

Stormwater Management Report For

Hanover Weymouth Residential Development 1325 Washington Street Weymouth, MA

April 8, 2021

Prepared for: Hanover R.S. Limited Partnership One Marina Park Drive Suite 701 Boston, MA 02210

> Prepared by: Crocker Design Group, LLC 2 Sharp Street Unit B Hingham, MA 02043 781-919-0808

Gabe Crocker Massachusetts P.E. License #47917

TABLE OF CONTENTS

1. NARRATIVE

- 1.1 EXECUTIVE SUMMARY
- 1.2 APPROVALS BEING SOUGHT
- 1.3 FEMA- FLOOD PLAIN SUMMARY
- 1.4 ON-SITE SOIL INFORMATION
- 1.5 WETLANDS AND ENVIRONMENTAL RESOURCE AREAS ANALYSIS
- 1.6 WETLAND MITIGATION AND REPLICATION
- 1.7 OBJECTIVE OF CALCULATIONS
- 1.8 METHODOLOGY
- 1.9 SITE HYDROLOGY
- 1.10 STORMWATER MANAGEMENT
- 1.11 BEST MANAGEMENT PRACTICES (BMP'S)
- 1.12 PIPE SIZING
- 1.13 CONCLUSION
- 1.14 FIGURES:
 - FIG 1 USGS MAP FIG 2 ORTHOGRAPHIC/AERIAL MAP FIG 3 FEMA FLOODPLAIN MAP (EFFECTIVE PANEL) FIG 4 FEMA FLOODPLAIN MAP (PRELIMINARY PANEL) FIG 5 NHESP HABITAT MAP FIG 6 MASSDEP WETLANDS MAP

2. MA DEP CHECKLIST FOR STORMWATER REPORT

- 2.1 DEP STORMWATER CHECKLIST
- 2.2 ILLICIT DISCHARGE STATEMENT

3. STORMWATER HYDROLOGY MODEL

- 3.1 EXISTING HYDROCAD MODEL
- 3.2 EXISTING CONDITIONS WATERSHED MAP
- 3.3 PROPOSED HYDROLOGY
- 3.4 PROPOSED CONDITIONS WATERSHED MAP

4. STORMWATER MANAGEMENT CALCULATIONS

- 4.1 Standard 3: RECHARGE CALCULATIONS
- 4.2 DRAWDOWN TIME
- 4.3 STANDARD 4: WATER QUALITY CALCULATIONS PROPOSED WATER QUALITY CATCHMENT MAP
- 4.4 RIP RAP SPLASH PAD CALCULATIONS
- 4.5 TSS REMOVAL

5. LONG-TERM OPERATION & MAINTENANCE

- 5.1 OPERATION & MAINTENANCE NARRATIVE
- 5.2 MAINTENANCE MATRIX
- 5.3 O&M BMP MAP
- 5.4 MANUFACTURER'S RECOMMENDATIONS AND CERTIFICATIONS

6. SOILS TESTING DATA

- 6.1 NRCS WEB SOIL SURVEY
- 6.2 TEST PIT PLAN & LOGS

7. WETLAND MITIGATION AND REPLICATION REPORT

7.1 WETLAND REPLICATION AND BUFFER ZONE RESTORATION & ENHANCEMENT PLAN

8. HYDRAULIC PIPE SIZING

9. ORAD MA DEP FILE NO. 81-1253

10. ENDORSED ANR PLAN – DATED 08/10/2020

11. PROJECT PLANS – DATED 4/08/2021 (Under Separate Cover)

1.1 EXECUTIVE SUMMARY

In accordance with the provisions of the Town of Weymouth Zoning Bylaws, the Applicant, Hanover R.S. Limited Partnership (Hanover), proposes to construct a mixed use of leasing with 270 residential units, including (148) 1-bedroom units, (106) 2-bedroom units and (14) 3-bedroom units in 270,000±SF of floor area, 4,200SF of commercial/retail space and 8,910SF development amenity and support space with associated parking and site infrastructure on 9.8± acres of land on the subject property with frontage at 1325 Washington Street in Weymouth, Massachusetts.

The project site is comprised of several parcels identified as Assessors Map 35, Block 448, Lot 7, 8, 9 and 25 by the Norfolk County Registry of deeds. The project site is a portion of a 19.9-acre parcel bound by Washington Street to the north, White Oaks Lane to the east, Brady Enterprises/ Moore Rd the south and an active quarry the west. The project site development area is approximately 9.8+/- acre portion of the overall property. See Figure 1 – USGS Map and Figure 2 –Aerial Map. The project site is located on a newly consolidated parcel, Lot A (19.9 acres) per ANR plan endorsed on September 3, 2020 and enclosed in Section 10. A follow up ANR to divide the land into Hanover's parcel and a remainder parcel, to be retained by seller, will follow. The Hanover Parcel is to be approximately a 9.8± acres portion of Lot A.

This Stormwater Report and the accompanying permit applications, include all of the parcels and work proposed in the above narrative.

The property is within three (3) Zoning Districts including HT (fronting on Washington Street); R-2 (abutting both sides of White Oaks Lane); and I-1 (majority of property behind HT and R-2). The entirety of the property is included within the Commercial Corridor Overlay District.

1.2 APPROVALS BEING SOUGHT

A Notice of Intent (NOI) is being filed with the Town of Weymouth Conservation Commission and the Massachusetts Department of Environmental Protection (MA DEP) for the proposed work. The project is proposed to be permitted through a Special Permit process with Site Plan Review with the Board of Zoning Appeals (application has been filed) under the Commercial Corridor Overlay District (CCOD) as a Mixed-Use Development project.

The applicant requests that the permit approvals encompass the entirety of the scope listed below, and as shown in the accompanying plan set:

- The construction of two (2) new mixed-use buildings that include residential and commercial space
- Amenity and support space
- Surface parking for vehicles
- Associated drainage and utilities
- Ancillary buildings including mail buildings, bicycle storage, carports and maintenance functions.

1.3 FEMA – FLOODPLAIN SUMMARY

This site is not located within the "current" mapped 100-year floodplain per FEMA Firm Panel 25021C0233E (please refer to Figure 3) with effective date of 7/17/2012. While, FEMA has prepared a "Preliminary Plan" (please refer to Figure 4) that is available on their website with a date of 6/19/2020, this plan has not been "adopted" by the Town of Weymouth and it is not referenced in the current Zoning Bylaw.

1.4 ON-SITE SOIL INFORMATION

The Natural Resource Conservation Service (NRCS) maps the majority of on-site soil as Hollis- Rock outcrop- Charlton Complex, Oto 15 percent slopes, Soil Map Unit 104C, classified as Hydrologic Soil Group (HSG) "D." This soil is primarily representative in the location of the proposed development. According to the NRCS mapping, there are also three (5) other soils present in the southern areas of the parcel; Swansea Muck, Soil Map Unit 51, Freetown Muck, Soil Map Unit 52, Whitman Fine Sandy Loam, Soil Map Unit 73A, Urban Land, Soil Map Unit 602 and Unorthents loamy, Soil Map 654. The soils within the area of the proposed development have "D" HSG Ratings, and this rating was used for the drainage calculations and design enclosed with this permit submission.

A test pit plan and associated logs, observed by Sanborn Head on November 12, 2020, are enclosed in Section 6. Please refer to Section 6 for complete soil information.

1.5 WETLANDS AND ENVIRONMENTAL RESOURCE AREAS ANALYSIS

The project contains several jurisdictional wetland resources and therefore the project must be permitted through MA DEP and the Weymouth Conservation Commission. An Order of Resource Area Delineation (ORAD) (MA DEP# 81-1253) was issued on July 28, 2020 for the entirety of the 19.9 acre parcel and is enclosed with this report in Section 8. Work is proposed within the buffer zones of the Bordering Vegetated Wetlands (BVW) within the site. The project also includes the filling of two (2), local jurisdiction only, Isolated Vegetated Wetlands (IVW) totaling approximately 4,400 SF which will require approval by the Commission and will trigger 2 to 1 wetland replication on the site under the Bylaw. Work within the 100 FT Resource Area of the local jurisdictional only vernal pool (and its outer 100' buffer zone) is proposed. The plan includes buffer zone enhancement/restoration work proximate to the locally jurisdictional quarry hole/vernal pool, accordingly.

The site does not contain any areas designated as Estimated or Priority Endangered Species Habitat, certified vernal pools or Areas of Critical Environmental Concern. The site does not contain areas classified as Estimated Habitats of Rare Wildlife by the Natural Heritage and Endangered Species Program of the Division of Fisheries and Wildlife. The project site is not within any "Critical Areas" (Per MassGIS Oliver Viewer) which would require enhanced water quality treatment per the Massachusetts Stormwater Standards.

The wetland resource areas throughout and bordering the property were delineated by South River Environmental on January 7, 2020, March 27, 2020 and May 14, 2020. An Order of Resource Area

Delineation (ORAD) (MA DEP# 034-1350) was issued on July 28, 2020 and is enclosed with this submission in Section 8.

The following is a summary of the buffer and protection zones that portions of the project are proposed within:

1) <u>100' Bordering Vegetated Wetland (BVW) Buffer (310 CMR 10.55).</u>

Portions of the proposed improvements, including, but not limited to a parking lot, a retaining wall, portions of the residential buildings, garages, a swimming pool/outdoor amenity space and related drainage and utilities are proposed within the 100' BVW buffer zone. The proposed construction will improve the quality and the peak flows of the runoff into the BVW from within the 100' BVW buffer. Please see the accompanying plan set and supporting information for more details on the work proposed within the 100' BVW.

2) 25' BVW No- Touch-Buffer (Weymouth Wetland Regulations, Part IX (2))

The Town of Weymouth does have Town by-laws for wetland protection, including a 25' "Notouch" Buffer to the BVW for residential projects. The project complies, and provides a 25' buffer to the surrounding BVW's.

3) Isolated Vegetated Wetlands (IVW), Vernal Pools (Weymouth Wetland Regulations)

Local jurisdictional wetland impacts are being proposed including the filling of two (2) locally jurisdictional IVW including the wetland series "H" and "G." The total square footage impact of the filling is approximately 4,437SF. The Town Bylaws require at 2:1 wetland replication. A suitable area for replication (approximately 5,100SF±) has been identified along the Western side of the large BVW. The rest of the required mitigation is proposed to be buffer zone enhancement throughout the project site. Details of the proposed mitigation are included on Sheets W-1 and W-2 of the Site Plans, date 4/8/2021, enclosed with this Report. The enhancement area is approximately 4,800SF± bringing the total mitigation to 9,900SF, greater than the 2:1 required.

Two "quarry holes" exist within the acre including series "E" and "F". These are considered local jurisdiction only IVW and local jurisdiction only vernal pools. The Weymouth Wetland's Bylaw defines a "Vernal Pool" as "Includes a confined basin depression which, at least in most years, holds water for a minimum of two months during the spring and/or summer, and which is free of adult fish populations, as well as the area within 100 feet of the mean annual boundary of such a depression, regardless of whether the site has been certified by the Massachusetts Division of Wildlife and Fisheries. The bylaw defines the "resource area" to include an area of 100 feet of the mean annual boundary of such a depression. Thus, the "resource area" would extend out 100 feet from the quarry hole in all directions. Mitigation

for work proposed within the 100ft buffer is provided through the buffer enhancements along the two (2) sections of Quarry Road closest to the quarry hole.

1.6 WETLAND MITIGATION AND REPLICATION

The Project will result in approximately 4,437SF of permanent impacts to two Isolated Vegetated Wetlands ("IVWs") that are regulated under the Weymouth Wetlands Protection Bylaw (the "Bylaw"). The Project does not propose any alterations to Bordering Vegetated Wetlands ("BVW") regulated under the Bylaw and Massachusetts Wetlands Protection Act regulations (310 CMR 10.55). Approximately 5,100±SF of new wetlands will be provided as mitigation for unavoidable impacts to the two IVWs (a slightly greater than 1:1 ratio). In addition, the Project proposes to enhance and restore portions of the adjoining buffer zone, including upland area habitat associated with a vernal pool, with native plantings like those found in the surrounding area. Adding approximately 4,800SF± of buffer zone enhancement yields 9,900SF of total mitigation, exceeding the 2:1 required.

Wetland Restoration and Enhancement

The wetland replication area is described in further detail in the "Wetland Replication and Buffer Zone Enhancement Plan," which is enclosed in this report Section 7. The has been designed in accordance with the Bylaw and modeled, in part, after the relevant sections of the Massachusetts Department of Environmental Protection's ("MassDEP") "Massachusetts Inland Wetland Replication Guidelines" (MassDEP, March 2002).

The proposed location of Wetland Replication is also included on Sheet W-1 in the enclosed Site Plans. The wetland replication area is proposed along the eastern edge of the Project Site, tying into Wetland Series E, an expansive forested wetland system characterized by a red maple (*Acer rubrum*) and black gum (*Nyssa sylvatica*) overstory. Wetland Series E will serve as the reference wetland, containing dense shrub species along its perimeter, including primarily fetterbush, highbush blueberry, maleberry (*Lyonia ligustrina*), sweet pepperbush (*Clethra alnifolia*), and swamp azalea (*Rhododendron viscosum*). An existing quarry access road, approximately 20 feet wide, borders the reference wetland along its western edge. Approximately 5,100SF of this access road is proposed to be removed and converted to wetland replication area.

A predominantly scrub-shrub vegetation cover type will be created within the proposed replication area, interspersed with tree plantings. In addition, consideration will be given to leaving existing mature upland trees on hummocks within the replication site, as they can provide shading and reduce heat within the soil strata and resultant evaporation. Trees to remain in place on mounds will be selected and flagged by a qualified wetland scientist prior to initiating clearing activities. The planted shrubs will be planted randomly throughout the replication area to blend with the vegetation composition of the adjacent wetland. Please refer to Sheets W-2 and W-3 for the Wetland Replication Planting Table.

Work within the wetland restoration area also includes the removal of the existing culvert. The existing gravel road over the culvert is to be dug to an elevation that will provide hydraulic conductivity between

the wetlands. A new headwall with an orifice shall be constructed, and the top of the headwall shall match the existing road grade, and the proposed orifice invert will match the existing pipe invert. Approximately 500SF± of wetland area will be temporarily altered to install the headwall. This area will be restored after work completion.

Buffer Zone Restoration and Enhancement

To enhance wildlife habitat value within the 100-foot buffer zone adjacent to the Project, the southern portion of the existing access road adjacent to the constructed wetland replication area will be restored and planted. Construction of the "Buffer Zone Restoration and Enhancement Area" will consist of: (1) removal of fill material and replacement with a suitable planting medium within the gravel road; (2) installation of woody plantings and a conservation seed mix; and placement of coarse woody debris. Supplemental native plantings will also be installed in appropriate locations near the former access road in the adjacent upland areas, as determined by the qualified wetland scientist.

The location of the buffer zone restoration area is depicted on Sheet W-1 in the enclosed Site Plans. The goal of the restoration area is not to replicate wetlands, but rather to enhance the value of this area to wildlife, particularly those species using this upland forest edge. Further, a vernal pool is located just west of the access road in this location. Thus, the goal is to enhance the value of this buffer zone strip, which is currently a relatively sparse access road. Planted shrubs and coarse woody debris will provide food, cover and perching habitat for a variety of wildlife species.

The fill material will be removed, supplemented with about 6 inches of loam, rototilled, and planted with native plant species. The native plants will be installed in clusters. The WS will help provide direction on where to install the plantings based on field conditions and to ensure they replicate a natural environment. A planting table for the restoration area is provided below.

1.7 OBJECTIVE OF CALCULATIONS

The purpose of this stormwater analysis is to examine the stormwater runoff from the proposed site based upon the Massachusetts Department of Environmental Protection Stormwater Management Policy and the applicable provisions of the Town of Weymouth Bylaws and regulations.

The goal of the stormwater management system design on this project is to comply with the MA Stormwater Management Requirements and provide improved water quality, reduce post-development peak runoff rates below pre-development peak flow rates, maximize the opportunities for recharge and infiltration, and protect the surrounding area from any potential flooding and/or environmental impacts associated with the unmitigated condition. The following stormwater hydrology calculations were performed using the 2-year, 10-year, 25-year, and 100-year frequency, Type III, 24-hour SCS design storms and were compared for both pre-development and post-development conditions. The 2, 10 and 100 were evaluated to demonstrate the proposed peak rates of discharge do not exceed pre-development peak rates.

1.8 METHODOLOGY

We utilized the latest version of Hydro CAD for the overall stormwater hydrology/routing analysis to assess and compare peak rates of runoff at the various discharge points from the subject property. We then utilized the Hydraflow Storm Sewers Extension Pack through AutoCAD Civil 3d to analyze the pipe design and to select appropriate pipe sizing.

Refer to Section 3 – Hydrocad Model, which includes the detailed print-out of the HydroCAD Model Reports for the 2, 10, 25 and 100-year storms as well as Section 7 – Hydraulic Pipe Analysis / Sizing, which includes the Hydraflow reports for the 10 and 100-year storms for pipe capacity analysis and sizing.

1.9 SITE HYDROLOGY

Exhibits that include descriptions of existing and proposed stormwater BMP's is included in Section 1.14 as Figure 8 and Figure 9. The watersheds described below are within the limit of work.

Existing Conditions

Please refer to the attached Existing Conditions Watershed Analysis Plan in Section 3.3, The property has been divided into numerous subcatchment areas based on the existing site topography and flow paths.

Each subcatchment area has been analyzed and assigned an appropriate Curve Number to represent the existing vegetative cover and underlying soils conditions. Times of concentration have been calculated and the extent of pervious vs. impervious cover computed. This data was then input into HydroCAD to determine peak rates of runoff at the various design points which provide the locations for which to compare existing versus proposed conditions to document compliance that the peak rates have been reduced in the regulatory storm events as required. A Summary table is provided in the Hydrology Model Results and Conclusions Section below.

For the purposes of this analysis, the pre- and post- development drainage conditions were analyzed at six (6) "design points" where stormwater runoff currently drains to under existing conditions, and one u The design points are described below:

- Design Point #1 (PD1) is toward the Washington Street ROW (Rt. 53) and ultimately ends up flowing into the Washington Street drainage system.
- Design Point #2 (PD2) is Wetland Series "A"
- Design Point #3 (PD3) is the Intermittent Stream to the southwest corner of the proposed development.
- Design Point #4 (PD4) is Wetland Series "B".
- Design Point #5 (PD5) is Wetland Series "E".

- Design Point #6 (PD6) is Wetland Series "F" that ultimately flows into the Washington Street drainage system.
- Washington Street ROW Drainage System- drainage infrastructure within the Washington St ROW that outlets directly across from the proposed development.

