more carefully. Contact your local Stormceptor representative for assistance in selecting a proper unit sized for such unstable sites.

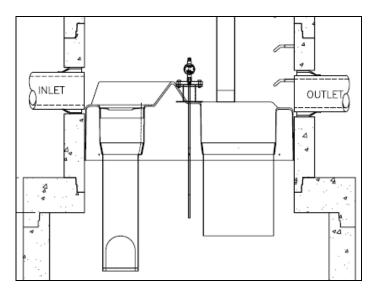
6. Spill Controls

When considering the removal of total petroleum hydrocarbons (TPH) from a storm sewer system there are two functions of the system: oil removal, and spill capture.

'Oil Removal' describes the capture of the minute volumes of free oil mobilized from impervious surfaces. In this instance relatively low concentrations, volumes and flow rates are considered. While the Stormceptor unit will still provide an appreciable oil removal function during higher flow events and/or with higher TPH concentrations, desired effluent limits may be exceeded under these conditions.

'Spill Capture' describes a manner of TPH removal more appropriate to recovery of a relatively high volume of a single phase deleterious liquid that is introduced to the storm sewer system over a relatively short duration. The two design criteria involved when considering this manner of introduction are overall volume and the specific gravity of the material. A standard Stormceptor unit will be able to capture and retain a maximum spill volume and a minimum specific gravity.

For spill characteristics that fall outside these limits, unit modifications are required. Contact your local Stormceptor Representative for more information.


One of the key features of the Stormceptor technology is its ability to capture and retain spills. While the standard Stormceptor System provides excellent protection for spill control, there are additional options to enhance spill protection if desired.

6.1. Oil Level Alarm

The oil level alarm is an electronic monitoring system designed to trigger a visual and audible alarm when a pre-set level of oil is reached within the lower chamber. As a standard, the oil

level alarm is designed to trigger at approximately 85% of the unit's available depth level for oil capture. The feature acts as a safeguard against spills caused by exceeding the oil storage capacity of the separator and eliminates the need for manual oil level inspection.

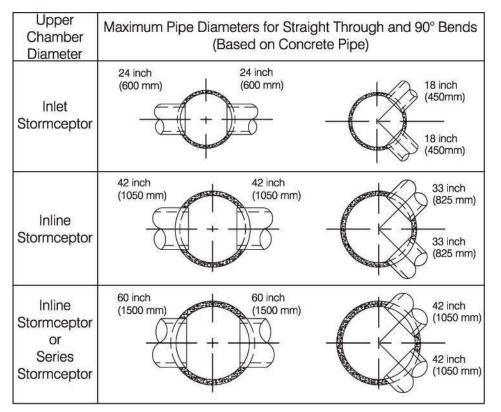
The oil level alarm installed on the Stormceptor insert is illustrated in Figure 4.

Figure 4. Oil level alarm

6.2. Increased Volume Storage Capacity

The Stormceptor unit may be modified to store a greater spill volume than is typically available. Under such a scenario, instead of installing a larger than required unit, modifications can be made to the recommended Stormceptor model to accommodate larger volumes. Contact your local Stormceptor representative for additional information and assistance for modifications.

7. Stormceptor Options


The Stormceptor System allows flexibility to incorporate to existing and new storm drainage infrastructure. The following section identifies considerations that should be reviewed when installing the system into a drainage network. For conditions that fall outside of the recommendations in this section, please contact your local Stormceptor representative for further guidance.

7.1. Installation Depth Minimum Cover

The minimum distance from the top of grade to the crown of the inlet pipe is 24 inches (600 mm). For situations that have a lower minimum distance, contact your local Stormceptor representative.

7.2. Maximum Inlet and Outlet Pipe Diameters

Maximum inlet and outlet pipe diameters are illustrated in Figure 5. Contact your local Stormceptor representative for larger pipe diameters

Figure 5. Maximum pipe diameters for straight through and bend applications

*The bend should only be incorporated into the second structure (downstream structure) of the Series Stormceptor System

7.3. Bends

The Stormceptor System can be used to change horizontal alignment in the storm drain network up to a maximum of 90 degrees. Figure 6 illustrates the typical bend situations of the Stormceptor System. Bends should only be applied to the second structure (downstream structure) of the Series Stormceptor System.

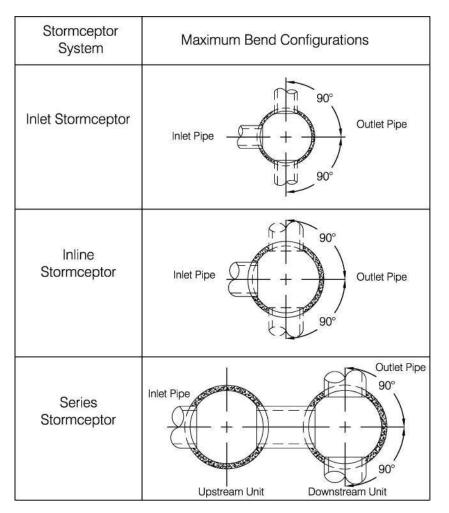


Figure 6. Maximum bend angles

7.4. Multiple Inlet Pipes

The Inlet and Inline Stormceptor System can accommodate two or more inlet pipes. The maximum number of inlet pipes that can be accommodated into a Stormceptor unit is a function of the number, alignment and diameter of the pipes and its effects on the structural integrity of the precast concrete. When multiple inlet pipes are used for new developments, each inlet pipe shall have an invert elevation 3 inches (75 mm) higher than the outlet pipe invert elevation.

7.5. Inlet/Outlet Pipe Invert Elevations

Recommended inlet and outlet pipe invert differences are listed in Table 3.

Number of Inlet Pipes	Inlet System	In-Line System	Series System
1	3 inches (75 mm)	1 inch (25 mm)	3 inches (75 mm)
>1	3 inches (75 mm)	3 inches (75 mm)	Not Applicable

7.6. Shallow Stormceptor

In cases where there may be restrictions to the depth of burial of storm sewer systems. In this situation, for selected Stormceptor models, the lower chamber components may be increased in diameter to reduce the overall depth of excavation required.

7.7. Customized Live Load

The Stormceptor system is typically designed for local highway truck loading (AASHTO HS- 20). When the project requires live loads greater than HS-20, the Stormceptor System may be customized structurally for a pre-specified live load. Contact your local Stormceptor representative for customized loading conditions.

7.8. Pre-treatment

The Stormceptor System may be sized to remove sediment and for spills control in conjunction with other stormwater BMPs to meet the water quality objective. For pretreatment applications, the Stormceptor System should be the first unit in a treatment train. The benefits of pre-treatment include the extension of the operational life (extension of maintenance frequency) of large stormwater management facilities, prevention of spills and lower total life- cycle maintenance cost.

7.9. Head loss

The head loss through the Stormceptor System is similar to a 60 degree bend at a manhole. The K value for calculating minor losses is approximately 1.3 (minor loss = k*1.3v2/2g).

However, when a Submerged modification is applied to a Stormceptor unit, the corresponding K value is 4.

7.10. Submerged

The Submerged modification, Figure 7, allows the Stormceptor System to operate in submerged or partially submerged storm sewers. This configuration can be installed on all models of the Stormceptor System by modifying the fiberglass insert. A customized weir height and a secondary drop tee are added.

Submerged instances are defined as standing water in the storm drain system during zero flow conditions. In these instances, the following information is necessary for the proper design and application of submerged modifications:

- Stormceptor top of grade elevation
- Stormceptor outlet pipe invert elevation
- Standing water elevation

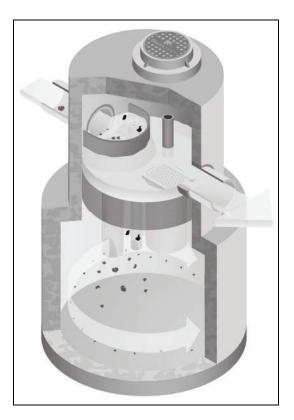


Figure 7. Submerged Stormceptor

8. Comparing Technologies

Designers have many choices available to achieve water quality goals in the treatment of stormwater runoff. Since many alternatives are available for use in stormwater quality treatment it is important to consider how to make an appropriate comparison between "approved alternatives". The following is a guide to assist with the accurate comparison of differing technologies and performance claims.

8.1. Particle Size Distribution (PSD)

The most sensitive parameter to the design of a stormwater quality device is the selection of the design particle size. While it is recommended that the actual particle size distribution (PSD) for sites be measured prior to sizing, alternative values for particle size should be selected to represent what is likely to occur naturally on the site. A reasonable estimate of a particle size distribution likely to be found on parking lots or other impervious surfaces should consist of a wide range of particles such as 20 microns to 2,000 microns (Ontario MOE, 1994).

There is no absolute right particle size distribution or specific gravity and the user is cautioned to review the site location, characteristics, material handling practices and regulatory requirements when selecting a particle size distribution. When comparing technologies, designs using different PSDs will result in incomparable TSS removal efficiencies. The PSD of the TSS removed needs to be standard between two products to allow for an accurate comparison.

8.2. Scour Prevention

In order to accurately predict the performance of a manufactured treatment device, there must be confidence that it will perform under all conditions. Since rainfall patterns cannot be predicted, stormwater quality devices placed in storm sewer systems must be able to withstand extreme events, and ensure that all pollutants previously captured are retained in the system.

In order to have confidence in a system's performance under extreme conditions, independent validation of scour prevention is essential when examining different technologies. Lack of independent verification of scour prevention should make a designer wary of accepting any product's performance claims.

8.3. Hydraulics

Full scale laboratory testing has been used to confirm the hydraulics of the Stormceptor System. Results of lab testing have been used to physically design the Stormceptor System and the sewer pipes entering and leaving the unit. Key benefits of Stormceptor are:

- Low head loss (typical k value of 1.3)
- Minimal inlet/outlet invert elevation drop across the structure
- Use as a bend structure
- Accommodates multiple inlets

The adaptability of the treatment device to the storm sewer design infrastructure can affect the overall performance and cost of the site.

8.4. Hydrology

Stormwater quality treatment technologies need to perform under varying climatic conditions. These can vary from long low intensity rainfall to short duration, high intensity storms. Since a treatment device is expected to perform under all these conditions, it makes sense that any system's design should accommodate those conditions as well.

Long-term continuous simulation evaluates the performance of a technology under the varying conditions expected in the climate of the subject site. Single, peak event design does not provide this information and is not equivalent to long-term simulation. Designers should request long-term simulation performance to ensure the technology can meet the long-term water quality objective.

9. Testing

The Stormceptor System has been the most widely monitored stormwater treatment technology in the world. Performance verification and monitoring programs are completed to the strictest standards and integrity. Since its introduction in 1990, numerous independent field tests and studies detailing the effectiveness of the Stormceptor System have been completed.

- Coventry University, UK 97% removal of oil, 83% removal of sand and 73% removal of peat
- National Water Research Institute, Canada, scaled testing for the development of the Stormceptor System identifying both TSS removal and scour prevention.
- New Jersey TARP Program full scale testing of an STC 900 demonstrating 75% TSS removal of particles from 1 to 1000 microns. Scour testing completed demonstrated that the system does not scour. The New Jersey Department of Environmental Protection was followed.
- City of Indianapolis full scale testing of an STC 900 demonstrating over 80% TSS removal of particles from 50 microns to 300 microns at 130% of the unit's operating rate. Scour testing completed demonstrated that the system does not scour.
- Westwood Massachusetts (1997), demonstrated >80% TSS removal
- Como Park (1997), demonstrated 76% TSS removal
- Ontario MOE SWAMP Program 57% removal of 1 to 25 micron particles
- Laval Quebec 50% removal of 1 to 25 micron particles

10. Installation

The installation of the concrete Stormceptor should conform in general to state highway, or local specifications for the installation of manholes. Selected sections of a general specification that are applicable are summarized in the following sections.

10.1. Excavation

Excavation for the installation of the Stormceptor should conform to state highway, or local specifications. Topsoil removed during the excavation for the Stormceptor should be stockpiled in designated areas and should not be mixed with subsoil or other materials.

Topsoil stockpiles and the general site preparation for the installation of the Stormceptor should conform to state highway or local specifications.

The Stormceptor should not be installed on frozen ground. Excavation should extend a minimum of 12 inches (300 mm) from the precast concrete surfaces plus an allowance for shoring and bracing where required. If the bottom of the excavation provides an unsuitable foundation additional excavation may be required.

In areas with a high water table, continuous dewatering may be required to ensure that the excavation is stable and free of water.

10.2. Backfilling

Backfill material should conform to state highway or local specifications. Backfill material should be placed in uniform layers not exceeding 12 inches (300mm) in depth and compacted to state highway or local specifications.

11. Stormceptor Construction Sequence

The concrete Stormceptor is installed in sections in the following sequence:

- 1. Aggregate base
- 2. Base slab
- 3. Lower chamber sections
- 4. Upper chamber section with fiberglass insert
- 5. Connect inlet and outlet pipes
- 6. Assembly of fiberglass insert components (drop tee, riser pipe, oil cleanout port and orifice plate
- 7. Remainder of upper chamber
- 8. Frame and access cover

The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.

Adjustment of the Stormceptor can be performed by lifting the upper sections free of the excavated area, re-leveling the base and reinstalling the sections. Damaged sections and gaskets should be repaired or replaced as necessary. Once the Stormceptor has been constructed, any lift holes must be plugged with mortar.

12. Maintenance

12.1. Health and Safety

The Stormceptor System has been designed considering safety first. It is recommended that confined space entry protocols be followed if entry to the unit is required. In addition, the fiberglass insert has the following health and safety features:

- Designed to withstand the weight of personnel
- A safety grate is located over the 24 inch (600 mm) riser pipe opening
- Ladder rungs can be provided for entry into the unit, if required

12.2. Maintenance Procedures

Maintenance of the Stormceptor system is performed using vacuum trucks. No entry into the unit is required for maintenance (in most cases). The vacuum service industry is a well- established sector of the service industry that cleans underground tanks, sewers and catch basins. Costs to clean a Stormceptor will vary based on the size of unit and transportation distances.

The need for maintenance can be determined easily by inspecting the unit from the surface. The depth of oil in the unit can be determined by inserting a dipstick in the oil inspection/cleanout port.

Similarly, the depth of sediment can be measured from the surface without entry into the Stormceptor via a dipstick tube equipped with a ball valve. This tube would be inserted through the riser pipe. Maintenance should be performed once the sediment depth exceeds the guideline values provided in the Table 4.

Particle Size	Specific Gravity		
Model	Sediment Depth inches (mm)		
450i	8 (200)		
900	8 (200)		
1200	10 (250)		
1800	15 (381)		
2400	12 (300)		
3600	17 (430)		
4800	15 (380)		
6000	18 (460)		
7200	15 (381)		
11000	17 (380)		
13000	20 (500)		
16000	17 (380)		
* based on 15% of the Stormceptor unit's total storage			

Table 4. Sediment Depths Indicating Required Servicing*

Although annual servicing is recommended, the frequency of maintenance may need to be increased or reduced based on local conditions (i.e. if the unit is filling up with sediment more quickly than projected, maintenance may be required semi-annually; conversely once the site has stabilized maintenance may only be required every two or three years).

Oil is removed through the oil inspection/cleanout port and sediment is removed through the riser pipe. Alternatively oil could be removed from the 24 inches (600 mm) opening if water is removed from the lower chamber to lower the oil level below the drop pipes.

The following procedures should be taken when cleaning out Stormceptor:

- 1. Check for oil through the oil cleanout port
- 2. Remove any oil separately using a small portable pump
- 3. Decant the water from the unit to the sanitary sewer, if permitted by the local regulating authority, or into a separate containment tank
- 4. Remove the sludge from the bottom of the unit using the vacuum truck
- 5. Re-fill Stormceptor with water where required by the local jurisdiction

12.3. Submerged Stormceptor

Careful attention should be paid to maintenance of the Submerged Stormceptor System. In cases where the storm drain system is submerged, there is a requirement to plug both the inlet and outlet pipes to economically clean out the unit.

12.4. Hydrocarbon Spills

The Stormceptor is often installed in areas where the potential for spills is great. The Stormceptor System should be cleaned immediately after a spill occurs by a licensed liquid waste hauler.

12.5. Disposal

Requirements for the disposal of material from the Stormceptor System are similar to that of any other stormwater Best Management Practice (BMP) where permitted. Disposal options for the sediment may range from disposal in a sanitary trunk sewer upstream of a sewage treatment plant, to disposal in a sanitary landfill site. Petroleum waste products collected in the Stormceptor (free oil/chemical/fuel spills) should be removed by a licensed waste management company.

12.6. Oil Sheens

With a steady influx of water with high concentrations of oil, a sheen may be noticeable at the Stormceptor outlet. This may occur because a rainbow or sheen can be seen at very small oil concentrations (<10 mg/L). Stormceptor will remove over 98% of all free oil spills from storm sewer systems for dry weather or frequently occurring runoff events.

The appearance of a sheen at the outlet with high influent oil concentrations does not mean the unit is not working to this level of removal. In addition, if the influent oil is emulsified the Stormceptor will not be able to remove it. The Stormceptor is designed for free oil removal and not emulsified conditions.

SUPPORT

Drawings and specifications are available at www.ContechES.com. Site-specific design support is available from our engineers.

©2020 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

ADS LANDMAX® RETENTION/DETENTION PIPE SYSTEM SPECIFICATION

Scope

This specification describes ADS LandMax Retention/Detention Pipe Systems for use in non-pressure gravity-flow storm water collection systems utilizing a continuous outfall structure.

Pipe Requirements

ADS Retention/Detention systems may utilize any of the various pipe products below:

- N-12[®] ST IB pipe (per AASHTO) shall meet AASHTO M294, Type S or ASTM F2306
- N-12 ST IB pipe (per ASTM F2648) shall meet ASTM F2648
- N-12 MEGA GREEN[™] ST IB shall meet ASTM F2648
- N-12 WT IB pipe (per AASHTO) shall meet AASHTO M294, Type S or ASTM F2306
- N-12 WT IB pipe (per ASTM F2648) shall meet ASTM F2648
- N-12 MEGA GREEN[™] WT IB shall meet ASTM F2648

All products shall have a smooth interior and annular exterior corrugations. All ST IB pipe products are available as perforated or non-perforated. WT IB pipe products are only available as non-perforated.

Product-specific pipe specifications are available in the Drainage Handbook Section 1 Specifications.

Joint Performance

Plain End/Soil-tight (ST IB)

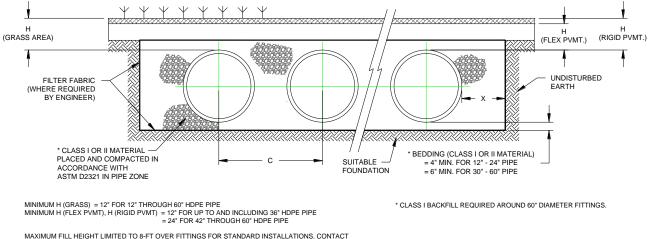
ST IB pipe shall be joined using a bell & spigot joint. The bell & spigot joint shall meet the soil-tight requirements of ASTM F2306 and gaskets shall meet the requirements of ASTM F477.

Plain End pipe & fittings connections shall be joined with coupling bands covering at least two full corrugations on each end of the pipe. Gasketed soil-tight coupling band connections shall incorporate a closed-cell synthetic expanded rubber gasket meeting the requirements of ASTM D1056 Grade 2A2. Gaskets, when applicable, shall be installed by the pipe manufacturer.

Watertight (WT IB):

WT IB pipe shall be joined using a bell & spigot joint. The joint shall be watertight according to the requirements of ASTM D3212. Gaskets shall meet the requirements of ASTM F477. 12- through 60-inch (300 to 1500 mm) diameters shall have an exterior bell wrap installed by the manufacturer.

Pipe & fitting connections shall be with a bell and spigot connection utilizing a welded bell and valley or saddle gasket. The joint shall meet the watertight requirements of ASTM D3212 and gaskets shall meet the requirements of ASTM F477. Detention systems are subject to greater leakage than typical single run storm sewer application and therefore are not appropriate for applications requiring long-term fluid containment or hydrostatic pressure. For additional details refer to Technical Note 7.01 *Rainwater Harvesting with HDPE Cisterns*.


Fittings

Fittings shall conform to ASTM F2306 and meet joint performance requirements indicated above for fitting connections. Custom fittings are available and may require special installation criterion.

Installation

Installation shall be in accordance with ASTM D2321 and ADS recommended installation guidelines, with the exception that minimum cover in non-traffic areas for 12- through 60-inch (300 to 1500mm) diameters shall be one foot (0.3m). Minimum cover in trafficked areas for 12- through 36-inch (300 to 900mm) diameters shall be one foot (0.3m) and for 42- through 60-inch (1050 to 1500mm) diameters, the minimum cover shall be two feet (0.6m). Backfill shall consist of Class 1 (compacted) or Class 2 (minimum 90% SPD) material, with the exception that 60-inch fittings shall use Class 1 (compacted) material only. Minimum cover heights do not account for pipe buoyancy. Refer to ADS Technical Note 5.05 HDPE Pipe Flotation for buoyancy design considerations. Maximum cover over system using standard backfill is 8 feet (2.4m); contact a representative when maximum fill height may be exceeded. Additional installation requirements are provided in the Drainage Handbook Section 6 Retention/Detention.

TYPICAL RETENTION/DETENTION CROSS SECTION

MAXIMUM FILL HEIGHT LIMITED TO 8-FT OVER FITTINGS FOR STANDARD INSTALLATIONS. CONTACT REPRESENTATIVE WHEN MAXIMUM FILL HEIGHTS EXCEED 8-FT FOR INSTALLATION CONSIDERATIONS.

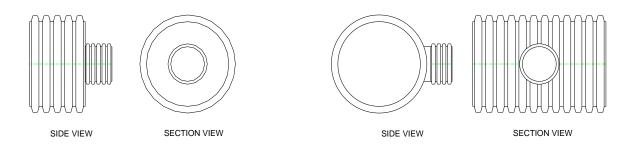
ADDITIONAL REFERENCES

Drainage Handbook Section 6 *Retention/Detention* Technical Note 6.01 *Retention/Detention System Maintenance* Technical Note 7.01 *Rainwater Harvesting with HDPE Pipe* Standard Detail 701 Retention-Detention System (Plan View) Standard Detail 702 Retention-Detention System (Cross-Section) Standard Detail 703 Retention-Detention System (Riser & Cleanout) Standard Detail 704 Flowable Fill Installation (Nyloplast Riser) All references are available for download at <u>www.adspipe.com</u>

Technical Note

TN 6.01 Retention/Detention System Maintenance

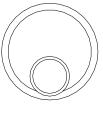
This document is provided for informational purposes only and is meant only to be a guide. Individuals using this information should make their own decisions as to suitability of this guideline for their individual projects and adjust accordingly.


Introduction

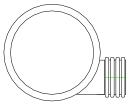
A retention/detention system is comprised of a series of pipes and fittings that form an underground storage area, which retains or detains storm water runoff from a given area. As sediment and debris settle out of the detained stormwater, build up occurs that requires the system to be regularly inspected and cleaned in order for the system to perform as originally designed. The following provides the available fittings and guidelines for inspection and maintenance of an HDPE underground storage system.

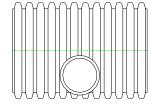
System Accessories and Fittings

Concentric Reducers


Concentric Reducers are fittings that transition between two pipes, either in line with one another or at perpendicular angles. The centerlines of the two pipes are at the same elevation. When a concentric reducer is used to connect the manifold pipe to the lateral pipes, most debris will be trapped in the manifold pipe.

Eccentric Reducers


Eccentric Reducers are fittings that transition between two pipes, either in line with one another or at perpendicular angles. The inverts of the two pipes are at the same elevations. When an eccentric reducer is used to connect the manifold pipe to the lateral pipes, most debris will follow the flow of the storm water into the lateral pipes.

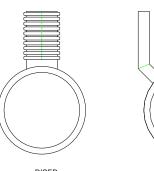

SIDE VIEW

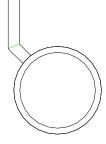
SECTION VIEW

SIDE VIEW

SECTION VIEW

adspipe.com 1-800-821-6710


Riser


Each retention/detention system typically has risers strategically placed for maintenance and inspection of the system. These risers are typically 24" in diameter or larger and are placed on the manifold fittings.

Cleanouts

Cleanout ports are usually 4-, 6-, or 8-in diameter pipe and are placed on the manifold fittings. They are used for entrance of a pipe from a vacuum truck or a water-jetting device.

For a complete listing of available fittings and components please refer to the *ADS Fittings Manual*.

RISER CROSS-SECTION VIEW

CLEANOUT CROSS-SECTION VIEW

Maintenance Overview of a Retention/Detention System

Maintaining a clean and obstruction-free retention/detention system helps to ensure the system performs the intended function of the primary design. Build up of debris may obstruct flow through the laterals in a retention system or block the entranceway of the outlet pipe in a detention system. This may result in ineffective operation or complete failure of the system. Additionally, surrounding areas may potentially run the risk of damage due to flooding or other similar issues.

Inspection/Maintenance Frequency

All retention/detention systems must be cleaned and maintained. Underground systems may be maintained more cost effectively if these simple guidelines are followed. Inspection should be performed at a minimum of once per year. Cleaning should be done at the discretion of individuals responsible to maintain proper storage and flow. While maintenance can generally be performed year round, it should be scheduled during a relatively dry season.

Pre-Inspection

A post-installation inspection should be performed to allow the owner to measure the invert prior to accumulation of sediment. This survey will allow the monitoring of sediment build-up without requiring access to the retention/detention system.

The following is the recommended procedure for pre-inspections:

- 1) Locate the riser section or cleanouts of the retention/detention system. The riser will typically be 24" in diameter or larger and the cleanouts are usually 4", 6" or 8" in diameter.
- 2) Remove the lid of the riser or clean outs.
- 3) Insert a measuring device into the opening and make note to a point of reference on the stick or string. (This is done so that sediment build up can be determined in the future without having to enter the system.)

Inspection/Maintenance

A retention/detention system should be inspected at a minimum of one time a year or after major rain events if necessary.

The following is the recommended procedure to inspect system in service:

- 1) Locate the riser section of the retention/detention system. The riser will typically be 24" in diameter or larger.
- 2) Remove the lid from the riser.
- 3) Measure the sediment buildup at each riser and cleanout location. Only certified confined space entry personnel having appropriate equipment should be permitted to enter the retention/detention System.
- 4) Inspect each manifold, all laterals, and outlet pipes for sediment build up, obstructions, or other problems. Obstructions should be removed at this time.
- 5) If measured sediment build up is between 5% 20% of the pipe diameter, cleaning should be considered; if sediment build up exceeds 20%, cleaning should be performed at the earliest opportunity. A thorough cleaning of the system (manifolds and laterals) shall be performed by either manual methods or by a vacuum truck.

The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. © 2022 Advanced Drainage Systems, Inc. TN 6.01 May 2022

adspipe.com 1-800-821-6710

CONSTRUCTION PHASE POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (BEST MANAGEMENT PRACTICES OPERATION AND MAINTENANCE PLAN)

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building B (Assessor's Parcel IDs 23-253-17)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

	Page
Project Narrative	
- Project Description	1
- Pre-development Condition	2
- Post-development Condition	2
Erosion and Sedimentation Controls - Best Management Practices	(BMP's)
- Structural Practices	2
- Stabilization Practices	5
- Dust Control	10
- Non-Stormwater Discharges	11
- Soil Stockpiling	11
- Pollution Prevention	11
- Inspection/Maintenance	12
- Inspection Schedule and Evaluation Checklist	14
- Spill Containment and Management Plan	
Diama	

Plans

- Figure-1 USGS Locus Map (Refer to Drainage Report)
- Site Topographic Map (Existing Conditions Plans within Plan Set)
- Site Development Map (Grading and Drainage Plans within Plan Set)
- Site Erosion and Sedimentation Plan (Grading and Drainage Plans within Plan Set)
- Construction Detail Plan (Construction Details within Plan Set)

Construction Phase Best Management Practices (BMP's)

Responsible Party Contact Information:

Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control.

Responsible Faily Contact Information.	
Stormwater Management System Owner:	Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693
Town of Weymouth Contact Information:	Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100
	Weymouth Conservation Commission Town Hall 75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5007
	Weymouth Department of Municipal Licenses and Inspections Jeffrey E. Richards, C.B.O., Director Town Hall

Structural Practices:

 <u>Compost Filter Tube Barrier Controls</u> – A compost filter tube barrier will be constructed along downward slopes at the limit of work in locations shown on the plans. This control will be installed prior to major soil disturbance on the site. The sediment silt sack barrier should be installed as shown on the Construction Detail Plan.

Compost Filter Tube Design/Installation Requirements *

- a) Locate the compost filter tube where identified on the plans.
- b) The compost filter tube line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the silt sack should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.

75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5004

- c) The compost filter tube shall be staked every 8 linear feet with 1-inch by 1-inch stakes.
- d) Compost filter tubes should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season. Retained sediment must be removed and properly disposed of or mulched and seeded.

Compost Filter Tube Inspection/Maintenance *

- a) Compost filter tubes should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the compost filter tube. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all compost filter tube materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform with the existing topography and vegetated.
- 2) Sediment Fence Controls A sediment fence will be constructed along the limit of work as needed to prevent the spreading of fine sediments from the site. This control will be installed prior to major soil disturbance on the site. The sediment fence should be installed as shown on the Erosion Control Detail Plan and be Amoco woven polypropylene 1198 or equivalent.

Sediment Fence Design/Installation Requirements *

- a) Locate the fence upland of the hay bale barriers and where identified on the plans.
- b) The fence line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the fence should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.
- c) Excavate a trench approximately 8 inches deep and 4 inches wide, or a V-trench; along the line of the fence, upslope side.
- d) Fasten support wire fence (14 gauge with 6-inch mesh) securely to the upslope side of the fence posts with wire ties or staples. Wire should extend 6 inches into the trench.

- e) Attach continuous length of fabric to upslope side of fence posts. Avoid joints, particularly at low points in the fence line. Where joints are necessary, fasten fabric securely to support posts and overlap to the next post.
- f) Place the bottom one foot of fabric in the trench. Backfill with compacted earth or gravel.
- g) Filter cloth shall be fastened securely to the woven wire fence with ties spaced every 24 inches at the top, mid-section, and bottom.
- h) Sediment fences should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season and only following approval by the Engineering Department or their representative. Retained sediment must be removed and properly disposed of, or mulched and seeded.

Sediment Fence Inspection/Maintenance *

- a) Silt fences should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the fence. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all fencing materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform to the existing topography and vegetation.
- 3) <u>Stabilized Construction Entrance</u> A stabilized construction entrance will be placed at the proposed entrance at Lovell Field. The construction entrance will keep mud and sediment from being tracked off the construction site by vehicles leaving the site. The stabilized construction entrance will be installed immediately after the clearing and grubbing of the roadway entrance and associated roadway fill to maintain access to the site are completed. The stabilized construction entrance shall be constructed as shown on the Construction Detail Plans.

Construction Entrance Design/Construction Requirements *

a) Stone for a stabilized construction entrance shall consist of 1 to 3-inch stone placed on a stable foundation.