The analyzed watershed consists of approximately 9.778 acres of mostly undeveloped land made up of wooded area, wetlands, and exposed outcrops of ledge. The site conveys a significant amount of stormwater to the Washington Street ROW drainage system, while the rest of the site appears to convey stormwater to the various BVW's located throughout the perimeter of the parcel. A more comprehensive description of the existing subcatchment areas is provided below:

- Subcatchment E1 is approximately 140,284SF (3.22AC) consisting of an isolated wetland series "H", roofs of the existing residential homes, the gravel/dirt road and driveways, ledge outcrops and wooded areas. The subcatchment drains to the Washington Street ROW (PD1) and eventually discharges to the Washington Street drainage system without treatment or attenuation. This area is a mix of pervious and impervious surfaces (CN: 80) and the time of concentration was calculated to be 13.2 minutes.
- Subcatchment E-2 is approximately 40,558SF (0.931AC) of wooded area, exposed ledge, a portion of the dirt road and a small portion of BVW Wetland Series "A". Runoff from this subcatchment area overland flows to Wetland Series "A", or PD2. This area is a mix of pervious and impervious surfaces (CN: 82) and the time of concentration was calculated to be 9.7 minutes.
- Subcatchment E-3, approximately 44,084SF (1.012AC), is wooded area, exposed ledge outcrops and a portion of the intermittent stream. Runoff from the subcatchment area overland flows to the intermittent stream, or PD3. This area is a mix of pervious and impervious surfaces (CN: 80) and the time of concentration was calculated to be 9.7 minutes.
- Subcatchment E-4, approximately 82,954SF (1.904AC), of ledge outcrops, wooded area, wetlands, dirt roads and a small area of grass. Stormwater overland flows to the Northwest, and then to the south, eventually discharging into Wetland Series "B", PD4 without treatment or attenuation. from the northwest to the southeast of the subcatchment area to CB-2, and eventually discharges into PD1 without treatment or attenuation. This area is a mix of pervious and impervious surfaces (CN: 85) and the time of concentration was calculated to be 12.8 minutes.
- Subcatchment E-5, approximately 84,333SF (1.936AC) of ledge outcrops, wooded area, wetlands, and dirt road. Stormwater in this location overland flows from west to east eventually discharging to Wetland Series "E", PD5, without treatment or attenuation. This area is a mix of pervious and impervious surfaces (CN: 86) and the time of concentration was calculated to be 10.0 minutes.
- Subcatchment E-6 is approximately 33,666SF (0.772AC) ledge outcrops, wooded area, wetlands, dirt roads and a small area of grass. This subcatchment overland flows ro the north, and then to the east, and eventually discharging to Wetland Series "F", PD6, without treatment or

attenuation. This area is a mix of pervious and impervious surfaces (CN: 79) and the time of concentration was calculated to be 6.9 minutes.

Proposed Conditions

The proposed project consists of the construction of two (2) four-story mixed-use buildings consisting of 270 residential apartments and first floor commercial space. The project also includes site amenities, parking lots, drainage improvements and utility infrastructure. The parking lot has been designed to drain to deep sump hooded catch basins, which will capture and convey stormwater runoff, via an underground pipe system, to an underground detention or infiltration system. Rooftop runoff has been designed to flow directly to the infiltration or detention systems.

Please refer to the attached Proposed Conditions Watershed Analysis Plan. The proposed project has been divided into numerous subcatchment areas and the various stormwater detention and infiltration BMPs have been modeled. Appropriate Times of Concentration and Curve Numbers have been assigned for each catchment area. A more comprehensive description of the proposed subcatchment areas is provided below:

- Subcatchment P1-1 is 49,888SF (1.145AC) which consists of a portion of the proposed Building 1, a portion of the parking lot, the courtyard area of Building 1, and a small landscaped/grass area. Building 1 is proposed to have an internal collection system which will discharge directly to UG-1. The rest of the runoff throughout P1-1 will be captured by deep sump catch basins, and a series of pipes and manholes, before discharging to detention system UG-1. UG-1 eventually discharges to the Washington Street ROW (PD1) and then eventually to the Washington Street Drainage System. This area is mostly impervious (CN: 94) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P1-2 is 16,720SF (0.384AC) which consist of a portion of the bituminous paved driveway and parking area and a small grass area. The stormwater runoff in this area overland flows to deep sump catch basins, then to detention system UG-2, and then eventually discharging to the Washington Street ROW (PD1) and then eventually to the Washington Street Drainage System. This area is mostly impervious (CN: 92) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P1-U1 is 1,003SF (0.023AC) of grass cover. The stormwater in this subcatchment overland flows towards the Washington St ROW, eventually ending up in the Washington Street drainage system. The area is pervious (CN: 80) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P1-U2 is 238SF (0.005AC) of pavement. The stormwater in this subcatchment overland flows towards the Washington St ROW, eventually ending up in the Washington Street drainage system. The area is completely impervious (CN: 98) and the minimum time of concentration of 6.0 minutes is used.

- Subcatchment P1-U3 is 3,334SF (0.077AC) of grass cover. The stormwater in this subcatchment overland flows towards the Washington St ROW, eventually ending up in the Washington Street drainage system. The area is pervious (CN: 80) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P1-3 is 46,987SF (1.079AC) which consists of a portion of the proposed Building 1, and a portion of the parking lot, and a small landscaped/grass area. Building 1 is proposed to have an internal collection system which will discharge directly to UG-3. The rest of the runoff throughout P1-3 will be captured by deep sump catch basins, and a series of pipes and manholes, before discharging to detention system UG-3. UG-3 eventually discharges to the Washington Street ROW (PD1) and then eventually to the Washington Street Drainage System. This area is mostly impervious (CN: 96) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P1-4 is 50,810SF (1.167AC) which consists almost entirely of the bituminous pavement driveway and parking lot, and the grass islands and landscaped areas within and surrounding the parking lot. The stormwater runoff in this area overland flows to deep sump catch basins, then to detention system UG-7, and then eventually discharging to the Washington Street ROW (PD1) and then eventually to the Washington Street Drainage System. This area is mostly impervious (CN: 95) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P2 is 25,652SF (0.589AC) which consists of a portion of the proposed Building 2, a portion of the parking lot, and a small landscaped/grass area. Building 2 is proposed to have an internal collection system which will discharge directly to UG-4. The rest of the runoff throughout P2 will be captured by deep sump catch basins, and a series of pipes and manholes, before discharging to detention system UG-4. UG-4 eventually discharges to Wetland Series "A", or PD2. This area is mostly impervious (CN: 97) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P2-U is 10,585SF (0.243AC) consists of ledge outcrops, wooded areas, wetlands and grassed landscaped areas. The surface in this location will remain mostly in its existing condition. Stormwater overland flows unattenuated in this watershed and discharges directly to Wetland Series "A", or PD2. This area is a mix of impervious and pervious surfaces (CN: 83) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P3 is 64,812SF (1.489AC) which consists of most of proposed Building 2, a portion
 of the parking lot, and a small landscaped/grass area. Building 2 is proposed to have an internal
 collection system which will discharge directly to an infiltration system (UG-5). The rest of the
 runoff throughout P2 will be captured by deep sump catch basins, and a series of pipes and
 manholes, before discharging to UG-5. Any overflow from UG-5 eventually discharges to the
 intermittent stream, or PD3. This area is mostly impervious (CN: 94) and the minimum time of
 concentration of 6.0 minutes is used.

- Subcatchment P3-U is 12,466SF (0.286AC) consists of ledge outcrops, wooded areas, and wetlands. The surface in this location will remain mostly in its existing condition. Stormwater overland flows unattenuated in this watershed and discharges directly to the intermittent stream, or PD3. This area is a mix of impervious and pervious surfaces (CN: 85) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P4 is 19,643SF (0.451AC) which consists of a small portion of the parking lot and a small area of grass. Stormwater flows overland in this location and discharges to Wetland Series "B" or PD4. This area is mostly impervious (CN: 97) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P4-U is 11,607SF (0.266AC) consists of ledge outcrops, wooded areas, and wetlands. The surface in this location will remain mostly in its existing condition. Stormwater overland flows unattenuated in this watershed and discharges directly to Wetland Series "B", or PD4. This area is a mix of impervious and pervious surfaces (CN: 84) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P5 is 43,674 (1.003AC) which consists of the southeastern portion of the parking lot, the grass islands throughout the parking lot, ledge outcrops and wooded areas. The stormwater runoff throughout P5 will be captured by deep sump catch basins, and a series of pipes and manholes, before discharging to UG-6. This area is mostly impervious (CN: 94) and the minimum time of concentration of 6.0 minutes is used.
- Subcatchment P5-U is 50,990SF (1.172AC) consists of ledge outcrops, wooded areas, grass areas and wetlands. This location will be used for wetland replication, and wetland buffer zone enhancements. Please see section 1.6 above for more information on wetland replication and mitigation. Stormwater overland flows in this watershed and discharges directly to Wetland Series "E", or PD5. This area is a mix of impervious and pervious surfaces (CN: 88) and the time of concentration was calculated to be 10.0 minutes.

Hydrology Model Results and Conclusions

The goal of the stormwater design for the project is to fully comply with the Massachusetts Stormwater Standards and the Town of Weymouth Regulations. This analysis confirms that the stormwater system is receiving proper treatment and peak rates of runoff have been reduced to below pre-development rates using stormwater Best Management Practices including deep sump hooded catch basins, and underground Detention/Infiltration Systems. The discharge points from the site have been engineered to employ properly designed rip-rap splash pads to further reduce discharge velocities and to spread out the discharge to prevent scour and point discharge erosion. The underground infiltration system has been sized and designed to meet the required TSS removal rate, to provide the required recharge to the maximum extent practicable. The underground detention systems have been designed have been sized and designed to meet the required TSS removal rate, and provide peak flow attenuation

The results of the pre- and post-development hydrology calculations provided in Section 3 are summarized in the following tables:

Table 1.7.1 shows the peak rate of runoff for the existing site as well as for the developed site at 2, 10, and 100-year design storms.

Point of	2-Year Storm (cfs)			10-Year Storm (cfs)			100-Year Storm (cfs)		
Analysis	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ
PD1	4.63	2.52	-2.11	7.89	3.22	-4.67	13.97	4.51	-9.46
PD2	1.63	1.63	0.00	2.71	2.23	-0.48	4.67	3.34	-1.33
PD3	1.62	0.97	-0.65	2.76	2.45	-0.31	4.87	4.61	-0.26
PD4	3.46	2.05	-1.41	5.51	2.99	-2.52	9.19	4.65	-4.54
PD5	3.98	3.93	-0.05	6.26	5.67	-0.59	10.32	8.72	-1.60
PD6	1.29	0.71	-0.58	2.23	1.22	-1.01	4.00	2.18	-1.82
Washington St.	5.61	3.04	-2.6	9.62	4.18	-5.44	17.07	6.18	-10.89

Tab	le	1.	7.	1

As shown in Table 1.7.1, the peak stormwater runoff generated by the development are less in post development conditions versus the existing conditions. Please refer to Section 3 for the complete HydroCAD Analysis that documents the above results as well as the Existing and Proposed Conditions Watershed Plans, also enclosed in Section 3.

1.10 STORMWATER MANAGEMENT

The following section describes each of the ten (10) Massachusetts Stormwater Management Standards and describes how the project complies with each.

<u>Standard 1: No New Untreated Discharges</u> – No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

All new stormwater system conveyances are treated prior to discharge and result in no erosion occurring on site. The drainage system has been designed to direct stormwater runoff from impervious areas through various stormwater systems designed to capture, convey, treat, detain, recharge and infiltrate (where appropriate) the runoff prior to discharge. Need to check Watershed P4- do we comply?

<u>Standard 2: Peak Rate Attenuation</u> – Stormwater management systems have been designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. Please refer to Table 1.7.1 above.

The stormwater system reduces peak rates of runoff to below pre-development levels.

<u>Standard 3: Recharge</u> – Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The new stormwater system has been designed to comply with the recharge requirements for MA Stormwater Management Standards to the maximum extent practicable due to the prevalence of D soils throughout the proposed project area. Refer to Section 4 for a summary of the stormwater recharge calculations.

<u>Standard 4: Water Quality</u> – Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

80% TSS removal is provided underground infiltration and detention chambers. The chambers are designed to treat the 0.5" water quality volume (WQV) for the impervious area captured on site. Calculations for the WQV required and the volumes provided can be found in Section 4.3. In addition, deep sump hooded catch basins and quarterly street sweeping (no credit given). Treatment train efficiency calculations can be found in Section 4.4. A long-term Operation and Maintenance Manual for these systems can be found in Section 5.

<u>Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPL)</u> – For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

The project is not considered to be a LUHPPL.

<u>Standard 6: Critical Areas</u> – Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

The project is located within or near a critical area.

<u>Standard 7: Redevelopment and Other Projects Subject to the Standards only to the maximum</u> <u>extent practicable</u> – A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The project does not qualify as a redevelopment and therefore this standard does not apply.

<u>Standard 8: Construction Period Pollution Prevention Plan and Erosion and Sedimentation Control</u> – A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

An Erosion and Sedimentation Controls Plan has been incorporated into the Site Plans.

<u>Standard 9: Operation and Maintenance Plan</u> – A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A long-term Operation and Maintenance Plan has been incorporated herein. See Section 5.

<u>Standard 10: Prohibition of Illicit Discharges</u> – All illicit discharges to the stormwater management system are prohibited.

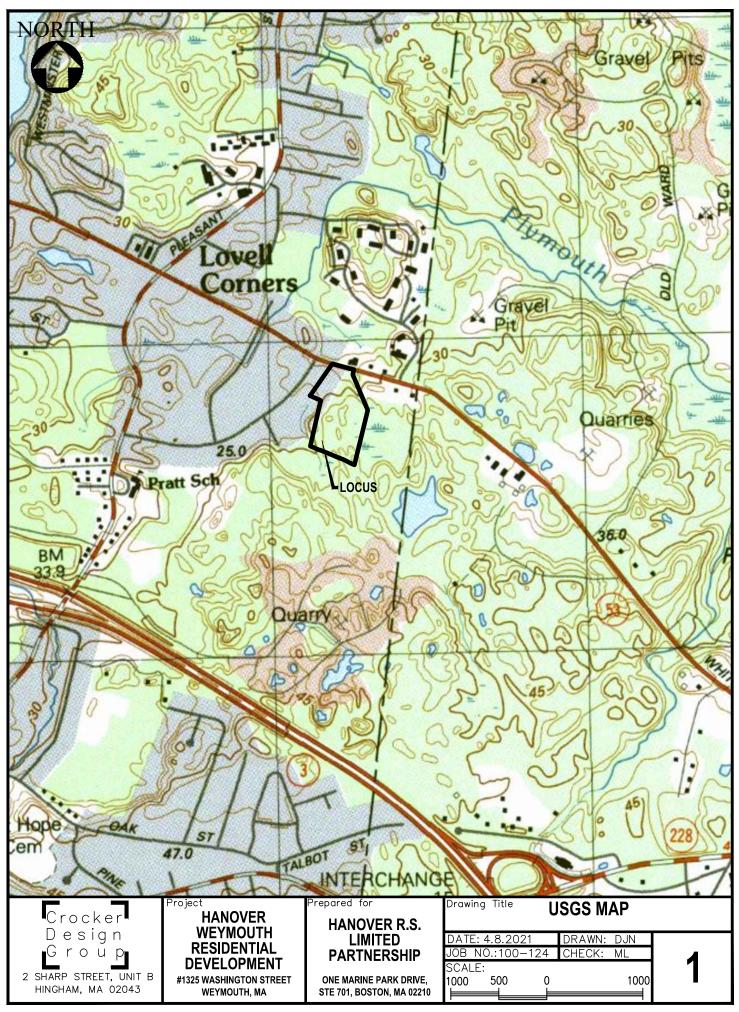
An Illicit Discharge Compliance Statement is included as required, and will be signed and submitted as a requirement of the final Order of Conditions, prior to the discharge of stormwater runoff to post-construction stormwater BMP's.

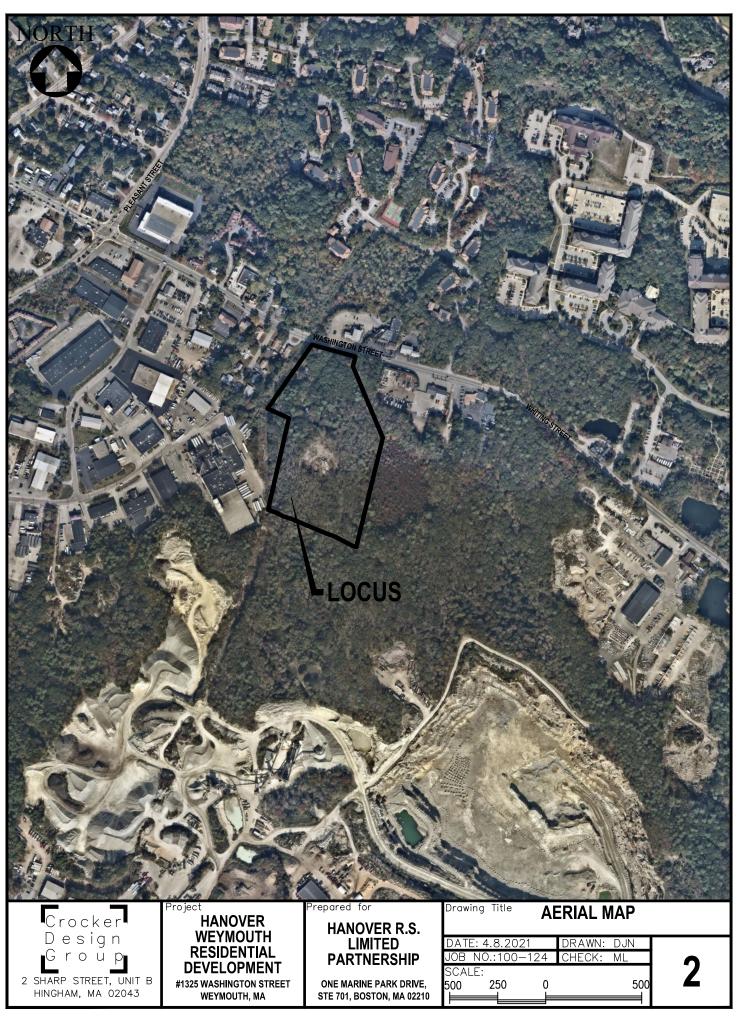
1.11 BEST MANAGEMENT PRACTICES (BMP'S)

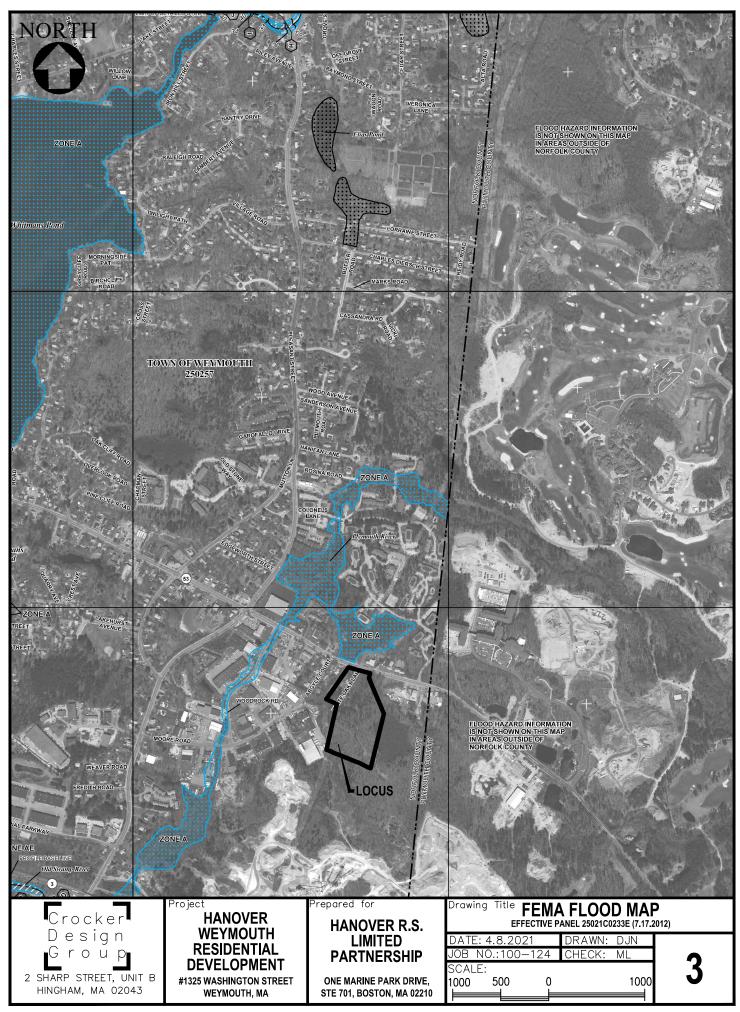
A system of deep sump hooded catch basins, subsurface infiltration systems, subsurface detention/treatment will be used to treat stormwater runoff on the site. See Section 4 for stormwater management calculations.