- b) Pad dimensions: The minimum length of the gravel pad should be 50 feet. The pad should extend the full width of the proposed roadway, or wide enough so that the largest construction vehicle will fit in the entrance with room to spare; whichever is greater.
- c) A geotextile filter fabric shall be placed between the stone fill and the earth surface below the pad to reduce the migration of soil particles from the underlying soil into the stone and vice versa. The filter fabric should be Amoco woven polypropylene 1198 or equivalent.
- d) Washing: If the site conditions are such that the majority of mud is not removed from the vehicle tires by the gravel pad, then the tires should be washed before the vehicle enters the street. The wash area shall be located at the stabilized construction entrance.
- e) Water employed in the washing process shall be directed to the temporary dewatering area as shown on the plans prior to discharge. Sediment should be prevented from entering any watercourses.

Construction Entrance Inspection/Maintenance *

- a) The entrance should be maintained in a condition that will prevent tracking or flowing of sediment onto Lovell Field and Commercial Street. This may require periodic topdressing with additional stone.
- b) The construction entrance and sediment disposal area shall be inspected weekly and after heavy rains or heavy use.
- c) Mud and sediment tracked or washed onto public road shall be immediately removed by sweeping.
- d) Once mud and soil particles clog the voids in the gravel and the effectiveness of the gravel pad is no longer satisfactory, the pad must be topdressed with new stone. Replacement of the entire pad may be necessary when the pad becomes completely clogged.
- e) If washing facilities are used, the dewatering area should be cleaned out as often as necessary to assure that adequate trapping efficiency and storage volume is available.
- f) The pad shall be reshaped as needed for drainage and runoff control.
- g) Broken road pavement on Lovell Field and Commercial Street shall be repaired immediately.
- h) All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization is achieved or after the temporary practices are no longer needed and only following approval by the Public Works Department or their representative. Trapped sediment shall be removed or stabilized on site. Disturbed soil areas resulting from removal shall be permanently stabilized.

Stabilization Practices:

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

- Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.
- Where construction activity will resume on a portion of the site within 21 days from when activities ceased, (e.g. the total time period that construction activity is temporarily ceased is less than 21 days) then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased.
- The contractor shall provide erosion control measures around all soil stockpiles.
- <u>Temporary Seeding</u> Temporary seeding will allow short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stockpiles and disturbed portions of the site where construction activity will temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

Temporary Seeding Planting Procedures *

- a) Planting should preferably be done between April 1st and June 30th, and September 1st through September 31st. If planting is done in the months of July and August, irrigation may be required. If planting is done between October 1st and March 31st, mulching should be applied immediately after planting. If seeding is done during the summer months, irrigation of some sort will probably be necessary.
- b) Before seeding, install structural practice controls. Utilize Amoco supergro or equivalent.

Species	Seeding Rate (lbs/1,000 sq.ft.)	Seeding Rate (lbs/acre)	Recommended Seeding Dates	Seed Cover required
Annual	1	40	April 1 st to June 1 st	1¼ inch
Ryegrass			August 15 th to Sept. 15 th	
Foxtail	0.7	30	May 1 st to June 30 th	1⁄2 to 3⁄4 inch
Millet				
Oats	2	80	April 1 st to July 1 st	1 to 1-1/2 inch
			August 15 th to Sept. 15 th	
Winter	3	120	August 15 th to Oct. 15 th	1 to 1-1/2 inch
Rye			-	

c) Select the appropriate seed species for temporary cover from the following table.

Apply the seed uniformly by hydroseeding, broadcasting, or by hand.

d) Use effective mulch, tacked and/or tied with netting to protect seedbed and encourage plant growth.

Temporary Seeding Inspection/Maintenance *

- a) Inspect within 6 weeks of planting to see if stands are adequate. Check for damage within 24 hours of the end to heavy rainfall, defined as a 2-year storm event (i.e., 3.2 inches of rainfall within a twenty-four-hour period). Stands should be uniform and dense. Reseed and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary.
- b) Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather. Water application rates should be controlled to prevent runoff.
- 2) <u>Geotextiles</u> Geotextiles such as jute netting will be used in combination with other practices such as mulching to stabilize slopes. The following geotextile materials or equivalent are to be utilized for structural and nonstructural controls as shown in the following table.

Practice	Manufacturer	Product	Remarks
Sediment Fence	Amoco	Woven polypropylene 1198 or equivalent	0.425 mm opening
Construction Entrance	Amoco	Woven polypropylene 2002 or equivalent	0.300 mm opening
Outlet Protection	Amoco	Nonwoven polypropylene 4551 or equivalent	0.150 mm opening
Erosion Control (slope stability)	Amoco	Supergro or equivalent	Erosion control revegetation mix, open polypropylene fiber on degradable polypropylene net scrim

Amoco may be reached at (800) 445-7732

Geotextile Installation

a) Netting and matting require firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil and erosion will occur underneath the material.

Geotextile Inspection/Maintenance *

- a) In the field, regular inspections should be made to check for cracks, tears, or breaches in the fabric. The appropriate repairs should be made.
- 3) <u>Mulching and Netting</u> Mulching will provide immediate protection to exposed soils during the period of short construction delays, or over winter months through the application of plant residues, or other suitable materials, to exposed soil areas. In areas, which have been seeded either for temporary or permanent cover, mulching should immediately follow seeding. On steep slopes, mulch must be supplemented with netting.

Mulch Maintenance *

- a) Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting.
- b) Grass mulches that blow or wash away should be repaired promptly.
- c) If plastic netting is used to anchor mulch, care should be taken during initial mowings to keep the mower height high. Otherwise, the netting can wrap up on the mower blade shafts. After a period of time, the netting degrades and becomes less of a problem.
- d) Continue inspections until vegetation is well established.
- 4) <u>Land Grading</u> Grading on fill slopes, cut slopes, and stockpile areas will be done with full siltation controls in place.

Land Grading Design/Installation Requirements

- a) Areas to be graded should be cleared and grubbed of all timber, logs, brush, rubbish, and vegetated matter that will interfere with the grading operation. Topsoil should be stripped and stockpiled for use on critical disturbed areas for establishment of vegetation. Cut slopes to be topsoiled should be thoroughly scarified to a minimum depth of 3-inches prior to placement of topsoil.
- b) Fill materials should be generally free of brush, rubbish, rocks, and stumps. Frozen materials or soft and easily compressible materials should not be used in fills intended to support buildings, parking lots, roads, conduits, or other structures.
- c) Earth fill intended to support structural measures should be compacted to a minimum of 90 percent of Standard Proctor Test density with proper moisture control, or as otherwise specified by the engineer responsible for the design. Compaction of other fills should be to the density required to control sloughing, erosion or excessive moisture content. Maximum thickness of fill layers prior to compaction should not exceed 9 inches.
- d) The uppermost one foot of fill slopes should be compacted to at least 85 percent of the maximum unit weight (based on the modified AASHTO compaction test). This is usually accomplished by running heavy equipment over the fill.
- e) Fill should consist of material from borrow areas and excess cut will be stockpiled in areas shown on the Site Plans. All disturbed areas should be free draining, left with a neat and finished appearance, and should be protected from erosion.
- f) Infiltration basins shall be excavated, graded and shaped to subgrade elevation and shall then be suitably protected with installation of erosion control measures to prevent sediment-laden runoff from washing into the basins. The basins shall also be protected from heavy equipment activity from this point forward. Prior to application of loam and seed to infiltration basin surfaces, the contractor shall

remove any unsuitable soil such as silt or clay that may have been deposited during construction. The surface shall be scarified with a York rake or other small tractor mounted equipment. The loam and seed shall then be applied as required by this document.

Land Grading Stabilization Inspection/Maintenance *

- a) All slopes should be checked periodically to see that vegetation is in good condition. Any rills or damage from erosion and animal burrowing should be repaired immediately to avoid further damage.
- b) If seeps develop on the slopes, the area should be evaluated to determine if the seep will cause an unstable condition. Subsurface drains or a gravel mulch may be required to solve seep problems. However, no seeps are anticipated.
- c) Areas requiring revegetation should be repaired immediately. Control undesirable vegetation such as weeds and woody growth to avoid bank stability problems in the future.
- 5) <u>Topsoiling</u> * Topsoiling will help establish vegetation on all disturbed areas throughout the site during the seeding process. The soil texture of the topsoil to be used will be a sandy loam to a silt loam texture with 15% to 20% organic content.

Topsoiling Placement

- a) Topsoil should not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or when conditions exist that may otherwise be detrimental to proper grading or proposed seeding.
- b) Do not place topsoil on slopes steeper than 2.5:1, as it will tend to erode.
- c) If topsoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and it will be difficult to establish vegetation. The best method is to actually work the topsoil into the layer below for a depth of at least 6 inches.
- 6) <u>Permanent Seeding</u> Permanent Seeding should be done immediately after the final design grades are achieved. Native species of plants should be used to establish perennial vegetative cover on disturbed areas. The revegetation should be done early enough in the fall so that a good cover is established before cold weather comes and growth stops until the spring. A good cover is defined as vegetation covering 75 percent or more of the ground surface.

Permanent Seeding Seedbed Preparation

a) In infertile or coarse-textured subsoil, it is best to stockpile topsoil and re-spread it over the finished slope at a minimum 2 to 6-inch depth and roll it to provide a firm seedbed. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content. If construction fill operations have left soil exposed with a loose, rough, or irregular surface, smooth with blade and roll.

- b) Loosen the soil to a depth of 3-5 inches with suitable agricultural or construction equipment.
- c) Areas not to receive topsoil shall be treated to firm the seedbed after incorporation of the lime and fertilizer so that it is depressed no more than ½ - 1 inch when stepped on with a shoe. Areas to receive topsoil shall not be firmed until after topsoiling and lime and fertilizer is applied and incorporated, at which time it shall be treated to firm the seedbed as described above.

Permanent Seeding Grass Selection/Application

- a) Select an appropriate cool or warm season grass based on site conditions and seeding date. Apply the seed uniformly by hydro-seeding, broadcasting, or by hand. Uniform seed distribution is essential. On steep slopes, hydroseeding may be the most effective seeding method. Surface roughening is particularly important when preparing slopes for hydroseeding.
- b) Lime and fertilize. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.
- c) Mulch the seedings with straw applied at the rate of ½ tons per acre. Anchor the mulch with erosion control netting or fabric on sloping areas. Amoco supergro or equivalent should be utilized.

Permanent Seeding Inspection/Maintenance *

- a) Frequently inspect seeded areas for failure and make necessary repairs and reseed immediately. Conduct or follow-up survey after one year and replace failed plants where necessary.
- b) If vegetative cover is inadequate to prevent rill erosion, overseed and fertilize in accordance with soil test results.
- c) If a stand has less than 40% cover, reevaluate choice of plant materials and quantities of lime and fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations, omitting lime and fertilizer in the absence of soil test results. If the season prevents resowing, mulch or jute netting is an effective temporary cover.
- d) Seeded areas should be fertilized during the second growing season. Lime and fertilize thereafter at periodic intervals, as needed.

Fueling and Maintenance of Equipment and Vehicles:

 Refueling/maintenance Rules – The site supervisor shall produce a written document received by all subcontractors and employees that delineates their responsibilities on site. This document shall include language that shall permit the maintenance of vehicles only in designated locations on the job site. In the event of mechanical failure of a vehicle, the vehicle shall be moved to the designated maintenance area on the site to perform maintenance. The site supervisor shall document receipt of these instructions by obtaining the signatures of subcontractors and individuals that may enter the site and the date in which they were notified of their responsibilities. Refueling for vehicles or equipment shall occur either within the designated washout area or shall utilize temporary drip protection measures at the location of fueling. The site supervisor or their representative shall be present at the time of any fueling procedure. The site supervisor shall have a fuel spill plan and measures on site to initiate containment and clean-up in the event a fuel spill occurs.

- 2. Installation Schedule: Prior to start of Work
- 3. Maintenance and Inspection: The site supervisor shall maintain a log of individuals receiving these instructions.
- 4. Specific Pollution Prevention Practices

Pollution Prevention Practice # 1

- a. Description: Fueling operations shall take place in designated area(s) as shown on site maps. Provide temporary drip protection during fueling operations which take place outside of designated area(s). Materials necessary to address a spill shall be made readily available in a location known to the site supervisor or his/her designee.
- b. Installation: Fueling operation procedures shall be in effect throughout the project duration.
- c. Maintenance Requirements: All emergency response equipment listed in the Emergency Response Equipment Inventory shall be made readily available and kept in a designated location known to the site supervisor or his/her designee. All such materials shall be replenished as necessary to the listed amounts.

Dust Control:

Dust control will be utilized throughout the entire construction process of the site. For example, keeping disturbed surfaces moist during windy periods will be an effective control measure, especially for construction access roads. The use of dust control will prevent the movement of soil to offsite areas. However, care must be taken to not create runoff from excessive use of water to control dust. The following are methods of Dust Control that may be used on-site:

- Vegetative Cover The most practical method for disturbed areas not subject to traffic.
- Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
- Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
- Stone Stone will be used to stabilize construction roads; will also be effective for dust control.

The general contractor shall employ an on-site water vehicle for the control of dust as necessary.

Non-Stormwater Discharges:

The construction de-watering and all non-stormwater discharges will be directed into a sediment dirt bag (or equivalent inlet protection) or a sediment basin. Sediment material removed shall be disposed of in accordance with all applicable local, state, and federal regulations.

The developer and site general contractor will comply with the E.P.A.'s Final General Permit for Construction De-watering Discharges, (N.P.D.E.S., Section 402 and 40 C.F.R. 122.26(b)(14)(x).

Inspection/Maintenance:

Operator personnel must inspect the construction site at least once every 14 calendar days and within 24 hours of a storm event of ½-inch or greater. The applicant shall be responsible to secure the services of a design professional or similar professional (inspector) on an on-going basis throughout all phases of the project. Refer to the Inspection/Maintenance Requirements presented earlier in the "Structural and Stabilization Practices." The inspector should review the erosion and sediment controls with respect to the following:

- Whether or not the measure was installed/performed correctly.
- Whether or not there has been damage to the measure since it was installed or performed.
- What should be done to correct any problems with the measure.

The inspector should complete the Stormwater Management Construction Phase BMP Inspection Schedule and Evaluation Checklist, as attached, for documenting the findings and should request the required maintenance or repair for the pollution prevention measures when the inspector finds that it is necessary for the measure to be effective. The inspector should notify the appropriate person to make the changes and submit copies of the form to the Weymouth Highway Department.

Construction Practices

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed: (List Items)	Date of Cleaning/ Repair	Performed by
Silt Sock and Sediment Fence Controls	After heavy rainfall events (minimum weekly)			 Sediment Fence Design/Installation Requirements Sediment Fence Inspection/Maintenance 	yesno		
Stabilized Construction Entrance	After heavy rainfall events (minimum weekly)			 Construction Entrance Design/ Construction Requirements Construction Entrance Inspection/ Maintenance 	yesno		
Temporary Seeding	After heavy rainfall events (minimum weekly)			 Temporary Seeding Planting Procedures Temporary Seeding Inspection/ Maintenance 	yesno		
Geotextiles	After heavy rainfall events (minimum weekly)			1. Geotextile Inspection/Maintenance	yesno		
Mulching & Netting	After heavy rainfall events (minimum weekly)			1. Mulch Maintenance	yesno		
Land Grading	After heavy rainfall events (minimum weekly)			 Land Grading Stabilization Inspection/ Maintenance 	yesno		

Date:

Construction Practices

Permanent Seeding	After heavy rainfall events (minimum weekly)	1. Permanent Seeding Inspection/ Maintenance	⊡yes ⊡no	_	
Dust Control	After heavy rainfall events (minimum weekly)		_]yes _]no	-	
Soil Stockpiling	After heavy rainfall events (minimum weekly)		yesno	-	

(1) Refer to the Massachusetts Stormwater Handbook issued January 2, 2008.

Notes (Include deviations from : Definitive Subdivision Decision and Special Conditions and Approved Plan):

Stormwater Control Manager _____

Date:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	Irakis N. Papachristos, Manager	
	1 Franklin Street, Boston, MA 02110	
Facility Manager (phone)	<u>203-230.1693</u>	

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u> /		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill	· —				
Measures taken to	contain or clea	n up spill			
Amount of chemica	I / oil recovered	1	Method		
Material collected a	is a result of cle	ean up			
dru	ims containing_				
dru	ims containing				
dru	ims containing				
Location and metho	od of debris dis	posal			
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precauti	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /	/	Time	AM / PM	Inspector	
NRC Date /	/	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151	
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212	
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007	
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN
3.	MASSACHUSETTS DEPARTMENT OF EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEV	
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY

POST-DEVELOPMENT BEST MANAGEMENT PRACTICE OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building B (Assessor's Parcel IDs 23-253-17)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

Long Term Best Management Practices (BMP's)	Page
- Responsible Party Contact Information	1
- Long-Term Operation and Maintenance	1
- BMP Operation and Maintenance	2
- Maintenance Responsibilities	4
- Long-Term Pollution Prevention Plan	4
- Inspection Schedule and Evaluation Checklist	7
- Spill Containment and Management Plan	
- Stormceptor Unit Operation & Maintenance Manual	
- ACF Environmental R-Tank Operation & Maintenance Manual	

Post-Development Best Management Practice Operation and Maintenance Plan & Long-Term Pollution Prevention Plan

Post-Development Best Management Practices (BMPs) Operation and Maintenance Plan

Responsible Party/Property Owner/Developer contact information:

Property Owner: Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

Developer Contact Information:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

City of Weymouth Contact Information:

Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100

Best Management Practices (BMPs) of the Commonwealth of Massachusetts Department of Environmental Protection's (DEP's) Stormwater Management Policy (SMP) have been implemented and utilized for the project. The following information provided is to be used as a guideline for monitoring and maintaining the performance of the drainage facilities and to ensure that the quality of water runoff meets the standards set forth by the SMP. The structural Best Management Practices (BMPs) shall be inspected during rainfall conditions during the first year of operation to verify functionality.

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

BMPs included in the design consist of the use of:

- Stormceptor units
- Subsurface Infiltration systems
- Roadway pavement maintenance

Operation:

Once the stormwater management systems have been constructed and site has been permanently stabilized and put into action, the operation of the stormwater management system will function as intended. Stormwater runoff is directed into the trench drain to the First Defense unit, and lastly to the subsurface infiltration system. The stormwater management systems have been designed to attenuate peak flows for the 2-year through 100-year storm events.

Maintenance:

 Paved Areas –Sweepers shall sweep paved areas periodically during dry weather to remove excess sediments and to reduce the amount of sediments that the drainage system shall have to remove from the runoff. The sweeping shall be conducted primarily between March 15th and November 15th. Special attention should be made to sweeping paved surfaces in March and April before spring rains wash residual sand into the drainage system.

The frequency of sweeping shall average:

- Monthly if by a high-efficiency vacuum sweeper
- Bi-weekly if by a regenerative air sweeper
- Weekly if by a mechanical sweeper

Salt used for de-icing on the parking lot during winter months shall be limited as much as possible as this will reduce the need for removal and treatment. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities.

Cost: The property owner should consult local sweeping contractors for detailed cost estimates.

2. Proprietary Pretreatment Units – The proprietary pretreatment units shall be inspected and maintained from the surface, without entry into the unit a minimum of annually and following heavy rain events. Perform maintenance once the stored volume reaches 15% of the unit capacity, or immediately in the event of a spill. Perform Maintenance at quarterly intervals during the first year of installation, so an accurate maintenance schedule can be established. Sediment and debris should be removed through the 12-inch diameter outlet pipe. Alternatively, oil and floatables should be removed through the 12-inch oil inspection port. The requirements for the disposal from the units should be in compliance with all local, state and federal regulations. Consult the Natick Board of Health for transfer station locations prior to disposing the separator contents. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the First Defense units.

Cost: Cleaning should be included along with the routine maintenance of the catch basins. The property owner should consult local vacuum cleaning contractors for detailed cost estimates.

3. Subsurface Infiltration Tank System –Proper maintenance of the subsurface infiltration system is essential to the long-term effectiveness of the infiltration function. The subsurface infiltration system shall have inspection ports and additional inspections should be scheduled during the first few months to ensure

proper stabilization and function. Thereafter, they shall be checked semiannually and following heavy rainfalls, defined as a 1-year storm event exceeding 2.5 inches of rainfall within a twenty-four-hour period. Water levels in the chambers shall be checked to verify proper drainage. Ponding water in a chamber indicates failure from the bottom. If water remains within the chambers after 48-hours following a storm event, steps to restore the infiltration function shall be taken, as directed by a qualified stormwater management professional. In order to rectify the problem, accumulated sediment must be removed from the bottom of the chamber. The stone aggregate and filter fabric must be removed and replaced, and the underlying soil layer must be scarified to encourage proper infiltration. Material removed from the system shall be disposed of in accordance with all applicable local, state, and federal regulations. Please refer to the Manufacturer's Manual for additional details on proper inspection and maintenance of the R-Tank chambers.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

4. Trench Drains - Trench drain grates shall be checked quarterly and following heavy rainfalls to verify that the inlet openings are not clogged by debris. Debris shall be removed from the grates and disposed of in accordance with all applicable regulations.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

5. Pesticides, Herbicides, and Fertilizers - Pesticides and herbicides shall be used sparingly. Fertilizers should be restricted to the use of organic fertilizers only.

All structural BMP's as identified on the site plans will be owned and maintained by the homeowner's association of the development and shall run with the title of the property.

Cost: Included in the routine landscaping maintenance schedule. The Owner should consult local landscaping contractors for details.

6. Snow Removal - Snow accumulations removed from access road should be placed in upland areas only, where sand and other debris will remain after snowmelt for later removal. Excess snow should be removed from the site and properly disposed of in an approved snow disposal facility. Care must be exercised not to deposit snow in the in areas where sand and debris can get into the watercourse.

Cost: The owner should consult local snow removal contractors for a detailed cost estimate.

Maintenance Responsibilities:

All post construction maintenance activities will be documented and kept on file. Annual inspection reports in the form of an Evaluation Checklist, see attached form, will be submitted to the City of Weymouth. Inspections shall be performed by a licensed engineer or similar professional (inspector).

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

Long-Term Pollution Prevention Plan

Good Housekeeping:

To develop and implement an operation and maintenance program with the goal of preventing or reducing pollutant runoff by keeping potential pollutants from coming into contact with stormwater or being transported off site without treatment, the following efforts will be made:

- Property Management awareness and training on how to incorporate pollution prevention techniques into maintenance operations.
- Follow appropriate best management practices (BMPs) by proper maintenance and inspection procedures.
- Homeowner education outreach, including promoting recycling through the City of Weymouth Transfer Station.

Storage and Disposal of Household Waste and Toxics:

This management measure involves educating the general public on the management considerations for hazardous materials. Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Many people have hazardous chemicals stored throughout their homes, especially in garages and storage sheds. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts. Property owners are encouraged to support the household hazardous product collection events sponsored by the City of Weymouth.

MADEP has prepared several materials for homeowners on how to properly use and dispose of household hazardous materials:

http://www.mass.gov/dep/recycle/reduce/househol.htm

For consumer questions on household hazardous waste call the following number:

DEP Household Hazardous Waste Hotline 800-343-3420

The following is a list of management considerations for hazardous materials as outlined by the EPA:

- Ensuring sufficient aisle space to provide access for inspections and to improve the ease of material transport;
- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.
- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

The following is a list of commonly used hazardous materials used in the household:

Batteries – automotive and rechargeable nickel cadmium batteries (no alkaline batteries) Gasoline Oil-based paints Fluorescent light bulbs and lamps Pool chemicals Propane tanks Lawn chemicals, fertilizers and weed killers Turpentine Bug sprays Antifreeze Paint thinners, strippers, varnishes and stains Arts and crafts chemicals Charcoal lighter fluid

Disinfectant Drain clog dissolvers Driveway sealer Flea dips, sprays and collars Houseplant insecticides Metal polishes Mothballs Motor oil and filters Muriatic acid (concrete cleaner) Nail polishes and nail polish removers Oven cleaner Household pest and rat poisons Rug and upholstery cleaners Shoe polish Windshield wiper fluid

Landscape Maintenance:

This management measure seeks to control the storm water impacts of landscaping and lawn care practices through education and outreach on methods that reduce nutrient loadings and the amount of storm water runoff generated from lawns. Nutrient loads generated by fertilizer use on suburban lawns can be significant, and recent research has shown that lawns produce more surface runoff than previously thought.

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawns at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Collect rainwater for landscaping/gardening needs (rain barrels and cisterns to capture roof runoff).
- Raise public awareness for promoting the water efficient maintenance practices by informing users of water efficient irrigation techniques and other innovative approaches to water conservation.
- Abide by water restrictions and other conservation measures implemented by the City of Weymouth.
- Water only when necessary.
- Use automatic irrigation systems to reduce water use.

Integrated Pest Management (IPM):

This management measure seeks to limit the adverse impacts of insecticides and herbicides by providing information on alternative pest control techniques other than chemicals or explaining how to determine the correct dosages needed to manage pests.

The presence of pesticides in stormwater runoff has a direct impact on the health of aquatic organisms and can present a threat to humans through contamination of drinking water supplies. The pesticides of greatest concern are insecticides, such as diazinon and chloropyrifos, which even at very low levels can be harmful to aquatic life. The major source of pesticides to urban steams is home application of products designed to kill insects and weeds in the lawn and garden. The following IPM practices will be encouraged:

- Lawn care and landscaping management programs including appropriate pesticide use management as part of program.
- Raise public awareness by referring homeowners to "A Homeowner's Guide to Environmentally Sound Lawncare, Maintaining a Healthy Lawn the IPM Way", Massachusetts Department of Food and Agriculture, Pesticide Bureau or link <u>http://www.mass.gov/dep/water/resources/nonpoint.htm#megaman</u>>

Illicit Discharges:

Illicit discharges are non-stormwater discharges to the storm drain system which typically contain bacteria and other pollutants. All illicit discharges are prohibited. Any illicit discharges should be reported to MassDOT and/or the DPW as applicable to be addressed in accordance with their respective policies.

The following is a list of EPA allowed non-stormwater discharges. If the non-stormwater discharge is not listed, it is prohibited.

- 1. Water line flushing,
- 2. Landscape irrigation,
- 3. Diverted stream flows,
- 4. Rising ground waters,
- 5. Uncontaminated ground water infiltration (as defined at 40 CFR 35.2005(20)),
- 6. Uncontaminated pumped ground water,
- 7. Discharge from potable water sources,
- 8. Foundation drains,
- 9. Air conditioning condensation,
- 10. Irrigation water, springs,
- 11. Water from crawl space pumps,
- 12. Footing drains,
- 13. Lawn watering,
- 14. Flows from riparian habitats and wetlands,
- 15. Street wash water,
- 16. Discharges or flows from firefighting activities occur during emergency conditions.

Project Location: Jackson Square, Assessor's Parcel IDs 23-305-1, 23-305-4, 23-205-9, 23-305-10, 23-305-11, Weymouth, MA Stormwater Management – Post Construction Phase Best Management Practices – Inspection Schedule and Evaluation Checklist

Long Term Practices

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed: ☐yes ☐no (List Items)	Date of Cleaning/ Repair	Performed by
Street Sweeping Maintenance	4-times annually - specifically in Spring and Fall			 Sediment build-up Trash and debris Minor Spills (vehicular) 			
Proprietary Pretreatment Units	After heavy rainfall events (minimum annually)			 Sediment level exceeds Manufacturer's specification Trash and debris Floatable oils or hydrocarbons Outlet blockages 			
Subsurface Infiltration Tanks	After heavy rainfall events (minimum semi- annually)			 Sediment build-up Standing Water greater than 48 hours 			
Trench Drains	After heavy rainfall events (minimum quarterly)			 Sediment level exceeds 8" Trash and debris Floatable oils or hydrocarbons Grate or outlet blockages 			

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook (February 2008) for recommendations regarding frequency for inspection and maintenance of specific BMP's.

Notes (Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan):

1.

Stormwater Control Manager _____

Stamp:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	<u>Irakis N. Papachristos, Manager</u>
	1 Franklin Street, Boston, MA 02110
Facility Manager (phone)	<u>203-230.1693</u>

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

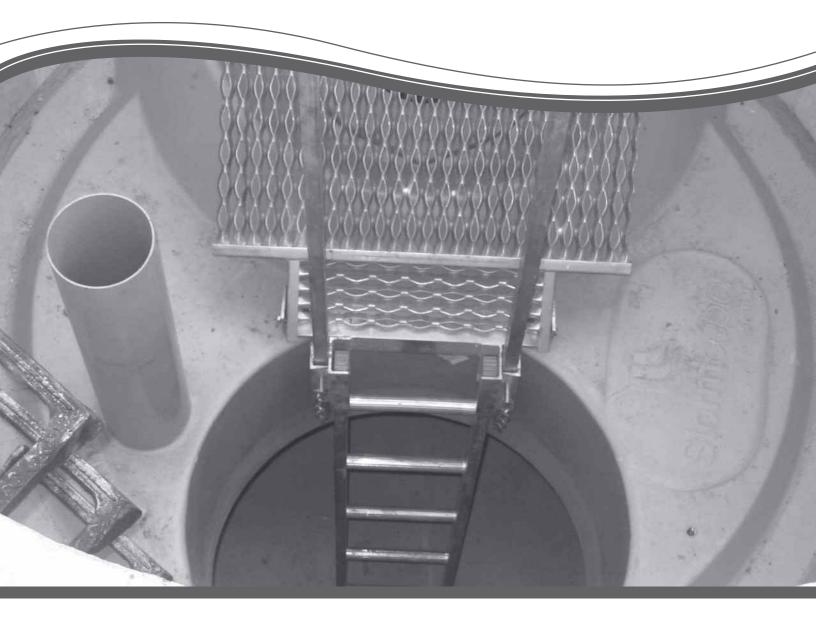
Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u>		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill					
Measures taken to	contain or clear	n up spill			
Amount of chemica	I / oil recovered	<u> </u>	Method		
Material collected a	is a result of cle	an up			
dru	ims containing_				
dru					
Location and metho	-				
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precaution	ons instituted	to prevent a simil	ar occurrence from	n recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /			AM / PM	Inspector	
NRC Date /	/	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.


 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151	
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212	
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007	
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN
3.	MASSACHUSETTS DEPARTMENT OF EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEV	
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY

Stormceptor[®] STC Operation and Maintenance Guide

Stormceptor Design Notes

- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.

Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences			
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in. (75 mm)	1 in. (25 mm)	3 in. (75 mm)
Multiple inlet pipes	3 in. (75 mm)	3 in. (75 mm)	Only one inlet pipe.

Maximum inlet and outlet pipe diameters:

Inlet/Outlet Configuration	Inlet Unit STC 450i	In-Line Unit STC 900 to STC 7200	Series* STC 11000 to STC 16000
Straight Through	24 inch (600 mm)	42 inch (1050 mm)	60 inch (1500 mm)
Bend (90 degrees)	18 inch (450 mm)	33 inch (825 mm)	33 inch (825 mm)

- The inlet and in-line Stormceptor units can accommodate turns to a maximum of 90 degrees.
- Minimum distance from top of grade to crown is 2 feet (0.6 m)
- Submerged conditions. A unit is submerged when the standing water elevation at the proposed location of the Stormceptor unit is greater than the outlet invert elevation during zero flow conditions. In these cases, please contact your local Stormceptor representative and provide the following information:
- Top of grade elevation
- Stormceptor inlet and outlet pipe diameters and invert elevations
- Standing water elevation
- Stormceptor head loss, K = 1.3 (for submerged condition, K = 4)

Stormceptor®

OPERATION AND MAINTENANCE GUIDE Table of Content

1.	About Stormceptor	4
2.	Stormceptor Design Overview	4
3.	Key Operation Features	6
	Stormceptor Product Line	
5.	Sizing the Stormceptor System	10
	Spill Controls	
7.	Stormceptor Options	14
8.	Comparing Technologies	17
9.	Testing	18
10.	Installation	18
11.	Stormceptor Construction Sequence	18
12.	Maintenance	19

1. About Stormceptor

The Stormceptor® STC (Standard Treatment Cell) was developed by Imbrium[™] Systems to address the growing need to remove and isolate pollution from the storm drain system before it enters the environment. The Stormceptor STC targets hydrocarbons and total suspended solids (TSS) in stormwater runoff. It improves water quality by removing contaminants through the gravitational settling of fine sediments and floatation of hydrocarbons while preventing the re-suspension or scour of previously captured pollutants.