1.12 PIPE SIZING

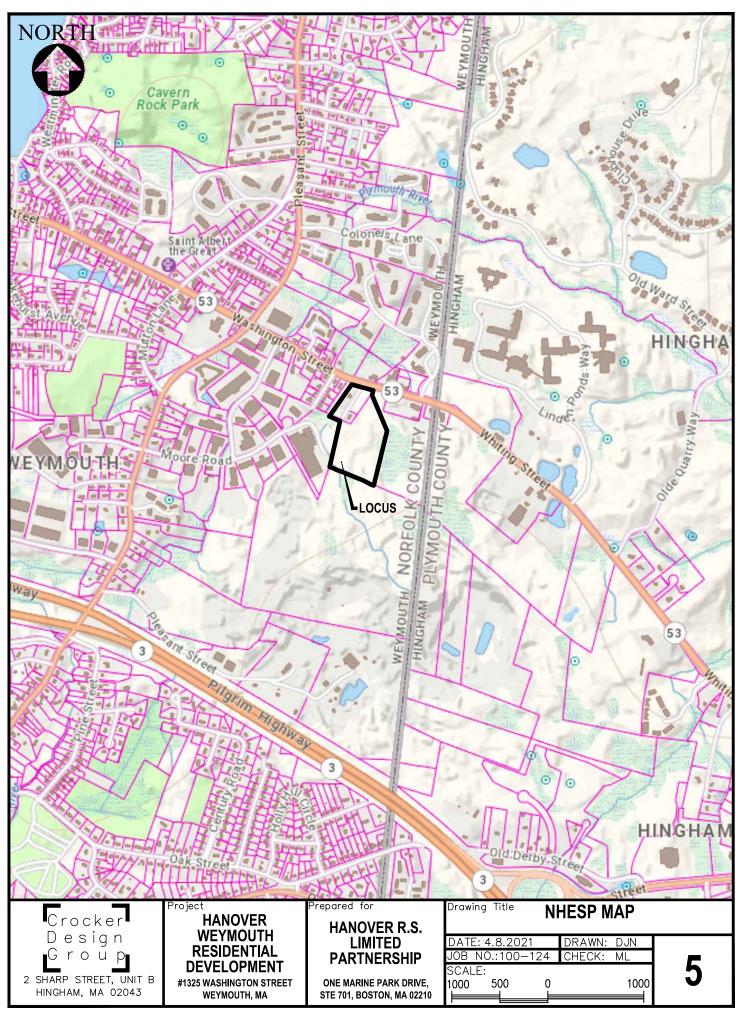
Refer to Section 7 for the output results from the Hydraflow Sewer Storm Sewers Extension for AutoCAD Civil 3D. Hydraflow utilized the Rational Method. The tributary area for each inlet/subcatchment area has been computed along with pipe length, slope and friction coefficient. The Rational Method is then utilized

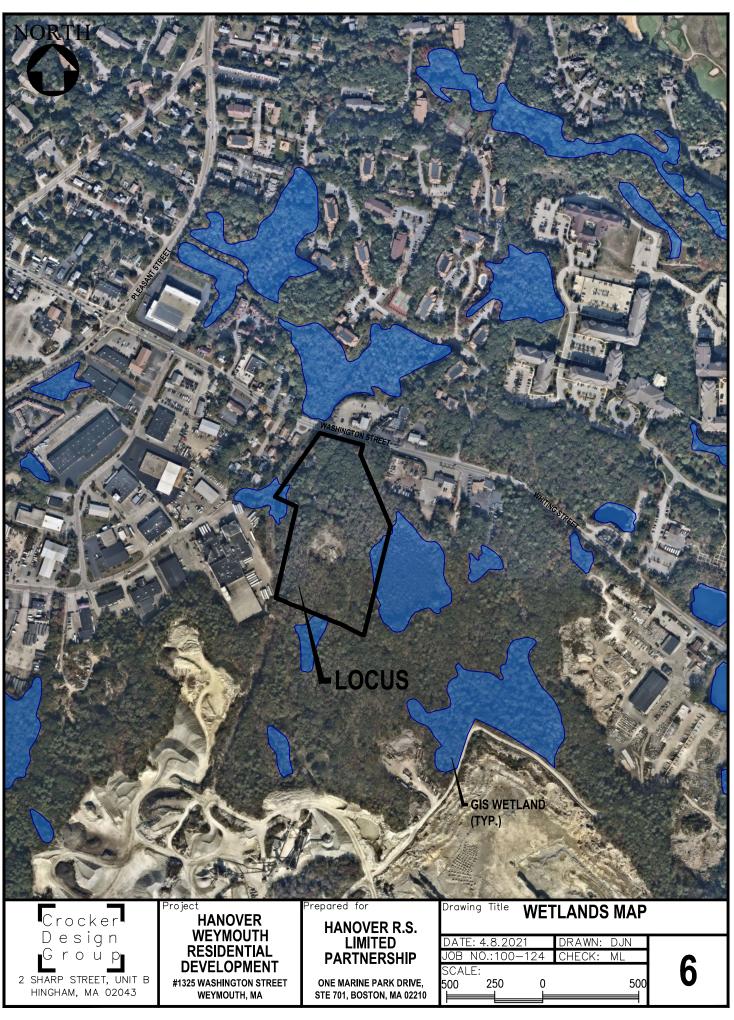

to determine the hydraulic grade line. For design purposes, this approach was used to size the pipes such that the 10-year storm event is contained within the pipe. The 100-year storm was then checked to confirm the hydraulic grade line for the pipe network does not exceed the rim elevations of the drainage structures. In addition, pipe velocities were checked to be within the range of 2fps to 10 fps flowing 1/3 full. Those calculations are included in Section 4.7 herein.


1.13 CONCLUSION


In conclusion, the project has been designed in accordance with the requirements of the MA DEP's Stormwater Management Standards and in compliance with the Town of Weymouth's Conservation Commission Wetland Regulations.


1.14 Figures


FIG 1 USGS MAP FIG 2 ORTHOGRAPHIC/AERIAL MAP FIG 3 FEMA FLOODPLAIN MAP (EFFECTIVE PANEL) FIG 4 FEMA FLOODPLAIN MAP (PRELIMINARY PANEL) FIG 5 NHESP HABITAT MAP FIG 6 MASSDEP WETLANDS MAP



SECTION 2 – STORMWATER CHECKLIST

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\boxtimes	Soil	Anal	ysis	provided.
-------------	------	------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static
Ctatio
Static

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

🗌 F	Recharge BMPs	have been	sized to ir	nfiltrate the	Required	Recharge	Volume.
-----	---------------	-----------	-------------	---------------	----------	----------	---------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

	Limited	Pro	ject
--	---------	-----	------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

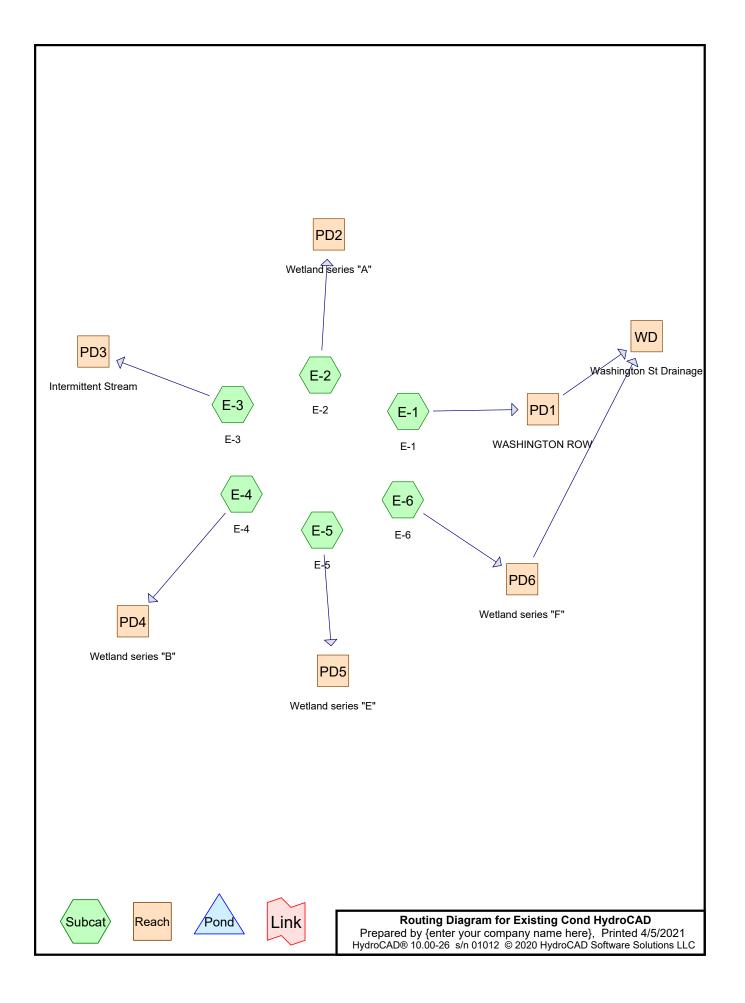
Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

ILLICIT DISCHARGE COMPLIANCE STATEMENT

Standard 10: Massachusetts Stormwater Standards Handbook

Illicit discharges are defined as discharges into waters of the State or municipal separate stormwater system (MS4) that are not entirely comprised of stormwater. Exclusions for non-stormwater discharges into drainage systems include activities or facilities for firefighting, water line flushing, landscape irrigation, uncontaminated groundwater discharge, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, water used to clean residential buildings without detergents, water used for street washing, and flows from riparian habitats/wetlands. These exclusions are subject to change and are under the discretion of the local governing authority.


To the best of our knowledge and professional belief no illicit discharges to the stormwater system, surface waters, or wetland resource areas will remain on the site after construction. We will agree to implement a pollution prevention plan to prevent illicit discharges into the stormwater management system. The design of the site based on the plans entitled "SITE DEVELOPMENT PLANS: HANOVER WEYMOUTH RESIDENTIAL DEVELOPMENT." prepared by Crocker Design Group, 2 Sharp Street, Unit B, Hingham, Massachusetts show a separation and no direct connection between the stormwater management systems and the wastewater and/ or groundwater on the site. To the maximum extent practicable, the design prevents entry of illicit discharges into the stormwater management system.

Engineer's Name: (please print)

Engineer's Signature: _____ Date: _____

Company: Crocker Design Group, LLC.

SECTION 3 – STORMATER HYDROLOGY MODEL

Existing Cond HydroCAD Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Project Notes

Rainfall events imported from "EXIST.hcp"

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
11,062	89	Dirt roads, HSG D (E-2, E-4, E-5)
6,775	89	Dirt/Gravell roads, HSG D (E-1)
55,917	98	Ledge, HSG D (E-1, E-2, E-3, E-4, E-5, E-6)
1,931	78	Meadow, non-grazed, HSG D (E-2)
29,504	80	Pasture/grassland/range, Good, HSG D (E-1, E-4, E-6)
3,535	98	Pavement and Roofs, HSG D (E-1)
31,092	98	Wetland Surface, HSG D (E-2, E-3, E-4, E-5, E-6)
283,136	77	Woods, Good, HSG D (E-1, E-2, E-3, E-4, E-5, E-6)
2,885	98	isol wetland HSG D (E-1)
425,837	82	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
0	HSG C	
425,837	HSG D	E-1, E-2, E-3, E-4, E-5, E-6
0	Other	
425,837		TOTAL AREA

Existing Cond HydroCAD Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Printed 4/5/2021 Page 5

				• •		A .
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
0	0	0	11,062	0	11,062	Dirt roads
0	0	0	6,775	0	6,775	Dirt/Gravell
						roads
0	0	0	55,917	0	55,917	Ledge
0	0	0	1,931	0	1,931	Meadow,
						non-grazed
0	0	0	29,504	0	29,504	Pasture/grasslan
						d/range, Good
0	0	0	3,535	0	3,535	Pavement and
						Roofs
0	0	0	31,092	0	31,092	Wetland Surface
0	0	0	283,136	0	283,136	Woods, Good
0	0	0	2,885	0	2,885	isol wetland
0	0	0	425,837	0	425,837	TOTAL AREA

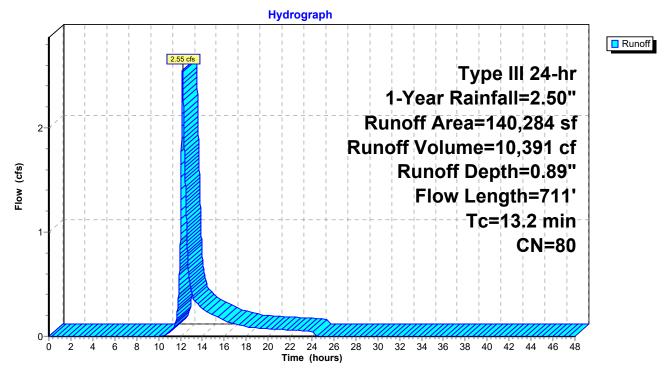
Ground Covers (all nodes)

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1: E-1	Runoff Area=140,284 sf 10.24% Impervious Runoff Depth=0.89" Flow Length=711' Tc=13.2 min CN=80 Runoff=2.55 cfs 10,391 cf
SubcatchmentE-2: E-2	Runoff Area=40,558 sf 19.53% Impervious Runoff Depth=1.00" Flow Length=295' Tc=9.7 min CN=82 Runoff=0.94 cfs 3,373 cf
SubcatchmentE-3: E-3	Runoff Area=44,084 sf 13.21% Impervious Runoff Depth=0.89" Flow Length=375' Tc=9.7 min CN=80 Runoff=0.89 cfs 3,265 cf
SubcatchmentE-4: E-4	Runoff Area=82,954 sf 33.91% Impervious Runoff Depth=1.18" Flow Length=491' Tc=12.8 min CN=85 Runoff=2.10 cfs 8,147 cf
SubcatchmentE-5: E-5	Runoff Area=84,291 sf 40.13% Impervious Runoff Depth=1.24" Flow Length=177' Tc=10.0 min CN=86 Runoff=2.46 cfs 8,734 cf
SubcatchmentE-6: E-6	Runoff Area=33,666 sf 10.01% Impervious Runoff Depth=0.84" Flow Length=200' Tc=6.9 min CN=79 Runoff=0.70 cfs 2,349 cf
Reach PD1: WASHINGTONROW	Inflow=2.55 cfs 10,391 cf Outflow=2.55 cfs 10,391 cf
Reach PD2: Wetland series "A"	Inflow=0.94 cfs 3,373 cf Outflow=0.94 cfs 3,373 cf
Reach PD3: Intermittent Stream	Inflow=0.89 cfs 3,265 cf Outflow=0.89 cfs 3,265 cf
Reach PD4: Wetland series "B"	Inflow=2.10 cfs 8,147 cf Outflow=2.10 cfs 8,147 cf
Reach PD5: Wetland series "E"	Inflow=2.46 cfs 8,734 cf Outflow=2.46 cfs 8,734 cf
Reach PD6: Wetland series "F"	Inflow=0.70 cfs 2,349 cf Outflow=0.70 cfs 2,349 cf
Reach WD: Washington St Drainage	Inflow=3.09 cfs 12,741 cf Outflow=3.09 cfs 12,741 cf

Total Runoff Area = 425,837 sf Runoff Volume = 36,260 cf Average Runoff Depth = 1.02" 78.06% Pervious = 332,408 sf 21.94% Impervious = 93,429 sf

Summary for Subcatchment E-1: E-1

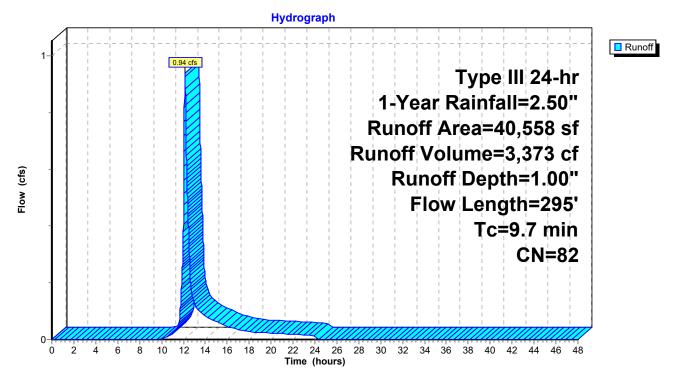

Runoff = 2.55 cfs @ 12.19 hrs, Volume= 10,391 cf, Depth= 0.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.50"

_	A	rea (sf)	CN I	Description			
*		2,885	98 i	sol wetland	I HSG D		
*		3,535	98	Pavement a	and Roofs,	HSG D	
*		6,775	89 I	Dirt/Gravell	roads, HS	G D	
*		7,944	98 I	_edge, HS0	GD		
		93,250	77	Noods, Go	od, HSG D		
_		25,895	80	Pasture/gra	ssland/ran	ge, Good, HSG D	
	1	40,284	80	Neighted A	verage		
	1	25,920	78 8	89.76% Pervious Area			
		14,364	98	10.24% Imp	pervious Ar	ea	
	Тс	Length	Slope		Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	2.4	50	0.1200	0.35		Sheet Flow,	
						Range n= 0.130 P2= 3.40"	
	10.8	661	0.0420	1.02		Shallow Concentrated Flow,	
_						Woodland Kv= 5.0 fps	

13.2 711 Total

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

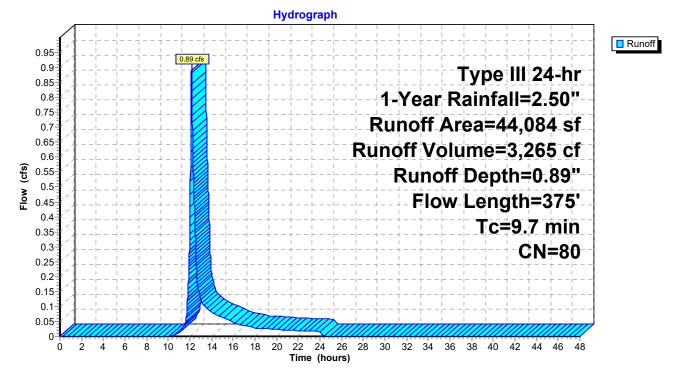
Runoff = 0.94 cfs @ 12.14 hrs, Volume= 3,373 cf, Depth= 1.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.50"