The development of the Stormceptor STC revolutionized stormwater treatment, and created an entirely new category of environmental technology. Protecting thousands of waterways around the world, the Stormceptor System has set the standard for effective stormwater treatment.

1.1. Patent Information

The Stormceptor technology is protected by the following patents:

- Australia Patent No. 693,164 693,164 707,133 729,096 779401
- Austrian Patent No. 289647
- Canadian Patent No 2,009,208 2,137,942 2,175,277 2,180,305 2,180,383 2,206,338 2,327,768 (Pending)
- China Patent No 1168439
- Denmark DK 711879
- German DE 69534021
- Indonesian Patent No 16688
- Japan Patent No 9-11476 (Pending)
- Korea 10-2000-0026101 (Pending)
- Malaysia Patent No PI9701737 (Pending)
- New Zealand Patent No 314646
- United States Patent No 4,985,148 5,498,331 5,725,760 5,753,115 5,849,181 6,068,765 6,371,690
- Stormceptor OSR Patent Pending Stormceptor LCS Patent Pending

2. Stormceptor Design Overview

2.1. Design Philosophy

The patented Stormceptor System has been designed to focus on the environmental objective of providing long-term pollution control. The unique and innovative Stormceptor design allows for continuous positive treatment of runoff during all rainfall events, while ensuring that all captured pollutants are retained within the system, even during intense storm events.

An integral part of the Stormceptor design is PCSWMM for Stormceptor - sizing software developed in conjunction with Computational Hydraulics Inc. (CHI) and internationally acclaimed expert, Dr. Bill James. Using local historical rainfall data and continuous simulation modeling, this software allows a Stormceptor unit to be designed for each individual site and the corresponding water quality objectives.

By using PCSWMM for Stormceptor, the Stormceptor System can be designed to remove a wide range of particles (typically from 20 to 2,000 microns), and can also be customized to remove a specific particle size distribution (PSD). The specified PSD should accurately reflect what is in the stormwater runoff to ensure the device is achieving the desired water quality objective. Since stormwater runoff contains small particles (less than 75 microns), it is important to design a treatment system to remove smaller particles in addition to coarse particles.

2.2. Benefits

The Stormceptor System removes free oil and suspended solids from stormwater, preventing spills and non-point source pollution from entering downstream lakes and rivers. The key benefits, capabilities and applications of the Stormceptor System are as follows:

- Provides continuous positive treatment during all rainfall events
- Can be designed to remove over 80% of the annual sediment load
- Removes a wide range of particles
- Can be designed to remove a specific particle size distribution (PSD)
- Captures free oil from stormwater
- Prevents scouring or re-suspension of trapped pollutants
- Pre-treatment to reduce maintenance costs for downstream treatment measures (ponds, swales, detention basins, filters)
- Groundwater recharge protection
- Spills capture and mitigation
- Simple to design and specify
- Designed to your local watershed conditions
- Small footprint to allow for easy retrofit installations
- Easy to maintain (vacuum truck)
- Multiple inlets can connect to a single unit
- Suitable as a bend structure
- Pre-engineered for traffic loading (minimum AASHTO HS-20)
- Minimal elevation drop between inlet and outlet pipes
- Small head loss
- Additional protection provided by an 18" (457 mm) fiberglass skirt below the top of the insert, for the containment of hydrocarbons in the event of a spill.

2.3. Environmental Benefit

Freshwater resources are vital to the health and welfare of their surrounding communities. There is increasing public awareness, government regulations and corporate commitment to reducing the pollution entering our waterways. A major source of this pollution originates from stormwater runoff from urban areas. Rainfall runoff carries oils, sediment and other contaminants from roads and parking lots discharging directly into our streams, lakes and coastal waterways.

The Stormceptor System is designed to isolate contaminants from getting into the natural environment. The Stormceptor technology provides protection for the environment from spills that occur at service stations and vehicle accident sites, while also removing contaminated sediment in runoff that washes from roads and parking lots.

3. Key Operation Features

3.1. Scour Prevention

A key feature of the Stormceptor System is its patented scour prevention technology. This innovation ensures pollutants are captured and retained during all rainfall events, even extreme storms. The Stormceptor System provides continuous positive treatment for all rainfall events, including intense storms. Stormceptor slows incoming runoff, controlling and reducing velocities in the lower chamber to create a non-turbulent environment that promotes free oils and floatable debris to rise and sediment to settle.

The patented scour prevention technology, the fiberglass insert, regulates flows into the lower chamber through a combination of a weir and orifice while diverting high energy flows away through the upper chamber to prevent scouring. Laboratory testing demonstrated no scouring when tested up to 125% of the unit's operating rate, with the unit loaded to 100% sediment capacity (NJDEP, 2005). Second, the depth of the lower chamber ensures the sediment storage zone is adequately separated from the path of flow in the lower chamber to prevent scouring.

3.2. Operational Hydraulic Loading Rate

Designers and regulators need to evaluate the treatment capacity and performance of manufactured stormwater treatment systems. A commonly used parameter is the "operational hydraulic loading rate" which originated as a design methodology for wastewater treatment devices.

Operational hydraulic loading rate may be calculated by dividing the flow rate into a device by its settling area. This represents the critical settling velocity that is the prime determinant to quantify the influent particle size and density captured by the device. PCSWMM for Stormceptor uses a similar parameter that is calculated by dividing the hydraulic detention time in the device by the fall distance of the sediment.

$$v_{sc} = \frac{H}{6_{H}} = \frac{Q}{A_{s}}$$

Where:

 v_{sc} = critical settling velocity, ft/s (m/s)

H = tank depth, ft (m)

 $Ø_{\rm H}$ = hydraulic detention time, ft/s (m/s)

Q = volumetric flow rate, ft3/s (m3/s)

 $A_s = surface area, ft^2 (m^2)$

(Tchobanoglous, G. and Schroeder, E.D. 1987. Water Quality. Addison Wesley.)

Unlike designing typical wastewater devices, stormwater systems are designed for highly variable flow rates including intense peak flows. PCSWMM for Stormceptor incorporates all of the flows into its calculations, ensuring that the operational hydraulic loading rate is considered not only for one flow rate, but for all flows including extreme events.

3.3. Double Wall Containment

The Stormceptor System was conceived as a pollution identifier to assist with identifying illicit discharges. The fiberglass insert has a continuous skirt that lines the concrete barrel wall for a depth of 18 inches (457 mm) that provides double wall containment for hydrocarbons storage. This protective barrier ensures that toxic floatables do not migrate through the concrete wall into the surrounding soils.

4. Stormceptor Product Line

4.1. Stormceptor Models

A summary of Stormceptor models and capacities are listed in Table 1.

Table 1. Stormceptor Models			
Stormceptor Model	Total Storage Volume U.S. Gal (L)	Hydrocarbon Storage Capacity U.S. Gal (L)	Maximum Sediment Capacity ft³ (L)
STC 450i	470 (1,780)	86 (330)	46 (1,302)
STC 900	952 (3,600)	251 (950)	89 (2,520)
STC 1200	1,234 (4,670)	251 (950)	127 (3,596)
STC 1800	1,833 (6,940)	251 (950)	207 (5,861)
STC 2400	2,462 (9,320)	840 (3,180)	205 (5,805)
STC 3600	3,715 (1,406)	840 (3,180)	373 (10,562)
STC 4800	5,059 (1,950)	909 (3,440)	543 (15,376)
STC 6000	6,136 (23,230)	909 (3,440)	687 (19,453)
STC 7200	7,420 (28,090)	1,059 (4,010)	839 (23,757)
STC 11000	11,194 (42,370)	2,797 (10, 590)	1,086 (30,752)
STC 13000	13,348 (50,530)	2,797 (10, 590)	1,374 (38,907)
STC 16000	15,918 (60,260)	3,055 (11, 560)	1,677 (47,487)

NOTE: Storage volumes may vary slightly from region to region. For detailed information, contact your local Stormceptor representative.

4.2. Inline Stormceptor

The Inline Stormceptor, Figure 1, is the standard design for most stormwater treatment applications. The patented Stormceptor design allows the Inline unit to maintain continuous positive treatment of total suspended solids (TSS) year-round, regardless of flow rate. The Inline Stormceptor is composed of a precast concrete tank with a fiberglass insert situated at the invert of the storm sewer pipe, creating an upper chamber above the insert and a lower chamber below the insert.

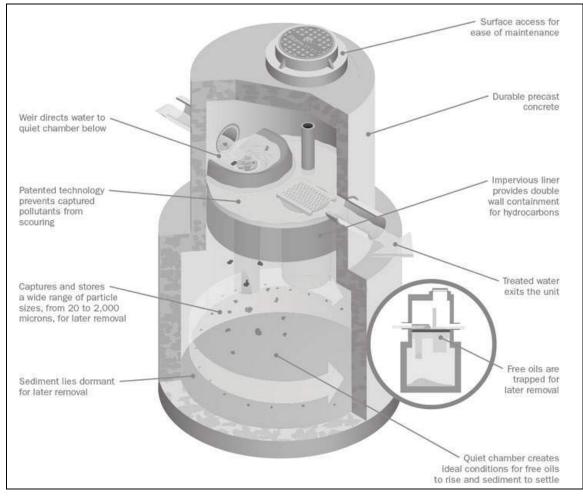


Figure 1. Inline Stormceptor

Operation

As water flows into the Stormceptor unit, it is slowed and directed to the lower chamber by a weir and drop tee. The stormwater enters the lower chamber, a non-turbulent environment, allowing free oils to rise and sediment to settle. The oil is captured underneath the fiberglass insert and shielded from exposure to the concrete walls by a fiberglass skirt. After the pollutants separate, treated water continues up a riser pipe, and exits the lower chamber on the downstream side of the weir before leaving the unit. During high flow events, the Stormceptor System's patented scour prevention technology ensures continuous pollutant removal and prevents re-suspension of previously captured pollutants.

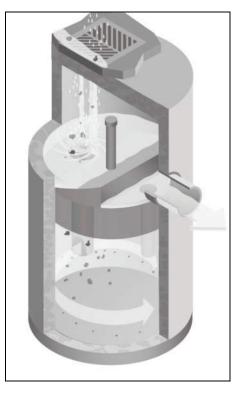


Figure 2. Inlet Stormceptor

4.3. Inlet Stormceptor

The Inlet Stormceptor System, Figure 2, was designed to provide protection for parking lots, loading bays, gas stations and other spill-prone areas. The Inlet Stormceptor is designed to remove sediment from stormwater introduced through a grated inlet, a storm sewer pipe, or both.

The Inlet Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

4.4. Series Stormceptor

Designed to treat larger drainage areas, the Series Stormceptor System, Figure 3, consists of two adjacent Stormceptor models that function in parallel. This design eliminates the need for additional structures and piping to reduce installation costs.

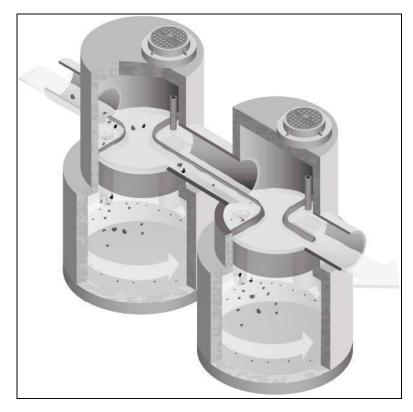


Figure 3. Series System

The Series Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

5. Sizing the Stormceptor System

The Stormceptor System is a versatile product that can be used for many different aspects of water quality improvement. While addressing these needs, there are conditions that the designer needs to be aware of in order to size the Stormceptor model to meet the demands of each individual site in an efficient and cost-effective manner.

PCSWMM for Stormceptor is the support tool used for identifying the appropriate Stormceptor model. In order to size a unit, it is recommended the user follow the seven design steps in the program. The steps are as follows:

STEP 1 – Project Details

The first step prior to sizing the Stormceptor System is to clearly identify the water quality objective for the development. It is recommended that a level of annual sediment (TSS) removal be identified and defined by a particle size distribution.

STEP 2 – Site Details

Identify the site development by the drainage area and the level of imperviousness. It is recommended that imperviousness be calculated based on the actual area of imperviousness based on paved surfaces, sidewalks and rooftops.

STEP 3 – Upstream Attenuation

The Stormceptor System is designed as a water quality device and is sometimes used in conjunction with onsite water quantity control devices such as ponds or underground detention systems. When possible, a greater benefit is typically achieved when installing a Stormceptor unit upstream of a detention facility. By placing the Stormceptor unit upstream of a detention structure, a benefit of less maintenance of the detention facility is realized.

STEP 4 – Particle Size Distribution

It is critical that the PSD be defined as part of the water quality objective. PSD is critical for the design of treatment system for a unit process of gravity settling and governs the size of a treatment system. A range of particle sizes has been provided and it is recommended that clays and silt-sized particles be considered in addition to sand and gravel-sized particles. Options and sample PSDs are provided in PCSWMM for Stormceptor. The default particle size distribution is the Fine Distribution, Table 2, option.

Particle Size	Distribution	Specific Gravity
20	20%	1.3
60	20%	1.8
150	20%	2.2
400	20%	2.65
2000	20%	2.65

Table 2. Fine Distribution

If the objective is the long-term removal of 80% of the total suspended solids on a given site, the PSD should be representative of the expected sediment on the site. For example, a system designed to remove 80% of coarse particles (greater than 75 microns) would provide relatively poor removal efficiency of finer particles that may be naturally prevalent in runoff from the site.

Since the small particle fraction contributes a disproportionately large amount of the total available particle surface area for pollutant adsorption, a system designed primarily for coarse particle capture will compromise water quality objectives.

STEP 5 – Rainfall Records

Local historical rainfall has been acquired from the U.S. National Oceanic and Atmospheric Administration, Environment Canada and regulatory agencies across North America. The rainfall data provided with PCSMM for Stormceptor provides an accurate estimation of small storm hydrology by modeling actual historical storm events including duration, intensities and peaks.

STEP 6 – Summary

At this point, the program may be executed to predict the level of TSS removal from the site. Once the simulation has completed, a table shall be generated identifying the TSS removal of each Stormceptor unit.

STEP 7 – Sizing Summary

Performance estimates of all Stormceptor units for the given site parameters will be displayed in a tabular format. The unit that meets the water quality objective, identified in Step 1, will be highlighted.

5.1. PCSWMM for Stormceptor

The Stormceptor System has been developed in conjunction with PCSWMM for Stormceptor as a technological solution to achieve water quality goals. Together, these two innovations model, simulate, predict and calculate the water quality objectives desired by a design engineer for TSS removal.

PCSWMM for Stormceptor is a proprietary sizing program which uses site specific inputs to a computer model to simulate sediment accumulation, hydrology and long-term total suspended solids removal. The model has been calibrated to field monitoring results from Stormceptor units that have been monitored in North America. The sizing methodology can be described by three processes:

- 1. Determination of real time hydrology
- 2. Buildup and wash off of TSS from impervious land areas
- 3. TSS transport through the Stormceptor (settling and discharge). The use of a calibrated model is the preferred method for sizing stormwater quality structures for the following reasons:
 - » The hydrology of the local area is properly and accurately incorporated in the sizing (distribution of flows, flow rate ranges and peaks, back-to-back storms, inter-event times)
 - » The distribution of TSS with the hydrology is properly and accurately considered in the sizing
 - » Particle size distribution is properly considered in the sizing
 - » The sizing can be optimized for TSS removal
 - » The cost benefit of alternate TSS removal criteria can be easily assessed
 - » The program assesses the performance of all Stormceptor models. Sizing may be selected based on a specific water quality outcome or based on the Maximum Extent Practicable

For more information regarding PCSWMM for Stormceptor, contact your local Stormceptor representative, or visit www.imbriumsystems.com to download a free copy of the program.

5.2. Sediment Loading Characteristics

The way in which sediment is transferred to stormwater can have a considerable effect on which type of system is implemented. On typical impervious surfaces (e.g. parking lots) sediment will build over time and wash off with the next rainfall. When rainfall patterns are examined, a short intense storm will have a higher concentration of sediment than a long slow drizzle. Together with rainfall data representing the site's typical rainfall patterns, sediment loading characteristics play a part in the correct sizing of a stormwater quality device.

Typical Sites

For standard site design of the Stormceptor System, PCSWMM for Stormceptor is utilized to accurately assess the unit's performance. As an integral part of the product's design, the program can be used to meet local requirements for total suspended solid removal. Typical installations of manufactured stormwater treatment devices would occur on areas such as paved parking lots or paved roads. These are considered "stable" surfaces which have non – erodible surfaces.

Unstable Sites

While standard sites consist of stable concrete or asphalt surfaces, sites such as gravel parking lots, or maintenance yards with stockpiles of sediment would be classified as "unstable". These types of sites do not exhibit first flush characteristics, are highly erodible and exhibit atypical sediment loading characteristics and must therefore be sized more carefully. Contact your local Stormceptor representative for assistance in selecting a proper unit sized for such unstable sites.

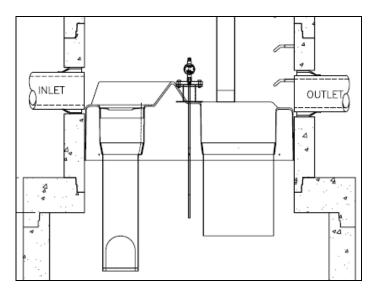
6. Spill Controls

When considering the removal of total petroleum hydrocarbons (TPH) from a storm sewer system there are two functions of the system: oil removal, and spill capture.

'Oil Removal' describes the capture of the minute volumes of free oil mobilized from impervious surfaces. In this instance relatively low concentrations, volumes and flow rates are considered. While the Stormceptor unit will still provide an appreciable oil removal function during higher flow events and/or with higher TPH concentrations, desired effluent limits may be exceeded under these conditions.

'Spill Capture' describes a manner of TPH removal more appropriate to recovery of a relatively high volume of a single phase deleterious liquid that is introduced to the storm sewer system over a relatively short duration. The two design criteria involved when considering this manner of introduction are overall volume and the specific gravity of the material. A standard Stormceptor unit will be able to capture and retain a maximum spill volume and a minimum specific gravity.

For spill characteristics that fall outside these limits, unit modifications are required. Contact your local Stormceptor Representative for more information.


One of the key features of the Stormceptor technology is its ability to capture and retain spills. While the standard Stormceptor System provides excellent protection for spill control, there are additional options to enhance spill protection if desired.

6.1. Oil Level Alarm

The oil level alarm is an electronic monitoring system designed to trigger a visual and audible alarm when a pre-set level of oil is reached within the lower chamber. As a standard, the oil

level alarm is designed to trigger at approximately 85% of the unit's available depth level for oil capture. The feature acts as a safeguard against spills caused by exceeding the oil storage capacity of the separator and eliminates the need for manual oil level inspection.

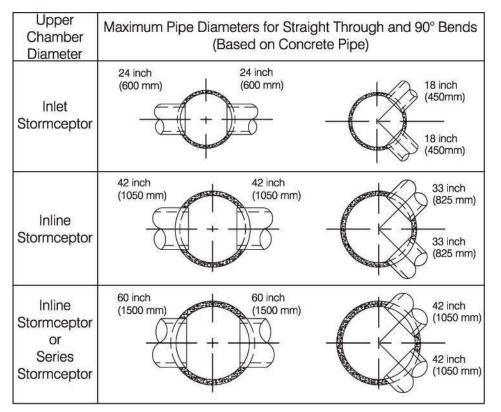
The oil level alarm installed on the Stormceptor insert is illustrated in Figure 4.

Figure 4. Oil level alarm

6.2. Increased Volume Storage Capacity

The Stormceptor unit may be modified to store a greater spill volume than is typically available. Under such a scenario, instead of installing a larger than required unit, modifications can be made to the recommended Stormceptor model to accommodate larger volumes. Contact your local Stormceptor representative for additional information and assistance for modifications.

7. Stormceptor Options


The Stormceptor System allows flexibility to incorporate to existing and new storm drainage infrastructure. The following section identifies considerations that should be reviewed when installing the system into a drainage network. For conditions that fall outside of the recommendations in this section, please contact your local Stormceptor representative for further guidance.

7.1. Installation Depth Minimum Cover

The minimum distance from the top of grade to the crown of the inlet pipe is 24 inches (600 mm). For situations that have a lower minimum distance, contact your local Stormceptor representative.

7.2. Maximum Inlet and Outlet Pipe Diameters

Maximum inlet and outlet pipe diameters are illustrated in Figure 5. Contact your local Stormceptor representative for larger pipe diameters

Figure 5. Maximum pipe diameters for straight through and bend applications

*The bend should only be incorporated into the second structure (downstream structure) of the Series Stormceptor System

7.3. Bends

The Stormceptor System can be used to change horizontal alignment in the storm drain network up to a maximum of 90 degrees. Figure 6 illustrates the typical bend situations of the Stormceptor System. Bends should only be applied to the second structure (downstream structure) of the Series Stormceptor System.

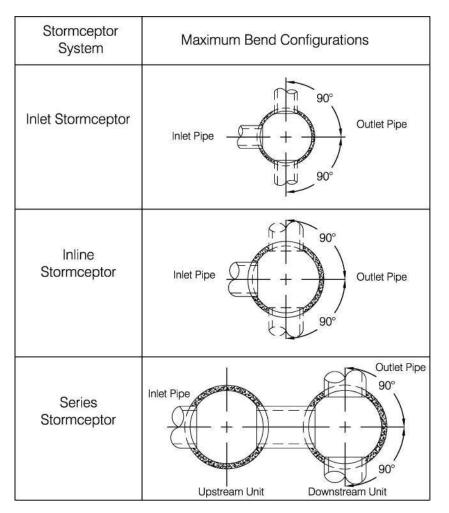


Figure 6. Maximum bend angles

7.4. Multiple Inlet Pipes

The Inlet and Inline Stormceptor System can accommodate two or more inlet pipes. The maximum number of inlet pipes that can be accommodated into a Stormceptor unit is a function of the number, alignment and diameter of the pipes and its effects on the structural integrity of the precast concrete. When multiple inlet pipes are used for new developments, each inlet pipe shall have an invert elevation 3 inches (75 mm) higher than the outlet pipe invert elevation.

7.5. Inlet/Outlet Pipe Invert Elevations

Recommended inlet and outlet pipe invert differences are listed in Table 3.

Number of Inlet Pipes	Inlet System	In-Line System	Series System
1	3 inches (75 mm)	1 inch (25 mm)	3 inches (75 mm)
>1	3 inches (75 mm)	3 inches (75 mm)	Not Applicable

7.6. Shallow Stormceptor

In cases where there may be restrictions to the depth of burial of storm sewer systems. In this situation, for selected Stormceptor models, the lower chamber components may be increased in diameter to reduce the overall depth of excavation required.

7.7. Customized Live Load

The Stormceptor system is typically designed for local highway truck loading (AASHTO HS- 20). When the project requires live loads greater than HS-20, the Stormceptor System may be customized structurally for a pre-specified live load. Contact your local Stormceptor representative for customized loading conditions.

7.8. Pre-treatment

The Stormceptor System may be sized to remove sediment and for spills control in conjunction with other stormwater BMPs to meet the water quality objective. For pretreatment applications, the Stormceptor System should be the first unit in a treatment train. The benefits of pre-treatment include the extension of the operational life (extension of maintenance frequency) of large stormwater management facilities, prevention of spills and lower total life- cycle maintenance cost.

7.9. Head loss

The head loss through the Stormceptor System is similar to a 60 degree bend at a manhole. The K value for calculating minor losses is approximately 1.3 (minor loss = k*1.3v2/2g).

However, when a Submerged modification is applied to a Stormceptor unit, the corresponding K value is 4.

7.10. Submerged

The Submerged modification, Figure 7, allows the Stormceptor System to operate in submerged or partially submerged storm sewers. This configuration can be installed on all models of the Stormceptor System by modifying the fiberglass insert. A customized weir height and a secondary drop tee are added.

Submerged instances are defined as standing water in the storm drain system during zero flow conditions. In these instances, the following information is necessary for the proper design and application of submerged modifications:

- Stormceptor top of grade elevation
- Stormceptor outlet pipe invert elevation
- Standing water elevation

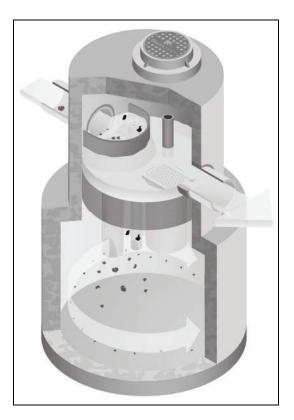


Figure 7. Submerged Stormceptor

8. Comparing Technologies

Designers have many choices available to achieve water quality goals in the treatment of stormwater runoff. Since many alternatives are available for use in stormwater quality treatment it is important to consider how to make an appropriate comparison between "approved alternatives". The following is a guide to assist with the accurate comparison of differing technologies and performance claims.

8.1. Particle Size Distribution (PSD)

The most sensitive parameter to the design of a stormwater quality device is the selection of the design particle size. While it is recommended that the actual particle size distribution (PSD) for sites be measured prior to sizing, alternative values for particle size should be selected to represent what is likely to occur naturally on the site. A reasonable estimate of a particle size distribution likely to be found on parking lots or other impervious surfaces should consist of a wide range of particles such as 20 microns to 2,000 microns (Ontario MOE, 1994).

There is no absolute right particle size distribution or specific gravity and the user is cautioned to review the site location, characteristics, material handling practices and regulatory requirements when selecting a particle size distribution. When comparing technologies, designs using different PSDs will result in incomparable TSS removal efficiencies. The PSD of the TSS removed needs to be standard between two products to allow for an accurate comparison.

8.2. Scour Prevention

In order to accurately predict the performance of a manufactured treatment device, there must be confidence that it will perform under all conditions. Since rainfall patterns cannot be predicted, stormwater quality devices placed in storm sewer systems must be able to withstand extreme events, and ensure that all pollutants previously captured are retained in the system.

In order to have confidence in a system's performance under extreme conditions, independent validation of scour prevention is essential when examining different technologies. Lack of independent verification of scour prevention should make a designer wary of accepting any product's performance claims.

8.3. Hydraulics

Full scale laboratory testing has been used to confirm the hydraulics of the Stormceptor System. Results of lab testing have been used to physically design the Stormceptor System and the sewer pipes entering and leaving the unit. Key benefits of Stormceptor are:

- Low head loss (typical k value of 1.3)
- Minimal inlet/outlet invert elevation drop across the structure
- Use as a bend structure
- Accommodates multiple inlets

The adaptability of the treatment device to the storm sewer design infrastructure can affect the overall performance and cost of the site.

8.4. Hydrology

Stormwater quality treatment technologies need to perform under varying climatic conditions. These can vary from long low intensity rainfall to short duration, high intensity storms. Since a treatment device is expected to perform under all these conditions, it makes sense that any system's design should accommodate those conditions as well.

Long-term continuous simulation evaluates the performance of a technology under the varying conditions expected in the climate of the subject site. Single, peak event design does not provide this information and is not equivalent to long-term simulation. Designers should request long-term simulation performance to ensure the technology can meet the long-term water quality objective.

9. Testing

The Stormceptor System has been the most widely monitored stormwater treatment technology in the world. Performance verification and monitoring programs are completed to the strictest standards and integrity. Since its introduction in 1990, numerous independent field tests and studies detailing the effectiveness of the Stormceptor System have been completed.

- Coventry University, UK 97% removal of oil, 83% removal of sand and 73% removal of peat
- National Water Research Institute, Canada, scaled testing for the development of the Stormceptor System identifying both TSS removal and scour prevention.
- New Jersey TARP Program full scale testing of an STC 900 demonstrating 75% TSS removal of particles from 1 to 1000 microns. Scour testing completed demonstrated that the system does not scour. The New Jersey Department of Environmental Protection was followed.
- City of Indianapolis full scale testing of an STC 900 demonstrating over 80% TSS removal of particles from 50 microns to 300 microns at 130% of the unit's operating rate. Scour testing completed demonstrated that the system does not scour.
- Westwood Massachusetts (1997), demonstrated >80% TSS removal
- Como Park (1997), demonstrated 76% TSS removal
- Ontario MOE SWAMP Program 57% removal of 1 to 25 micron particles
- Laval Quebec 50% removal of 1 to 25 micron particles

10. Installation

The installation of the concrete Stormceptor should conform in general to state highway, or local specifications for the installation of manholes. Selected sections of a general specification that are applicable are summarized in the following sections.

10.1. Excavation

Excavation for the installation of the Stormceptor should conform to state highway, or local specifications. Topsoil removed during the excavation for the Stormceptor should be stockpiled in designated areas and should not be mixed with subsoil or other materials.

Topsoil stockpiles and the general site preparation for the installation of the Stormceptor should conform to state highway or local specifications.

The Stormceptor should not be installed on frozen ground. Excavation should extend a minimum of 12 inches (300 mm) from the precast concrete surfaces plus an allowance for shoring and bracing where required. If the bottom of the excavation provides an unsuitable foundation additional excavation may be required.

In areas with a high water table, continuous dewatering may be required to ensure that the excavation is stable and free of water.

10.2. Backfilling

Backfill material should conform to state highway or local specifications. Backfill material should be placed in uniform layers not exceeding 12 inches (300mm) in depth and compacted to state highway or local specifications.

11. Stormceptor Construction Sequence

The concrete Stormceptor is installed in sections in the following sequence:

- 1. Aggregate base
- 2. Base slab
- 3. Lower chamber sections
- 4. Upper chamber section with fiberglass insert
- 5. Connect inlet and outlet pipes
- 6. Assembly of fiberglass insert components (drop tee, riser pipe, oil cleanout port and orifice plate
- 7. Remainder of upper chamber
- 8. Frame and access cover

The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.

Adjustment of the Stormceptor can be performed by lifting the upper sections free of the excavated area, re-leveling the base and reinstalling the sections. Damaged sections and gaskets should be repaired or replaced as necessary. Once the Stormceptor has been constructed, any lift holes must be plugged with mortar.

12. Maintenance

12.1. Health and Safety

The Stormceptor System has been designed considering safety first. It is recommended that confined space entry protocols be followed if entry to the unit is required. In addition, the fiberglass insert has the following health and safety features:

- Designed to withstand the weight of personnel
- A safety grate is located over the 24 inch (600 mm) riser pipe opening
- Ladder rungs can be provided for entry into the unit, if required

12.2. Maintenance Procedures

Maintenance of the Stormceptor system is performed using vacuum trucks. No entry into the unit is required for maintenance (in most cases). The vacuum service industry is a well- established sector of the service industry that cleans underground tanks, sewers and catch basins. Costs to clean a Stormceptor will vary based on the size of unit and transportation distances.

The need for maintenance can be determined easily by inspecting the unit from the surface. The depth of oil in the unit can be determined by inserting a dipstick in the oil inspection/cleanout port.