	A	rea (sf)	CN	Description			
*		5,020	98	Ledge, HSG D			
		28,312	77	Woods, Go	od, HSG D		
*		2,902	98	Wetland Su	Irface, HSG	G D	
		2,393	89	Dirt roads,	HSG D		
_		1,931	78	Meadow, n	on-grazed,	HSG D	
		40,558	82	Weighted A	verage		
		32,636	78	80.47% Pe	rvious Area	l	
		7,922	98	19.53% Imp	pervious Ar	ea	
	Тс	Length	Slope	e Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)		
	7.2	50	0.0700	0.11		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.40"	
	2.5	245	0.1100) 1.66		Shallow Concentrated Flow,	
_						Woodland Kv= 5.0 fps	
	9.7	295	Total				

Subcatchment E-2: E-2

Summary for Subcatchment E-3: E-3

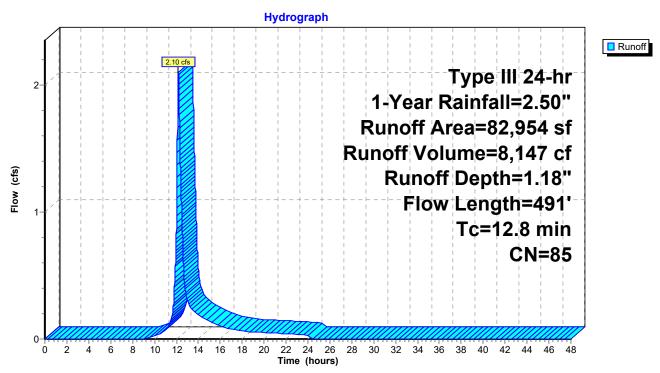

Runoff = 0.89 cfs @ 12.14 hrs, Volume= 3,265 cf, Depth= 0.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.50"

_	A	rea (sf)	CN	Description		
*		1,868	98	Ledge, HS0	GD	
		38,259	77	Woods, Go	od, HSG D	
*		3,957	98	Wetland Su	Irface, HSG	G D
		44,084	80	Weighted A	verage	
38,259 77 86.79% Pervious Area						
		5,825	98	13.21% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.3	50	0.1000	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.3	241	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.1	84	0.0700	14.18	127.58	Channel Flow,
						Area= 9.0 sf Perim= 8.0' r= 1.13'
						n= 0.030 Stream, clean & straight
	07	075	Tatal			

9.7 375 Total

Subcatchment E-3: E-3

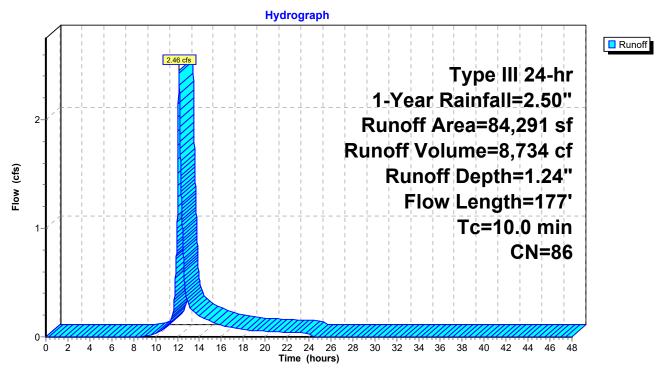

Summary for Subcatchment E-4: E-4

Runoff = 2.10 cfs @ 12.18 hrs, Volume= 8,147 cf, Depth= 1.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.50"

_	A	rea (sf)	CN E	Description		
*		25,716	98 L	edge, HSC	GD	
		47,000	77 V	Voods, Go	od, HSG D	
		2,512	80 F	asture/gra	ssland/ran	ge, Good, HSG D
*		2,410	98 V	Vetland Su	rface, HSG	β D
_		5,316	89 E)irt roads, l	HSG D	
		82,954	85 V	Veighted A	verage	
		54,828	78 6	6.09% Pei	vious Area	l de la constante d
		28,126	98 3	3.91% Imp	pervious Ar	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.0	232	0.0560	3.81		Shallow Concentrated Flow,
	1.0	202	0.0000	5.01		
	1.0	202	0.0000	0.01		Unpaved Kv= 16.1 fps
	4.6	202	0.0230	0.76		•
						Unpaved Kv= 16.1 fps

Subcatchment E-4: E-4

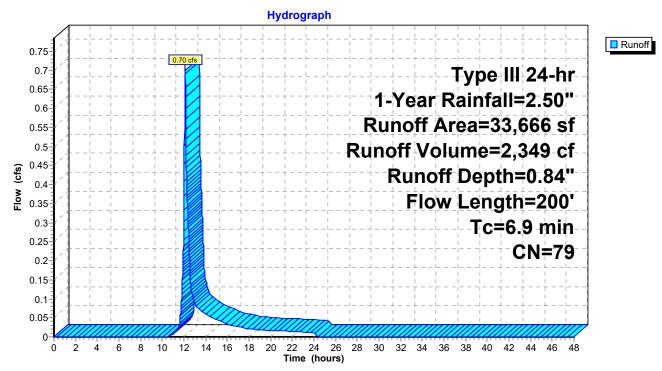

Summary for Subcatchment E-5: E-5

Runoff = 2.46 cfs @ 12.14 hrs, Volume= 8,734 cf, Depth= 1.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.50"

_	A	rea (sf)	CN [Description		
*		13,500	98 L	.edge, HSC	GD	
		47,115	77 V	Voods, Go	od, HSG D	
		3,353	89 E	Dirt roads, I	HSG D	
*		20,323	98 V	Vetland Su	irface, HSG	G D
		84,291	86 V	Veighted A	verage	
		50,468	78 5	59.87% Per	rvious Area	
		33,823	98 4	0.13% Imp	pervious Ar	ea
	Тс	Length	Slope		Capacity	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
		•				Description Sheet Flow,
	(min)	(feet)	(ft/ft)	(ft/sec)		
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow,
	<u>(min)</u> 8.3	(feet) 50	(ft/ft) 0.0500	(ft/sec) 0.10		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.40"

Subcatchment E-5: E-5

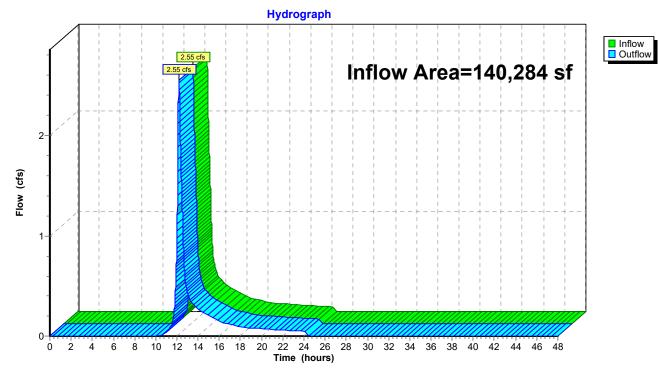

Summary for Subcatchment E-6: E-6

Runoff = 0.70 cfs @ 12.11 hrs, Volume= 2,349 cf, Depth= 0.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.50"

_	A	rea (sf)	CN	Description				
*		1,869	98	Ledge, HS0	GD			
		29,200	77	Woods, Go	od, HSG D			
		1,097	80	Pasture/grassland/range, Good, HSG D				
*		1,500	98	Wetland Su	Irface, HSO	G D		
		33,666	79	Weighted A	verage			
		30,297	77	89.99% Pe	rvious Area	l de la constante d		
		3,369	98	10.01% Imp	pervious Ar	ea		
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	5.5	50	0.140	0 0.15		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.40"		
	1.4	150	0.120	0 1.73		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	6.9	200	Total					

Subcatchment E-6: E-6

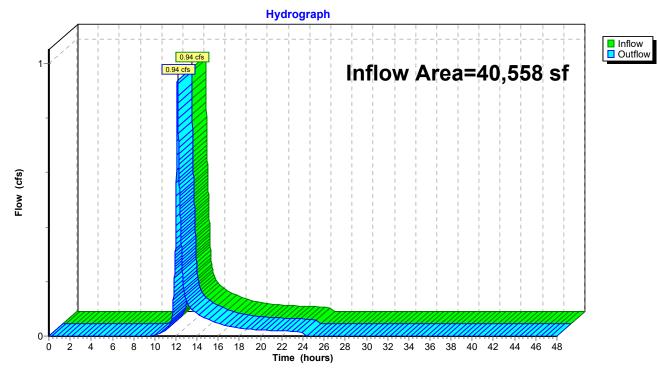


Summary for Reach PD1: WASHINGTON ROW

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	140,284 sf, 10.24% Impervious, Inflow Depth = 0.89" for 1-Year even	nt
Inflow	=	2.55 cfs @ 12.19 hrs, Volume= 10,391 cf	
Outflow	=	2.55 cfs @ 12.19 hrs, Volume= 10,391 cf, Atten= 0%, Lag= 0.0	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

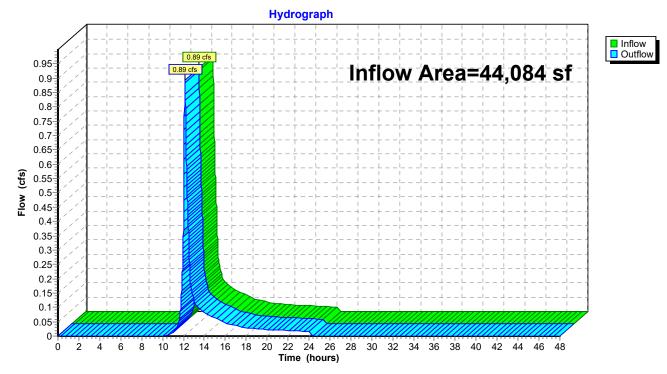

Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	40,558 sf, 19.53% Impervious, Inflow Depth = 1.00" for 1-Year event
Inflow	=	0.94 cfs @ 12.14 hrs, Volume= 3,373 cf
Outflow	=	0.94 cfs @ 12.14 hrs, Volume= 3,373 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

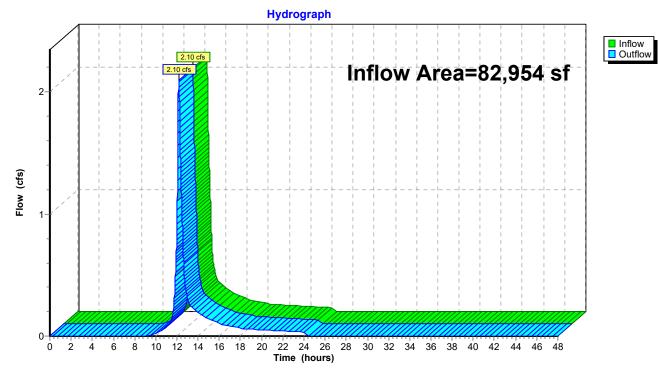

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	44,084 sf, 13.21% Impervious,	Inflow Depth = 0.89"	for 1-Year event
Inflow =	0.89 cfs @ 12.14 hrs, Volume=	3,265 cf	
Outflow =	0.89 cfs @ 12.14 hrs, Volume=	3,265 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

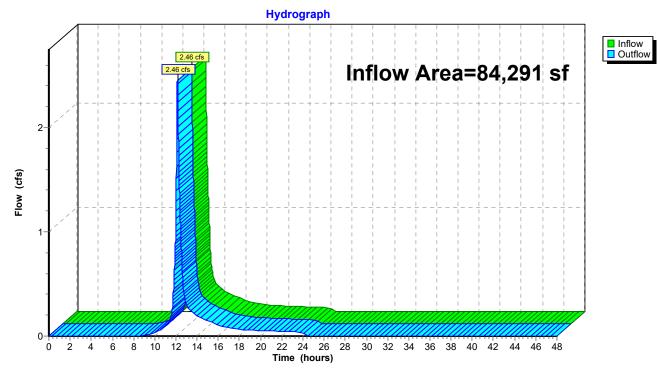

Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	82,954 sf, 33.91% Impervious, Inflow Depth = 1.18" for 1-Year ev	/ent
Inflow	=	2.10 cfs @ 12.18 hrs, Volume= 8,147 cf	
Outflow	=	2.10 cfs @ 12.18 hrs, Volume= 8,147 cf, Atten= 0%, Lag= 0	.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

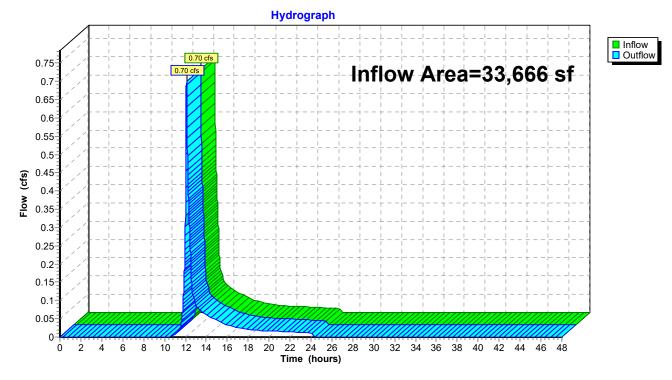

Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	84,291 sf, 40.13% Impervious, Inflow Depth = 1.24" for 1-Year event
Inflow	=	2.46 cfs @ 12.14 hrs, Volume= 8,734 cf
Outflow	=	2.46 cfs @ 12.14 hrs, Volume= 8,734 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

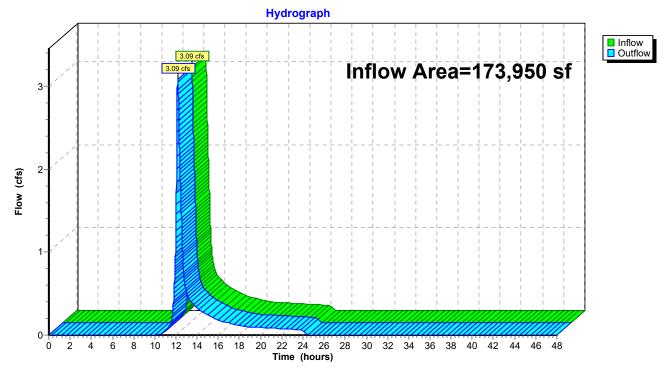

Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	33,666 sf, 10.01% Impervious, Inflow Depth = 0.84" for 1-Year event
Inflow	=	0.70 cfs @ 12.11 hrs, Volume= 2,349 cf
Outflow	=	0.70 cfs @ 12.11 hrs, Volume= 2,349 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	173,950 sf, 10.19% Impervious, Inflow Depth = 0.88" for 1-Year event	
Inflow	=	3.09 cfs @ 12.18 hrs, Volume= 12,741 cf	
Outflow	=	3.09 cfs @ 12.18 hrs, Volume= 12,741 cf, Atten= 0%, Lag= 0.0 mir	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

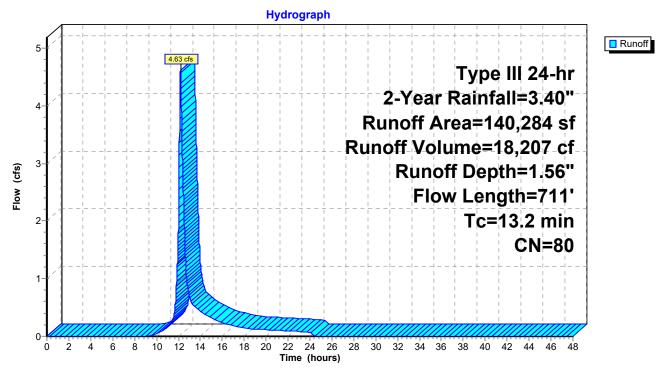
Reach WD: Washington St Drainage

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1: E-1	Runoff Area=140,284 sf 10.24% Impervious Runoff Depth=1.56" Flow Length=711' Tc=13.2 min CN=80 Runoff=4.63 cfs 18,207 cf
SubcatchmentE-2: E-2	Runoff Area=40,558 sf 19.53% Impervious Runoff Depth=1.70" Flow Length=295' Tc=9.7 min CN=82 Runoff=1.63 cfs 5,747 cf
SubcatchmentE-3: E-3	Runoff Area=44,084 sf 13.21% Impervious Runoff Depth=1.56" Flow Length=375' Tc=9.7 min CN=80 Runoff=1.62 cfs 5,721 cf
SubcatchmentE-4: E-4	Runoff Area=82,954 sf 33.91% Impervious Runoff Depth=1.93" Flow Length=491' Tc=12.8 min CN=85 Runoff=3.46 cfs 13,339 cf
SubcatchmentE-5: E-5	Runoff Area=84,291 sf 40.13% Impervious Runoff Depth=2.01" Flow Length=177' Tc=10.0 min CN=86 Runoff=3.98 cfs 14,119 cf
SubcatchmentE-6: E-6	Runoff Area=33,666 sf 10.01% Impervious Runoff Depth=1.49" Flow Length=200' Tc=6.9 min CN=79 Runoff=1.29 cfs 4,177 cf
Reach PD1: WASHINGTONROW	Inflow=4.63 cfs 18,207 cf Outflow=4.63 cfs 18,207 cf
Reach PD2: Wetland series "A"	Inflow=1.63 cfs 5,747 cf Outflow=1.63 cfs 5,747 cf
Reach PD3: Intermittent Stream	Inflow=1.62 cfs 5,721 cf Outflow=1.62 cfs 5,721 cf
Reach PD4: Wetland series "B"	Inflow=3.46 cfs 13,339 cf Outflow=3.46 cfs 13,339 cf
Reach PD5: Wetland series "E"	Inflow=3.98 cfs 14,119 cf Outflow=3.98 cfs 14,119 cf
Reach PD6: Wetland series "F"	Inflow=1.29 cfs 4,177 cf Outflow=1.29 cfs 4,177 cf
Reach WD: Washington St Drainage	Inflow=5.61 cfs 22,383 cf Outflow=5.61 cfs 22,383 cf

Total Runoff Area = 425,837 sf Runoff Volume = 61,310 cf Average Runoff Depth = 1.73" 78.06% Pervious = 332,408 sf 21.94% Impervious = 93,429 sf

Summary for Subcatchment E-1: E-1

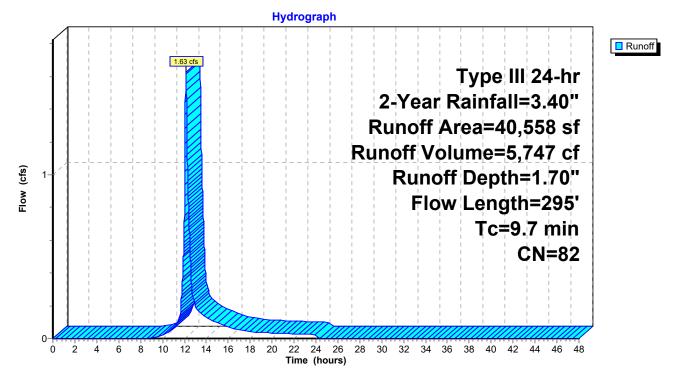

Runoff = 4.63 cfs @ 12.19 hrs, Volume= 18,207 cf, Depth= 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN	Description		
*		2,885	98	sol wetland	HSG D	
*		3,535	98	Pavement a	and Roofs,	HSG D
*		6,775	89	Dirt/Gravell	roads, HS	G D
*		7,944	98	_edge, HS0	GD	
		93,250	77	Woods, Go	od, HSG D	
		25,895	80	Pasture/gra	ssland/ran	ge, Good, HSG D
	1	40,284	80	Weighted A	verage	
	1	25,920	78	39.76% Pei	rvious Area	1
		14,364	98	10.24% Imp	pervious Ar	ea
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.4	50	0.1200	0.35		Sheet Flow,
						Range n= 0.130 P2= 3.40"
	10.8	661	0.0420	1.02		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps

13.2 711 Total

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

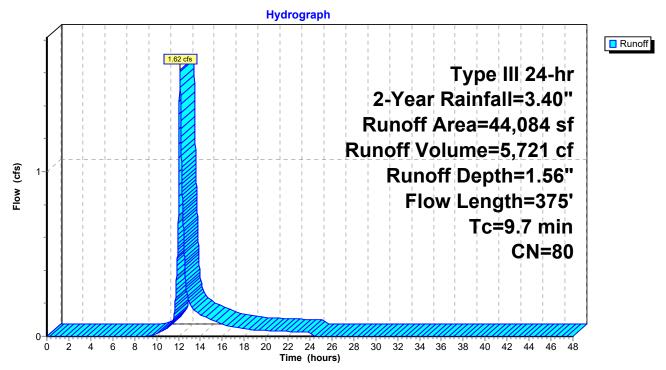
Runoff = 1.63 cfs @ 12.14 hrs, Volume= 5,747 cf, Depth= 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN	Description					
*		5,020	98	Ledge, HSG D					
		28,312	77	Woods, Go	od, HSG D				
*		2,902	98	Wetland Su	irface, HSG	G D			
		2,393	89	Dirt roads,	Dirt roads, HSG D				
_		1,931	78	Meadow, n	on-grazed,	HSG D			
		40,558	82	Weighted A	verage				
		32,636	78	80.47% Pe	rvious Area	l			
		7,922	98	19.53% Im	pervious Ar	ea			
	Tc	Length	Slope	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.2	50	0.0700	0.11		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	2.5	245	0.1100) 1.66		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
_	9.7	295	Total						

Subcatchment E-2: E-2

Summary for Subcatchment E-3: E-3


Runoff = 1.62 cfs @ 12.14 hrs, Volume= 5,721 cf, Depth= 1.56"

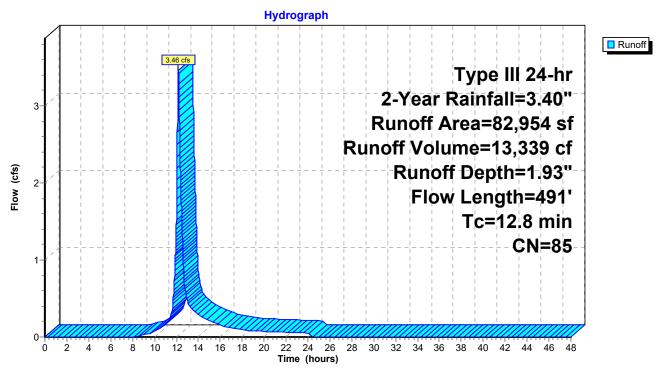
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN	Description		
*		1,868	98	Ledge, HS0	GD	
		38,259	77	Woods, Go	od, HSG D	
*		3,957	98	Wetland Su	Irface, HSG	G D
		44,084	80	Weighted A	verage	
		38,259	77	86.79% Pe	rvious Area	
		5,825	98	13.21% Imp	pervious Ar	ea
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.3	50	0.1000	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.3	241	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.1	84	0.0700	14.18	127.58	Channel Flow,
						Area= 9.0 sf Perim= 8.0' r= 1.13'
						n= 0.030 Stream, clean & straight
	0.7	075	Tatal			

9.7 375 Total

Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

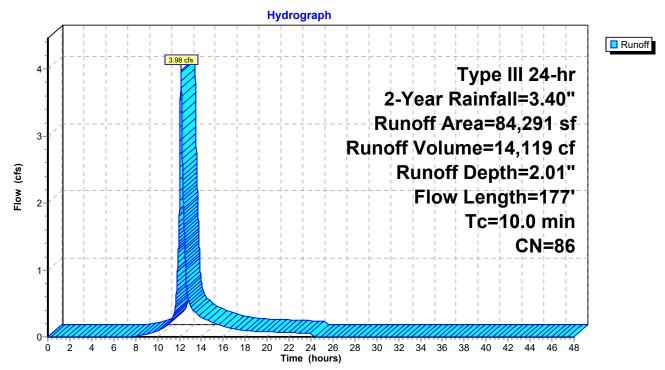

Runoff = 3.46 cfs @ 12.18 hrs, Volume= 13,339 cf, Depth= 1.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN I	Description					
*		25,716	98 l	_edge, HS0	GD				
		47,000	77 \	/oods, Good, HSG D					
		2,512	80 I	Pasture/grassland/range, Good, HSG D					
*		2,410	98 \	Netland Su	Irface, HSG	6 D			
_		5,316	89 I	Dirt roads, HSG D					
		82,954		85 Weighted Average					
		54,828	78 6	6.09% Pe	rvious Area				
		28,126	98 3	33.91% Imp	pervious Ar	ea			
	Тс	Length	Slope			Description			
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description			
		•	•	(ft/sec)		Description Sheet Flow,			
	(min)	(feet)	(ft/ft)	(ft/sec)					
	(min)	(feet)	(ft/ft)	(ft/sec) 0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow,			
	(min) 7.2	(feet) 50	(ft/ft) 0.0700	(ft/sec) 0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps			
_	(min) 7.2	(feet) 50	(ft/ft) 0.0700	(ft/sec) 0.11 3.81		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps Shallow Concentrated Flow,			
	(min) 7.2 1.0	(feet) 50 232	(ft/ft) 0.0700 0.0560	(ft/sec) 0.11 3.81		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps			

i lotai

Subcatchment E-4: E-4

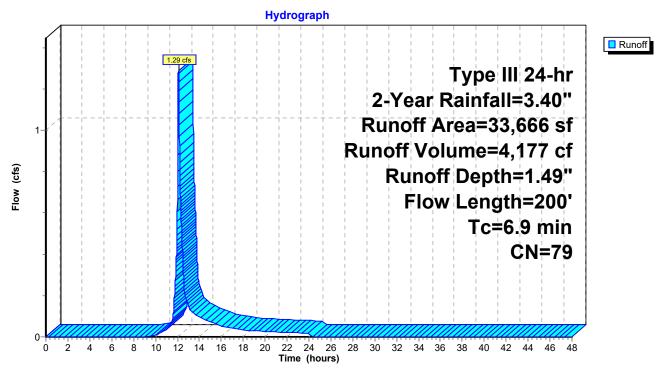

Summary for Subcatchment E-5: E-5

Runoff = 3.98 cfs @ 12.14 hrs, Volume= 14,119 cf, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN	Description		
*		13,500	98	Ledge, HS0	GD	
		47,115	77	Woods, Go	od, HSG D	
		3,353	89	Dirt roads, l	HSG D	
*		20,323	98	Wetland Su	irface, HSO	G D
		84,291	86	Weighted A	verage	
		50,468	78	59.87% Pei	rvious Area	
		33,823	98	40.13% Imp	pervious Ar	ea
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	8.3	50	0.0500	0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.0620) 1.24		Shallow Concentrated Flow,
	1.7		0.0020	,		,
_	1.7		0.0020			Woodland Kv= 5.0 fps

Subcatchment E-5: E-5

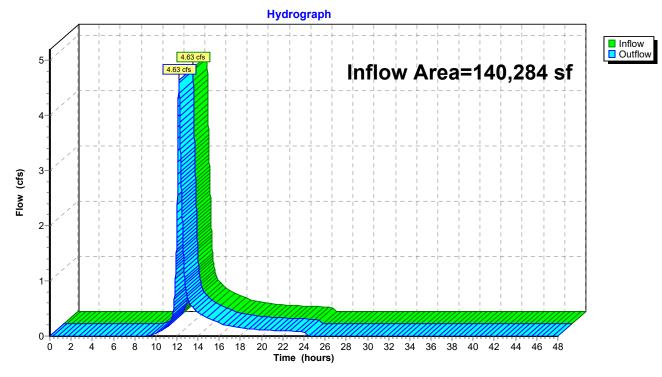

Summary for Subcatchment E-6: E-6

Runoff = 1.29 cfs @ 12.10 hrs, Volume= 4,177 cf, Depth= 1.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN	Description					
*		1,869	98	8 Ledge, HSG D					
		29,200	77	,,					
		1,097	80	Pasture/grassland/range, Good, HSG D					
*		1,500	98	Wetland Su	Irface, HSO	D			
		33,666	79	Weighted A	verage				
		30,297	77	89.99% Pe	rvious Area	l de la constante d			
		3,369	98	10.01% Im	pervious Ar	ea			
	Tc	Length	Slop	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.5	50	0.140	0 0.15		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	1.4	150	0.120	0 1.73		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	6.9	200	Total						

Subcatchment E-6: E-6

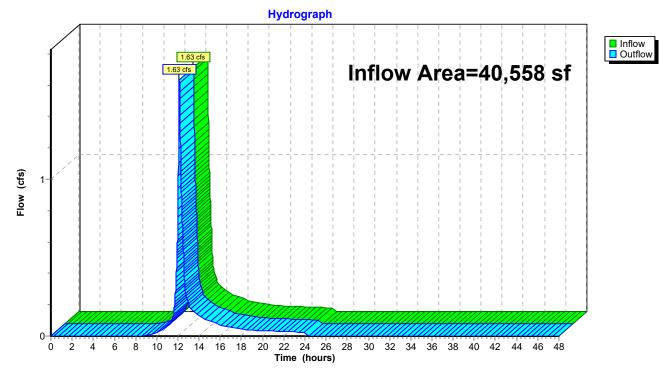


Summary for Reach PD1: WASHINGTON ROW

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	140,284 sf, 10.24% Impervious, Inflow Depth = 1.56" for 2-Year	r event
Inflow	=	4.63 cfs @ 12.19 hrs, Volume= 18,207 cf	
Outflow	=	4.63 cfs @ 12.19 hrs, Volume= 18,207 cf, Atten= 0%, Lag	= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

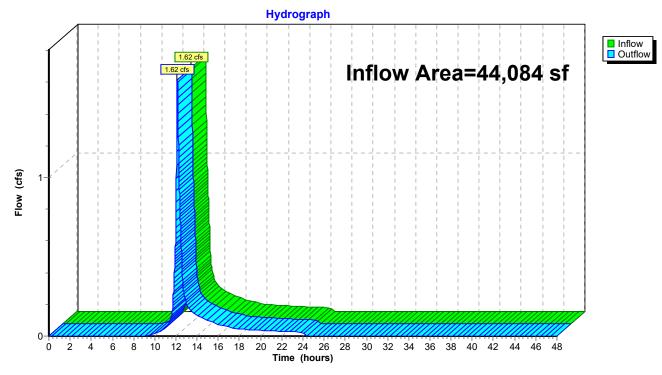

Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	40,558 sf, 19.53% Impervious, Inflow Depth = 1.70" for 2-1	∕ear event
Inflow	=	1.63 cfs @ 12.14 hrs, Volume= 5,747 cf	
Outflow	=	1.63 cfs @ 12.14 hrs, Volume= 5,747 cf, Atten= 0%,	_ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

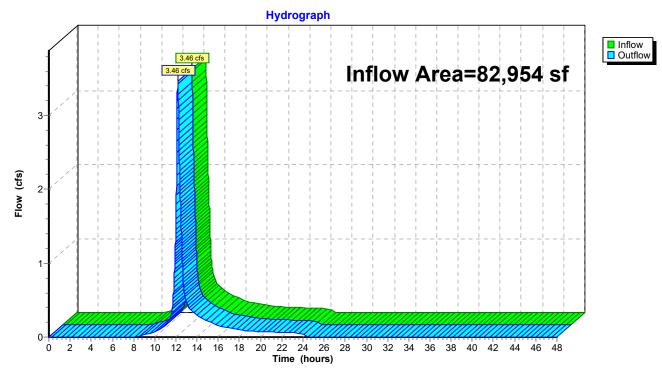

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	44,084 sf, 13.21% Impervious, Inflow Depth = 1.56"	for 2-Year event
Inflow	=	1.62 cfs @ 12.14 hrs, Volume= 5,721 cf	
Outflow	=	1.62 cfs @ 12.14 hrs, Volume= 5,721 cf, Atten	= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

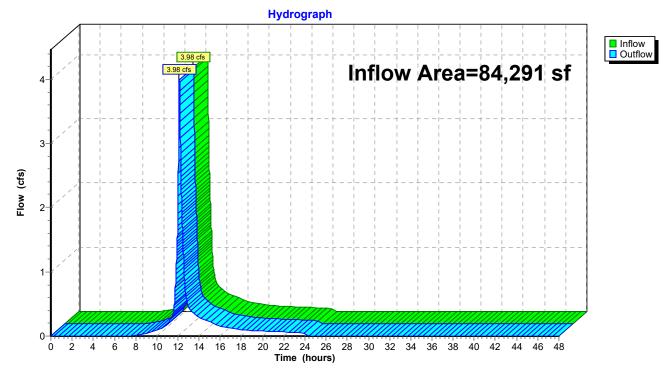

Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	82,954 sf, 33.91% Impervious, Inflow Depth = 1.93" for 2-Year event
Inflow	=	3.46 cfs @ 12.18 hrs, Volume= 13,339 cf
Outflow	=	3.46 cfs @ 12.18 hrs, Volume= 13,339 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

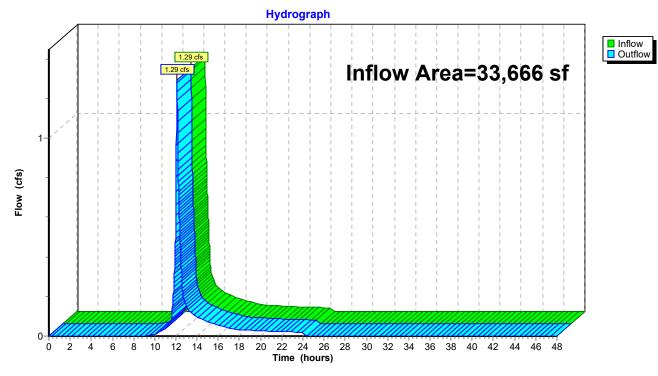

Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	84,291 sf, 40.13% Impervious, Inflow Depth = 2.01" for 2-Year event
Inflow	=	3.98 cfs @ 12.14 hrs, Volume= 14,119 cf
Outflow	=	3.98 cfs @ 12.14 hrs, Volume= 14,119 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

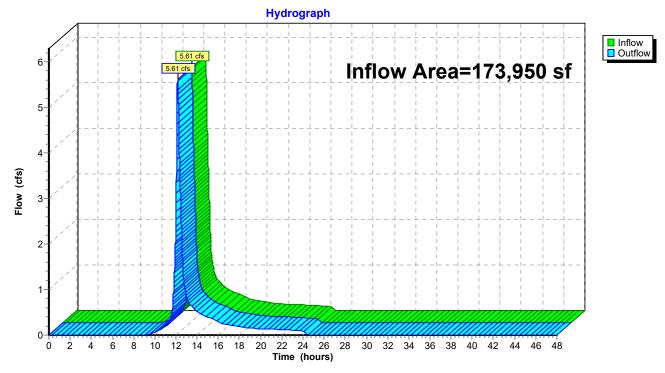

Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	33,666 sf,	10.01% Impervious,	Inflow Depth = 1.49"	for 2-Year event
Inflow	=	1.29 cfs @	12.10 hrs, Volume=	4,177 cf	
Outflow	=	1.29 cfs @	12.10 hrs, Volume=	4,177 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	173,950 sf, 10.19% Impervious, Inflow Depth = 1.54" for 2-Year event	2-Year event
Inflow	=	5.61 cfs @ 12.17 hrs, Volume= 22,383 cf	
Outflow	=	5.61 cfs @ 12.17 hrs, Volume= 22,383 cf, Atten= 0%, Lag= 0.0 mi	», Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

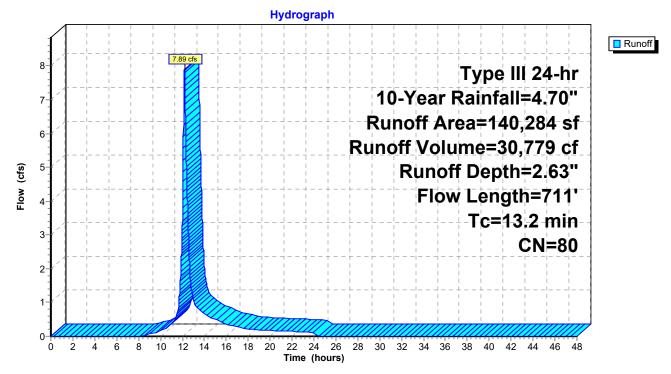
Reach WD: Washington St Drainage

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1: E-1	Runoff Area=140,284 sf 10.24% Impervious Runoff Depth=2.63" Flow Length=711' Tc=13.2 min CN=80 Runoff=7.89 cfs 30,779 cf
SubcatchmentE-2: E-2	Runoff Area=40,558 sf 19.53% Impervious Runoff Depth=2.81" Flow Length=295' Tc=9.7 min CN=82 Runoff=2.71 cfs 9,505 cf
SubcatchmentE-3: E-3	Runoff Area=44,084 sf 13.21% Impervious Runoff Depth=2.63" Flow Length=375' Tc=9.7 min CN=80 Runoff=2.76 cfs 9,672 cf
SubcatchmentE-4: E-4	Runoff Area=82,954 sf 33.91% Impervious Runoff Depth=3.09" Flow Length=491' Tc=12.8 min CN=85 Runoff=5.51 cfs 21,374 cf
SubcatchmentE-5: E-5	Runoff Area=84,291 sf 40.13% Impervious Runoff Depth=3.19" Flow Length=177' Tc=10.0 min CN=86 Runoff=6.26 cfs 22,393 cf
SubcatchmentE-6: E-6	Runoff Area=33,666 sf 10.01% Impervious Runoff Depth=2.55" Flow Length=200' Tc=6.9 min CN=79 Runoff=2.23 cfs 7,141 cf
Reach PD1: WASHINGTONROW	Inflow=7.89 cfs 30,779 cf Outflow=7.89 cfs 30,779 cf
Reach PD2: Wetland series "A"	Inflow=2.71 cfs 9,505 cf Outflow=2.71 cfs 9,505 cf
Reach PD3: Intermittent Stream	Inflow=2.76 cfs 9,672 cf Outflow=2.76 cfs 9,672 cf
Reach PD4: Wetland series "B"	Inflow=5.51 cfs 21,374 cf Outflow=5.51 cfs 21,374 cf
Reach PD5: Wetland series "E"	Inflow=6.26 cfs 22,393 cf Outflow=6.26 cfs 22,393 cf
Reach PD6: Wetland series "F"	Inflow=2.23 cfs 7,141 cf Outflow=2.23 cfs 7,141 cf
Reach WD: Washington St Drainage	Inflow=9.62 cfs 37,919 cf Outflow=9.62 cfs 37,919 cf