Similarly, the depth of sediment can be measured from the surface without entry into the Stormceptor via a dipstick tube equipped with a ball valve. This tube would be inserted through the riser pipe. Maintenance should be performed once the sediment depth exceeds the guideline values provided in the Table 4.

Particle Size	Specific Gravity	
Model	Sediment Depth inches (mm)	
450i	8 (200)	
900	8 (200)	
1200	10 (250)	
1800	15 (381)	
2400	12 (300)	
3600	17 (430)	
4800	15 (380)	
6000	18 (460)	
7200	15 (381)	
11000	17 (380)	
13000	20 (500)	
16000	17 (380)	
* based on 15% of the Stormceptor unit's total storage		

Table 4. Sediment Depths Indicating Required Servicing*

Although annual servicing is recommended, the frequency of maintenance may need to be increased or reduced based on local conditions (i.e. if the unit is filling up with sediment more quickly than projected, maintenance may be required semi-annually; conversely once the site has stabilized maintenance may only be required every two or three years).

Oil is removed through the oil inspection/cleanout port and sediment is removed through the riser pipe. Alternatively oil could be removed from the 24 inches (600 mm) opening if water is removed from the lower chamber to lower the oil level below the drop pipes.

The following procedures should be taken when cleaning out Stormceptor:

- 1. Check for oil through the oil cleanout port
- 2. Remove any oil separately using a small portable pump
- 3. Decant the water from the unit to the sanitary sewer, if permitted by the local regulating authority, or into a separate containment tank
- 4. Remove the sludge from the bottom of the unit using the vacuum truck
- 5. Re-fill Stormceptor with water where required by the local jurisdiction

12.3. Submerged Stormceptor

Careful attention should be paid to maintenance of the Submerged Stormceptor System. In cases where the storm drain system is submerged, there is a requirement to plug both the inlet and outlet pipes to economically clean out the unit.

12.4. Hydrocarbon Spills

The Stormceptor is often installed in areas where the potential for spills is great. The Stormceptor System should be cleaned immediately after a spill occurs by a licensed liquid waste hauler.

12.5. Disposal

Requirements for the disposal of material from the Stormceptor System are similar to that of any other stormwater Best Management Practice (BMP) where permitted. Disposal options for the sediment may range from disposal in a sanitary trunk sewer upstream of a sewage treatment plant, to disposal in a sanitary landfill site. Petroleum waste products collected in the Stormceptor (free oil/chemical/fuel spills) should be removed by a licensed waste management company.

12.6. Oil Sheens

With a steady influx of water with high concentrations of oil, a sheen may be noticeable at the Stormceptor outlet. This may occur because a rainbow or sheen can be seen at very small oil concentrations (<10 mg/L). Stormceptor will remove over 98% of all free oil spills from storm sewer systems for dry weather or frequently occurring runoff events.

The appearance of a sheen at the outlet with high influent oil concentrations does not mean the unit is not working to this level of removal. In addition, if the influent oil is emulsified the Stormceptor will not be able to remove it. The Stormceptor is designed for free oil removal and not emulsified conditions.

SUPPORT

Drawings and specifications are available at www.ContechES.com. Site-specific design support is available from our engineers.

©2020 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

SITE C

CONSTRUCTION PHASE POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (BEST MANAGEMENT PRACTICES OPERATION AND MAINTENANCE PLAN)

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building C (Assessor's Parcel IDs 23-305-1, 23-305-4, 23-305-9, 23-305-10, & 23-253-11)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

	Page
Project Narrative	
- Project Description	1
- Pre-development Condition	2
- Post-development Condition	2
Erosion and Sedimentation Controls - Best Management Practices	(BMP's)
- Structural Practices	2
- Stabilization Practices	5
- Dust Control	10
- Non-Stormwater Discharges	11
- Soil Stockpiling	11
- Pollution Prevention	11
- Inspection/Maintenance	12
- Inspection Schedule and Evaluation Checklist	14
- Spill Containment and Management Plan	
Diama	

Plans

- Figure-1 USGS Locus Map (Refer to Drainage Report)
- Site Topographic Map (Existing Conditions Plans within Plan Set)
- Site Development Map (Grading and Drainage Plans within Plan Set)
- Site Erosion and Sedimentation Plan (Grading and Drainage Plans within Plan Set)
- Construction Detail Plan (Construction Details within Plan Set)

Construction Phase Best Management Practices (BMP's)

Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control

Responsible Party Contact Information:

Stormwater Management System Owner:	Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693
Town of Weymouth Contact Information:	Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100
	Weymouth Conservation Commission Town Hall 75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5007
	Weymouth Department of Municipal Licenses and Inspections Jeffrey E. Richards, C.B.O., Director Town Hall 75 Middle Street

Structural Practices:

 <u>Compost Filter Tube Barrier Controls</u> – A compost filter tube barrier will be constructed along downward slopes at the limit of work in locations shown on the plans. This control will be installed prior to major soil disturbance on the site. The sediment silt sack barrier should be installed as shown on the Construction Detail Plan.

Compost Filter Tube Design/Installation Requirements *

- a) Locate the compost filter tube where identified on the plans.
- b) The compost filter tube line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the silt sack should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.

Weymouth, MA 02189 Phone: (781) 340-5004

- c) The compost filter tube shall be staked every 8 linear feet with 1-inch by 1-inch stakes.
- d) Compost filter tubes should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season. Retained sediment must be removed and properly disposed of or mulched and seeded.

Compost Filter Tube Inspection/Maintenance *

- a) Compost filter tubes should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the compost filter tube. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all compost filter tube materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform with the existing topography and vegetated.
- 2) Sediment Fence Controls A sediment fence will be constructed along the limit of work as needed to prevent the spreading of fine sediments from the site. This control will be installed prior to major soil disturbance on the site. The sediment fence should be installed as shown on the Erosion Control Detail Plan and be Amoco woven polypropylene 1198 or equivalent.

Sediment Fence Design/Installation Requirements *

- a) Locate the fence upland of the hay bale barriers and where identified on the plans.
- b) The fence line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the fence should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.
- c) Excavate a trench approximately 8 inches deep and 4 inches wide, or a V-trench; along the line of the fence, upslope side.
- d) Fasten support wire fence (14 gauge with 6-inch mesh) securely to the upslope side of the fence posts with wire ties or staples. Wire should extend 6 inches into the trench.

- e) Attach continuous length of fabric to upslope side of fence posts. Avoid joints, particularly at low points in the fence line. Where joints are necessary, fasten fabric securely to support posts and overlap to the next post.
- f) Place the bottom one foot of fabric in the trench. Backfill with compacted earth or gravel.
- g) Filter cloth shall be fastened securely to the woven wire fence with ties spaced every 24 inches at the top, mid-section, and bottom.
- h) Sediment fences should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season and only following approval by the Engineering Department or their representative. Retained sediment must be removed and properly disposed of, or mulched and seeded.

Sediment Fence Inspection/Maintenance *

- a) Silt fences should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the fence. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all fencing materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform to the existing topography and vegetation.
- 3) <u>Stabilized Construction Entrance</u> A stabilized construction entrance will be placed at the proposed entrance at Commercial Street. The construction entrance will keep mud and sediment from being tracked off the construction site by vehicles leaving the site. The stabilized construction entrance will be installed immediately after the clearing and grubbing of the roadway entrance and associated roadway fill to maintain access to the site are completed. The stabilized construction entrance shall be constructed as shown on the Construction Detail Plans.

Construction Entrance Design/Construction Requirements *

a) Stone for a stabilized construction entrance shall consist of 1 to 3-inch stone placed on a stable foundation.

- b) Pad dimensions: The minimum length of the gravel pad should be 50 feet. The pad should extend the full width of the proposed roadway, or wide enough so that the largest construction vehicle will fit in the entrance with room to spare; whichever is greater.
- c) A geotextile filter fabric shall be placed between the stone fill and the earth surface below the pad to reduce the migration of soil particles from the underlying soil into the stone and vice versa. The filter fabric should be Amoco woven polypropylene 1198 or equivalent.
- d) Washing: If the site conditions are such that the majority of mud is not removed from the vehicle tires by the gravel pad, then the tires should be washed before the vehicle enters the street. The wash area shall be located at the stabilized construction entrance.
- e) Water employed in the washing process shall be directed to the temporary dewatering area as shown on the plans prior to discharge. Sediment should be prevented from entering any watercourses.

Construction Entrance Inspection/Maintenance *

- a) The entrance should be maintained in a condition that will prevent tracking or flowing of sediment onto Lovell Field and Commercial Street. This may require periodic topdressing with additional stone.
- b) The construction entrance and sediment disposal area shall be inspected weekly and after heavy rains or heavy use.
- c) Mud and sediment tracked or washed onto public road shall be immediately removed by sweeping.
- d) Once mud and soil particles clog the voids in the gravel and the effectiveness of the gravel pad is no longer satisfactory, the pad must be topdressed with new stone. Replacement of the entire pad may be necessary when the pad becomes completely clogged.
- e) If washing facilities are used, the dewatering area should be cleaned out as often as necessary to assure that adequate trapping efficiency and storage volume is available.
- f) The pad shall be reshaped as needed for drainage and runoff control.
- g) Broken road pavement on Lovell Field and Commercial Street shall be repaired immediately.
- h) All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization is achieved or after the temporary practices are no longer needed and only following approval by the Public Works Department or their representative. Trapped sediment shall be removed or stabilized on site. Disturbed soil areas resulting from removal shall be permanently stabilized.

Stabilization Practices:

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

- Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.
- Where construction activity will resume on a portion of the site within 21 days from when activities ceased, (e.g. the total time period that construction activity is temporarily ceased is less than 21 days) then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased.
- The contractor shall provide erosion control measures around all soil stockpiles.
- <u>Temporary Seeding</u> Temporary seeding will allow short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stockpiles and disturbed portions of the site where construction activity will temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

Temporary Seeding Planting Procedures *

- a) Planting should preferably be done between April 1st and June 30th, and September 1st through September 31st. If planting is done in the months of July and August, irrigation may be required. If planting is done between October 1st and March 31st, mulching should be applied immediately after planting. If seeding is done during the summer months, irrigation of some sort will probably be necessary.
- b) Before seeding, install structural practice controls. Utilize Amoco supergro or equivalent.

Species	Seeding Rate (lbs/1,000 sq.ft.)	Seeding Rate (lbs/acre)	Recommended Seeding Dates	Seed Cover required
Annual	1	40	April 1 st to June 1 st	1¼ inch
Ryegrass			August 15 th to Sept. 15 th	
Foxtail	0.7	30	May 1 st to June 30 th	1/2 to 3/4 inch
Millet				
Oats	2	80	April 1 st to July 1 st	1 to 1-1/2 inch
			August 15 th to Sept. 15 th	
Winter	3	120	August 15 th to Oct. 15 th	1 to 1-1/2 inch
Rye			-	

c) Select the appropriate seed species for temporary cover from the following table.

Apply the seed uniformly by hydroseeding, broadcasting, or by hand.

d) Use effective mulch, tacked and/or tied with netting to protect seedbed and encourage plant growth.

Temporary Seeding Inspection/Maintenance *

- a) Inspect within 6 weeks of planting to see if stands are adequate. Check for damage within 24 hours of the end to heavy rainfall, defined as a 2-year storm event (i.e., 3.2 inches of rainfall within a twenty-four-hour period). Stands should be uniform and dense. Reseed and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary.
- b) Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather. Water application rates should be controlled to prevent runoff.
- 2) <u>Geotextiles</u> Geotextiles such as jute netting will be used in combination with other practices such as mulching to stabilize slopes. The following geotextile materials or equivalent are to be utilized for structural and nonstructural controls as shown in the following table.

Practice	Manufacturer	Product	Remarks
Sediment Fence	Amoco	Woven polypropylene 1198 or equivalent	0.425 mm opening
Construction Entrance	Amoco	Woven polypropylene 2002 or equivalent	0.300 mm opening
Outlet Protection	Amoco	Nonwoven polypropylene 4551 or equivalent	0.150 mm opening
Erosion Control (slope stability)	Amoco	Supergro or equivalent	Erosion control revegetation mix, open polypropylene fiber on degradable polypropylene net scrim

Amoco may be reached at (800) 445-7732

Geotextile Installation

a) Netting and matting require firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil and erosion will occur underneath the material.

Geotextile Inspection/Maintenance *

- a) In the field, regular inspections should be made to check for cracks, tears, or breaches in the fabric. The appropriate repairs should be made.
- 3) <u>Mulching and Netting</u> Mulching will provide immediate protection to exposed soils during the period of short construction delays, or over winter months through the application of plant residues, or other suitable materials, to exposed soil areas. In areas, which have been seeded either for temporary or permanent cover, mulching should immediately follow seeding. On steep slopes, mulch must be supplemented with netting.

Mulch Maintenance *

- a) Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting.
- b) Grass mulches that blow or wash away should be repaired promptly.
- c) If plastic netting is used to anchor mulch, care should be taken during initial mowings to keep the mower height high. Otherwise, the netting can wrap up on the mower blade shafts. After a period of time, the netting degrades and becomes less of a problem.
- d) Continue inspections until vegetation is well established.
- 4) <u>Land Grading</u> Grading on fill slopes, cut slopes, and stockpile areas will be done with full siltation controls in place.

Land Grading Design/Installation Requirements

- a) Areas to be graded should be cleared and grubbed of all timber, logs, brush, rubbish, and vegetated matter that will interfere with the grading operation. Topsoil should be stripped and stockpiled for use on critical disturbed areas for establishment of vegetation. Cut slopes to be topsoiled should be thoroughly scarified to a minimum depth of 3-inches prior to placement of topsoil.
- b) Fill materials should be generally free of brush, rubbish, rocks, and stumps. Frozen materials or soft and easily compressible materials should not be used in fills intended to support buildings, parking lots, roads, conduits, or other structures.
- c) Earth fill intended to support structural measures should be compacted to a minimum of 90 percent of Standard Proctor Test density with proper moisture control, or as otherwise specified by the engineer responsible for the design. Compaction of other fills should be to the density required to control sloughing, erosion or excessive moisture content. Maximum thickness of fill layers prior to compaction should not exceed 9 inches.
- d) The uppermost one foot of fill slopes should be compacted to at least 85 percent of the maximum unit weight (based on the modified AASHTO compaction test). This is usually accomplished by running heavy equipment over the fill.
- e) Fill should consist of material from borrow areas and excess cut will be stockpiled in areas shown on the Site Plans. All disturbed areas should be free draining, left with a neat and finished appearance, and should be protected from erosion.
- f) Infiltration basins shall be excavated, graded and shaped to subgrade elevation and shall then be suitably protected with installation of erosion control measures to prevent sediment-laden runoff from washing into the basins. The basins shall also be protected from heavy equipment activity from this point forward. Prior to application of loam and seed to infiltration basin surfaces, the contractor shall

remove any unsuitable soil such as silt or clay that may have been deposited during construction. The surface shall be scarified with a York rake or other small tractor mounted equipment. The loam and seed shall then be applied as required by this document.

Land Grading Stabilization Inspection/Maintenance *

- a) All slopes should be checked periodically to see that vegetation is in good condition. Any rills or damage from erosion and animal burrowing should be repaired immediately to avoid further damage.
- b) If seeps develop on the slopes, the area should be evaluated to determine if the seep will cause an unstable condition. Subsurface drains or a gravel mulch may be required to solve seep problems. However, no seeps are anticipated.
- c) Areas requiring revegetation should be repaired immediately. Control undesirable vegetation such as weeds and woody growth to avoid bank stability problems in the future.
- 5) <u>Topsoiling</u> * Topsoiling will help establish vegetation on all disturbed areas throughout the site during the seeding process. The soil texture of the topsoil to be used will be a sandy loam to a silt loam texture with 15% to 20% organic content.

Topsoiling Placement

- a) Topsoil should not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or when conditions exist that may otherwise be detrimental to proper grading or proposed seeding.
- b) Do not place topsoil on slopes steeper than 2.5:1, as it will tend to erode.
- c) If topsoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and it will be difficult to establish vegetation. The best method is to actually work the topsoil into the layer below for a depth of at least 6 inches.
- 6) <u>Permanent Seeding</u> Permanent Seeding should be done immediately after the final design grades are achieved. Native species of plants should be used to establish perennial vegetative cover on disturbed areas. The revegetation should be done early enough in the fall so that a good cover is established before cold weather comes and growth stops until the spring. A good cover is defined as vegetation covering 75 percent or more of the ground surface.

Permanent Seeding Seedbed Preparation

a) In infertile or coarse-textured subsoil, it is best to stockpile topsoil and re-spread it over the finished slope at a minimum 2 to 6-inch depth and roll it to provide a firm seedbed. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content. If construction fill operations have left soil exposed with a loose, rough, or irregular surface, smooth with blade and roll.

- b) Loosen the soil to a depth of 3-5 inches with suitable agricultural or construction equipment.
- c) Areas not to receive topsoil shall be treated to firm the seedbed after incorporation of the lime and fertilizer so that it is depressed no more than ½ - 1 inch when stepped on with a shoe. Areas to receive topsoil shall not be firmed until after topsoiling and lime and fertilizer is applied and incorporated, at which time it shall be treated to firm the seedbed as described above.

Permanent Seeding Grass Selection/Application

- a) Select an appropriate cool or warm season grass based on site conditions and seeding date. Apply the seed uniformly by hydro-seeding, broadcasting, or by hand. Uniform seed distribution is essential. On steep slopes, hydroseeding may be the most effective seeding method. Surface roughening is particularly important when preparing slopes for hydroseeding.
- b) Lime and fertilize. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.
- c) Mulch the seedings with straw applied at the rate of ½ tons per acre. Anchor the mulch with erosion control netting or fabric on sloping areas. Amoco supergro or equivalent should be utilized.

Permanent Seeding Inspection/Maintenance *

- a) Frequently inspect seeded areas for failure and make necessary repairs and reseed immediately. Conduct or follow-up survey after one year and replace failed plants where necessary.
- b) If vegetative cover is inadequate to prevent rill erosion, overseed and fertilize in accordance with soil test results.
- c) If a stand has less than 40% cover, reevaluate choice of plant materials and quantities of lime and fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations, omitting lime and fertilizer in the absence of soil test results. If the season prevents resowing, mulch or jute netting is an effective temporary cover.
- d) Seeded areas should be fertilized during the second growing season. Lime and fertilize thereafter at periodic intervals, as needed.

Fueling and Maintenance of Equipment and Vehicles:

 Refueling/maintenance Rules – The site supervisor shall produce a written document received by all subcontractors and employees that delineates their responsibilities on site. This document shall include language that shall permit the maintenance of vehicles only in designated locations on the job site. In the event of mechanical failure of a vehicle, the vehicle shall be moved to the designated maintenance area on the site to perform maintenance. The site supervisor shall document receipt of these instructions by obtaining the signatures of subcontractors and individuals that may enter the site and the date in which they were notified of their responsibilities. Refueling for vehicles or equipment shall occur either within the designated washout area or shall utilize temporary drip protection measures at the location of fueling. The site supervisor or their representative shall be present at the time of any fueling procedure. The site supervisor shall have a fuel spill plan and measures on site to initiate containment and clean-up in the event a fuel spill occurs.

- 2. Installation Schedule: Prior to start of Work
- 3. Maintenance and Inspection: The site supervisor shall maintain a log of individuals receiving these instructions.
- 4. Specific Pollution Prevention Practices

Pollution Prevention Practice # 1

- a. Description: Fueling operations shall take place in designated area(s) as shown on site maps. Provide temporary drip protection during fueling operations which take place outside of designated area(s). Materials necessary to address a spill shall be made readily available in a location known to the site supervisor or his/her designee.
- b. Installation: Fueling operation procedures shall be in effect throughout the project duration.
- c. Maintenance Requirements: All emergency response equipment listed in the Emergency Response Equipment Inventory shall be made readily available and kept in a designated location known to the site supervisor or his/her designee. All such materials shall be replenished as necessary to the listed amounts.

Dust Control:

Dust control will be utilized throughout the entire construction process of the site. For example, keeping disturbed surfaces moist during windy periods will be an effective control measure, especially for construction access roads. The use of dust control will prevent the movement of soil to offsite areas. However, care must be taken to not create runoff from excessive use of water to control dust. The following are methods of Dust Control that may be used on-site:

- Vegetative Cover The most practical method for disturbed areas not subject to traffic.
- Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
- Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
- Stone Stone will be used to stabilize construction roads; will also be effective for dust control.

The general contractor shall employ an on-site water vehicle for the control of dust as necessary.

Non-Stormwater Discharges:

The construction de-watering and all non-stormwater discharges will be directed into a sediment dirt bag (or equivalent inlet protection) or a sediment basin. Sediment material removed shall be disposed of in accordance with all applicable local, state, and federal regulations.

The developer and site general contractor will comply with the E.P.A.'s Final General Permit for Construction De-watering Discharges, (N.P.D.E.S., Section 402 and 40 C.F.R. 122.26(b)(14)(x).

Inspection/Maintenance:

Operator personnel must inspect the construction site at least once every 14 calendar days and within 24 hours of a storm event of ½-inch or greater. The applicant shall be responsible to secure the services of a design professional or similar professional (inspector) on an on-going basis throughout all phases of the project. Refer to the Inspection/Maintenance Requirements presented earlier in the "Structural and Stabilization Practices." The inspector should review the erosion and sediment controls with respect to the following:

- Whether or not the measure was installed/performed correctly.
- Whether or not there has been damage to the measure since it was installed or performed.
- What should be done to correct any problems with the measure.

The inspector should complete the Stormwater Management Construction Phase BMP Inspection Schedule and Evaluation Checklist, as attached, for documenting the findings and should request the required maintenance or repair for the pollution prevention measures when the inspector finds that it is necessary for the measure to be effective. The inspector should notify the appropriate person to make the changes and submit copies of the form to the Weymouth Highway Department.

Construction Practices

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed: (List Items)	Date of Cleaning/ Repair	Performed by
Silt Sock and Sediment Fence Controls	After heavy rainfall events (minimum weekly)			 Sediment Fence Design/Installation Requirements Sediment Fence Inspection/Maintenance 	⊡yes ⊡no		
Stabilized Construction Entrance	After heavy rainfall events (minimum weekly)			 Construction Entrance Design/ Construction Requirements Construction Entrance Inspection/ Maintenance 	yesno		
Temporary Seeding	After heavy rainfall events (minimum weekly)			 Temporary Seeding Planting Procedures Temporary Seeding Inspection/ Maintenance 	yesno		
Geotextiles	After heavy rainfall events (minimum weekly)			1. Geotextile Inspection/Maintenance	yesno		
Mulching & Netting	After heavy rainfall events (minimum weekly)			1. Mulch Maintenance	yesno		
Land Grading	After heavy rainfall events (minimum weekly)			1. Land Grading Stabilization Inspection/ Maintenance	yesno		

Date:

Construction Practices

Permanent Seeding	After heavy rainfall events (minimum weekly)	1. Permanent Seeding Inspection/ Maintenance	yesno	
Dust Control	After heavy rainfall events (minimum weekly)		yesno	
Soil Stockpiling	After heavy rainfall events (minimum weekly)		yesno	

(1) Refer to the Massachusetts Stormwater Handbook issued January 2, 2008.

Notes (Include deviations from : Definitive Subdivision Decision and Special Conditions and Approved Plan):

Stormwater Control Manager

M:\MEG\2022 Projects\222-203 Papachristos, Eric - Jackson Square, Weymouth\DOCS\Stormwater\Submission 1\BMP O&M\Building C\222-203-C Construction Phase BMP Evaluation Checklist.doc

Date:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	<u>Irakis N. Papachristos, Manager</u>
	1 Franklin Street, Boston, MA 02110
Facility Manager (phone)	<u>203-230.1693</u>

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u> /		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill	· —				
Measures taken to	contain or clea	n up spill			
Amount of chemica	I / oil recovered	1	Method		
Material collected a	is a result of cle	ean up			
dru	ims containing_				
dru	ims containing				
dru	ims containing				
Location and metho	od of debris dis	posal			
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precauti	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /	/	Time	AM / PM	Inspector	
NRC Date /	/	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151	
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212	
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007	
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN
3.	MASSACHUSETTS DEPARTMENT OF EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEV	
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY

POST-DEVELOPMENT BEST MANAGEMENT PRACTICE OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building C (Assessor's Parcel IDs 23-305-1, 23-305-4, 23-305-9, 23-305-10, & 23-253-11)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

Long Term Best Management Practices (BMP's)	Page
- Responsible Party Contact Information	1
- Long-Term Operation and Maintenance	1
- BMP Operation and Maintenance	2
- Maintenance Responsibilities	4
- Long-Term Pollution Prevention Plan	4
- Inspection Schedule and Evaluation Checklist	7
- Spill Containment and Management Plan	

- Stormceptor Unit Operation & Maintenance Manual

Post-Development Best Management Practice Operation and Maintenance Plan & Long-Term Pollution Prevention Plan

Post-Development Best Management Practices (BMPs) Operation and Maintenance Plan

Responsible Party/Property Owner/Developer contact information:

Property Owner: Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

Developer Contact Information:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

City of Weymouth Contact Information:

Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100

Best Management Practices (BMPs) of the Commonwealth of Massachusetts Department of Environmental Protection's (DEP's) Stormwater Management Policy (SMP) have been implemented and utilized for the project. The following information provided is to be used as a guideline for monitoring and maintaining the performance of the drainage facilities and to ensure that the quality of water runoff meets the standards set forth by the SMP. The structural Best Management Practices (BMPs) shall be inspected during rainfall conditions during the first year of operation to verify functionality.

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

BMPs included in the design consist of the use of:

- Stormceptor Treatment Units
- Bio-retention/Rain Garden
- Access Drive Pavement Maintenance

Operation:

Once the stormwater management systems have been constructed and site has been permanently stabilized and put into action, the operation of the stormwater management system will function as intended. Stormwater runoff is directed into the trench drain to the First Defense unit, and lastly to the subsurface infiltration system. The stormwater management systems have been designed to attenuate peak flows for the 2-year through 100-year storm events.

Maintenance:

 Paved Areas –Sweepers shall sweep paved areas periodically during dry weather to remove excess sediments and to reduce the amount of sediments that the drainage system shall have to remove from the runoff. The sweeping shall be conducted primarily between March 15th and November 15th. Special attention should be made to sweeping paved surfaces in March and April before spring rains wash residual sand into the drainage system.

The frequency of sweeping shall average:

- Monthly if by a high-efficiency vacuum sweeper
- Bi-weekly if by a regenerative air sweeper
- Weekly if by a mechanical sweeper

Salt used for de-icing on the parking lot during winter months shall be limited as much as possible as this will reduce the need for removal and treatment. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities.

Cost: The property owner should consult local sweeping contractors for detailed cost estimates.

2. Proprietary Pretreatment Units – The proprietary pretreatment units shall be inspected and maintained from the surface, without entry into the unit a minimum of annually and following heavy rain events. Perform maintenance once the stored volume reaches 15% of the unit capacity, or immediately in the event of a spill. Perform Maintenance at quarterly intervals during the first year of installation, so an accurate maintenance schedule can be established. Sediment and debris should be removed through the 12-inch diameter outlet pipe. Alternatively, oil and floatables should be removed through the 12-inch oil inspection port. The requirements for the disposal from the units should be in compliance with all local, state and federal regulations. Consult the Natick Board of Health for transfer station locations prior to disposing the separator contents. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the First Defense units.

Cost: Cleaning should be included along with the routine maintenance of the catch basins. The property owner should consult local vacuum cleaning contractors for detailed cost estimates.

3. Trench Drains - Trench drain grates shall be checked quarterly and following heavy rainfalls to verify that the inlet openings are not clogged by debris. Debris shall be removed from the grates and disposed of in accordance with all applicable regulations.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

4. Bio-Retention (Rain Garden) - The bio-retention area shall be inspected at least twice per year to ensure that the area is operating as intended and immediately after heavy rainfall events to verify that the area drain is not blocked by litter or other debris. Accumulated debris shall be removed as soon as possible. Deeply accumulated sediments shall be removed from the area periodically to ensure proper functioning of the system. If standing water is observed in the bio-retention area for a period greater than 72 hours, replacement of the substratum may be required to rejuvenate the area. Do not store snow in the bio-retention area.

The following maintenance schedule should be adhered:

Inspect and Remove Trash and Debris:	6 times per year	Year Round
Mulch/re-seed:	1 time per year	Spring
Fertilize:	1 time	Initially
Remove Dead Vegetation:	2 times per year	Fall and Spring
Replace Dead Vegetation: Prune: Repair Eroded Areas: Replace Entire Media & All Vegetation:	2 times per year 1 time per year As needed As needed	Fall and Spring Fall or Spring Year Round Late Spring/ Early Summer

Maintenance and inspections can be performed along with other routine landscaping tasks by a landscaping contractor. The contractor should be qualified to inspect the planter for sediment build-up, structural damage and standing water. The plant selection for the planter was specifically intended to minimize the need for fertilizers and pesticides. The planter shall be routinely weeded and kept free of invasive or intrusive plant species.

5. Pesticides, Herbicides, and Fertilizers - Pesticides and herbicides shall be used sparingly. Fertilizers should be restricted to the use of organic fertilizers only.

All structural BMP's as identified on the site plans will be owned and maintained by the homeowner's association of the development and shall run with the title of the property.

Cost: Included in the routine landscaping maintenance schedule. The Owner should consult local landscaping contractors for details.

6. Snow Removal - Snow accumulations removed from access road should be placed in upland areas only, where sand and other debris will remain after snowmelt for later removal. Excess snow should be removed from the site and properly disposed of in an approved snow disposal facility. Care must be exercised not to deposit snow in the in areas where sand and debris can get into the watercourse.

Cost: The owner should consult local snow removal contractors for a detailed cost estimate.

Maintenance Responsibilities:

All post construction maintenance activities will be documented and kept on file. Annual inspection reports in the form of an Evaluation Checklist, see attached form, will be

submitted to the City of Weymouth. Inspections shall be performed by a licensed engineer or similar professional (inspector).

All BMPs located within the drainage easements will be owned and maintained by the developer until such time that a homeowners association is created, then the homeowners association will maintain the BMPs.

Long-Term Pollution Prevention Plan

Good Housekeeping:

To develop and implement an operation and maintenance program with the goal of preventing or reducing pollutant runoff by keeping potential pollutants from coming into contact with stormwater or being transported off site without treatment, the following efforts will be made:

- Property Management awareness and training on how to incorporate pollution prevention techniques into maintenance operations.
- Follow appropriate best management practices (BMPs) by proper maintenance and inspection procedures.
- Homeowner education outreach, including promoting recycling through the City of Weymouth Transfer Station.

Storage and Disposal of Household Waste and Toxics:

This management measure involves educating the general public on the management considerations for hazardous materials. Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Many people have hazardous chemicals stored throughout their homes, especially in garages and storage sheds. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts. Property owners are encouraged to support the household hazardous product collection events sponsored by the City of Weymouth.