Total Runoff Area = 425,837 sf Runoff Volume = 100,864 cf Average Runoff Depth = 2.84" 78.06% Pervious = 332,408 sf 21.94% Impervious = 93,429 sf

Summary for Subcatchment E-1: E-1

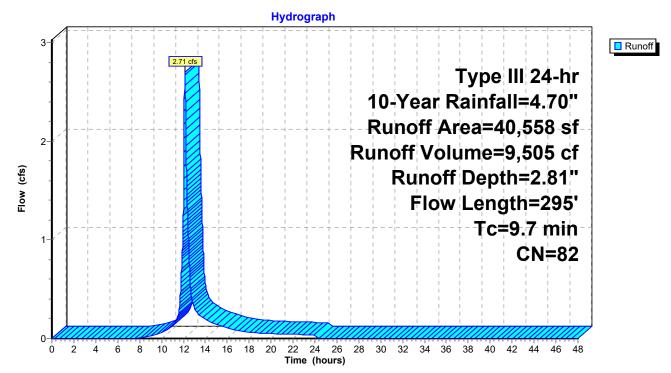

Runoff = 7.89 cfs @ 12.18 hrs, Volume= 30,779 cf, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	A	rea (sf)	CN I	Description				
*		2,885	98 i	sol wetland	I HSG D			
*		3,535	98	Pavement a	and Roofs,	HSG D		
*		6,775	89 I	Dirt/Gravell	roads, HS	G D		
*		7,944		_edge, HS0				
		93,250	77	Noods, Go	od, HSG D			
_		25,895	80	⊃asture/gra	ssland/ran	ge, Good, HSG D		
	1	40,284	80	Neighted A	verage			
	1	25,920	0 78 89.76% Pervious Area			1		
		14,364	98	10.24% Imp	pervious Ar	ea		
	_				• •			
	Tc	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	2.4	50	0.1200	0.35		Sheet Flow,		
						Range n= 0.130 P2= 3.40"		
	10.8	661	0.0420	1.02		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	40.0	744	T ()					

13.2 711 Total

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

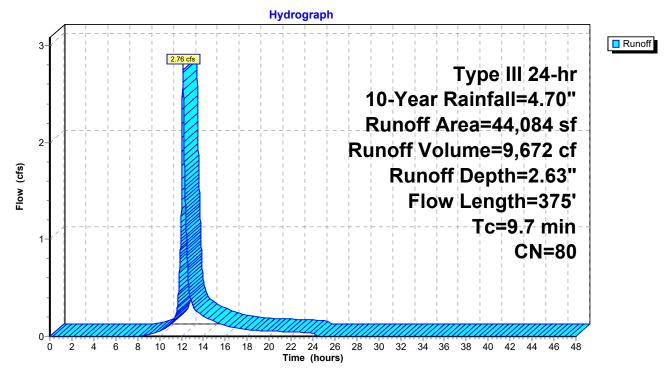
Runoff = 2.71 cfs @ 12.13 hrs, Volume= 9,505 cf, Depth= 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	A	rea (sf)	CN	Description			
*		5,020	98	Ledge, HSG D			
		28,312	77	Woods, Go	od, HSG D		
*		2,902	98	Wetland Su	irface, HSG	G D	
		2,393	89	Dirt roads, l	HSG D		
_		1,931	78	Meadow, n	on-grazed,	HSG D	
		40,558	82	Weighted A	verage		
		32,636	78	78 80.47% Pervious Area			
		7,922	98	19.53% Imp	pervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	7.2	50	0.0700	0.11		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.40"	
	2.5	245	0.1100	1.66		Shallow Concentrated Flow,	
_						Woodland Kv= 5.0 fps	
	9.7	295	Total				

Subcatchment E-2: E-2

Summary for Subcatchment E-3: E-3


Runoff = 2.76 cfs @ 12.14 hrs, Volume= 9,672 cf, Depth= 2.63"

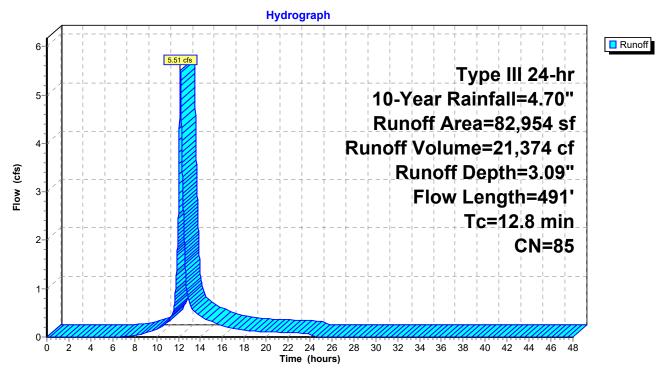
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	A	rea (sf)	CN I	Description			
*		1,868	98	98 Ledge, HSG D			
		38,259	77	Woods, Go	od, HSG D		
*		3,957	98	Wetland Su	irface, HSG	G D	
		44,084	80	Weighted A	verage		
		38,259	77 8	36.79% Pe	rvious Area		
		5,825	98	13.21% Imp	pervious Ar	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	6.3	50	0.1000	0.13		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.40"	
	3.3	241	0.0600	1.22		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	0.1	84	0.0700	14.18	127.58	Channel Flow,	
						Area= 9.0 sf Perim= 8.0' r= 1.13'	
_						n= 0.030 Stream, clean & straight	
	07	075	Tatal				

9.7 375 Total

Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

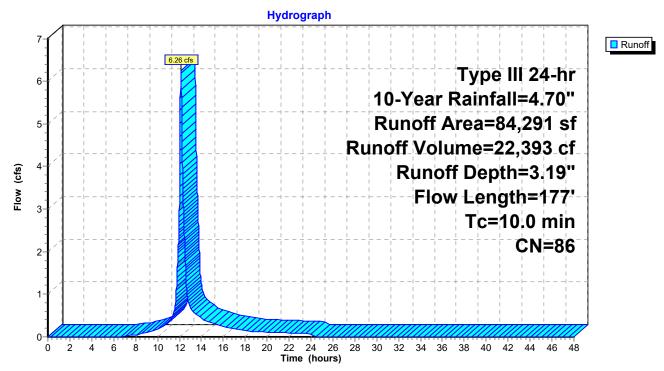

Runoff = 5.51 cfs @ 12.17 hrs, Volume= 21,374 cf, Depth= 3.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	A	rea (sf)	CN	Description					
*		25,716	98	Ledge, HSG D					
		47,000	77	Voods, Good, HSG D					
		2,512	80	Pasture/grassland/range, Good, HSG D					
*		2,410		Wetland Surface, HSG D					
		5,316	89	Dirt roads, l	HSG D				
		82,954	85	Weighted A	verage				
		54,828	78	66.09% Pei	rvious Area				
		28,126	98	98 33.91% Impervious Area					
	_		<u>.</u>		• •	— • • • •			
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.2	50	0.0700	0.11		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	1.0	232	0.0560	3.81		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	4.6	209	0.0230	0.76		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	12.8	/01	Total						

12.8 491 Total

Subcatchment E-4: E-4

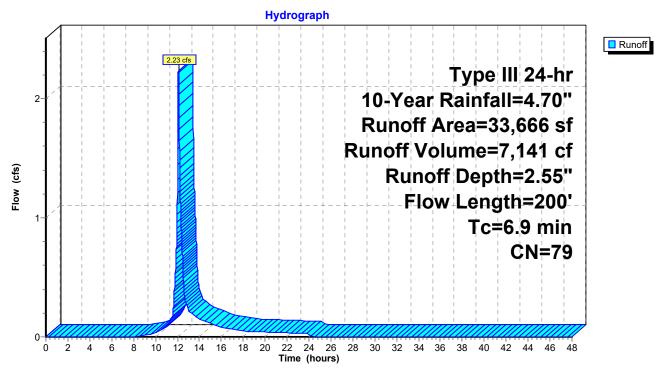

Summary for Subcatchment E-5: E-5

Runoff = 6.26 cfs @ 12.14 hrs, Volume= 22,393 cf, Depth= 3.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	A	rea (sf)	CN	Description		
*		13,500	98	Ledge, HS0	GD	
		47,115	77	Woods, Go	od, HSG D	
		3,353	89	Dirt roads,	HSG D	
*		20,323	98	Wetland Su	irface, HSC	G D
		84,291	86	Weighted A	verage	
		50,468	78	59.87% Pe	rvious Area	l de la constante d
		33,823	98	40.13% Imp	pervious Ar	ea
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.0	177	Total			

Subcatchment E-5: E-5

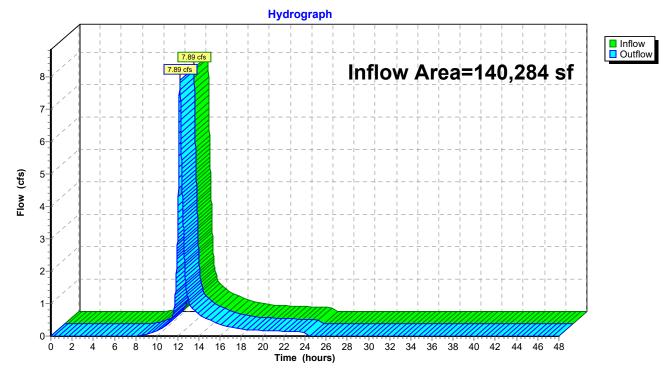

Summary for Subcatchment E-6: E-6

Runoff = 2.23 cfs @ 12.10 hrs, Volume= 7,141 cf, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	A	rea (sf)	CN	Description					
*		1,869	98	8 Ledge, HSG D					
		29,200	77	Woods, Go	od, HSG D				
		1,097	80	Pasture/gra	assland/ran	ge, Good, HSG D			
*		1,500	98	Wetland Su	urface, HSG	D			
		33,666	79	Weighted A	verage				
		30,297	77	89.99% Pe	rvious Area	l			
		3,369	98	10.01% Im	pervious Ar	ea			
	Tc	Length	Slope	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.5	50	0.140	0 0.15		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	1.4	150	0.120	0 1.73		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	6.9	200	Total						

Subcatchment E-6: E-6

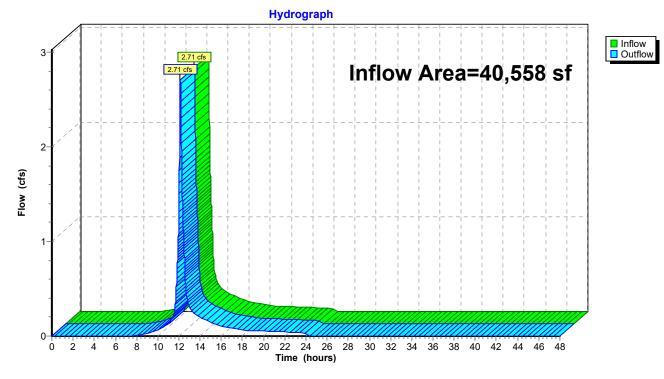


Summary for Reach PD1: WASHINGTON ROW

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	140,284 sf, 10.24% Impervious	, Inflow Depth = 2.63" for 10-Year event
Inflow	=	7.89 cfs @ 12.18 hrs, Volume=	30,779 cf
Outflow	=	7.89 cfs @ 12.18 hrs, Volume=	30,779 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

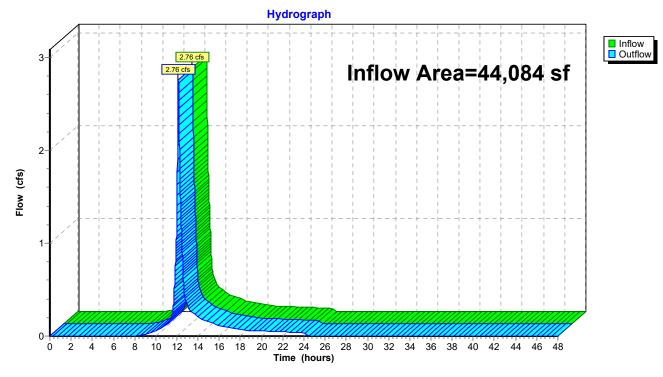

Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	40,558 sf, 19.53% Impervious, Inflow Depth = 2.81" for 10-Year event
Inflow	=	2.71 cfs @ 12.13 hrs, Volume= 9,505 cf
Outflow	=	2.71 cfs @ 12.13 hrs, Volume= 9,505 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

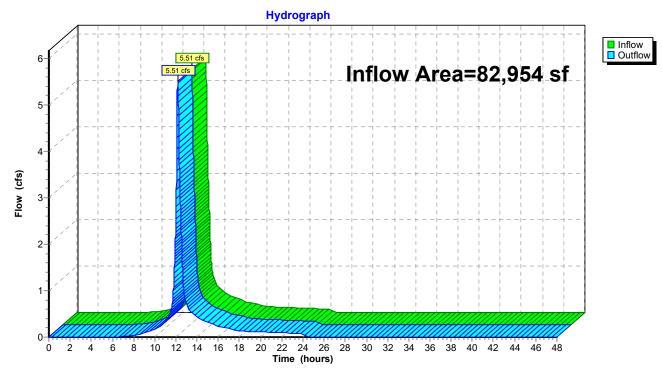

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	44,084 sf, 13.21% Impervious, Inflow Depth = 2.63" for 10-Year event	
Inflow	=	2.76 cfs @ 12.14 hrs, Volume= 9,672 cf	
Outflow	=	2.76 cfs @ 12.14 hrs, Volume= 9,672 cf, Atten= 0%, Lag= 0.0 mi	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

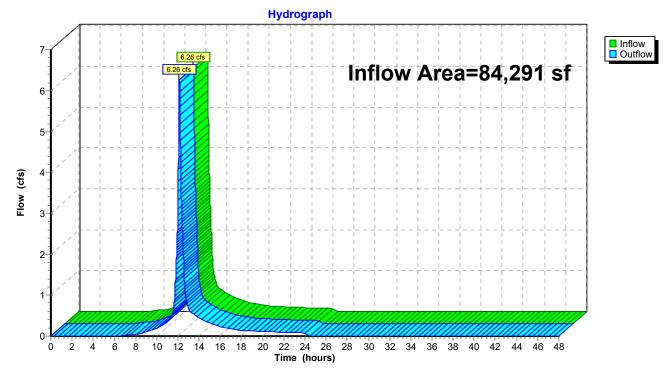

Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	82,954 sf, 33.91% Impervious, Inflow Depth = 3.09" for 10-Year event
Inflow	=	5.51 cfs @ 12.17 hrs, Volume= 21,374 cf
Outflow	=	5.51 cfs @ 12.17 hrs, Volume= 21,374 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

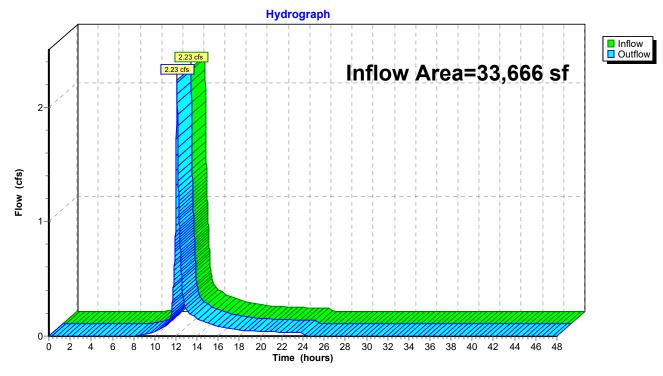

Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	84,291 sf, 40.13% Impervious, Inflow Depth = 3.19" for 10-Year event
Inflow	=	6.26 cfs @ 12.14 hrs, Volume= 22,393 cf
Outflow	=	6.26 cfs @ 12.14 hrs, Volume= 22,393 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

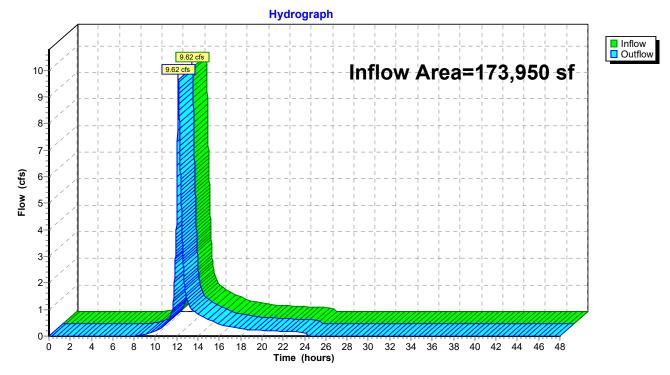

Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	33,666 sf, 10.01% Impervious, Inflow Depth = 2.55" for 10-Year event
Inflow	=	2.23 cfs @ 12.10 hrs, Volume= 7,141 cf
Outflow	=	2.23 cfs @ 12.10 hrs, Volume= 7,141 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	173,950 sf, 10.19% Impervious, Inflow Depth = 2.62" for 10-Year event
Inflow	=	9.62 cfs @ 12.16 hrs, Volume= 37,919 cf
Outflow	=	9.62 cfs @ 12.16 hrs, Volume= 37,919 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

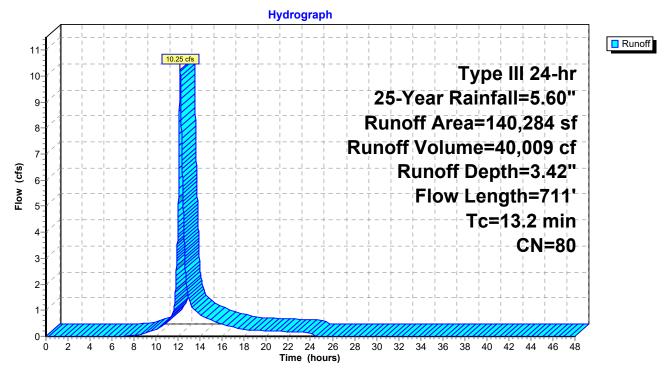
Reach WD: Washington St Drainage

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1: E-1	Runoff Area=140,284 sf 10.24% Impervious Runoff Depth=3.42" Flow Length=711' Tc=13.2 min CN=80 Runoff=10.25 cfs 40,009 cf
SubcatchmentE-2: E-2	Runoff Area=40,558 sf 19.53% Impervious Runoff Depth=3.62" Flow Length=295' Tc=9.7 min CN=82 Runoff=3.47 cfs 12,238 cf
SubcatchmentE-3: E-3	Runoff Area=44,084 sf 13.21% Impervious Runoff Depth=3.42" Flow Length=375' Tc=9.7 min CN=80 Runoff=3.58 cfs 12,573 cf
SubcatchmentE-4: E-4	Runoff Area=82,954 sf 33.91% Impervious Runoff Depth=3.93" Flow Length=491' Tc=12.8 min CN=85 Runoff=6.95 cfs 27,143 cf
SubcatchmentE-5: E-5	Runoff Area=84,291 sf 40.13% Impervious Runoff Depth=4.03" Flow Length=177' Tc=10.0 min CN=86 Runoff=7.85 cfs 28,311 cf
SubcatchmentE-6: E-6	Runoff Area=33,666 sf 10.01% Impervious Runoff Depth=3.32" Flow Length=200' Tc=6.9 min CN=79 Runoff=2.92 cfs 9,327 cf
Reach PD1: WASHINGTONROW	Inflow=10.25 cfs 40,009 cf Outflow=10.25 cfs 40,009 cf
Reach PD2: Wetland series "A"	Inflow=3.47 cfs 12,238 cf Outflow=3.47 cfs 12,238 cf
Reach PD3: Intermittent Stream	Inflow=3.58 cfs 12,573 cf Outflow=3.58 cfs 12,573 cf
Reach PD4: Wetland series "B"	Inflow=6.95 cfs 27,143 cf Outflow=6.95 cfs 27,143 cf
Reach PD5: Wetland series "E"	Inflow=7.85 cfs 28,311 cf Outflow=7.85 cfs 28,311 cf
Reach PD6: Wetland series "F"	Inflow=2.92 cfs 9,327 cf Outflow=2.92 cfs 9,327 cf
Reach WD: Washington St Drainage	Inflow=12.51 cfs 49,336 cf Outflow=12.51 cfs 49,336 cf

Total Runoff Area = 425,837 sf Runoff Volume = 129,601 cf Average Runoff Depth = 3.65" 78.06% Pervious = 332,408 sf 21.94% Impervious = 93,429 sf

Summary for Subcatchment E-1: E-1

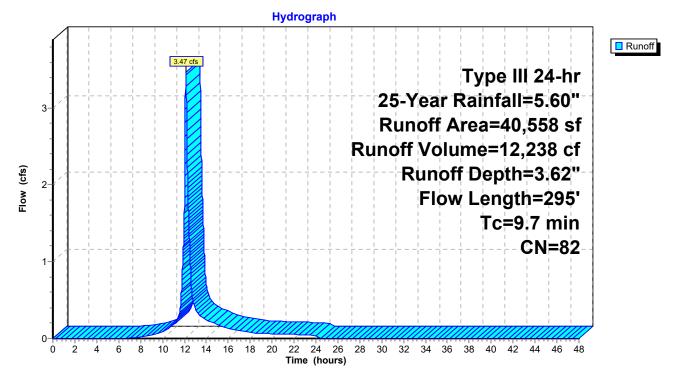

Runoff = 10.25 cfs @ 12.18 hrs, Volume= 40,009 cf, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

_	A	rea (sf)	CN I	Description				
*		2,885	98 i	sol wetland	I HSG D			
*		3,535	98	Pavement a	and Roofs,	HSG D		
*		6,775	89 I	Dirt/Gravell	roads, HS	G D		
*		7,944	98 I	_edge, HS0	GD			
		93,250	77	Noods, Go	od, HSG D			
_		25,895	80	Pasture/gra	ssland/ran	ge, Good, HSG D		
	1	40,284	80	Neighted A	verage			
	125,920		78 8	89.76% Pervious Area				
		14,364	98	08 10.24% Impervious Area				
	Тс	Length	Slope		Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	2.4	50	0.1200	0.35		Sheet Flow,		
						Range n= 0.130 P2= 3.40"		
	10.8	661	0.0420	1.02		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		

13.2 711 Total

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

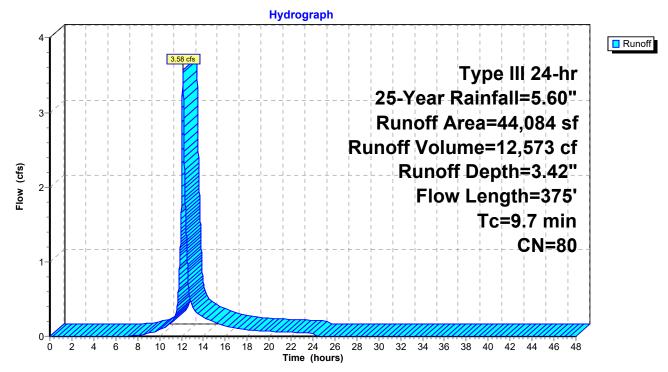
Runoff = 3.47 cfs @ 12.13 hrs, Volume= 12,238 cf, Depth= 3.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	A	rea (sf)	CN	Description		
*		5,020	98	Ledge, HS0	GD	
		28,312	77	Woods, Go	od, HSG D	
*		2,902	98	Wetland Su	urface, HSG	G D
		2,393	89	Dirt roads,	HSG D	
_		1,931	78	Meadow, n	on-grazed,	HSG D
		40,558	82	Weighted A	verage	
		32,636	78	80.47% Pe	rvious Area	1
		7,922	98	19.53% Imp	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	7.2	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	2.5	245	0.1100) 1.66		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	9.7	295	Total			

Subcatchment E-2: E-2

Summary for Subcatchment E-3: E-3


Runoff = 3.58 cfs @ 12.13 hrs, Volume= 12,573 cf, Depth= 3.42"

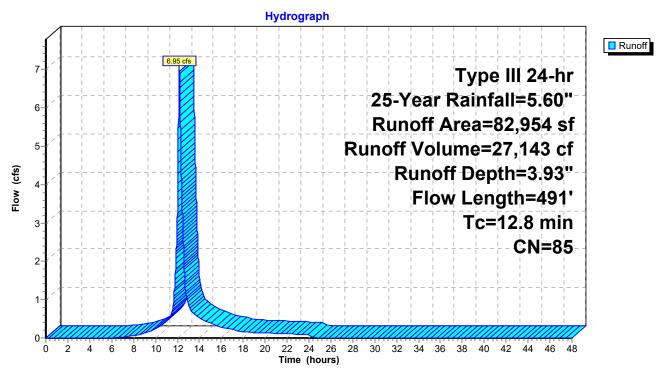
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

_	A	rea (sf)	CN	Description		
*		1,868	98	Ledge, HS0	GD	
		38,259	77	Woods, Go	od, HSG D	
*		3,957	98	Wetland Su	irface, HSG	G D
		44,084	80	Weighted A	verage	
		38,259	77	86.79% Pe	rvious Area	
		5,825	98	13.21% Imp	pervious Ar	ea
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.3	50	0.1000	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.3	241	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.1	84	0.0700	14.18	127.58	Channel Flow,
						Area= 9.0 sf Perim= 8.0' r= 1.13'
_						n= 0.030 Stream, clean & straight
	07	275	Total			

9.7 375 Total

Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

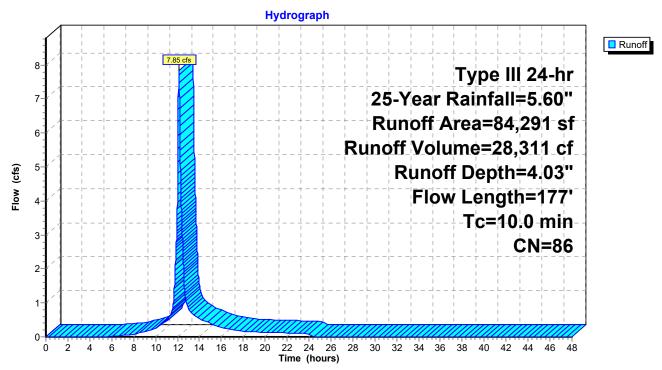

Runoff = 6.95 cfs @ 12.17 hrs, Volume= 27,143 cf, Depth= 3.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

_	A	rea (sf)	CN	Description		
*		25,716	98	Ledge, HS0	GD	
		47,000	77	Woods, Go	od, HSG D	
		2,512	80	Pasture/gra	ssland/ran	ge, Good, HSG D
*		2,410		Wetland Su	,	G D
		5,316	89	Dirt roads, l	HSG D	
		82,954	85	Weighted A	verage	
		54,828	78	66.09% Pei	rvious Area	
		28,126	98	33.91% Imp	pervious Ar	ea
	_		<u>.</u>		• •	— • • • •
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.0	232	0.0560	3.81		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	4.6	209	0.0230	0.76		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	12.8	/01	Total			

12.8 491 Total

Subcatchment E-4: E-4

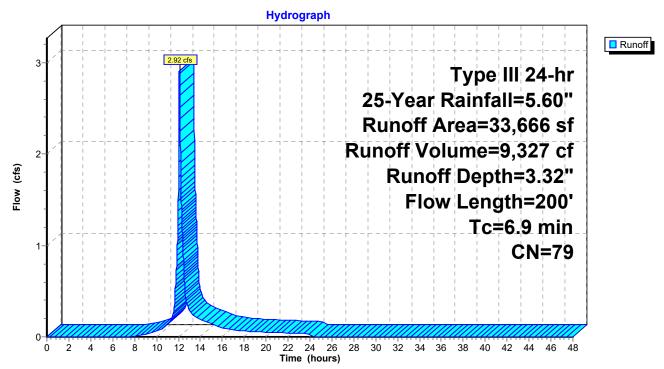

Summary for Subcatchment E-5: E-5

Runoff = 7.85 cfs @ 12.14 hrs, Volume= 28,311 cf, Depth= 4.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	A	rea (sf)	CN	Description		
*		13,500	98	Ledge, HS0	GD	
		47,115	77	Woods, Go	od, HSG D	
		3,353	89	Dirt roads,	HSG D	
*		20,323	98	Wetland Su	irface, HSG	G D
		84,291	86	Weighted A	verage	
		50,468	78	59.87% Pe	rvious Area	
		33,823	98	40.13% Im	pervious Ar	ea
	Тс	Length	Slop		Capacity	Description
	(min)	(feet)	(ft/ft	i) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.0	177	Total			

Subcatchment E-5: E-5

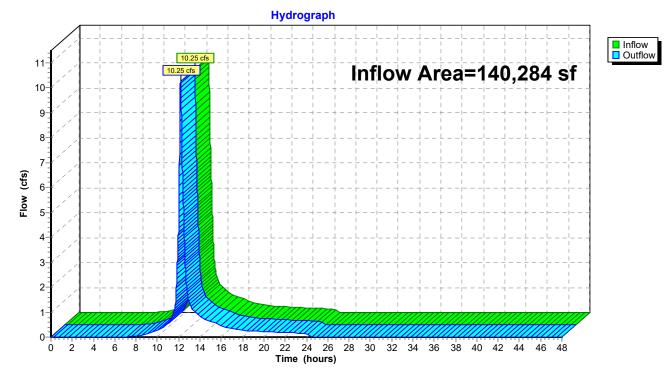

Summary for Subcatchment E-6: E-6

Runoff = 2.92 cfs @ 12.10 hrs, Volume= 9,327 cf, Depth= 3.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

_	A	rea (sf)	CN	Description		
*		1,869	98	Ledge, HS	GD	
		29,200	77	Woods, Go	od, HSG D	
		1,097	80	Pasture/gra	ssland/ran	ge, Good, HSG D
*		1,500	98	Wetland Su	Irface, HSO	D
		33,666	79	Weighted A	verage	
		30,297	77	89.99% Pe	rvious Area	l de la constante d
		3,369	98	10.01% Imp	pervious Ar	ea
	Tc	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	5.5	50	0.140	0 0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.4	150	0.120	0 1.73		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	6.9	200	Total			

Subcatchment E-6: E-6

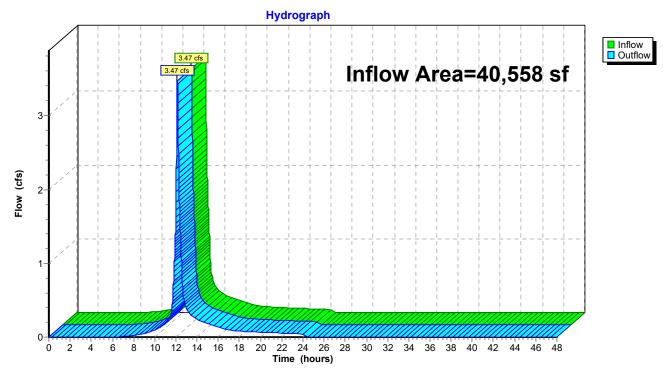


Summary for Reach PD1: WASHINGTON ROW

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	140,284 sf, 10.24% Impervious, Inflow Depth = 3.42" for 25-Year event
Inflow	=	10.25 cfs @ 12.18 hrs, Volume= 40,009 cf
Outflow	=	10.25 cfs @ 12.18 hrs, Volume= 40,009 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

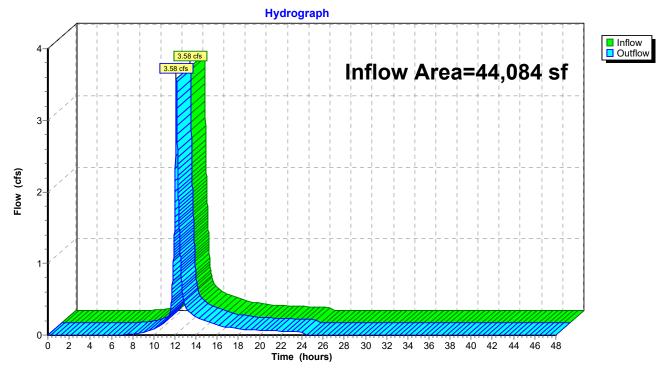

Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	40,558 sf, 19.53% Impervious, Inflow Depth = 3.62" for 25-Year eve	nt
Inflow	=	3.47 cfs @ 12.13 hrs, Volume= 12,238 cf	
Outflow	=	3.47 cfs @ 12.13 hrs, Volume= 12,238 cf, Atten= 0%, Lag= 0.0 r	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	44,084 sf, 13.21% Impervious, Inflow Depth = 3.42" for 25-Year even	t
Inflow	=	3.58 cfs @ 12.13 hrs, Volume= 12,573 cf	
Outflow	=	3.58 cfs @ 12.13 hrs, Volume= 12,573 cf, Atten= 0%, Lag= 0.0 m	iin

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

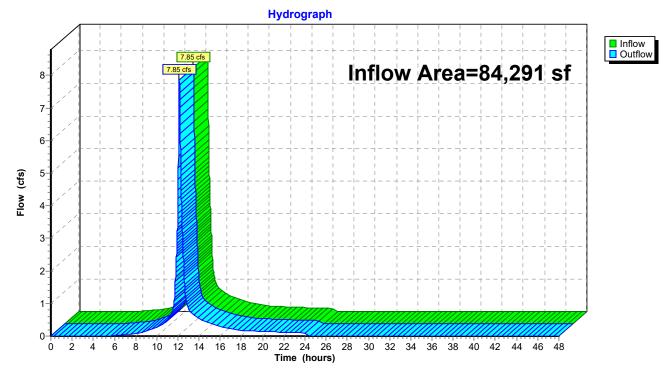
Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	82,954 sf, 33.91% Impervious, Inflow Depth = 3.93" for 25-Year event
Inflow	=	6.95 cfs @ 12.17 hrs, Volume= 27,143 cf
Outflow	=	6.95 cfs @ 12.17 hrs, Volume= 27,143 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

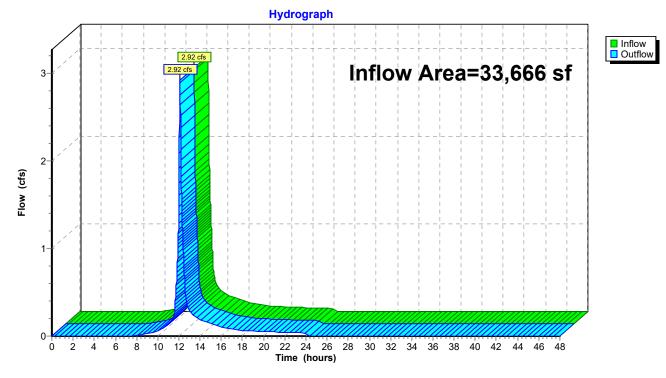

Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	84,291 sf, 40.13% Impervious, Inflow Depth = 4	.03" for 25-Year event
Inflow	=	7.85 cfs @ 12.14 hrs, Volume= 28,311 cf	
Outflow	=	7.85 cfs @ 12.14 hrs, Volume= 28,311 cf,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

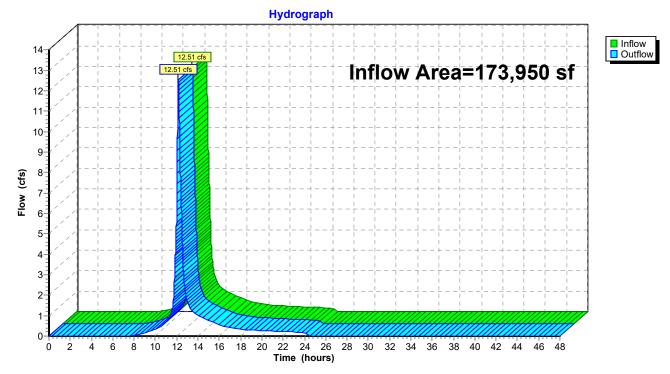

Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	33,666 sf, 10.01% Imperviou	s, Inflow Depth = 3.32" for 25-Year event
Inflow	=	2.92 cfs @ 12.10 hrs, Volume:	= 9,327 cf
Outflow	=	2.92 cfs @ 12.10 hrs, Volume	= 9,327 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	173,950 sf, 10.19% Impervious, Inflow Depth = 3.40" for 25-Year event	t
Inflow	=	12.51 cfs @ 12.16 hrs, Volume= 49,336 cf	
Outflow	=	12.51 cfs @ 12.16 hrs, Volume= 49,336 cf, Atten= 0%, Lag= 0.0 m	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

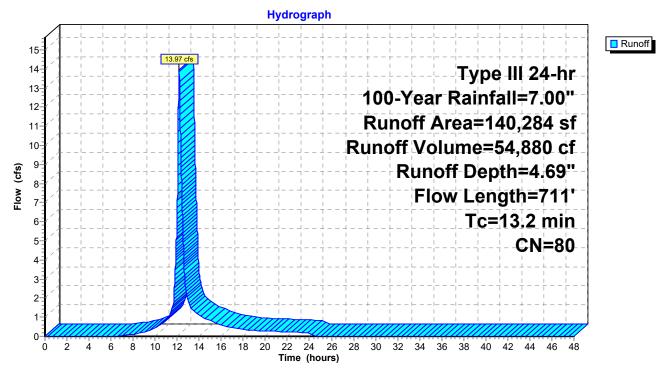
Reach WD: Washington St Drainage

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1: E-1	Runoff Area=140,284 sf 10.24% Impervious Runoff Depth=4.69" Flow Length=711' Tc=13.2 min CN=80 Runoff=13.97 cfs 54,880 cf
SubcatchmentE-2: E-2	Runoff Area=40,558 sf 19.53% Impervious Runoff Depth=4.92" Flow Length=295' Tc=9.7 min CN=82 Runoff=4.67 cfs 16,616 cf
SubcatchmentE-3: E-3	Runoff Area=44,084 sf 13.21% Impervious Runoff Depth=4.69" Flow Length=375' Tc=9.7 min CN=80 Runoff=4.87 cfs 17,246 cf
SubcatchmentE-4: E-4	Runoff Area=82,954 sf 33.91% Impervious Runoff Depth=5.25" Flow Length=491' Tc=12.8 min CN=85 Runoff=9.19 cfs 36,310 cf
SubcatchmentE-5: E-5	Runoff Area=84,291 sf 40.13% Impervious Runoff Depth=5.37" Flow Length=177' Tc=10.0 min CN=86 Runoff=10.32 cfs 37,690 cf
SubcatchmentE-6: E-6	Runoff Area=33,666 sf 10.01% Impervious Runoff Depth=4.58" Flow Length=200' Tc=6.9 min CN=79 Runoff=4.00 cfs 12,861 cf
Reach PD1: WASHINGTONROW	Inflow=13.97 cfs 54,880 cf Outflow=13.97 cfs 54,880 cf
Reach PD2: Wetland series "A"	Inflow=4.67 cfs 16,616 cf Outflow=4.67 cfs 16,616 cf
Reach PD3: Intermittent Stream	Inflow=4.87 cfs 17,246 cf Outflow=4.87 cfs 17,246 cf
Reach PD4: Wetland series "B"	Inflow=9.19 cfs 36,310 cf Outflow=9.19 cfs 36,310 cf
Reach PD5: Wetland series "E"	Inflow=10.32 cfs 37,690 cf Outflow=10.32 cfs 37,690 cf
Reach PD6: Wetland series "F"	Inflow=4.00 cfs 12,861 cf Outflow=4.00 cfs 12,861 cf
Reach WD: Washington St Drainage	Inflow=17.07 cfs 67,741 cf Outflow=17.07 cfs 67,741 cf