MADEP has prepared several materials for homeowners on how to properly use and dispose of household hazardous materials:

http://www.mass.gov/dep/recycle/reduce/househol.htm

For consumer questions on household hazardous waste call the following number:

DEP Household Hazardous Waste Hotline 800-343-3420

The following is a list of management considerations for hazardous materials as outlined by the EPA:

- Ensuring sufficient aisle space to provide access for inspections and to improve the ease of material transport;
- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.
- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact

with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

The following is a list of commonly used hazardous materials used in the household:

Batteries – automotive and rechargeable nickel cadmium batteries (no alkaline batteries) Gasoline Oil-based paints Fluorescent light bulbs and lamps Pool chemicals Propane tanks Lawn chemicals, fertilizers and weed killers Turpentine Bug sprays Antifreeze Paint thinners, strippers, varnishes and stains Arts and crafts chemicals Charcoal lighter fluid

Disinfectant Drain clog dissolvers Driveway sealer Flea dips, sprays and collars Houseplant insecticides Metal polishes Mothballs Motor oil and filters Muriatic acid (concrete cleaner) Nail polishes and nail polish removers Oven cleaner Household pest and rat poisons Rug and upholstery cleaners Shoe polish Windshield wiper fluid

Landscape Maintenance:

This management measure seeks to control the storm water impacts of landscaping and lawn care practices through education and outreach on methods that reduce nutrient loadings and the amount of storm water runoff generated from lawns. Nutrient loads generated by fertilizer use on suburban lawns can be significant, and recent research has shown that lawns produce more surface runoff than previously thought.

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawns at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Collect rainwater for landscaping/gardening needs (rain barrels and cisterns to capture roof runoff).
- Raise public awareness for promoting the water efficient maintenance practices by informing users of water efficient irrigation techniques and other innovative approaches to water conservation.
- Abide by water restrictions and other conservation measures implemented by the City of Weymouth.
- Water only when necessary.
- Use automatic irrigation systems to reduce water use.

Integrated Pest Management (IPM):

This management measure seeks to limit the adverse impacts of insecticides and herbicides by providing information on alternative pest control techniques other than chemicals or explaining how to determine the correct dosages needed to manage pests.

The presence of pesticides in stormwater runoff has a direct impact on the health of aquatic organisms and can present a threat to humans through contamination of drinking water supplies. The pesticides of greatest concern are insecticides, such as diazinon and chloropyrifos, which even at very low levels can be harmful to aquatic life. The major source of pesticides to urban steams is home application of products designed to kill insects and weeds in the lawn and garden. The following IPM practices will be encouraged:

- Lawn care and landscaping management programs including appropriate pesticide use management as part of program.
- Raise public awareness by referring homeowners to "A Homeowner's Guide to Environmentally Sound Lawncare, Maintaining a Healthy Lawn the IPM Way", Massachusetts Department of Food and Agriculture, Pesticide Bureau or link <u>http://www.mass.gov/dep/water/resources/nonpoint.htm#megaman</u>>

Illicit Discharges:

Illicit discharges are non-stormwater discharges to the storm drain system which typically contain bacteria and other pollutants. All illicit discharges are prohibited. Any illicit discharges should be reported to MassDOT and/or the DPW as applicable to be addressed in accordance with their respective policies.

The following is a list of EPA allowed non-stormwater discharges. If the non-stormwater discharge is not listed, it is prohibited.

- 1. Water line flushing,
- 2. Landscape irrigation,
- 3. Diverted stream flows,
- 4. Rising ground waters,
- 5. Uncontaminated ground water infiltration (as defined at 40 CFR 35.2005(20)),
- 6. Uncontaminated pumped ground water,
- 7. Discharge from potable water sources,
- 8. Foundation drains,
- 9. Air conditioning condensation,
- 10. Irrigation water, springs,
- 11. Water from crawl space pumps,
- 12. Footing drains,
- 13. Lawn watering,
- 14. Flows from riparian habitats and wetlands,
- 15. Street wash water,
- 16. Discharges or flows from firefighting activities occur during emergency conditions.

Project Location: Jackson Square, Assessor's Parcel IDs 23-253-14 & 23-253-16, Weymouth, MA Stormwater Management – Post Construction Phase Best Management Practices – Inspection Schedule and Evaluation Checklist

Long Term Practices

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed: ☐yes ☐no (List Items)	Date of Cleaning/ Repair	Performed by
Street Sweeping Maintenance	4-times annually - specifically in Spring and Fall			 Sediment build-up Trash and debris Minor Spills (vehicular) 			
Proprietary Pretreatment Units	After heavy rainfall events (minimum annually)			 Sediment level exceeds Manufacturer's specification Trash and debris Floatable oils or hydrocarbons Outlet blockages 			
Bio- Retention/Rain Garden	After heavy rainfall events (minimum semi- annually)			 Sediment build-up Trash and debris Dead vegetation Standing Water greater than 72 hours 			
Trench Drains	After heavy rainfall events (minimum quarterly)			 Sediment level exceeds 8" Trash and debris Floatable oils or hydrocarbons Grate or outlet blockages 			

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook (February 2008) for recommendations regarding frequency for inspection and maintenance of specific BMP's.

Notes (Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan):

1.

Stormwater Control Manager

Stamp:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	<u>Irakis N. Papachristos, Manager</u>
	1 Franklin Street, Boston, MA 02110
Facility Manager (phone)	<u>203-230.1693</u>

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

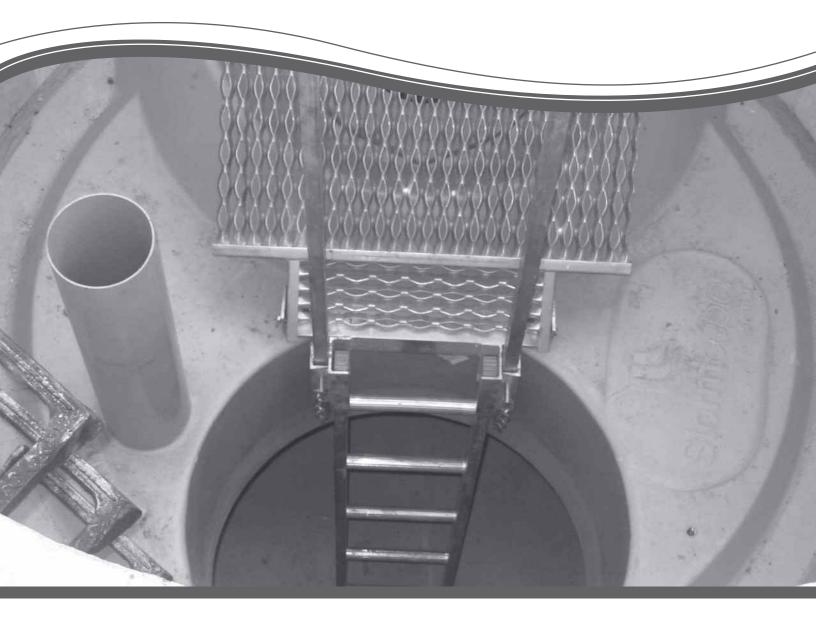
Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u>		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill					
Measures taken to	contain or clear	n up spill			
Amount of chemica	I / oil recovered	<u> </u>	Method		
Material collected a	is a result of cle	an up			
dru	ims containing_				
dru					
Location and metho	-				
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precaution	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	neral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /			AM / PM	Inspector	
NRC Date /	1	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.


 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:	
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>	
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151		
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212		
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell	
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007		
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN	
3.	MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEVILLE OFFICE: (508) 946-2700		
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802		
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY	

Stormceptor[®] STC Operation and Maintenance Guide

Stormceptor Design Notes

- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.

Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences				
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000	
Single inlet pipe	3 in. (75 mm)	1 in. (25 mm)	3 in. (75 mm)	
Multiple inlet pipes	3 in. (75 mm)	3 in. (75 mm)	Only one inlet pipe.	

Maximum inlet and outlet pipe diameters:

Inlet/Outlet Configuration	Inlet Unit STC 450i	In-Line Unit STC 900 to STC 7200	Series* STC 11000 to STC 16000
Straight Through	24 inch (600 mm)	42 inch (1050 mm)	60 inch (1500 mm)
Bend (90 degrees)	18 inch (450 mm)	33 inch (825 mm)	33 inch (825 mm)

- The inlet and in-line Stormceptor units can accommodate turns to a maximum of 90 degrees.
- Minimum distance from top of grade to crown is 2 feet (0.6 m)
- Submerged conditions. A unit is submerged when the standing water elevation at the proposed location of the Stormceptor unit is greater than the outlet invert elevation during zero flow conditions. In these cases, please contact your local Stormceptor representative and provide the following information:
- Top of grade elevation
- Stormceptor inlet and outlet pipe diameters and invert elevations
- Standing water elevation
- Stormceptor head loss, K = 1.3 (for submerged condition, K = 4)

Stormceptor®

OPERATION AND MAINTENANCE GUIDE Table of Content

1.	About Stormceptor	4
2.	Stormceptor Design Overview	4
3.	Key Operation Features	6
	Stormceptor Product Line	
5.	Sizing the Stormceptor System	10
	Spill Controls	
7.	Stormceptor Options	14
8.	Comparing Technologies	17
9.	Testing	18
10.	Installation	18
11.	Stormceptor Construction Sequence	18
12.	Maintenance	19

1. About Stormceptor

The Stormceptor® STC (Standard Treatment Cell) was developed by Imbrium[™] Systems to address the growing need to remove and isolate pollution from the storm drain system before it enters the environment. The Stormceptor STC targets hydrocarbons and total suspended solids (TSS) in stormwater runoff. It improves water quality by removing contaminants through the gravitational settling of fine sediments and floatation of hydrocarbons while preventing the re-suspension or scour of previously captured pollutants.

The development of the Stormceptor STC revolutionized stormwater treatment, and created an entirely new category of environmental technology. Protecting thousands of waterways around the world, the Stormceptor System has set the standard for effective stormwater treatment.

1.1. Patent Information

The Stormceptor technology is protected by the following patents:

- Australia Patent No. 693,164 693,164 707,133 729,096 779401
- Austrian Patent No. 289647
- Canadian Patent No 2,009,208 2,137,942 2,175,277 2,180,305 2,180,383 2,206,338 2,327,768 (Pending)
- China Patent No 1168439
- Denmark DK 711879
- German DE 69534021
- Indonesian Patent No 16688
- Japan Patent No 9-11476 (Pending)
- Korea 10-2000-0026101 (Pending)
- Malaysia Patent No PI9701737 (Pending)
- New Zealand Patent No 314646
- United States Patent No 4,985,148 5,498,331 5,725,760 5,753,115 5,849,181 6,068,765 6,371,690
- Stormceptor OSR Patent Pending Stormceptor LCS Patent Pending

2. Stormceptor Design Overview

2.1. Design Philosophy

The patented Stormceptor System has been designed to focus on the environmental objective of providing long-term pollution control. The unique and innovative Stormceptor design allows for continuous positive treatment of runoff during all rainfall events, while ensuring that all captured pollutants are retained within the system, even during intense storm events.

An integral part of the Stormceptor design is PCSWMM for Stormceptor - sizing software developed in conjunction with Computational Hydraulics Inc. (CHI) and internationally acclaimed expert, Dr. Bill James. Using local historical rainfall data and continuous simulation modeling, this software allows a Stormceptor unit to be designed for each individual site and the corresponding water quality objectives.

By using PCSWMM for Stormceptor, the Stormceptor System can be designed to remove a wide range of particles (typically from 20 to 2,000 microns), and can also be customized to remove a specific particle size distribution (PSD). The specified PSD should accurately reflect what is in the stormwater runoff to ensure the device is achieving the desired water quality objective. Since stormwater runoff contains small particles (less than 75 microns), it is important to design a treatment system to remove smaller particles in addition to coarse particles.

2.2. Benefits

The Stormceptor System removes free oil and suspended solids from stormwater, preventing spills and non-point source pollution from entering downstream lakes and rivers. The key benefits, capabilities and applications of the Stormceptor System are as follows:

- Provides continuous positive treatment during all rainfall events
- Can be designed to remove over 80% of the annual sediment load
- Removes a wide range of particles
- Can be designed to remove a specific particle size distribution (PSD)
- Captures free oil from stormwater
- Prevents scouring or re-suspension of trapped pollutants
- Pre-treatment to reduce maintenance costs for downstream treatment measures (ponds, swales, detention basins, filters)
- Groundwater recharge protection
- Spills capture and mitigation
- Simple to design and specify
- Designed to your local watershed conditions
- Small footprint to allow for easy retrofit installations
- Easy to maintain (vacuum truck)
- Multiple inlets can connect to a single unit
- Suitable as a bend structure
- Pre-engineered for traffic loading (minimum AASHTO HS-20)
- Minimal elevation drop between inlet and outlet pipes
- Small head loss
- Additional protection provided by an 18" (457 mm) fiberglass skirt below the top of the insert, for the containment of hydrocarbons in the event of a spill.

2.3. Environmental Benefit

Freshwater resources are vital to the health and welfare of their surrounding communities. There is increasing public awareness, government regulations and corporate commitment to reducing the pollution entering our waterways. A major source of this pollution originates from stormwater runoff from urban areas. Rainfall runoff carries oils, sediment and other contaminants from roads and parking lots discharging directly into our streams, lakes and coastal waterways.

The Stormceptor System is designed to isolate contaminants from getting into the natural environment. The Stormceptor technology provides protection for the environment from spills that occur at service stations and vehicle accident sites, while also removing contaminated sediment in runoff that washes from roads and parking lots.

3. Key Operation Features

3.1. Scour Prevention

A key feature of the Stormceptor System is its patented scour prevention technology. This innovation ensures pollutants are captured and retained during all rainfall events, even extreme storms. The Stormceptor System provides continuous positive treatment for all rainfall events, including intense storms. Stormceptor slows incoming runoff, controlling and reducing velocities in the lower chamber to create a non-turbulent environment that promotes free oils and floatable debris to rise and sediment to settle.

The patented scour prevention technology, the fiberglass insert, regulates flows into the lower chamber through a combination of a weir and orifice while diverting high energy flows away through the upper chamber to prevent scouring. Laboratory testing demonstrated no scouring when tested up to 125% of the unit's operating rate, with the unit loaded to 100% sediment capacity (NJDEP, 2005). Second, the depth of the lower chamber ensures the sediment storage zone is adequately separated from the path of flow in the lower chamber to prevent scouring.

3.2. Operational Hydraulic Loading Rate

Designers and regulators need to evaluate the treatment capacity and performance of manufactured stormwater treatment systems. A commonly used parameter is the "operational hydraulic loading rate" which originated as a design methodology for wastewater treatment devices.

Operational hydraulic loading rate may be calculated by dividing the flow rate into a device by its settling area. This represents the critical settling velocity that is the prime determinant to quantify the influent particle size and density captured by the device. PCSWMM for Stormceptor uses a similar parameter that is calculated by dividing the hydraulic detention time in the device by the fall distance of the sediment.

$$v_{sc} = \frac{H}{6_{H}} = \frac{Q}{A_{s}}$$

Where:

 v_{sc} = critical settling velocity, ft/s (m/s)

H = tank depth, ft (m)

 $Ø_{\rm H}$ = hydraulic detention time, ft/s (m/s)

Q = volumetric flow rate, ft3/s (m3/s)

 $A_s = surface area, ft^2 (m^2)$

(Tchobanoglous, G. and Schroeder, E.D. 1987. Water Quality. Addison Wesley.)

Unlike designing typical wastewater devices, stormwater systems are designed for highly variable flow rates including intense peak flows. PCSWMM for Stormceptor incorporates all of the flows into its calculations, ensuring that the operational hydraulic loading rate is considered not only for one flow rate, but for all flows including extreme events.

3.3. Double Wall Containment

The Stormceptor System was conceived as a pollution identifier to assist with identifying illicit discharges. The fiberglass insert has a continuous skirt that lines the concrete barrel wall for a depth of 18 inches (457 mm) that provides double wall containment for hydrocarbons storage. This protective barrier ensures that toxic floatables do not migrate through the concrete wall into the surrounding soils.

4. Stormceptor Product Line

4.1. Stormceptor Models

A summary of Stormceptor models and capacities are listed in Table 1.

Table 1. Stormceptor Models				
Stormceptor Model	Total Storage Volume U.S. Gal (L)	Hydrocarbon Storage Capacity U.S. Gal (L)	Maximum Sediment Capacity ft³ (L)	
STC 450i	470 (1,780)	86 (330)	46 (1,302)	
STC 900	952 (3,600)	251 (950)	89 (2,520)	
STC 1200	1,234 (4,670)	251 (950)	127 (3,596)	
STC 1800	1,833 (6,940)	251 (950)	207 (5,861)	
STC 2400	2,462 (9,320)	840 (3,180)	205 (5,805)	
STC 3600	3,715 (1,406)	840 (3,180)	373 (10,562)	
STC 4800	5,059 (1,950)	909 (3,440)	543 (15,376)	
STC 6000	6,136 (23,230)	909 (3,440)	687 (19,453)	
STC 7200	7,420 (28,090)	1,059 (4,010)	839 (23,757)	
STC 11000	11,194 (42,370)	2,797 (10, 590)	1,086 (30,752)	
STC 13000	13,348 (50,530)	2,797 (10, 590)	1,374 (38,907)	
STC 16000	15,918 (60,260)	3,055 (11, 560)	1,677 (47,487)	

NOTE: Storage volumes may vary slightly from region to region. For detailed information, contact your local Stormceptor representative.

4.2. Inline Stormceptor

The Inline Stormceptor, Figure 1, is the standard design for most stormwater treatment applications. The patented Stormceptor design allows the Inline unit to maintain continuous positive treatment of total suspended solids (TSS) year-round, regardless of flow rate. The Inline Stormceptor is composed of a precast concrete tank with a fiberglass insert situated at the invert of the storm sewer pipe, creating an upper chamber above the insert and a lower chamber below the insert.

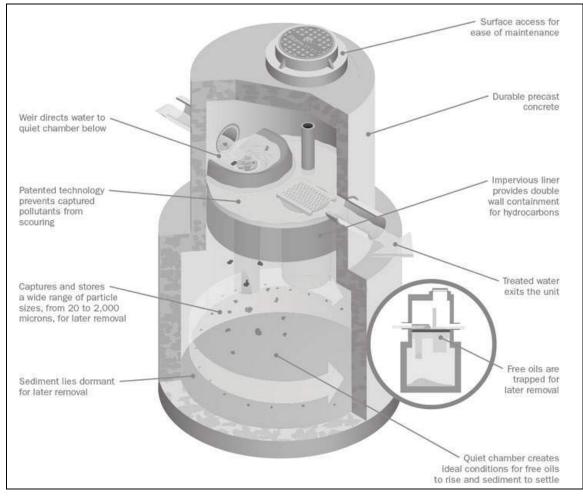


Figure 1. Inline Stormceptor

Operation

As water flows into the Stormceptor unit, it is slowed and directed to the lower chamber by a weir and drop tee. The stormwater enters the lower chamber, a non-turbulent environment, allowing free oils to rise and sediment to settle. The oil is captured underneath the fiberglass insert and shielded from exposure to the concrete walls by a fiberglass skirt. After the pollutants separate, treated water continues up a riser pipe, and exits the lower chamber on the downstream side of the weir before leaving the unit. During high flow events, the Stormceptor System's patented scour prevention technology ensures continuous pollutant removal and prevents re-suspension of previously captured pollutants.

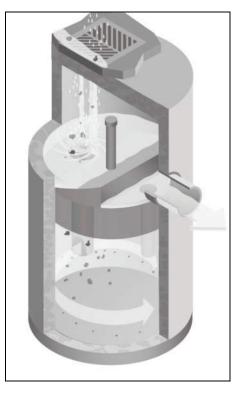


Figure 2. Inlet Stormceptor

4.3. Inlet Stormceptor

The Inlet Stormceptor System, Figure 2, was designed to provide protection for parking lots, loading bays, gas stations and other spill-prone areas. The Inlet Stormceptor is designed to remove sediment from stormwater introduced through a grated inlet, a storm sewer pipe, or both.

The Inlet Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

4.4. Series Stormceptor

Designed to treat larger drainage areas, the Series Stormceptor System, Figure 3, consists of two adjacent Stormceptor models that function in parallel. This design eliminates the need for additional structures and piping to reduce installation costs.

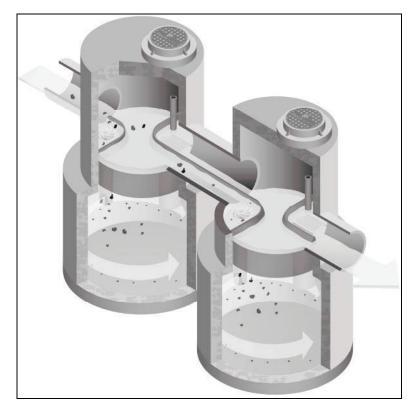


Figure 3. Series System

The Series Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

5. Sizing the Stormceptor System

The Stormceptor System is a versatile product that can be used for many different aspects of water quality improvement. While addressing these needs, there are conditions that the designer needs to be aware of in order to size the Stormceptor model to meet the demands of each individual site in an efficient and cost-effective manner.

PCSWMM for Stormceptor is the support tool used for identifying the appropriate Stormceptor model. In order to size a unit, it is recommended the user follow the seven design steps in the program. The steps are as follows:

STEP 1 – Project Details

The first step prior to sizing the Stormceptor System is to clearly identify the water quality objective for the development. It is recommended that a level of annual sediment (TSS) removal be identified and defined by a particle size distribution.

STEP 2 – Site Details

Identify the site development by the drainage area and the level of imperviousness. It is recommended that imperviousness be calculated based on the actual area of imperviousness based on paved surfaces, sidewalks and rooftops.

STEP 3 – Upstream Attenuation

The Stormceptor System is designed as a water quality device and is sometimes used in conjunction with onsite water quantity control devices such as ponds or underground detention systems. When possible, a greater benefit is typically achieved when installing a Stormceptor unit upstream of a detention facility. By placing the Stormceptor unit upstream of a detention structure, a benefit of less maintenance of the detention facility is realized.

STEP 4 – Particle Size Distribution

It is critical that the PSD be defined as part of the water quality objective. PSD is critical for the design of treatment system for a unit process of gravity settling and governs the size of a treatment system. A range of particle sizes has been provided and it is recommended that clays and silt-sized particles be considered in addition to sand and gravel-sized particles. Options and sample PSDs are provided in PCSWMM for Stormceptor. The default particle size distribution is the Fine Distribution, Table 2, option.

Particle Size	Distribution	Specific Gravity
20	20%	1.3
60	20%	1.8
150	20%	2.2
400	20%	2.65
2000	20%	2.65

Table 2. Fine Distribution

If the objective is the long-term removal of 80% of the total suspended solids on a given site, the PSD should be representative of the expected sediment on the site. For example, a system designed to remove 80% of coarse particles (greater than 75 microns) would provide relatively poor removal efficiency of finer particles that may be naturally prevalent in runoff from the site.

Since the small particle fraction contributes a disproportionately large amount of the total available particle surface area for pollutant adsorption, a system designed primarily for coarse particle capture will compromise water quality objectives.

STEP 5 – Rainfall Records

Local historical rainfall has been acquired from the U.S. National Oceanic and Atmospheric Administration, Environment Canada and regulatory agencies across North America. The rainfall data provided with PCSMM for Stormceptor provides an accurate estimation of small storm hydrology by modeling actual historical storm events including duration, intensities and peaks.

STEP 6 – Summary

At this point, the program may be executed to predict the level of TSS removal from the site. Once the simulation has completed, a table shall be generated identifying the TSS removal of each Stormceptor unit.

STEP 7 – Sizing Summary

Performance estimates of all Stormceptor units for the given site parameters will be displayed in a tabular format. The unit that meets the water quality objective, identified in Step 1, will be highlighted.

5.1. PCSWMM for Stormceptor

The Stormceptor System has been developed in conjunction with PCSWMM for Stormceptor as a technological solution to achieve water quality goals. Together, these two innovations model, simulate, predict and calculate the water quality objectives desired by a design engineer for TSS removal.

PCSWMM for Stormceptor is a proprietary sizing program which uses site specific inputs to a computer model to simulate sediment accumulation, hydrology and long-term total suspended solids removal. The model has been calibrated to field monitoring results from Stormceptor units that have been monitored in North America. The sizing methodology can be described by three processes:

- 1. Determination of real time hydrology
- 2. Buildup and wash off of TSS from impervious land areas
- 3. TSS transport through the Stormceptor (settling and discharge). The use of a calibrated model is the preferred method for sizing stormwater quality structures for the following reasons:
 - » The hydrology of the local area is properly and accurately incorporated in the sizing (distribution of flows, flow rate ranges and peaks, back-to-back storms, inter-event times)
 - » The distribution of TSS with the hydrology is properly and accurately considered in the sizing
 - » Particle size distribution is properly considered in the sizing
 - » The sizing can be optimized for TSS removal
 - » The cost benefit of alternate TSS removal criteria can be easily assessed
 - » The program assesses the performance of all Stormceptor models. Sizing may be selected based on a specific water quality outcome or based on the Maximum Extent Practicable

For more information regarding PCSWMM for Stormceptor, contact your local Stormceptor representative, or visit www.imbriumsystems.com to download a free copy of the program.

5.2. Sediment Loading Characteristics

The way in which sediment is transferred to stormwater can have a considerable effect on which type of system is implemented. On typical impervious surfaces (e.g. parking lots) sediment will build over time and wash off with the next rainfall. When rainfall patterns are examined, a short intense storm will have a higher concentration of sediment than a long slow drizzle. Together with rainfall data representing the site's typical rainfall patterns, sediment loading characteristics play a part in the correct sizing of a stormwater quality device.

Typical Sites

For standard site design of the Stormceptor System, PCSWMM for Stormceptor is utilized to accurately assess the unit's performance. As an integral part of the product's design, the program can be used to meet local requirements for total suspended solid removal. Typical installations of manufactured stormwater treatment devices would occur on areas such as paved parking lots or paved roads. These are considered "stable" surfaces which have non – erodible surfaces.

Unstable Sites

While standard sites consist of stable concrete or asphalt surfaces, sites such as gravel parking lots, or maintenance yards with stockpiles of sediment would be classified as "unstable". These types of sites do not exhibit first flush characteristics, are highly erodible and exhibit atypical sediment loading characteristics and must therefore be sized more carefully. Contact your local Stormceptor representative for assistance in selecting a proper unit sized for such unstable sites.

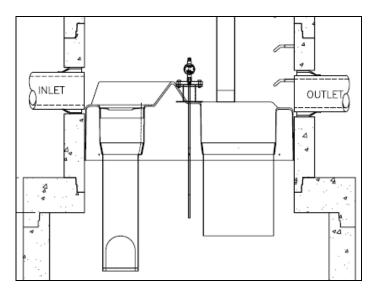
6. Spill Controls

When considering the removal of total petroleum hydrocarbons (TPH) from a storm sewer system there are two functions of the system: oil removal, and spill capture.

'Oil Removal' describes the capture of the minute volumes of free oil mobilized from impervious surfaces. In this instance relatively low concentrations, volumes and flow rates are considered. While the Stormceptor unit will still provide an appreciable oil removal function during higher flow events and/or with higher TPH concentrations, desired effluent limits may be exceeded under these conditions.

'Spill Capture' describes a manner of TPH removal more appropriate to recovery of a relatively high volume of a single phase deleterious liquid that is introduced to the storm sewer system over a relatively short duration. The two design criteria involved when considering this manner of introduction are overall volume and the specific gravity of the material. A standard Stormceptor unit will be able to capture and retain a maximum spill volume and a minimum specific gravity.

For spill characteristics that fall outside these limits, unit modifications are required. Contact your local Stormceptor Representative for more information.


One of the key features of the Stormceptor technology is its ability to capture and retain spills. While the standard Stormceptor System provides excellent protection for spill control, there are additional options to enhance spill protection if desired.

6.1. Oil Level Alarm

The oil level alarm is an electronic monitoring system designed to trigger a visual and audible alarm when a pre-set level of oil is reached within the lower chamber. As a standard, the oil

level alarm is designed to trigger at approximately 85% of the unit's available depth level for oil capture. The feature acts as a safeguard against spills caused by exceeding the oil storage capacity of the separator and eliminates the need for manual oil level inspection.

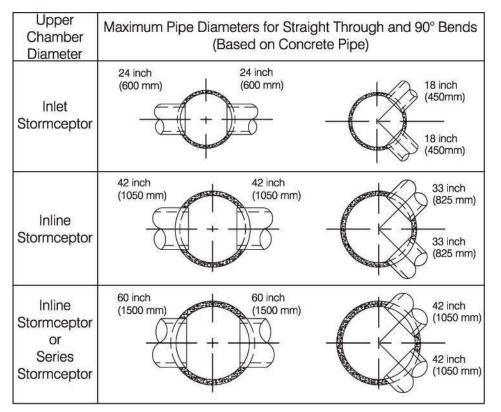
The oil level alarm installed on the Stormceptor insert is illustrated in Figure 4.

Figure 4. Oil level alarm

6.2. Increased Volume Storage Capacity

The Stormceptor unit may be modified to store a greater spill volume than is typically available. Under such a scenario, instead of installing a larger than required unit, modifications can be made to the recommended Stormceptor model to accommodate larger volumes. Contact your local Stormceptor representative for additional information and assistance for modifications.

7. Stormceptor Options


The Stormceptor System allows flexibility to incorporate to existing and new storm drainage infrastructure. The following section identifies considerations that should be reviewed when installing the system into a drainage network. For conditions that fall outside of the recommendations in this section, please contact your local Stormceptor representative for further guidance.

7.1. Installation Depth Minimum Cover

The minimum distance from the top of grade to the crown of the inlet pipe is 24 inches (600 mm). For situations that have a lower minimum distance, contact your local Stormceptor representative.

7.2. Maximum Inlet and Outlet Pipe Diameters

Maximum inlet and outlet pipe diameters are illustrated in Figure 5. Contact your local Stormceptor representative for larger pipe diameters

Figure 5. Maximum pipe diameters for straight through and bend applications

*The bend should only be incorporated into the second structure (downstream structure) of the Series Stormceptor System

7.3. Bends

The Stormceptor System can be used to change horizontal alignment in the storm drain network up to a maximum of 90 degrees. Figure 6 illustrates the typical bend situations of the Stormceptor System. Bends should only be applied to the second structure (downstream structure) of the Series Stormceptor System.

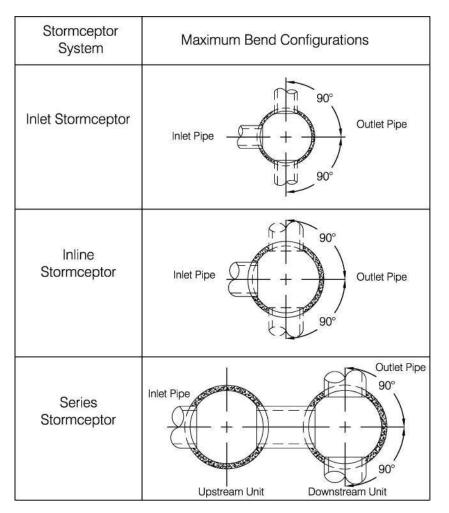


Figure 6. Maximum bend angles

7.4. Multiple Inlet Pipes

The Inlet and Inline Stormceptor System can accommodate two or more inlet pipes. The maximum number of inlet pipes that can be accommodated into a Stormceptor unit is a function of the number, alignment and diameter of the pipes and its effects on the structural integrity of the precast concrete. When multiple inlet pipes are used for new developments, each inlet pipe shall have an invert elevation 3 inches (75 mm) higher than the outlet pipe invert elevation.

7.5. Inlet/Outlet Pipe Invert Elevations

Recommended inlet and outlet pipe invert differences are listed in Table 3.

Number of Inlet Pipes	Inlet System	In-Line System	Series System
1	3 inches (75 mm)	1 inch (25 mm)	3 inches (75 mm)
>1	3 inches (75 mm)	3 inches (75 mm)	Not Applicable

7.6. Shallow Stormceptor

In cases where there may be restrictions to the depth of burial of storm sewer systems. In this situation, for selected Stormceptor models, the lower chamber components may be increased in diameter to reduce the overall depth of excavation required.

7.7. Customized Live Load

The Stormceptor system is typically designed for local highway truck loading (AASHTO HS- 20). When the project requires live loads greater than HS-20, the Stormceptor System may be customized structurally for a pre-specified live load. Contact your local Stormceptor representative for customized loading conditions.

7.8. Pre-treatment

The Stormceptor System may be sized to remove sediment and for spills control in conjunction with other stormwater BMPs to meet the water quality objective. For pretreatment applications, the Stormceptor System should be the first unit in a treatment train. The benefits of pre-treatment include the extension of the operational life (extension of maintenance frequency) of large stormwater management facilities, prevention of spills and lower total life- cycle maintenance cost.

7.9. Head loss

The head loss through the Stormceptor System is similar to a 60 degree bend at a manhole. The K value for calculating minor losses is approximately 1.3 (minor loss = k*1.3v2/2g).

However, when a Submerged modification is applied to a Stormceptor unit, the corresponding K value is 4.

7.10. Submerged

The Submerged modification, Figure 7, allows the Stormceptor System to operate in submerged or partially submerged storm sewers. This configuration can be installed on all models of the Stormceptor System by modifying the fiberglass insert. A customized weir height and a secondary drop tee are added.

Submerged instances are defined as standing water in the storm drain system during zero flow conditions. In these instances, the following information is necessary for the proper design and application of submerged modifications:

- Stormceptor top of grade elevation
- Stormceptor outlet pipe invert elevation
- Standing water elevation

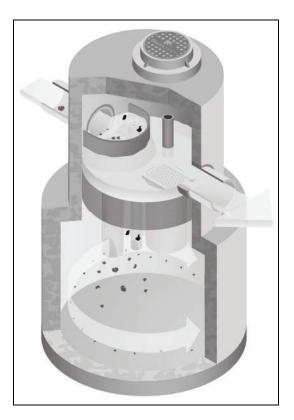


Figure 7. Submerged Stormceptor

8. Comparing Technologies

Designers have many choices available to achieve water quality goals in the treatment of stormwater runoff. Since many alternatives are available for use in stormwater quality treatment it is important to consider how to make an appropriate comparison between "approved alternatives". The following is a guide to assist with the accurate comparison of differing technologies and performance claims.

8.1. Particle Size Distribution (PSD)

The most sensitive parameter to the design of a stormwater quality device is the selection of the design particle size. While it is recommended that the actual particle size distribution (PSD) for sites be measured prior to sizing, alternative values for particle size should be selected to represent what is likely to occur naturally on the site. A reasonable estimate of a particle size distribution likely to be found on parking lots or other impervious surfaces should consist of a wide range of particles such as 20 microns to 2,000 microns (Ontario MOE, 1994).

There is no absolute right particle size distribution or specific gravity and the user is cautioned to review the site location, characteristics, material handling practices and regulatory requirements when selecting a particle size distribution. When comparing technologies, designs using different PSDs will result in incomparable TSS removal efficiencies. The PSD of the TSS removed needs to be standard between two products to allow for an accurate comparison.

8.2. Scour Prevention

In order to accurately predict the performance of a manufactured treatment device, there must be confidence that it will perform under all conditions. Since rainfall patterns cannot be predicted, stormwater quality devices placed in storm sewer systems must be able to withstand extreme events, and ensure that all pollutants previously captured are retained in the system.

In order to have confidence in a system's performance under extreme conditions, independent validation of scour prevention is essential when examining different technologies. Lack of independent verification of scour prevention should make a designer wary of accepting any product's performance claims.

8.3. Hydraulics

Full scale laboratory testing has been used to confirm the hydraulics of the Stormceptor System. Results of lab testing have been used to physically design the Stormceptor System and the sewer pipes entering and leaving the unit. Key benefits of Stormceptor are:

- Low head loss (typical k value of 1.3)
- Minimal inlet/outlet invert elevation drop across the structure
- Use as a bend structure
- Accommodates multiple inlets

The adaptability of the treatment device to the storm sewer design infrastructure can affect the overall performance and cost of the site.

8.4. Hydrology

Stormwater quality treatment technologies need to perform under varying climatic conditions. These can vary from long low intensity rainfall to short duration, high intensity storms. Since a treatment device is expected to perform under all these conditions, it makes sense that any system's design should accommodate those conditions as well.

Long-term continuous simulation evaluates the performance of a technology under the varying conditions expected in the climate of the subject site. Single, peak event design does not provide this information and is not equivalent to long-term simulation. Designers should request long-term simulation performance to ensure the technology can meet the long-term water quality objective.

9. Testing

The Stormceptor System has been the most widely monitored stormwater treatment technology in the world. Performance verification and monitoring programs are completed to the strictest standards and integrity. Since its introduction in 1990, numerous independent field tests and studies detailing the effectiveness of the Stormceptor System have been completed.

- Coventry University, UK 97% removal of oil, 83% removal of sand and 73% removal of peat
- National Water Research Institute, Canada, scaled testing for the development of the Stormceptor System identifying both TSS removal and scour prevention.
- New Jersey TARP Program full scale testing of an STC 900 demonstrating 75% TSS removal of particles from 1 to 1000 microns. Scour testing completed demonstrated that the system does not scour. The New Jersey Department of Environmental Protection was followed.
- City of Indianapolis full scale testing of an STC 900 demonstrating over 80% TSS removal of particles from 50 microns to 300 microns at 130% of the unit's operating rate. Scour testing completed demonstrated that the system does not scour.
- Westwood Massachusetts (1997), demonstrated >80% TSS removal
- Como Park (1997), demonstrated 76% TSS removal
- Ontario MOE SWAMP Program 57% removal of 1 to 25 micron particles
- Laval Quebec 50% removal of 1 to 25 micron particles

10. Installation

The installation of the concrete Stormceptor should conform in general to state highway, or local specifications for the installation of manholes. Selected sections of a general specification that are applicable are summarized in the following sections.

10.1. Excavation

Excavation for the installation of the Stormceptor should conform to state highway, or local specifications. Topsoil removed during the excavation for the Stormceptor should be stockpiled in designated areas and should not be mixed with subsoil or other materials.

Topsoil stockpiles and the general site preparation for the installation of the Stormceptor should conform to state highway or local specifications.

The Stormceptor should not be installed on frozen ground. Excavation should extend a minimum of 12 inches (300 mm) from the precast concrete surfaces plus an allowance for shoring and bracing where required. If the bottom of the excavation provides an unsuitable foundation additional excavation may be required.

In areas with a high water table, continuous dewatering may be required to ensure that the excavation is stable and free of water.

10.2. Backfilling

Backfill material should conform to state highway or local specifications. Backfill material should be placed in uniform layers not exceeding 12 inches (300mm) in depth and compacted to state highway or local specifications.

11. Stormceptor Construction Sequence

The concrete Stormceptor is installed in sections in the following sequence:

- 1. Aggregate base
- 2. Base slab
- 3. Lower chamber sections
- 4. Upper chamber section with fiberglass insert
- 5. Connect inlet and outlet pipes
- 6. Assembly of fiberglass insert components (drop tee, riser pipe, oil cleanout port and orifice plate
- 7. Remainder of upper chamber
- 8. Frame and access cover

The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.

Adjustment of the Stormceptor can be performed by lifting the upper sections free of the excavated area, re-leveling the base and reinstalling the sections. Damaged sections and gaskets should be repaired or replaced as necessary. Once the Stormceptor has been constructed, any lift holes must be plugged with mortar.

12. Maintenance

12.1. Health and Safety

The Stormceptor System has been designed considering safety first. It is recommended that confined space entry protocols be followed if entry to the unit is required. In addition, the fiberglass insert has the following health and safety features:

- Designed to withstand the weight of personnel
- A safety grate is located over the 24 inch (600 mm) riser pipe opening
- Ladder rungs can be provided for entry into the unit, if required

12.2. Maintenance Procedures

Maintenance of the Stormceptor system is performed using vacuum trucks. No entry into the unit is required for maintenance (in most cases). The vacuum service industry is a well- established sector of the service industry that cleans underground tanks, sewers and catch basins. Costs to clean a Stormceptor will vary based on the size of unit and transportation distances.

The need for maintenance can be determined easily by inspecting the unit from the surface. The depth of oil in the unit can be determined by inserting a dipstick in the oil inspection/cleanout port.

Similarly, the depth of sediment can be measured from the surface without entry into the Stormceptor via a dipstick tube equipped with a ball valve. This tube would be inserted through the riser pipe. Maintenance should be performed once the sediment depth exceeds the guideline values provided in the Table 4.

Particle Size	Specific Gravity	
Model	Sediment Depth inches (mm)	
450i	8 (200)	
900	8 (200)	
1200	10 (250)	
1800	15 (381)	
2400	12 (300)	
3600	17 (430)	
4800	15 (380)	
6000	18 (460)	
7200	15 (381)	
11000	17 (380)	
13000	20 (500)	
16000	17 (380)	
* based on 15% of the Stormceptor unit's total storage		

Table 4. Sediment Depths Indicating Required Servicing*

Although annual servicing is recommended, the frequency of maintenance may need to be increased or reduced based on local conditions (i.e. if the unit is filling up with sediment more quickly than projected, maintenance may be required semi-annually; conversely once the site has stabilized maintenance may only be required every two or three years).

Oil is removed through the oil inspection/cleanout port and sediment is removed through the riser pipe. Alternatively oil could be removed from the 24 inches (600 mm) opening if water is removed from the lower chamber to lower the oil level below the drop pipes.

The following procedures should be taken when cleaning out Stormceptor:

- 1. Check for oil through the oil cleanout port
- 2. Remove any oil separately using a small portable pump
- 3. Decant the water from the unit to the sanitary sewer, if permitted by the local regulating authority, or into a separate containment tank
- 4. Remove the sludge from the bottom of the unit using the vacuum truck
- 5. Re-fill Stormceptor with water where required by the local jurisdiction

12.3. Submerged Stormceptor

Careful attention should be paid to maintenance of the Submerged Stormceptor System. In cases where the storm drain system is submerged, there is a requirement to plug both the inlet and outlet pipes to economically clean out the unit.

12.4. Hydrocarbon Spills

The Stormceptor is often installed in areas where the potential for spills is great. The Stormceptor System should be cleaned immediately after a spill occurs by a licensed liquid waste hauler.

12.5. Disposal

Requirements for the disposal of material from the Stormceptor System are similar to that of any other stormwater Best Management Practice (BMP) where permitted. Disposal options for the sediment may range from disposal in a sanitary trunk sewer upstream of a sewage treatment plant, to disposal in a sanitary landfill site. Petroleum waste products collected in the Stormceptor (free oil/chemical/fuel spills) should be removed by a licensed waste management company.

12.6. Oil Sheens

With a steady influx of water with high concentrations of oil, a sheen may be noticeable at the Stormceptor outlet. This may occur because a rainbow or sheen can be seen at very small oil concentrations (<10 mg/L). Stormceptor will remove over 98% of all free oil spills from storm sewer systems for dry weather or frequently occurring runoff events.

The appearance of a sheen at the outlet with high influent oil concentrations does not mean the unit is not working to this level of removal. In addition, if the influent oil is emulsified the Stormceptor will not be able to remove it. The Stormceptor is designed for free oil removal and not emulsified conditions.

SUPPORT

Drawings and specifications are available at www.ContechES.com. Site-specific design support is available from our engineers.

©2020 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

SITE D

CONSTRUCTION PHASE POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (BEST MANAGEMENT PRACTICES OPERATION AND MAINTENANCE PLAN)

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building D (Assessor's Parcel IDs 23-306-11)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

	Page
Project Narrative	
- Project Description	1
- Pre-development Condition	2
- Post-development Condition	2
Erosion and Sedimentation Controls - Best Management Practices	(BMP's)
- Structural Practices	2
- Stabilization Practices	5
- Dust Control	10
- Non-Stormwater Discharges	11
- Soil Stockpiling	11
- Pollution Prevention	11
- Inspection/Maintenance	12
- Inspection Schedule and Evaluation Checklist	14
- Spill Containment and Management Plan	
Diama	

Plans

- Figure-1 USGS Locus Map (Refer to Drainage Report)
- Site Topographic Map (Existing Conditions Plans within Plan Set)
- Site Development Map (Grading and Drainage Plans within Plan Set)
- Site Erosion and Sedimentation Plan (Grading and Drainage Plans within Plan Set)
- Construction Detail Plan (Construction Details within Plan Set)

Construction Phase Best Management Practices (BMP's)

Responsible Party Contact Information:

Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control.

Responsible Faily Contact Information.	
Stormwater Management System Owner:	Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693
Town of Weymouth Contact Information:	Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100
	Weymouth Conservation Commission Town Hall 75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5007
	Weymouth Department of Municipal Licenses and Inspections Jeffrey E. Richards, C.B.O., Director Town Hall

Structural Practices:

 <u>Compost Filter Tube Barrier Controls</u> – A compost filter tube barrier will be constructed along downward slopes at the limit of work in locations shown on the plans. This control will be installed prior to major soil disturbance on the site. The sediment silt sack barrier should be installed as shown on the Construction Detail Plan.

Compost Filter Tube Design/Installation Requirements *

- a) Locate the compost filter tube where identified on the plans.
- b) The compost filter tube line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the silt sack should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.

75 Middle Street Weymouth, MA 02189 Phone: (781) 340-5004

- c) The compost filter tube shall be staked every 8 linear feet with 1-inch by 1-inch stakes.
- d) Compost filter tubes should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season. Retained sediment must be removed and properly disposed of or mulched and seeded.

Compost Filter Tube Inspection/Maintenance *

- a) Compost filter tubes should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the compost filter tube. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all compost filter tube materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform with the existing topography and vegetated.
- 2) Sediment Fence Controls A sediment fence will be constructed along the limit of work as needed to prevent the spreading of fine sediments from the site. This control will be installed prior to major soil disturbance on the site. The sediment fence should be installed as shown on the Erosion Control Detail Plan and be Amoco woven polypropylene 1198 or equivalent.

Sediment Fence Design/Installation Requirements *

- a) Locate the fence upland of the hay bale barriers and where identified on the plans.
- b) The fence line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the fence should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.
- c) Excavate a trench approximately 8 inches deep and 4 inches wide, or a V-trench; along the line of the fence, upslope side.
- d) Fasten support wire fence (14 gauge with 6-inch mesh) securely to the upslope side of the fence posts with wire ties or staples. Wire should extend 6 inches into the trench.

- e) Attach continuous length of fabric to upslope side of fence posts. Avoid joints, particularly at low points in the fence line. Where joints are necessary, fasten fabric securely to support posts and overlap to the next post.
- f) Place the bottom one foot of fabric in the trench. Backfill with compacted earth or gravel.
- g) Filter cloth shall be fastened securely to the woven wire fence with ties spaced every 24 inches at the top, mid-section, and bottom.
- h) Sediment fences should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season and only following approval by the Engineering Department or their representative. Retained sediment must be removed and properly disposed of, or mulched and seeded.

Sediment Fence Inspection/Maintenance *

- a) Silt fences should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the fence. Sediment will be removed from behind the sediment fence when it becomes about ½ foot deep at the fence. Take care to avoid undermining fence during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all fencing materials after the contributing drainage area has been properly stabilized. Sediment deposits remaining after the fabric has been removed should be graded to conform to the existing topography and vegetation.
- 3) <u>Stabilized Construction Entrance</u> A stabilized construction entrance will be placed at the proposed entrances at Commercial Street. The construction entrance will keep mud and sediment from being tracked off the construction site by vehicles leaving the site. The stabilized construction entrance will be installed immediately after the clearing and grubbing of the roadway entrance and associated roadway fill to maintain access to the site are completed. The stabilized construction entrance shall be constructed as shown on the Construction Detail Plans.

Construction Entrance Design/Construction Requirements *

a) Stone for a stabilized construction entrance shall consist of 1 to 3-inch stone placed on a stable foundation.

- b) Pad dimensions: The minimum length of the gravel pad should be 50 feet. The pad should extend the full width of the proposed roadway, or wide enough so that the largest construction vehicle will fit in the entrance with room to spare; whichever is greater.
- c) A geotextile filter fabric shall be placed between the stone fill and the earth surface below the pad to reduce the migration of soil particles from the underlying soil into the stone and vice versa. The filter fabric should be Amoco woven polypropylene 1198 or equivalent.
- d) Washing: If the site conditions are such that the majority of mud is not removed from the vehicle tires by the gravel pad, then the tires should be washed before the vehicle enters the street. The wash area shall be located at the stabilized construction entrance.
- e) Water employed in the washing process shall be directed to the temporary dewatering area as shown on the plans prior to discharge. Sediment should be prevented from entering any watercourses.

Construction Entrance Inspection/Maintenance *

- a) The entrance should be maintained in a condition that will prevent tracking or flowing of sediment onto Lovell Field and Commercial Street. This may require periodic topdressing with additional stone.
- b) The construction entrance and sediment disposal area shall be inspected weekly and after heavy rains or heavy use.
- c) Mud and sediment tracked or washed onto public road shall be immediately removed by sweeping.
- d) Once mud and soil particles clog the voids in the gravel and the effectiveness of the gravel pad is no longer satisfactory, the pad must be topdressed with new stone. Replacement of the entire pad may be necessary when the pad becomes completely clogged.
- e) If washing facilities are used, the dewatering area should be cleaned out as often as necessary to assure that adequate trapping efficiency and storage volume is available.
- f) The pad shall be reshaped as needed for drainage and runoff control.
- g) Broken road pavement on Lovell Field and Commercial Street shall be repaired immediately.
- h) All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization is achieved or after the temporary practices are no longer needed and only following approval by the Public Works Department or their representative. Trapped sediment shall be removed or stabilized on site. Disturbed soil areas resulting from removal shall be permanently stabilized.

Stabilization Practices:

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

- Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.
- Where construction activity will resume on a portion of the site within 21 days from when activities ceased, (e.g. the total time period that construction activity is temporarily ceased is less than 21 days) then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased.
- The contractor shall provide erosion control measures around all soil stockpiles.
- <u>Temporary Seeding</u> Temporary seeding will allow short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stockpiles and disturbed portions of the site where construction activity will temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

Temporary Seeding Planting Procedures *

- a) Planting should preferably be done between April 1st and June 30th, and September 1st through September 31st. If planting is done in the months of July and August, irrigation may be required. If planting is done between October 1st and March 31st, mulching should be applied immediately after planting. If seeding is done during the summer months, irrigation of some sort will probably be necessary.
- b) Before seeding, install structural practice controls. Utilize Amoco supergro or equivalent.

Species	Seeding Rate (lbs/1,000 sq.ft.)	Seeding Rate (lbs/acre)	Recommended Seeding Dates	Seed Cover required
Annual	1	40	April 1 st to June 1 st	1¼ inch
Ryegrass			August 15 th to Sept. 15 th	
Foxtail	0.7	30	May 1 st to June 30 th	1⁄2 to 3⁄4 inch
Millet				
Oats	2	80	April 1 st to July 1 st	1 to 1-1/2 inch
			August 15 th to Sept. 15 th	
Winter	3	120	August 15 th to Oct. 15 th	1 to 1-1/2 inch
Rye			-	

c) Select the appropriate seed species for temporary cover from the following table.

Apply the seed uniformly by hydroseeding, broadcasting, or by hand.

d) Use effective mulch, tacked and/or tied with netting to protect seedbed and encourage plant growth.

Temporary Seeding Inspection/Maintenance *

- a) Inspect within 6 weeks of planting to see if stands are adequate. Check for damage within 24 hours of the end to heavy rainfall, defined as a 2-year storm event (i.e., 3.2 inches of rainfall within a twenty-four-hour period). Stands should be uniform and dense. Reseed and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary.
- b) Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather. Water application rates should be controlled to prevent runoff.
- 2) <u>Geotextiles</u> Geotextiles such as jute netting will be used in combination with other practices such as mulching to stabilize slopes. The following geotextile materials or equivalent are to be utilized for structural and nonstructural controls as shown in the following table.

Practice	Manufacturer	Product	Remarks
Sediment Fence	Amoco	Woven polypropylene 1198 or equivalent	0.425 mm opening
Construction Entrance	Amoco	Woven polypropylene 2002 or equivalent	0.300 mm opening
Outlet Protection	Amoco	Nonwoven polypropylene 4551 or equivalent	0.150 mm opening
Erosion Control (slope stability)	Amoco	Supergro or equivalent	Erosion control revegetation mix, open polypropylene fiber on degradable polypropylene net scrim

Amoco may be reached at (800) 445-7732

Geotextile Installation

a) Netting and matting require firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil and erosion will occur underneath the material.

Geotextile Inspection/Maintenance *

- a) In the field, regular inspections should be made to check for cracks, tears, or breaches in the fabric. The appropriate repairs should be made.
- 3) <u>Mulching and Netting</u> Mulching will provide immediate protection to exposed soils during the period of short construction delays, or over winter months through the application of plant residues, or other suitable materials, to exposed soil areas. In areas, which have been seeded either for temporary or permanent cover, mulching should immediately follow seeding. On steep slopes, mulch must be supplemented with netting.

Mulch Maintenance *

- a) Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting.
- b) Grass mulches that blow or wash away should be repaired promptly.
- c) If plastic netting is used to anchor mulch, care should be taken during initial mowings to keep the mower height high. Otherwise, the netting can wrap up on the mower blade shafts. After a period of time, the netting degrades and becomes less of a problem.
- d) Continue inspections until vegetation is well established.
- 4) <u>Land Grading</u> Grading on fill slopes, cut slopes, and stockpile areas will be done with full siltation controls in place.

Land Grading Design/Installation Requirements

- a) Areas to be graded should be cleared and grubbed of all timber, logs, brush, rubbish, and vegetated matter that will interfere with the grading operation. Topsoil should be stripped and stockpiled for use on critical disturbed areas for establishment of vegetation. Cut slopes to be topsoiled should be thoroughly scarified to a minimum depth of 3-inches prior to placement of topsoil.
- b) Fill materials should be generally free of brush, rubbish, rocks, and stumps. Frozen materials or soft and easily compressible materials should not be used in fills intended to support buildings, parking lots, roads, conduits, or other structures.
- c) Earth fill intended to support structural measures should be compacted to a minimum of 90 percent of Standard Proctor Test density with proper moisture control, or as otherwise specified by the engineer responsible for the design. Compaction of other fills should be to the density required to control sloughing, erosion or excessive moisture content. Maximum thickness of fill layers prior to compaction should not exceed 9 inches.
- d) The uppermost one foot of fill slopes should be compacted to at least 85 percent of the maximum unit weight (based on the modified AASHTO compaction test). This is usually accomplished by running heavy equipment over the fill.
- e) Fill should consist of material from borrow areas and excess cut will be stockpiled in areas shown on the Site Plans. All disturbed areas should be free draining, left with a neat and finished appearance, and should be protected from erosion.
- f) Infiltration basins shall be excavated, graded and shaped to subgrade elevation and shall then be suitably protected with installation of erosion control measures to prevent sediment-laden runoff from washing into the basins. The basins shall also be protected from heavy equipment activity from this point forward. Prior to application of loam and seed to infiltration basin surfaces, the contractor shall

remove any unsuitable soil such as silt or clay that may have been deposited during construction. The surface shall be scarified with a York rake or other small tractor mounted equipment. The loam and seed shall then be applied as required by this document.

Land Grading Stabilization Inspection/Maintenance *

- a) All slopes should be checked periodically to see that vegetation is in good condition. Any rills or damage from erosion and animal burrowing should be repaired immediately to avoid further damage.
- b) If seeps develop on the slopes, the area should be evaluated to determine if the seep will cause an unstable condition. Subsurface drains or a gravel mulch may be required to solve seep problems. However, no seeps are anticipated.
- c) Areas requiring revegetation should be repaired immediately. Control undesirable vegetation such as weeds and woody growth to avoid bank stability problems in the future.
- 5) <u>Topsoiling</u> * Topsoiling will help establish vegetation on all disturbed areas throughout the site during the seeding process. The soil texture of the topsoil to be used will be a sandy loam to a silt loam texture with 15% to 20% organic content.

Topsoiling Placement

- a) Topsoil should not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or when conditions exist that may otherwise be detrimental to proper grading or proposed seeding.
- b) Do not place topsoil on slopes steeper than 2.5:1, as it will tend to erode.
- c) If topsoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and it will be difficult to establish vegetation. The best method is to actually work the topsoil into the layer below for a depth of at least 6 inches.
- 6) <u>Permanent Seeding</u> Permanent Seeding should be done immediately after the final design grades are achieved. Native species of plants should be used to establish perennial vegetative cover on disturbed areas. The revegetation should be done early enough in the fall so that a good cover is established before cold weather comes and growth stops until the spring. A good cover is defined as vegetation covering 75 percent or more of the ground surface.

Permanent Seeding Seedbed Preparation

a) In infertile or coarse-textured subsoil, it is best to stockpile topsoil and re-spread it over the finished slope at a minimum 2 to 6-inch depth and roll it to provide a firm seedbed. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content. If construction fill operations have left soil exposed with a loose, rough, or irregular surface, smooth with blade and roll.

- b) Loosen the soil to a depth of 3-5 inches with suitable agricultural or construction equipment.
- c) Areas not to receive topsoil shall be treated to firm the seedbed after incorporation of the lime and fertilizer so that it is depressed no more than ½ - 1 inch when stepped on with a shoe. Areas to receive topsoil shall not be firmed until after topsoiling and lime and fertilizer is applied and incorporated, at which time it shall be treated to firm the seedbed as described above.

Permanent Seeding Grass Selection/Application

- a) Select an appropriate cool or warm season grass based on site conditions and seeding date. Apply the seed uniformly by hydro-seeding, broadcasting, or by hand. Uniform seed distribution is essential. On steep slopes, hydroseeding may be the most effective seeding method. Surface roughening is particularly important when preparing slopes for hydroseeding.
- b) Lime and fertilize. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.
- c) Mulch the seedings with straw applied at the rate of ½ tons per acre. Anchor the mulch with erosion control netting or fabric on sloping areas. Amoco supergro or equivalent should be utilized.

Permanent Seeding Inspection/Maintenance *

- a) Frequently inspect seeded areas for failure and make necessary repairs and reseed immediately. Conduct or follow-up survey after one year and replace failed plants where necessary.
- b) If vegetative cover is inadequate to prevent rill erosion, overseed and fertilize in accordance with soil test results.
- c) If a stand has less than 40% cover, reevaluate choice of plant materials and quantities of lime and fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations, omitting lime and fertilizer in the absence of soil test results. If the season prevents resowing, mulch or jute netting is an effective temporary cover.
- d) Seeded areas should be fertilized during the second growing season. Lime and fertilize thereafter at periodic intervals, as needed.

Fueling and Maintenance of Equipment and Vehicles:

 Refueling/maintenance Rules – The site supervisor shall produce a written document received by all subcontractors and employees that delineates their responsibilities on site. This document shall include language that shall permit the maintenance of vehicles only in designated locations on the job site. In the event of mechanical failure of a vehicle, the vehicle shall be moved to the designated maintenance area on the site to perform maintenance. The site supervisor shall document receipt of these instructions by obtaining the signatures of subcontractors and individuals that may enter the site and the date in which they were notified of their responsibilities. Refueling for vehicles or equipment shall occur either within the designated washout area or shall utilize temporary drip protection measures at the location of fueling. The site supervisor or their representative shall be present at the time of any fueling procedure. The site supervisor shall have a fuel spill plan and measures on site to initiate containment and clean-up in the event a fuel spill occurs.

- 2. Installation Schedule: Prior to start of Work
- 3. Maintenance and Inspection: The site supervisor shall maintain a log of individuals receiving these instructions.
- 4. Specific Pollution Prevention Practices

Pollution Prevention Practice # 1

- a. Description: Fueling operations shall take place in designated area(s) as shown on site maps. Provide temporary drip protection during fueling operations which take place outside of designated area(s). Materials necessary to address a spill shall be made readily available in a location known to the site supervisor or his/her designee.
- b. Installation: Fueling operation procedures shall be in effect throughout the project duration.
- c. Maintenance Requirements: All emergency response equipment listed in the Emergency Response Equipment Inventory shall be made readily available and kept in a designated location known to the site supervisor or his/her designee. All such materials shall be replenished as necessary to the listed amounts.

Dust Control:

Dust control will be utilized throughout the entire construction process of the site. For example, keeping disturbed surfaces moist during windy periods will be an effective control measure, especially for construction access roads. The use of dust control will prevent the movement of soil to offsite areas. However, care must be taken to not create runoff from excessive use of water to control dust. The following are methods of Dust Control that may be used on-site:

- Vegetative Cover The most practical method for disturbed areas not subject to traffic.
- Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
- Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
- Stone Stone will be used to stabilize construction roads; will also be effective for dust control.

The general contractor shall employ an on-site water vehicle for the control of dust as necessary.

Non-Stormwater Discharges:

The construction de-watering and all non-stormwater discharges will be directed into a sediment dirt bag (or equivalent inlet protection) or a sediment basin. Sediment material removed shall be disposed of in accordance with all applicable local, state, and federal regulations.

The developer and site general contractor will comply with the E.P.A.'s Final General Permit for Construction De-watering Discharges, (N.P.D.E.S., Section 402 and 40 C.F.R. 122.26(b)(14)(x).

Inspection/Maintenance:

Operator personnel must inspect the construction site at least once every 14 calendar days and within 24 hours of a storm event of ½-inch or greater. The applicant shall be responsible to secure the services of a design professional or similar professional (inspector) on an on-going basis throughout all phases of the project. Refer to the Inspection/Maintenance Requirements presented earlier in the "Structural and Stabilization Practices." The inspector should review the erosion and sediment controls with respect to the following:

- Whether or not the measure was installed/performed correctly.
- Whether or not there has been damage to the measure since it was installed or performed.
- What should be done to correct any problems with the measure.

The inspector should complete the Stormwater Management Construction Phase BMP Inspection Schedule and Evaluation Checklist, as attached, for documenting the findings and should request the required maintenance or repair for the pollution prevention measures when the inspector finds that it is necessary for the measure to be effective. The inspector should notify the appropriate person to make the changes and submit copies of the form to the Weymouth Highway Department.

Construction Practices

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed: (List Items)	Date of Cleaning/ Repair	Performed by
Silt Sock and Sediment Fence Controls	After heavy rainfall events (minimum weekly)			 Sediment Fence Design/Installation Requirements Sediment Fence Inspection/Maintenance 	yesno		
Stabilized Construction Entrance	After heavy rainfall events (minimum weekly)			 Construction Entrance Design/ Construction Requirements Construction Entrance Inspection/ Maintenance 	yesno		
Temporary Seeding	After heavy rainfall events (minimum weekly)			 Temporary Seeding Planting Procedures Temporary Seeding Inspection/ Maintenance 	yesno		
Geotextiles	After heavy rainfall events (minimum weekly)			1. Geotextile Inspection/Maintenance	yesno		
Mulching & Netting	After heavy rainfall events (minimum weekly)			1. Mulch Maintenance	yesno		
Land Grading	After heavy rainfall events (minimum weekly)			 Land Grading Stabilization Inspection/ Maintenance 	yesno		

Construction Practices

Permanent Seeding	After heavy rainfall events (minimum weekly)	1. Permanent Seeding Inspection/ Maintenance	∏yes ∏no	
Dust Control	After heavy rainfall events (minimum weekly)		□yes □no	
Soil Stockpiling	After heavy rainfall events (minimum weekly)		□yes □no	

(1) Refer to the Massachusetts Stormwater Handbook issued January 2, 2008.

Notes (Include deviations from : Definitive Subdivision Decision and Special Conditions and Approved Plan):

Stormwater Control Manager

M:\MEG\2022 Projects\222-203 Papachristos, Eric - Jackson Square, Weymouth\DOCS\Stormwater\Submission 1\BMP O&M\Building D\222-203-D Construction Phase BMP Evaluation Checklist.doc

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	Irakis N. Papachristos, Manager	
	1 Franklin Street, Boston, MA 02110	
Facility Manager (phone)	<u>203-230.1693</u>	

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u> /		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill	· —				
Measures taken to	contain or clea	n up spill			
Amount of chemica	I / oil recovered	1	Method		
Material collected a	is a result of cle	ean up			
dru	ims containing_				
dru	ims containing				
dru	ims containing				
Location and metho	od of debris dis	posal			
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precauti	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /	/	Time	AM / PM	Inspector	
NRC Date /	/	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151	
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212	
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007	
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN
3.	MASSACHUSETTS DEPARTMENT OF EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEV	
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY

POST-DEVELOPMENT BEST MANAGEMENT PRACTICE OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN

for

JACKSON SQUARE

In

Weymouth, Massachusetts Building D (Assessor's Parcel ID 23-306-11)

Submitted to:

TOWN OF WEYMOUTH

Prepared for:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, Massachusetts 02110

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> August 4, 2023 Revised September 6, 2023

TABLE OF CONTENTS

Long Term Best Management Practices (BMP's)	Page
- Responsible Party Contact Information	1
- Long-Term Operation and Maintenance	1
- BMP Operation and Maintenance	2
- Maintenance Responsibilities	4
- Long-Term Pollution Prevention Plan	4
- Inspection Schedule and Evaluation Checklist	7
- Spill Containment and Management Plan	
- Stormceptor Operation & Maintenance Manual	
- ADS Landmax Operation & Maintenance Manual	

Post-Development Best Management Practice Operation and Maintenance Plan & Long-Term Pollution Prevention Plan

Post-Development Best Management Practices (BMPs) Operation and Maintenance Plan

Responsible Party/Property Owner/Developer contact information:

Property Owner: Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

Developer Contact Information:

Irakis N. Papachristos, Manager 864, 909, 910 Broad Street LLCs and 1409 Commercial Street 1 Franklin Street Boston, MA 02110 Phone: (202) 230.1693

City of Weymouth Contact Information:

Weymouth Department of Public Works 120 Winter Street Weymouth, MA 02188 Phone: 781-337-5100

Best Management Practices (BMPs) of the Commonwealth of Massachusetts Department of Environmental Protection's (DEP's) Stormwater Management Policy (SMP) have been implemented and utilized for the project. The following information provided is to be used as a guideline for monitoring and maintaining the performance of the drainage facilities and to ensure that the quality of water runoff meets the standards set forth by the SMP. The structural Best Management Practices (BMPs) shall be inspected during rainfall conditions during the first year of operation to verify functionality.

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

BMPs included in the design consist of the use of:

- Stormceptor Treatment Units
- Subsurface Pipe Storage System
- Access Drive Pavement Maintenance

Operation:

Once the stormwater management systems have been constructed and site has been permanently stabilized and put into action, the operation of the stormwater management system will function as intended. Stormwater runoff is directed into the trench drain to the First Defense unit, and lastly to the subsurface infiltration system. The stormwater management systems have been designed to attenuate peak flows for the 2-year through 100-year storm events.

Maintenance:

 Paved Areas –Sweepers shall sweep paved areas periodically during dry weather to remove excess sediments and to reduce the amount of sediments that the drainage system shall have to remove from the runoff. The sweeping shall be conducted primarily between March 15th and November 15th. Special attention should be made to sweeping paved surfaces in March and April before spring rains wash residual sand into the drainage system.

The frequency of sweeping shall average:

- Monthly if by a high-efficiency vacuum sweeper
- Bi-weekly if by a regenerative air sweeper
- Weekly if by a mechanical sweeper

Salt used for de-icing on the parking lot during winter months shall be limited as much as possible as this will reduce the need for removal and treatment. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities.

Cost: The property owner should consult local sweeping contractors for detailed cost estimates.

2. Proprietary Pretreatment Units – The proprietary pretreatment units shall be inspected and maintained from the surface, without entry into the unit a minimum of annually and following heavy rain events. Perform maintenance once the stored volume reaches 15% of the unit capacity, or immediately in the event of a spill. Perform Maintenance at quarterly intervals during the first year of installation, so an accurate maintenance schedule can be established. Sediment and debris should be removed through the 12-inch diameter outlet pipe. Alternatively, oil and floatables should be removed through the 12-inch oil inspection port. The requirements for the disposal from the units should be in compliance with all local, state and federal regulations. Consult the Natick Board of Health for transfer station locations prior to disposing the separator contents. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the First Defense units.

Cost: Cleaning should be included along with the routine maintenance of the catch basins. The property owner should consult local vacuum cleaning contractors for detailed cost estimates.

3. Subsurface Detention Pipe System – Proper maintenance of the subsurface detention systems is essential to the long-term effectiveness of the system. The subsurface detention system shall have inspection ports. Additional inspections should be scheduled during the first few months to ensure proper stabilization and

function. After that, they shall be checked semiannually, following heavy rainfalls, defined as a 1-year storm exceeding 2.5 inches of rainfall within twenty-four hours, and periodically during the spring seasonally high groundwater periods to confirm no groundwater intrusion. Water levels in the chambers shall be checked to verify proper drainage. Material removed from the system shall be disposed of in accordance with all applicable local, state, and federal regulations.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

4. Trench Drains - Trench drain grates shall be checked quarterly and following heavy rainfalls to verify that the inlet openings are not clogged by debris. Debris shall be removed from the grates and disposed of in accordance with all applicable regulations.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

5. Pesticides, Herbicides, and Fertilizers - Pesticides and herbicides shall be used sparingly. Fertilizers should be restricted to the use of organic fertilizers only.

All structural BMP's as identified on the site plans will be owned and maintained by the homeowner's association of the development and shall run with the title of the property.

Cost: Included in the routine landscaping maintenance schedule. The Owner should consult local landscaping contractors for details.

6. Snow Removal - Snow accumulations removed from access road should be placed in upland areas only, where sand and other debris will remain after snowmelt for later removal. Excess snow should be removed from the site and properly disposed of in an approved snow disposal facility. Care must be exercised not to deposit snow in the in areas where sand and debris can get into the watercourse.

Cost: The owner should consult local snow removal contractors for a detailed cost estimate.

Maintenance Responsibilities:

All post construction maintenance activities will be documented and kept on file. Annual inspection reports in the form of an Evaluation Checklist, see attached form, will be submitted to the City of Weymouth. Inspections shall be performed by a licensed engineer or similar professional (inspector).

All BMPs located within the drainage easements will be owned and maintained by the developer until such a time that a homeowners association is created, then the homeowners association will maintain the BMPs.

Long-Term Pollution Prevention Plan

Good Housekeeping:

To develop and implement an operation and maintenance program with the goal of preventing or reducing pollutant runoff by keeping potential pollutants from coming into contact with stormwater or being transported off site without treatment, the following efforts will be made:

- Property Management awareness and training on how to incorporate pollution prevention techniques into maintenance operations.
- Follow appropriate best management practices (BMPs) by proper maintenance and inspection procedures.
- Homeowner education outreach, including promoting recycling through the City of Weymouth Transfer Station.

Storage and Disposal of Household Waste and Toxics:

This management measure involves educating the general public on the management considerations for hazardous materials. Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Many people have hazardous chemicals stored throughout their homes, especially in garages and storage sheds. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts. Property owners are encouraged to support the household hazardous product collection events sponsored by the City of Weymouth.

MADEP has prepared several materials for homeowners on how to properly use and dispose of household hazardous materials:

http://www.mass.gov/dep/recycle/reduce/househol.htm

For consumer questions on household hazardous waste call the following number: **DEP Household Hazardous Waste Hotline** 800-343-3420

The following is a list of management considerations for hazardous materials as outlined by the EPA:

- Ensuring sufficient aisle space to provide access for inspections and to improve the ease of material transport;
- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.
- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

The following is a list of commonly used hazardous materials used in the household:

Batteries – automotive and rechargeable nickel cadmium batteries (no alkaline batteries) Gasoline Oil-based paints Fluorescent light bulbs and lamps Pool chemicals Propane tanks Lawn chemicals, Disinfectant Drain clog dissolvers Driveway sealer Flea dips, sprays and collars Houseplant insecticides Metal polishes Mothballs Motor oil and filters Muriatic acid (concrete cleaner) fertilizers and weed killers Turpentine Bug sprays Antifreeze Paint thinners, strippers, varnishes andstains Arts and crafts chemicals Charcoal lighter fluid

Nail polishes and nail polish removers Oven cleaner Household pest and rat poisons Rug and upholstery cleaners Shoe polish Windshield wiper fluid

Landscape Maintenance:

This management measure seeks to control the storm water impacts of landscaping and lawn care practices through education and outreach on methods that reduce nutrient loadings and the amount of storm water runoff generated from lawns. Nutrient loads generated by fertilizer use on suburban lawns can be significant, and recent research has shown that lawns produce more surface runoff than previously thought.

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawns at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Collect rainwater for landscaping/gardening needs (rain barrels and cisterns to capture roof runoff).
- Raise public awareness for promoting the water efficient maintenance practices by informing users of water efficient irrigation techniques and other innovative approaches to water conservation.
- Abide by water restrictions and other conservation measures implemented by the City of Weymouth.
- Water only when necessary.
- Use automatic irrigation systems to reduce water use.

Integrated Pest Management (IPM):

This management measure seeks to limit the adverse impacts of insecticides and herbicides by providing information on alternative pest control techniques other than chemicals or explaining how to determine the correct dosages needed to manage pests.

The presence of pesticides in stormwater runoff has a direct impact on the health of aquatic organisms and can present a threat to humans through contamination of drinking water supplies. The pesticides of greatest concern are insecticides, such as diazinon and chloropyrifos, which even at very low levels can be harmful to aquatic life. The major source of pesticides to urban steams is home application of products designed to kill insects and weeds in the lawn and garden. The following IPM practices will be encouraged:

- Lawn care and landscaping management programs including appropriate pesticide use management as part of program.
- Raise public awareness by referring homeowners to "A Homeowner's Guide to Environmentally Sound Lawncare, Maintaining a Healthy Lawn the IPM Way", Massachusetts Department of Food and Agriculture, Pesticide Bureau or link http://www.mass.gov/dep/water/resources/nonpoint.htm#megaman>

Illicit Discharges:

Illicit discharges are non-stormwater discharges to the storm drain system which typically contain bacteria and other pollutants. All illicit discharges are prohibited. Any illicit discharges should be reported to MassDOT and/or the DPW as applicable to be addressed in accordance with their respective policies.

The following is a list of EPA allowed non-stormwater discharges. If the non-stormwater discharge is not listed, it is prohibited.

- 1. Water line flushing,
- 2. Landscape irrigation,
- 3. Diverted stream flows,
- 4. Rising ground waters,
- 5. Uncontaminated ground water infiltration (as defined at 40 CFR 35.2005(20)),
- 6. Uncontaminated pumped ground water,
- 7. Discharge from potable water sources,
- 8. Foundation drains,
- 9. Air conditioning condensation,
- 10. Irrigation water, springs,
- 11. Water from crawl space pumps,
- 12. Footing drains,
- 13. Lawn watering,
- 14. Flows from riparian habitats and wetlands,
- 15. Street wash water,
- 16. Discharges or flows from firefighting activities occur during emergency conditions.

Project Location: Jackson Square, Assessor's Parcel IDs 23-306-11, Weymouth, MA Stormwater Management – Post Construction Phase Best Management Practices – Inspection Schedule and Evaluation Checklist

Long Term Practices

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed: ☐yes ☐no (List Items)	Date of Cleaning/ Repair	Performed by
Street Sweeping Maintenance	4-times annually - specifically in Spring and Fall			 Sediment build-up Trash and debris Minor Spills (vehicular) 			
Proprietary Pretreatment Units	After heavy rainfall events (minimum annually)			 Sediment level exceeds Manufacturer's specification Trash and debris Floatable oils or hydrocarbons Outlet blockages 			
Subsurface Detention System	After heavy rainfall events (minimum semi- annually)			1. Sediment build-up			
Trench Drains	After heavy rainfall events (minimum quarterly)			 Sediment level exceeds 8" Trash and debris Floatable oils or hydrocarbons Grate or outlet blockages 			

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook (February 2008) for recommendations regarding frequency for inspection and maintenance of specific BMP's.

Notes (Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan):

1.

Stormwater Control Manager _____

Stamp:

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)	Irakis N. Papachristos, Manager	
	1 Franklin Street, Boston, MA 02110	
Facility Manager (phone)	<u>203-230.1693</u>	

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 337-5100
Board of Health Phone:	(781) 335-2000
Conservation Commission Phone:	(781) 340-5007

Further Notification

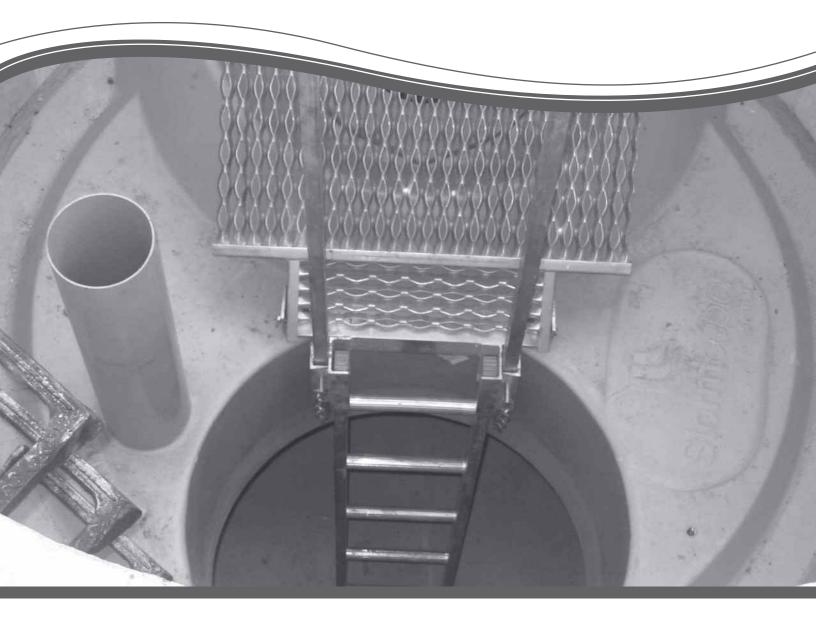
Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u>		Time	AM / PM		
Exact location (Trar	nsformer #)				
Type of equipment					
S / N					
On or near water					
On of fiear water		li yes	, name of body of		
Type of chemical / o	oil spilled				
Amount of chemica					
Cause of spill					
Measures taken to	contain or clear	n up spill			
Amount of chemica	I / oil recovered	<u> </u>	Method		
Material collected a	is a result of cle	an up			
dru	ims containing_				
dru					
Location and metho	-				
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precaution	ons instituted	to prevent a simil	ar occurrence from	n recurring
Spill reported to Ge	neral Office by			Time	AM / PM
Spill reported to DE	P / National Re	esponse Cente	er by		
DEP Date /			AM / PM	Inspector	
NRC Date /	1	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.


 SORBENT PADS	1 BALE
 SAND BAGS (empty)	5
 SPEEDI-DRI ABSORBENT	2 – 40LB BAGS
 12" INFLATABLE PIPE PLUG	1
 SQUARE END SHOVELS	1
 PRY BAR	1
 CATCH BASIN COVER	1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER NAME: PHONE:	BEEPER: CELL PHONE:	
	ALTERNATE: NAME: PHONE:	BEEPER: <u>N/A</u> CEL PHONE: <u>N/A</u>	
2.	FIRE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 337-5151		
	POLICE DEPARTMENT EMERGENCY: 911 BUSINESS: (781) 335-1212		
	DEPARTMENT OF PUBLIC WORKS CONTACT: Director – Kenan Co BUSINESS: (781) 337-5100	onnell	
	CONSERVATION COMMISSION CONTACT: Andrew Hultin BUSINESS: (781) 340-5007		
	BOARD OF HEALTH CONTACT: Board of Health Age BUSINESS: (781) 335-2000	ent Clerk – Clare LaMorte, RN	
3.	MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION EMERGENCY: (617) 556-1133 SOUTHEAST REGION - LAKEVILLE OFFICE: (508) 946-2700		
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802		
	ALTERNATE: U.S. ENVIRONMENTAL EMERGENCY: (617) 223-7265 BUSINESS: (617) 860-4300	PROTECTION AGENCY	

Stormceptor[®] STC Operation and Maintenance Guide

Stormceptor Design Notes

- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.

Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences			
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in. (75 mm)	1 in. (25 mm)	3 in. (75 mm)
Multiple inlet pipes	3 in. (75 mm)	3 in. (75 mm)	Only one inlet pipe.

Maximum inlet and outlet pipe diameters:

Inlet/Outlet Configuration	Inlet Unit STC 450i	In-Line Unit STC 900 to STC 7200	Series* STC 11000 to STC 16000
Straight Through	24 inch (600 mm)	42 inch (1050 mm)	60 inch (1500 mm)
Bend (90 degrees)	18 inch (450 mm)	33 inch (825 mm)	33 inch (825 mm)

- The inlet and in-line Stormceptor units can accommodate turns to a maximum of 90 degrees.
- Minimum distance from top of grade to crown is 2 feet (0.6 m)
- Submerged conditions. A unit is submerged when the standing water elevation at the proposed location of the Stormceptor unit is greater than the outlet invert elevation during zero flow conditions. In these cases, please contact your local Stormceptor representative and provide the following information:
- Top of grade elevation
- Stormceptor inlet and outlet pipe diameters and invert elevations
- Standing water elevation
- Stormceptor head loss, K = 1.3 (for submerged condition, K = 4)

Stormceptor®

OPERATION AND MAINTENANCE GUIDE Table of Content

1.	About Stormceptor	4
2.	Stormceptor Design Overview	4
3.	Key Operation Features	6
	Stormceptor Product Line	
5.	Sizing the Stormceptor System	10
	Spill Controls	
7.	Stormceptor Options	14
8.	Comparing Technologies	17
9.	Testing	18
10.	Installation	18
11.	Stormceptor Construction Sequence	18
12.	Maintenance	19

1. About Stormceptor

The Stormceptor® STC (Standard Treatment Cell) was developed by Imbrium[™] Systems to address the growing need to remove and isolate pollution from the storm drain system before it enters the environment. The Stormceptor STC targets hydrocarbons and total suspended solids (TSS) in stormwater runoff. It improves water quality by removing contaminants through the gravitational settling of fine sediments and floatation of hydrocarbons while preventing the re-suspension or scour of previously captured pollutants.

The development of the Stormceptor STC revolutionized stormwater treatment, and created an entirely new category of environmental technology. Protecting thousands of waterways around the world, the Stormceptor System has set the standard for effective stormwater treatment.

1.1. Patent Information

The Stormceptor technology is protected by the following patents:

- Australia Patent No. 693,164 693,164 707,133 729,096 779401
- Austrian Patent No. 289647
- Canadian Patent No 2,009,208 2,137,942 2,175,277 2,180,305 2,180,383 2,206,338 2,327,768 (Pending)
- China Patent No 1168439
- Denmark DK 711879
- German DE 69534021
- Indonesian Patent No 16688
- Japan Patent No 9-11476 (Pending)
- Korea 10-2000-0026101 (Pending)
- Malaysia Patent No PI9701737 (Pending)
- New Zealand Patent No 314646
- United States Patent No 4,985,148 5,498,331 5,725,760 5,753,115 5,849,181 6,068,765 6,371,690
- Stormceptor OSR Patent Pending Stormceptor LCS Patent Pending

2. Stormceptor Design Overview

2.1. Design Philosophy

The patented Stormceptor System has been designed to focus on the environmental objective of providing long-term pollution control. The unique and innovative Stormceptor design allows for continuous positive treatment of runoff during all rainfall events, while ensuring that all captured pollutants are retained within the system, even during intense storm events.

An integral part of the Stormceptor design is PCSWMM for Stormceptor - sizing software developed in conjunction with Computational Hydraulics Inc. (CHI) and internationally acclaimed expert, Dr. Bill James. Using local historical rainfall data and continuous simulation modeling, this software allows a Stormceptor unit to be designed for each individual site and the corresponding water quality objectives.

By using PCSWMM for Stormceptor, the Stormceptor System can be designed to remove a wide range of particles (typically from 20 to 2,000 microns), and can also be customized to remove a specific particle size distribution (PSD). The specified PSD should accurately reflect what is in the stormwater runoff to ensure the device is achieving the desired water quality objective. Since stormwater runoff contains small particles (less than 75 microns), it is important to design a treatment system to remove smaller particles in addition to coarse particles.

2.2. Benefits

The Stormceptor System removes free oil and suspended solids from stormwater, preventing spills and non-point source pollution from entering downstream lakes and rivers. The key benefits, capabilities and applications of the Stormceptor System are as follows:

- Provides continuous positive treatment during all rainfall events
- Can be designed to remove over 80% of the annual sediment load
- Removes a wide range of particles
- Can be designed to remove a specific particle size distribution (PSD)
- Captures free oil from stormwater
- Prevents scouring or re-suspension of trapped pollutants
- Pre-treatment to reduce maintenance costs for downstream treatment measures (ponds, swales, detention basins, filters)
- Groundwater recharge protection
- Spills capture and mitigation
- Simple to design and specify
- Designed to your local watershed conditions
- Small footprint to allow for easy retrofit installations
- Easy to maintain (vacuum truck)
- Multiple inlets can connect to a single unit
- Suitable as a bend structure
- Pre-engineered for traffic loading (minimum AASHTO HS-20)
- Minimal elevation drop between inlet and outlet pipes
- Small head loss
- Additional protection provided by an 18" (457 mm) fiberglass skirt below the top of the insert, for the containment of hydrocarbons in the event of a spill.

2.3. Environmental Benefit

Freshwater resources are vital to the health and welfare of their surrounding communities. There is increasing public awareness, government regulations and corporate commitment to reducing the pollution entering our waterways. A major source of this pollution originates from stormwater runoff from urban areas. Rainfall runoff carries oils, sediment and other contaminants from roads and parking lots discharging directly into our streams, lakes and coastal waterways.

The Stormceptor System is designed to isolate contaminants from getting into the natural environment. The Stormceptor technology provides protection for the environment from spills that occur at service stations and vehicle accident sites, while also removing contaminated sediment in runoff that washes from roads and parking lots.

3. Key Operation Features

3.1. Scour Prevention

A key feature of the Stormceptor System is its patented scour prevention technology. This innovation ensures pollutants are captured and retained during all rainfall events, even extreme storms. The Stormceptor System provides continuous positive treatment for all rainfall events, including intense storms. Stormceptor slows incoming runoff, controlling and reducing velocities in the lower chamber to create a non-turbulent environment that promotes free oils and floatable debris to rise and sediment to settle.

The patented scour prevention technology, the fiberglass insert, regulates flows into the lower chamber through a combination of a weir and orifice while diverting high energy flows away through the upper chamber to prevent scouring. Laboratory testing demonstrated no scouring when tested up to 125% of the unit's operating rate, with the unit loaded to 100% sediment capacity (NJDEP, 2005). Second, the depth of the lower chamber ensures the sediment storage zone is adequately separated from the path of flow in the lower chamber to prevent scouring.

3.2. Operational Hydraulic Loading Rate

Designers and regulators need to evaluate the treatment capacity and performance of manufactured stormwater treatment systems. A commonly used parameter is the "operational hydraulic loading rate" which originated as a design methodology for wastewater treatment devices.

Operational hydraulic loading rate may be calculated by dividing the flow rate into a device by its settling area. This represents the critical settling velocity that is the prime determinant to quantify the influent particle size and density captured by the device. PCSWMM for Stormceptor uses a similar parameter that is calculated by dividing the hydraulic detention time in the device by the fall distance of the sediment.

$$v_{sc} = \frac{H}{6_{H}} = \frac{Q}{A_{s}}$$

Where:

 v_{sc} = critical settling velocity, ft/s (m/s)

H = tank depth, ft (m)

 $Ø_{\rm H}$ = hydraulic detention time, ft/s (m/s)

Q = volumetric flow rate, ft3/s (m3/s)

 $A_s = surface area, ft^2 (m^2)$

(Tchobanoglous, G. and Schroeder, E.D. 1987. Water Quality. Addison Wesley.)

Unlike designing typical wastewater devices, stormwater systems are designed for highly variable flow rates including intense peak flows. PCSWMM for Stormceptor incorporates all of the flows into its calculations, ensuring that the operational hydraulic loading rate is considered not only for one flow rate, but for all flows including extreme events.

3.3. Double Wall Containment

The Stormceptor System was conceived as a pollution identifier to assist with identifying illicit discharges. The fiberglass insert has a continuous skirt that lines the concrete barrel wall for a depth of 18 inches (457 mm) that provides double wall containment for hydrocarbons storage. This protective barrier ensures that toxic floatables do not migrate through the concrete wall into the surrounding soils.

4. Stormceptor Product Line

4.1. Stormceptor Models

A summary of Stormceptor models and capacities are listed in Table 1.

Table 1. Stormceptor Models				
Stormceptor Model	Total Storage Volume U.S. Gal (L)	Hydrocarbon Storage Capacity U.S. Gal (L)	Maximum Sediment Capacity ft³ (L)	
STC 450i	470 (1,780)	86 (330)	46 (1,302)	
STC 900	952 (3,600)	251 (950)	89 (2,520)	
STC 1200	1,234 (4,670)	251 (950)	127 (3,596)	
STC 1800	1,833 (6,940)	251 (950)	207 (5,861)	
STC 2400	2,462 (9,320)	840 (3,180)	205 (5,805)	
STC 3600	3,715 (1,406)	840 (3,180)	373 (10,562)	
STC 4800	5,059 (1,950)	909 (3,440)	543 (15,376)	
STC 6000	6,136 (23,230)	909 (3,440)	687 (19,453)	
STC 7200	7,420 (28,090)	1,059 (4,010)	839 (23,757)	
STC 11000	11,194 (42,370)	2,797 (10, 590)	1,086 (30,752)	
STC 13000	13,348 (50,530)	2,797 (10, 590)	1,374 (38,907)	
STC 16000	15,918 (60,260)	3,055 (11, 560)	1,677 (47,487)	

NOTE: Storage volumes may vary slightly from region to region. For detailed information, contact your local Stormceptor representative.

4.2. Inline Stormceptor

The Inline Stormceptor, Figure 1, is the standard design for most stormwater treatment applications. The patented Stormceptor design allows the Inline unit to maintain continuous positive treatment of total suspended solids (TSS) year-round, regardless of flow rate. The Inline Stormceptor is composed of a precast concrete tank with a fiberglass insert situated at the invert of the storm sewer pipe, creating an upper chamber above the insert and a lower chamber below the insert.

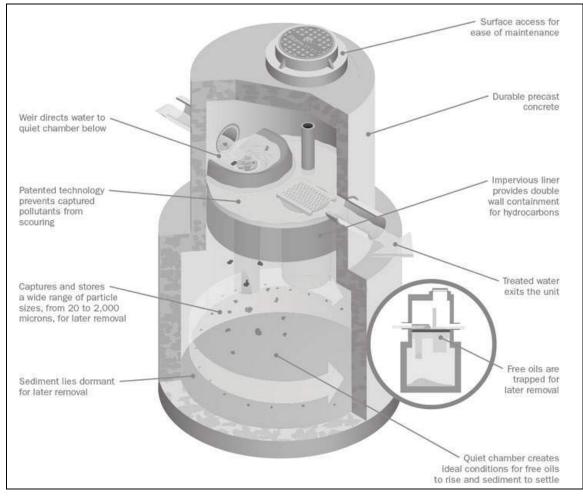


Figure 1. Inline Stormceptor

Operation

As water flows into the Stormceptor unit, it is slowed and directed to the lower chamber by a weir and drop tee. The stormwater enters the lower chamber, a non-turbulent environment, allowing free oils to rise and sediment to settle. The oil is captured underneath the fiberglass insert and shielded from exposure to the concrete walls by a fiberglass skirt. After the pollutants separate, treated water continues up a riser pipe, and exits the lower chamber on the downstream side of the weir before leaving the unit. During high flow events, the Stormceptor System's patented scour prevention technology ensures continuous pollutant removal and prevents re-suspension of previously captured pollutants.

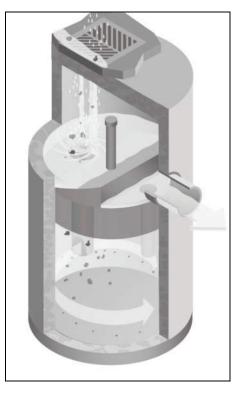


Figure 2. Inlet Stormceptor

4.3. Inlet Stormceptor

The Inlet Stormceptor System, Figure 2, was designed to provide protection for parking lots, loading bays, gas stations and other spill-prone areas. The Inlet Stormceptor is designed to remove sediment from stormwater introduced through a grated inlet, a storm sewer pipe, or both.

The Inlet Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

4.4. Series Stormceptor

Designed to treat larger drainage areas, the Series Stormceptor System, Figure 3, consists of two adjacent Stormceptor models that function in parallel. This design eliminates the need for additional structures and piping to reduce installation costs.

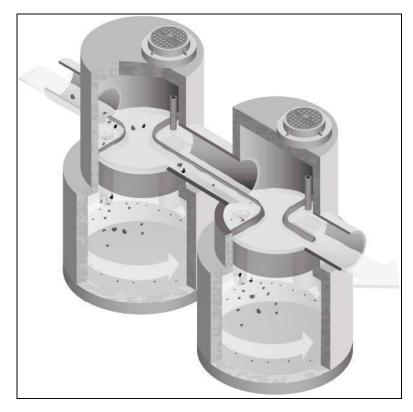


Figure 3. Series System

The Series Stormceptor design operates in the same manner as the Inline unit, providing continuous positive treatment, and ensuring that captured material is not re-suspended.

5. Sizing the Stormceptor System

The Stormceptor System is a versatile product that can be used for many different aspects of water quality improvement. While addressing these needs, there are conditions that the designer needs to be aware of in order to size the Stormceptor model to meet the demands of each individual site in an efficient and cost-effective manner.

PCSWMM for Stormceptor is the support tool used for identifying the appropriate Stormceptor model. In order to size a unit, it is recommended the user follow the seven design steps in the program. The steps are as follows:

STEP 1 – Project Details

The first step prior to sizing the Stormceptor System is to clearly identify the water quality objective for the development. It is recommended that a level of annual sediment (TSS) removal be identified and defined by a particle size distribution.

STEP 2 – Site Details

Identify the site development by the drainage area and the level of imperviousness. It is recommended that imperviousness be calculated based on the actual area of imperviousness based on paved surfaces, sidewalks and rooftops.

STEP 3 – Upstream Attenuation

The Stormceptor System is designed as a water quality device and is sometimes used in conjunction with onsite water quantity control devices such as ponds or underground detention systems. When possible, a greater benefit is typically achieved when installing a Stormceptor unit upstream of a detention facility. By placing the Stormceptor unit upstream of a detention structure, a benefit of less maintenance of the detention facility is realized.

STEP 4 – Particle Size Distribution

It is critical that the PSD be defined as part of the water quality objective. PSD is critical for the design of treatment system for a unit process of gravity settling and governs the size of a treatment system. A range of particle sizes has been provided and it is recommended that clays and silt-sized particles be considered in addition to sand and gravel-sized particles. Options and sample PSDs are provided in PCSWMM for Stormceptor. The default particle size distribution is the Fine Distribution, Table 2, option.

Particle Size	Distribution	Specific Gravity
20	20%	1.3
60	20%	1.8
150	20%	2.2
400	20%	2.65
2000	20%	2.65

Table 2. Fine Distribution

If the objective is the long-term removal of 80% of the total suspended solids on a given site, the PSD should be representative of the expected sediment on the site. For example, a system designed to remove 80% of coarse particles (greater than 75 microns) would provide relatively poor removal efficiency of finer particles that may be naturally prevalent in runoff from the site.

Since the small particle fraction contributes a disproportionately large amount of the total available particle surface area for pollutant adsorption, a system designed primarily for coarse particle capture will compromise water quality objectives.

STEP 5 – Rainfall Records

Local historical rainfall has been acquired from the U.S. National Oceanic and Atmospheric Administration, Environment Canada and regulatory agencies across North America. The rainfall data provided with PCSMM for Stormceptor provides an accurate estimation of small storm hydrology by modeling actual historical storm events including duration, intensities and peaks.

STEP 6 – Summary

At this point, the program may be executed to predict the level of TSS removal from the site. Once the simulation has completed, a table shall be generated identifying the TSS removal of each Stormceptor unit.

STEP 7 – Sizing Summary

Performance estimates of all Stormceptor units for the given site parameters will be displayed in a tabular format. The unit that meets the water quality objective, identified in Step 1, will be highlighted.

5.1. PCSWMM for Stormceptor

The Stormceptor System has been developed in conjunction with PCSWMM for Stormceptor as a technological solution to achieve water quality goals. Together, these two innovations model, simulate, predict and calculate the water quality objectives desired by a design engineer for TSS removal.

PCSWMM for Stormceptor is a proprietary sizing program which uses site specific inputs to a computer model to simulate sediment accumulation, hydrology and long-term total suspended solids removal. The model has been calibrated to field monitoring results from Stormceptor units that have been monitored in North America. The sizing methodology can be described by three processes:

- 1. Determination of real time hydrology
- 2. Buildup and wash off of TSS from impervious land areas
- 3. TSS transport through the Stormceptor (settling and discharge). The use of a calibrated model is the preferred method for sizing stormwater quality structures for the following reasons:
 - » The hydrology of the local area is properly and accurately incorporated in the sizing (distribution of flows, flow rate ranges and peaks, back-to-back storms, inter-event times)
 - » The distribution of TSS with the hydrology is properly and accurately considered in the sizing
 - » Particle size distribution is properly considered in the sizing
 - » The sizing can be optimized for TSS removal
 - » The cost benefit of alternate TSS removal criteria can be easily assessed
 - » The program assesses the performance of all Stormceptor models. Sizing may be selected based on a specific water quality outcome or based on the Maximum Extent Practicable

For more information regarding PCSWMM for Stormceptor, contact your local Stormceptor representative, or visit www.imbriumsystems.com to download a free copy of the program.

5.2. Sediment Loading Characteristics

The way in which sediment is transferred to stormwater can have a considerable effect on which type of system is implemented. On typical impervious surfaces (e.g. parking lots) sediment will build over time and wash off with the next rainfall. When rainfall patterns are examined, a short intense storm will have a higher concentration of sediment than a long slow drizzle. Together with rainfall data representing the site's typical rainfall patterns, sediment loading characteristics play a part in the correct sizing of a stormwater quality device.

Typical Sites

For standard site design of the Stormceptor System, PCSWMM for Stormceptor is utilized to accurately assess the unit's performance. As an integral part of the product's design, the program can be used to meet local requirements for total suspended solid removal. Typical installations of manufactured stormwater treatment devices would occur on areas such as paved parking lots or paved roads. These are considered "stable" surfaces which have non – erodible surfaces.

Unstable Sites

While standard sites consist of stable concrete or asphalt surfaces, sites such as gravel parking lots, or maintenance yards with stockpiles of sediment would be classified as "unstable". These types of sites do not exhibit first flush characteristics, are highly erodible and exhibit atypical sediment loading characteristics and must therefore be sized more carefully. Contact your local Stormceptor representative for assistance in selecting a proper unit sized for such unstable sites.

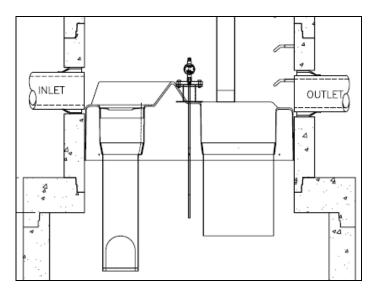
6. Spill Controls

When considering the removal of total petroleum hydrocarbons (TPH) from a storm sewer system there are two functions of the system: oil removal, and spill capture.

'Oil Removal' describes the capture of the minute volumes of free oil mobilized from impervious surfaces. In this instance relatively low concentrations, volumes and flow rates are considered. While the Stormceptor unit will still provide an appreciable oil removal function during higher flow events and/or with higher TPH concentrations, desired effluent limits may be exceeded under these conditions.

'Spill Capture' describes a manner of TPH removal more appropriate to recovery of a relatively high volume of a single phase deleterious liquid that is introduced to the storm sewer system over a relatively short duration. The two design criteria involved when considering this manner of introduction are overall volume and the specific gravity of the material. A standard Stormceptor unit will be able to capture and retain a maximum spill volume and a minimum specific gravity.

For spill characteristics that fall outside these limits, unit modifications are required. Contact your local Stormceptor Representative for more information.


One of the key features of the Stormceptor technology is its ability to capture and retain spills. While the standard Stormceptor System provides excellent protection for spill control, there are additional options to enhance spill protection if desired.

6.1. Oil Level Alarm

The oil level alarm is an electronic monitoring system designed to trigger a visual and audible alarm when a pre-set level of oil is reached within the lower chamber. As a standard, the oil

level alarm is designed to trigger at approximately 85% of the unit's available depth level for oil capture. The feature acts as a safeguard against spills caused by exceeding the oil storage capacity of the separator and eliminates the need for manual oil level inspection.

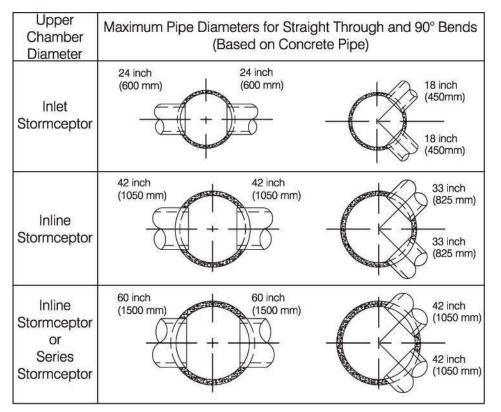
The oil level alarm installed on the Stormceptor insert is illustrated in Figure 4.

Figure 4. Oil level alarm

6.2. Increased Volume Storage Capacity

The Stormceptor unit may be modified to store a greater spill volume than is typically available. Under such a scenario, instead of installing a larger than required unit, modifications can be made to the recommended Stormceptor model to accommodate larger volumes. Contact your local Stormceptor representative for additional information and assistance for modifications.

7. Stormceptor Options


The Stormceptor System allows flexibility to incorporate to existing and new storm drainage infrastructure. The following section identifies considerations that should be reviewed when installing the system into a drainage network. For conditions that fall outside of the recommendations in this section, please contact your local Stormceptor representative for further guidance.

7.1. Installation Depth Minimum Cover

The minimum distance from the top of grade to the crown of the inlet pipe is 24 inches (600 mm). For situations that have a lower minimum distance, contact your local Stormceptor representative.

7.2. Maximum Inlet and Outlet Pipe Diameters

Maximum inlet and outlet pipe diameters are illustrated in Figure 5. Contact your local Stormceptor representative for larger pipe diameters

Figure 5. Maximum pipe diameters for straight through and bend applications

*The bend should only be incorporated into the second structure (downstream structure) of the Series Stormceptor System

7.3. Bends

The Stormceptor System can be used to change horizontal alignment in the storm drain network up to a maximum of 90 degrees. Figure 6 illustrates the typical bend situations of the Stormceptor System. Bends should only be applied to the second structure (downstream structure) of the Series Stormceptor System.

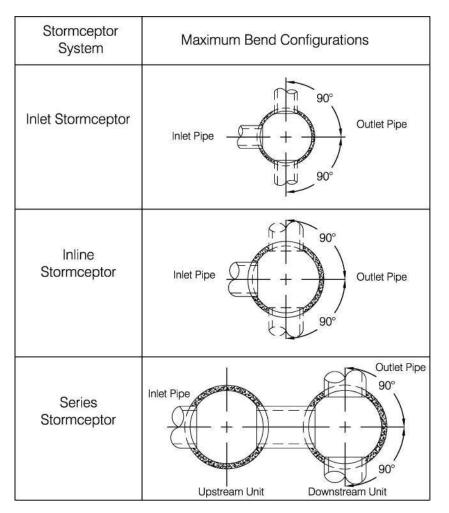


Figure 6. Maximum bend angles

7.4. Multiple Inlet Pipes

The Inlet and Inline Stormceptor System can accommodate two or more inlet pipes. The maximum number of inlet pipes that can be accommodated into a Stormceptor unit is a function of the number, alignment and diameter of the pipes and its effects on the structural integrity of the precast concrete. When multiple inlet pipes are used for new developments, each inlet pipe shall have an invert elevation 3 inches (75 mm) higher than the outlet pipe invert elevation.

7.5. Inlet/Outlet Pipe Invert Elevations

Recommended inlet and outlet pipe invert differences are listed in Table 3.

Number of Inlet Pipes	Inlet System	In-Line System	Series System
1	3 inches (75 mm)	1 inch (25 mm)	3 inches (75 mm)
>1	3 inches (75 mm)	3 inches (75 mm)	Not Applicable

7.6. Shallow Stormceptor

In cases where there may be restrictions to the depth of burial of storm sewer systems. In this situation, for selected Stormceptor models, the lower chamber components may be increased in diameter to reduce the overall depth of excavation required.

7.7. Customized Live Load

The Stormceptor system is typically designed for local highway truck loading (AASHTO HS- 20). When the project requires live loads greater than HS-20, the Stormceptor System may be customized structurally for a pre-specified live load. Contact your local Stormceptor representative for customized loading conditions.

7.8. Pre-treatment

The Stormceptor System may be sized to remove sediment and for spills control in conjunction with other stormwater BMPs to meet the water quality objective. For pretreatment applications, the Stormceptor System should be the first unit in a treatment train. The benefits of pre-treatment include the extension of the operational life (extension of maintenance frequency) of large stormwater management facilities, prevention of spills and lower total life- cycle maintenance cost.

7.9. Head loss

The head loss through the Stormceptor System is similar to a 60 degree bend at a manhole. The K value for calculating minor losses is approximately 1.3 (minor loss = k*1.3v2/2g).

However, when a Submerged modification is applied to a Stormceptor unit, the corresponding K value is 4.

7.10. Submerged

The Submerged modification, Figure 7, allows the Stormceptor System to operate in submerged or partially submerged storm sewers. This configuration can be installed on all models of the Stormceptor System by modifying the fiberglass insert. A customized weir height and a secondary drop tee are added.

Submerged instances are defined as standing water in the storm drain system during zero flow conditions. In these instances, the following information is necessary for the proper design and application of submerged modifications:

- Stormceptor top of grade elevation
- Stormceptor outlet pipe invert elevation
- Standing water elevation

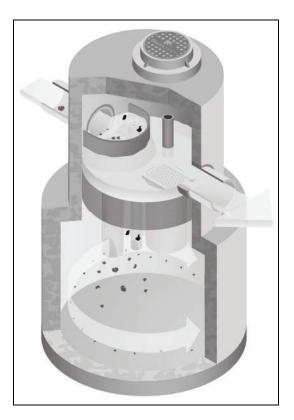


Figure 7. Submerged Stormceptor

8. Comparing Technologies

Designers have many choices available to achieve water quality goals in the treatment of stormwater runoff. Since many alternatives are available for use in stormwater quality treatment it is important to consider how to make an appropriate comparison between "approved alternatives". The following is a guide to assist with the accurate comparison of differing technologies and performance claims.

8.1. Particle Size Distribution (PSD)

The most sensitive parameter to the design of a stormwater quality device is the selection of the design particle size. While it is recommended that the actual particle size distribution (PSD) for sites be measured prior to sizing, alternative values for particle size should be selected to represent what is likely to occur naturally on the site. A reasonable estimate of a particle size distribution likely to be found on parking lots or other impervious surfaces should consist of a wide range of particles such as 20 microns to 2,000 microns (Ontario MOE, 1994).

There is no absolute right particle size distribution or specific gravity and the user is cautioned to review the site location, characteristics, material handling practices and regulatory requirements when selecting a particle size distribution. When comparing technologies, designs using different PSDs will result in incomparable TSS removal efficiencies. The PSD of the TSS removed needs to be standard between two products to allow for an accurate comparison.

8.2. Scour Prevention

In order to accurately predict the performance of a manufactured treatment device, there must be confidence that it will perform under all conditions. Since rainfall patterns cannot be predicted, stormwater quality devices placed in storm sewer systems must be able to withstand extreme events, and ensure that all pollutants previously captured are retained in the system.

In order to have confidence in a system's performance under extreme conditions, independent validation of scour prevention is essential when examining different technologies. Lack of independent verification of scour prevention should make a designer wary of accepting any product's performance claims.

8.3. Hydraulics

Full scale laboratory testing has been used to confirm the hydraulics of the Stormceptor System. Results of lab testing have been used to physically design the Stormceptor System and the sewer pipes entering and leaving the unit. Key benefits of Stormceptor are:

- Low head loss (typical k value of 1.3)
- Minimal inlet/outlet invert elevation drop across the structure
- Use as a bend structure
- Accommodates multiple inlets

The adaptability of the treatment device to the storm sewer design infrastructure can affect the overall performance and cost of the site.

8.4. Hydrology

Stormwater quality treatment technologies need to perform under varying climatic conditions. These can vary from long low intensity rainfall to short duration, high intensity storms. Since a treatment device is expected to perform under all these conditions, it makes sense that any system's design should accommodate those conditions as well.

Long-term continuous simulation evaluates the performance of a technology under the varying conditions expected in the climate of the subject site. Single, peak event design does not provide this information and is not equivalent to long-term simulation. Designers should request long-term simulation performance to ensure the technology can meet the long-term water quality objective.

9. Testing

The Stormceptor System has been the most widely monitored stormwater treatment technology in the world. Performance verification and monitoring programs are completed to the strictest standards and integrity. Since its introduction in 1990, numerous independent field tests and studies detailing the effectiveness of the Stormceptor System have been completed.

- Coventry University, UK 97% removal of oil, 83% removal of sand and 73% removal of peat
- National Water Research Institute, Canada, scaled testing for the development of the Stormceptor System identifying both TSS removal and scour prevention.
- New Jersey TARP Program full scale testing of an STC 900 demonstrating 75% TSS removal of particles from 1 to 1000 microns. Scour testing completed demonstrated that the system does not scour. The New Jersey Department of Environmental Protection was followed.
- City of Indianapolis full scale testing of an STC 900 demonstrating over 80% TSS removal of particles from 50 microns to 300 microns at 130% of the unit's operating rate. Scour testing completed demonstrated that the system does not scour.
- Westwood Massachusetts (1997), demonstrated >80% TSS removal
- Como Park (1997), demonstrated 76% TSS removal
- Ontario MOE SWAMP Program 57% removal of 1 to 25 micron particles
- Laval Quebec 50% removal of 1 to 25 micron particles

10. Installation

The installation of the concrete Stormceptor should conform in general to state highway, or local specifications for the installation of manholes. Selected sections of a general specification that are applicable are summarized in the following sections.

10.1. Excavation

Excavation for the installation of the Stormceptor should conform to state highway, or local specifications. Topsoil removed during the excavation for the Stormceptor should be stockpiled in designated areas and should not be mixed with subsoil or other materials.

Topsoil stockpiles and the general site preparation for the installation of the Stormceptor should conform to state highway or local specifications.

The Stormceptor should not be installed on frozen ground. Excavation should extend a minimum of 12 inches (300 mm) from the precast concrete surfaces plus an allowance for shoring and bracing where required. If the bottom of the excavation provides an unsuitable foundation additional excavation may be required.

In areas with a high water table, continuous dewatering may be required to ensure that the excavation is stable and free of water.

10.2. Backfilling

Backfill material should conform to state highway or local specifications. Backfill material should be placed in uniform layers not exceeding 12 inches (300mm) in depth and compacted to state highway or local specifications.

11. Stormceptor Construction Sequence

The concrete Stormceptor is installed in sections in the following sequence:

- 1. Aggregate base
- 2. Base slab
- 3. Lower chamber sections
- 4. Upper chamber section with fiberglass insert
- 5. Connect inlet and outlet pipes
- 6. Assembly of fiberglass insert components (drop tee, riser pipe, oil cleanout port and orifice plate
- 7. Remainder of upper chamber
- 8. Frame and access cover

The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.

Adjustment of the Stormceptor can be performed by lifting the upper sections free of the excavated area, re-leveling the base and reinstalling the sections. Damaged sections and gaskets should be repaired or replaced as necessary. Once the Stormceptor has been constructed, any lift holes must be plugged with mortar.

12. Maintenance

12.1. Health and Safety

The Stormceptor System has been designed considering safety first. It is recommended that confined space entry protocols be followed if entry to the unit is required. In addition, the fiberglass insert has the following health and safety features:

- Designed to withstand the weight of personnel
- A safety grate is located over the 24 inch (600 mm) riser pipe opening
- Ladder rungs can be provided for entry into the unit, if required

12.2. Maintenance Procedures

Maintenance of the Stormceptor system is performed using vacuum trucks. No entry into the unit is required for maintenance (in most cases). The vacuum service industry is a well- established sector of the service industry that cleans underground tanks, sewers and catch basins. Costs to clean a Stormceptor will vary based on the size of unit and transportation distances.

The need for maintenance can be determined easily by inspecting the unit from the surface. The depth of oil in the unit can be determined by inserting a dipstick in the oil inspection/cleanout port.

Similarly, the depth of sediment can be measured from the surface without entry into the Stormceptor via a dipstick tube equipped with a ball valve. This tube would be inserted through the riser pipe. Maintenance should be performed once the sediment depth exceeds the guideline values provided in the Table 4.

Particle Size	Specific Gravity	
Model	Sediment Depth inches (mm)	
450i	8 (200)	
900	8 (200)	
1200	10 (250)	
1800	15 (381)	
2400	12 (300)	
3600	17 (430)	
4800	15 (380)	
6000	18 (460)	
7200	15 (381)	
11000	17 (380)	
13000	20 (500)	
16000	17 (380)	
* based on 15% of the Stormceptor unit's total storage		

Table 4. Sediment Depths Indicating Required Servicing*

Although annual servicing is recommended, the frequency of maintenance may need to be increased or reduced based on local conditions (i.e. if the unit is filling up with sediment more quickly than projected, maintenance may be required semi-annually; conversely once the site has stabilized maintenance may only be required every two or three years).

Oil is removed through the oil inspection/cleanout port and sediment is removed through the riser pipe. Alternatively oil could be removed from the 24 inches (600 mm) opening if water is removed from the lower chamber to lower the oil level below the drop pipes.

The following procedures should be taken when cleaning out Stormceptor:

- 1. Check for oil through the oil cleanout port
- 2. Remove any oil separately using a small portable pump
- 3. Decant the water from the unit to the sanitary sewer, if permitted by the local regulating authority, or into a separate containment tank
- 4. Remove the sludge from the bottom of the unit using the vacuum truck
- 5. Re-fill Stormceptor with water where required by the local jurisdiction

12.3. Submerged Stormceptor

Careful attention should be paid to maintenance of the Submerged Stormceptor System. In cases where the storm drain system is submerged, there is a requirement to plug both the inlet and outlet pipes to economically clean out the unit.

12.4. Hydrocarbon Spills

The Stormceptor is often installed in areas where the potential for spills is great. The Stormceptor System should be cleaned immediately after a spill occurs by a licensed liquid waste hauler.

12.5. Disposal

Requirements for the disposal of material from the Stormceptor System are similar to that of any other stormwater Best Management Practice (BMP) where permitted. Disposal options for the sediment may range from disposal in a sanitary trunk sewer upstream of a sewage treatment plant, to disposal in a sanitary landfill site. Petroleum waste products collected in the Stormceptor (free oil/chemical/fuel spills) should be removed by a licensed waste management company.

12.6. Oil Sheens

With a steady influx of water with high concentrations of oil, a sheen may be noticeable at the Stormceptor outlet. This may occur because a rainbow or sheen can be seen at very small oil concentrations (<10 mg/L). Stormceptor will remove over 98% of all free oil spills from storm sewer systems for dry weather or frequently occurring runoff events.

The appearance of a sheen at the outlet with high influent oil concentrations does not mean the unit is not working to this level of removal. In addition, if the influent oil is emulsified the Stormceptor will not be able to remove it. The Stormceptor is designed for free oil removal and not emulsified conditions.

SUPPORT

Drawings and specifications are available at www.ContechES.com. Site-specific design support is available from our engineers.

©2020 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

ADS LANDMAX® RETENTION/DETENTION PIPE SYSTEM SPECIFICATION

Scope

This specification describes ADS LandMax Retention/Detention Pipe Systems for use in non-pressure gravity-flow storm water collection systems utilizing a continuous outfall structure.

Pipe Requirements

ADS Retention/Detention systems may utilize any of the various pipe products below:

- N-12[®] ST IB pipe (per AASHTO) shall meet AASHTO M294, Type S or ASTM F2306
- N-12 ST IB pipe (per ASTM F2648) shall meet ASTM F2648
- N-12 MEGA GREEN[™] ST IB shall meet ASTM F2648
- N-12 WT IB pipe (per AASHTO) shall meet AASHTO M294, Type S or ASTM F2306
- N-12 WT IB pipe (per ASTM F2648) shall meet ASTM F2648
- N-12 MEGA GREEN[™] WT IB shall meet ASTM F2648

All products shall have a smooth interior and annular exterior corrugations. All ST IB pipe products are available as perforated or non-perforated. WT IB pipe products are only available as non-perforated.

Product-specific pipe specifications are available in the Drainage Handbook Section 1 Specifications.

Joint Performance

Plain End/Soil-tight (ST IB)

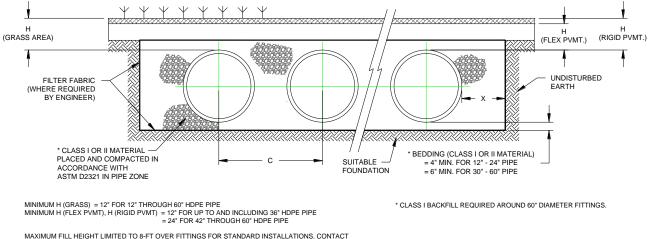
ST IB pipe shall be joined using a bell & spigot joint. The bell & spigot joint shall meet the soil-tight requirements of ASTM F2306 and gaskets shall meet the requirements of ASTM F477.

Plain End pipe & fittings connections shall be joined with coupling bands covering at least two full corrugations on each end of the pipe. Gasketed soil-tight coupling band connections shall incorporate a closed-cell synthetic expanded rubber gasket meeting the requirements of ASTM D1056 Grade 2A2. Gaskets, when applicable, shall be installed by the pipe manufacturer.

Watertight (WT IB):

WT IB pipe shall be joined using a bell & spigot joint. The joint shall be watertight according to the requirements of ASTM D3212. Gaskets shall meet the requirements of ASTM F477. 12- through 60-inch (300 to 1500 mm) diameters shall have an exterior bell wrap installed by the manufacturer.

Pipe & fitting connections shall be with a bell and spigot connection utilizing a welded bell and valley or saddle gasket. The joint shall meet the watertight requirements of ASTM D3212 and gaskets shall meet the requirements of ASTM F477. Detention systems are subject to greater leakage than typical single run storm sewer application and therefore are not appropriate for applications requiring long-term fluid containment or hydrostatic pressure. For additional details refer to Technical Note 7.01 *Rainwater Harvesting with HDPE Cisterns*.


Fittings

Fittings shall conform to ASTM F2306 and meet joint performance requirements indicated above for fitting connections. Custom fittings are available and may require special installation criterion.

Installation

Installation shall be in accordance with ASTM D2321 and ADS recommended installation guidelines, with the exception that minimum cover in non-traffic areas for 12- through 60-inch (300 to 1500mm) diameters shall be one foot (0.3m). Minimum cover in trafficked areas for 12- through 36-inch (300 to 900mm) diameters shall be one foot (0.3m) and for 42- through 60-inch (1050 to 1500mm) diameters, the minimum cover shall be two feet (0.6m). Backfill shall consist of Class 1 (compacted) or Class 2 (minimum 90% SPD) material, with the exception that 60-inch fittings shall use Class 1 (compacted) material only. Minimum cover heights do not account for pipe buoyancy. Refer to ADS Technical Note 5.05 HDPE Pipe Flotation for buoyancy design considerations. Maximum cover over system using standard backfill is 8 feet (2.4m); contact a representative when maximum fill height may be exceeded. Additional installation requirements are provided in the Drainage Handbook Section 6 Retention/Detention.

TYPICAL RETENTION/DETENTION CROSS SECTION

MAXIMUM FILL HEIGHT LIMITED TO 8-FT OVER FITTINGS FOR STANDARD INSTALLATIONS. CONTACT REPRESENTATIVE WHEN MAXIMUM FILL HEIGHTS EXCEED 8-FT FOR INSTALLATION CONSIDERATIONS.

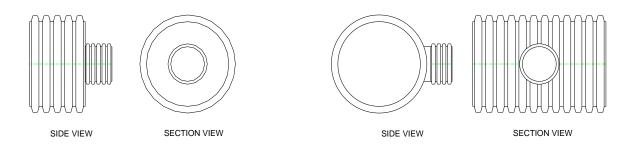
ADDITIONAL REFERENCES

Drainage Handbook Section 6 *Retention/Detention* Technical Note 6.01 *Retention/Detention System Maintenance* Technical Note 7.01 *Rainwater Harvesting with HDPE Pipe* Standard Detail 701 Retention-Detention System (Plan View) Standard Detail 702 Retention-Detention System (Cross-Section) Standard Detail 703 Retention-Detention System (Riser & Cleanout) Standard Detail 704 Flowable Fill Installation (Nyloplast Riser) All references are available for download at <u>www.adspipe.com</u>

Technical Note

TN 6.01 Retention/Detention System Maintenance

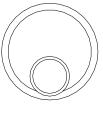
This document is provided for informational purposes only and is meant only to be a guide. Individuals using this information should make their own decisions as to suitability of this guideline for their individual projects and adjust accordingly.


Introduction

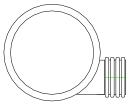
A retention/detention system is comprised of a series of pipes and fittings that form an underground storage area, which retains or detains storm water runoff from a given area. As sediment and debris settle out of the detained stormwater, build up occurs that requires the system to be regularly inspected and cleaned in order for the system to perform as originally designed. The following provides the available fittings and guidelines for inspection and maintenance of an HDPE underground storage system.

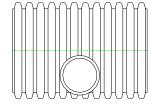
System Accessories and Fittings

Concentric Reducers


Concentric Reducers are fittings that transition between two pipes, either in line with one another or at perpendicular angles. The centerlines of the two pipes are at the same elevation. When a concentric reducer is used to connect the manifold pipe to the lateral pipes, most debris will be trapped in the manifold pipe.

Eccentric Reducers


Eccentric Reducers are fittings that transition between two pipes, either in line with one another or at perpendicular angles. The inverts of the two pipes are at the same elevations. When an eccentric reducer is used to connect the manifold pipe to the lateral pipes, most debris will follow the flow of the storm water into the lateral pipes.

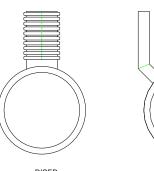

SIDE VIEW

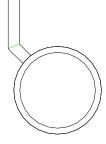
SECTION VIEW

SIDE VIEW

SECTION VIEW

adspipe.com 1-800-821-6710


Riser


Each retention/detention system typically has risers strategically placed for maintenance and inspection of the system. These risers are typically 24" in diameter or larger and are placed on the manifold fittings.

Cleanouts

Cleanout ports are usually 4-, 6-, or 8-in diameter pipe and are placed on the manifold fittings. They are used for entrance of a pipe from a vacuum truck or a water-jetting device.

For a complete listing of available fittings and components please refer to the *ADS Fittings Manual*.

RISER CROSS-SECTION VIEW

CLEANOUT CROSS-SECTION VIEW

Maintenance Overview of a Retention/Detention System

Maintaining a clean and obstruction-free retention/detention system helps to ensure the system performs the intended function of the primary design. Build up of debris may obstruct flow through the laterals in a retention system or block the entranceway of the outlet pipe in a detention system. This may result in ineffective operation or complete failure of the system. Additionally, surrounding areas may potentially run the risk of damage due to flooding or other similar issues.

Inspection/Maintenance Frequency

All retention/detention systems must be cleaned and maintained. Underground systems may be maintained more cost effectively if these simple guidelines are followed. Inspection should be performed at a minimum of once per year. Cleaning should be done at the discretion of individuals responsible to maintain proper storage and flow. While maintenance can generally be performed year round, it should be scheduled during a relatively dry season.

Pre-Inspection

A post-installation inspection should be performed to allow the owner to measure the invert prior to accumulation of sediment. This survey will allow the monitoring of sediment build-up without requiring access to the retention/detention system.

The following is the recommended procedure for pre-inspections:

- 1) Locate the riser section or cleanouts of the retention/detention system. The riser will typically be 24" in diameter or larger and the cleanouts are usually 4", 6" or 8" in diameter.
- 2) Remove the lid of the riser or clean outs.
- 3) Insert a measuring device into the opening and make note to a point of reference on the stick or string. (This is done so that sediment build up can be determined in the future without having to enter the system.)

Inspection/Maintenance

A retention/detention system should be inspected at a minimum of one time a year or after major rain events if necessary.

The following is the recommended procedure to inspect system in service:

- 1) Locate the riser section of the retention/detention system. The riser will typically be 24" in diameter or larger.
- 2) Remove the lid from the riser.
- 3) Measure the sediment buildup at each riser and cleanout location. Only certified confined space entry personnel having appropriate equipment should be permitted to enter the retention/detention System.
- 4) Inspect each manifold, all laterals, and outlet pipes for sediment build up, obstructions, or other problems. Obstructions should be removed at this time.
- 5) If measured sediment build up is between 5% 20% of the pipe diameter, cleaning should be considered; if sediment build up exceeds 20%, cleaning should be performed at the earliest opportunity. A thorough cleaning of the system (manifolds and laterals) shall be performed by either manual methods or by a vacuum truck.

The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. © 2022 Advanced Drainage Systems, Inc. TN 6.01 May 2022

adspipe.com 1-800-821-6710