Total Runoff Area = 425,837 sf Runoff Volume = 175,603 cf Average Runoff Depth = 4.95" 78.06% Pervious = 332,408 sf 21.94% Impervious = 93,429 sf

Summary for Subcatchment E-1: E-1

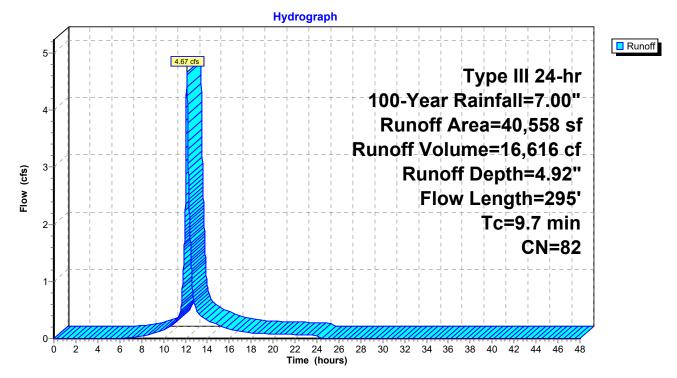

Runoff = 13.97 cfs @ 12.18 hrs, Volume= 54,880 cf, Depth= 4.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	A	rea (sf)	CN I	Description		
*		2,885	98 i	sol wetland	I HSG D	
*		3,535	98	Pavement a	and Roofs,	HSG D
*		6,775	89 I	Dirt/Gravell	roads, HS	G D
*		7,944	98 I	_edge, HS0	GD	
		93,250	77	Noods, Go	od, HSG D	
_		25,895	80	Pasture/gra	ssland/ran	ge, Good, HSG D
	1	40,284	80	Neighted A	verage	
	1	25,920	78 8	39.76% Pei	rvious Area	1
		14,364	98	10.24% Imp	pervious Ar	ea
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.4	50	0.1200	0.35		Sheet Flow,
						Range n= 0.130 P2= 3.40"
	10.8	661	0.0420	1.02		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps

13.2 711 Total

Subcatchment E-1: E-1


Summary for Subcatchment E-2: E-2

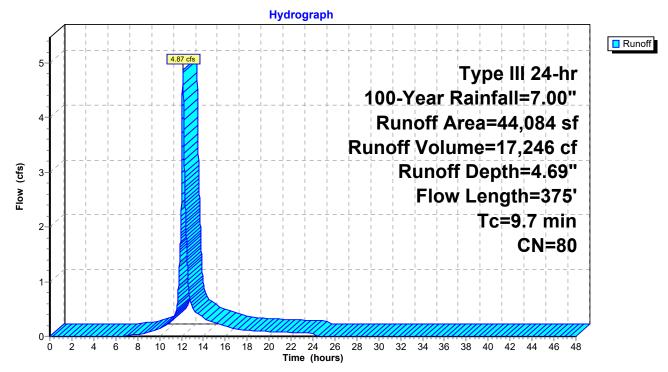
Runoff = 4.67 cfs @ 12.13 hrs, Volume= 16,616 cf, Depth= 4.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	A	rea (sf)	CN	Description		
*		5,020	98	Ledge, HS0	GD	
		28,312	77	Woods, Go	od, HSG D	
*		2,902	98	Wetland Su	urface, HSG	G D
		2,393	89	Dirt roads,	HSG D	
_		1,931	78	Meadow, n	on-grazed,	HSG D
		40,558	82	Weighted A	verage	
		32,636	78	80.47% Pe	rvious Area	1
		7,922	98	19.53% Imp	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	7.2	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	2.5	245	0.1100) 1.66		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	9.7	295	Total			

Subcatchment E-2: E-2

Summary for Subcatchment E-3: E-3


Runoff = 4.87 cfs @ 12.13 hrs, Volume= 17,246 cf, Depth= 4.69"

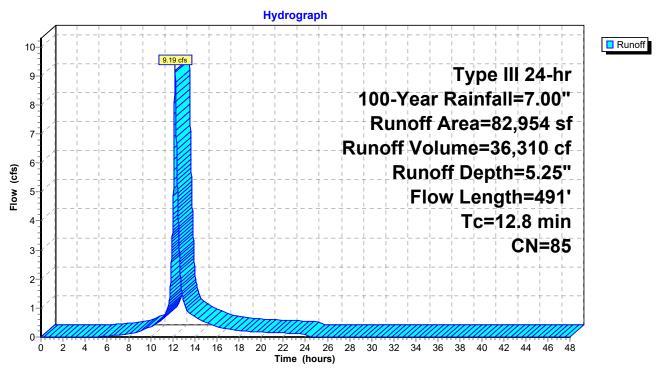
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	A	rea (sf)	CN	Description		
*		1,868	98	Ledge, HS0	GD	
		38,259	77	Woods, Go	od, HSG D	
*		3,957	98	Wetland Su	Irface, HSG	G D
		44,084	80	Weighted A	verage	
		38,259	77	86.79% Pe	rvious Area	
		5,825	98	13.21% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.3	50	0.1000	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.3	241	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.1	84	0.0700	14.18	127.58	Channel Flow,
						Area= 9.0 sf Perim= 8.0' r= 1.13'
						n= 0.030 Stream, clean & straight
_	0.7	275	Tatal			

9.7 375 Total

Subcatchment E-3: E-3

Summary for Subcatchment E-4: E-4

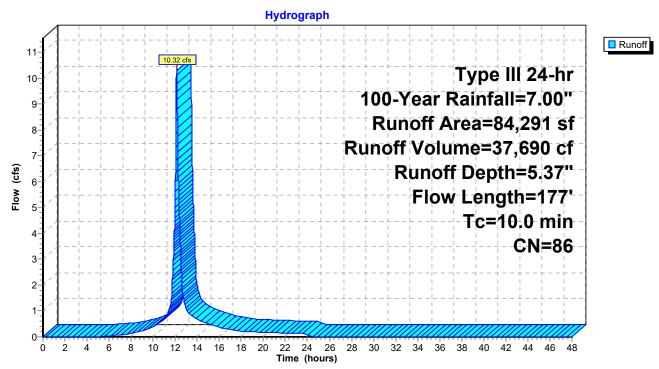

Runoff = 9.19 cfs @ 12.17 hrs, Volume= 36,310 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	A	rea (sf)	CN [Description		
*		25,716	98 L	.edge, HSC	GD	
		47,000	77 \	Voods, Go	od, HSG D	
		2,512	80 F	Pasture/gra	ssland/ran	ge, Good, HSG D
*		2,410	98 \	Vetland Su	Irface, HSO	G D
		5,316	89 [Dirt roads, I	HSG D	
		82,954	85 \	Veighted A	verage	
		54,828	78 6	6.09% Per	rvious Area	
		28,126	98 3	3.91% Imp	pervious Ar	ea
	-		0		A	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.0	232	0.0560	3.81		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	4.6	209	0.0230	0.76		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	12.0	401	Total			

12.8 491 Total

Subcatchment E-4: E-4

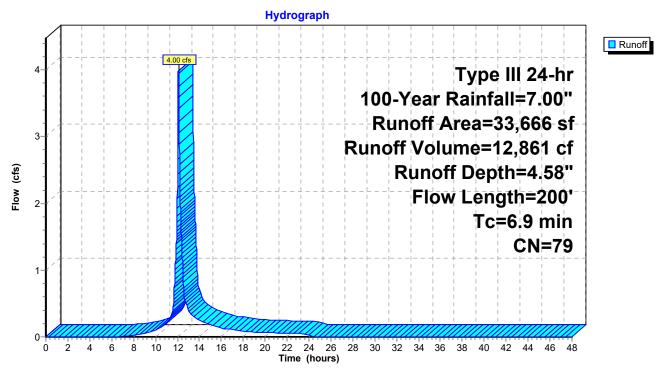

Summary for Subcatchment E-5: E-5

Runoff = 10.32 cfs @ 12.14 hrs, Volume= 37,690 cf, Depth= 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	A	rea (sf)	CN	Description		
*		13,500	98	Ledge, HS0	GD	
		47,115	77	Woods, Go	od, HSG D	
		3,353	89	Dirt roads,	HSG D	
*		20,323	98	Wetland Su	irface, HSC	G D
		84,291	86	Weighted A	verage	
		50,468	78	59.87% Pe	rvious Area	l de la constante d
		33,823	98	40.13% Imp	pervious Ar	ea
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.0	177	Total			

Subcatchment E-5: E-5

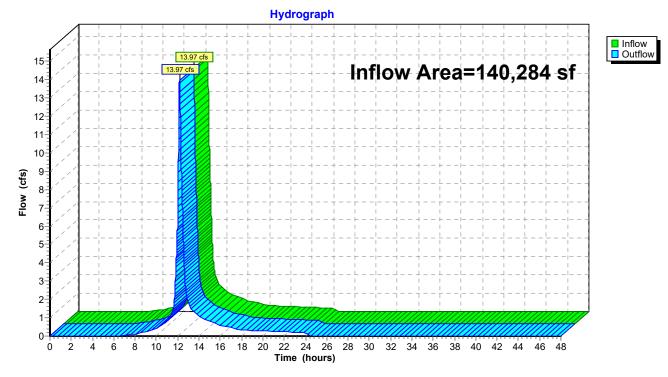

Summary for Subcatchment E-6: E-6

Runoff = 4.00 cfs @ 12.10 hrs, Volume= 12,861 cf, Depth= 4.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	A	rea (sf)	CN	Description		
*		1,869	98	Ledge, HS	GD	
		29,200	77	Woods, Go	od, HSG D	
		1,097	80	Pasture/gra	assland/ran	ge, Good, HSG D
*		1,500	98	Wetland Su	urface, HSG	D
		33,666	79	Weighted A	verage	
		30,297	77	89.99% Pe	rvious Area	l de la constante d
		3,369	98	10.01% Im	pervious Ar	ea
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)	
	5.5	50	0.140	0 0.15		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.4	150	0.120	0 1.73		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	6.9	200	Total			

Subcatchment E-6: E-6



Summary for Reach PD1: WASHINGTON ROW

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	140,284 sf, 10.24% Impervious, Inflo	ow Depth = 4.69" for 100-Year event
Inflow	=	13.97 cfs @ 12.18 hrs, Volume=	54,880 cf
Outflow	=	13.97 cfs @ 12.18 hrs, Volume=	54,880 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

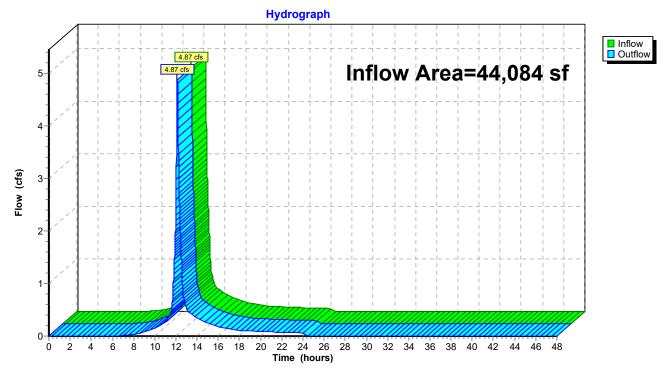
Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		40,558 sf, 19.53%	Impervious,	Inflow Depth =	4.92"	for 100-Year event
Inflow :	=	4.67 cfs @ 12.13 hrs	, Volume=	16,616 c	f	
Outflow =	=	4.67 cfs @ 12.13 hrs	, Volume=	16,616 c	f, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

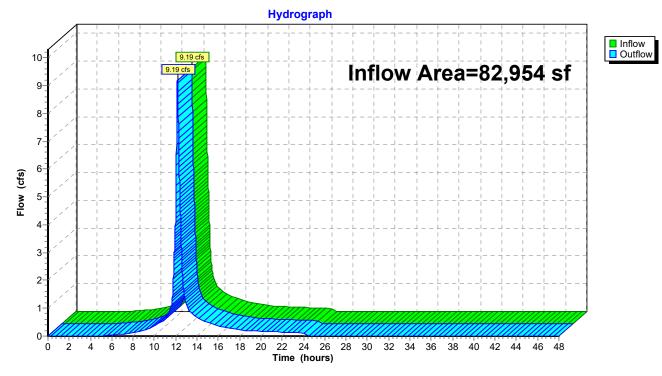

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	44,084 sf, 13.21% Impervious, Inflow Depth = 4.69" for 100-Year event
Inflow	=	4.87 cfs @ 12.13 hrs, Volume= 17,246 cf
Outflow	=	4.87 cfs @ 12.13 hrs, Volume= 17,246 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		82,954 sf, 33.91% Impervious, Inflow Depth = 5.25" for 100-Year event
Inflow	=	9.19 cfs @ 12.17 hrs, Volume= 36,310 cf
Outflow	=	9.19 cfs @ 12.17 hrs, Volume= 36,310 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

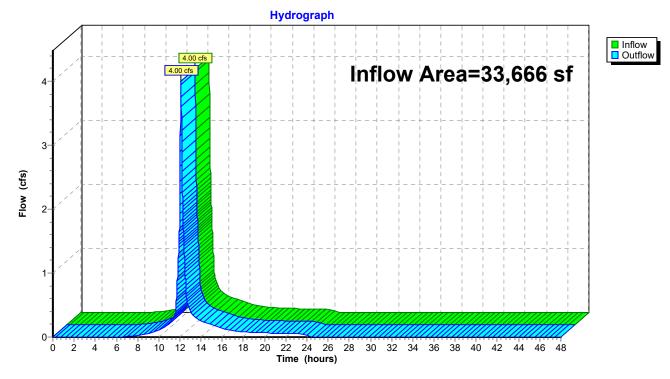
Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		84,291 sf, 40.13% Impervious, Inflow Depth = 5.37" for 100-Year even	nt
Inflow	=	10.32 cfs @ 12.14 hrs, Volume= 37,690 cf	
Outflow	=	10.32 cfs @ 12.14 hrs, Volume= 37,690 cf, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

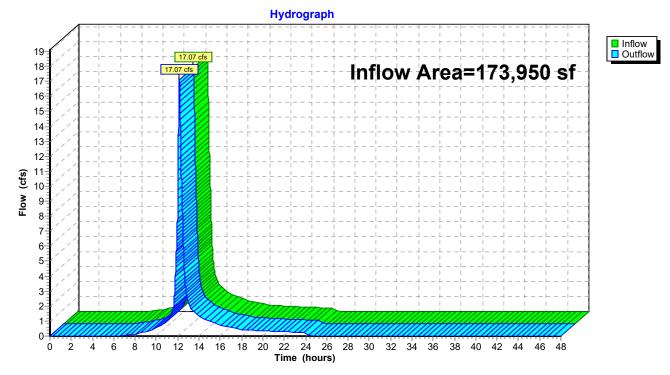

Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

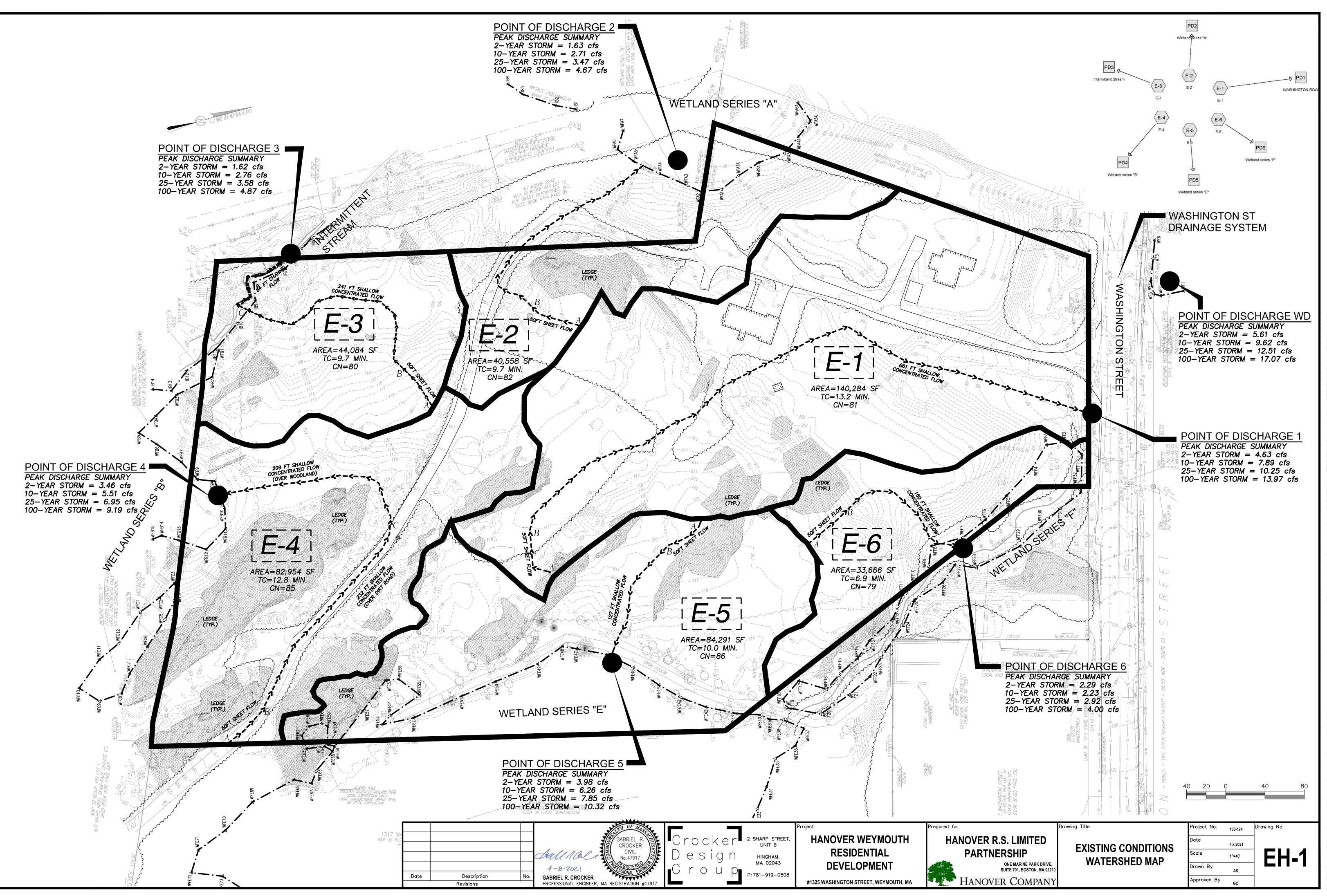
[40] Hint: Not Described (Outflow=Inflow)

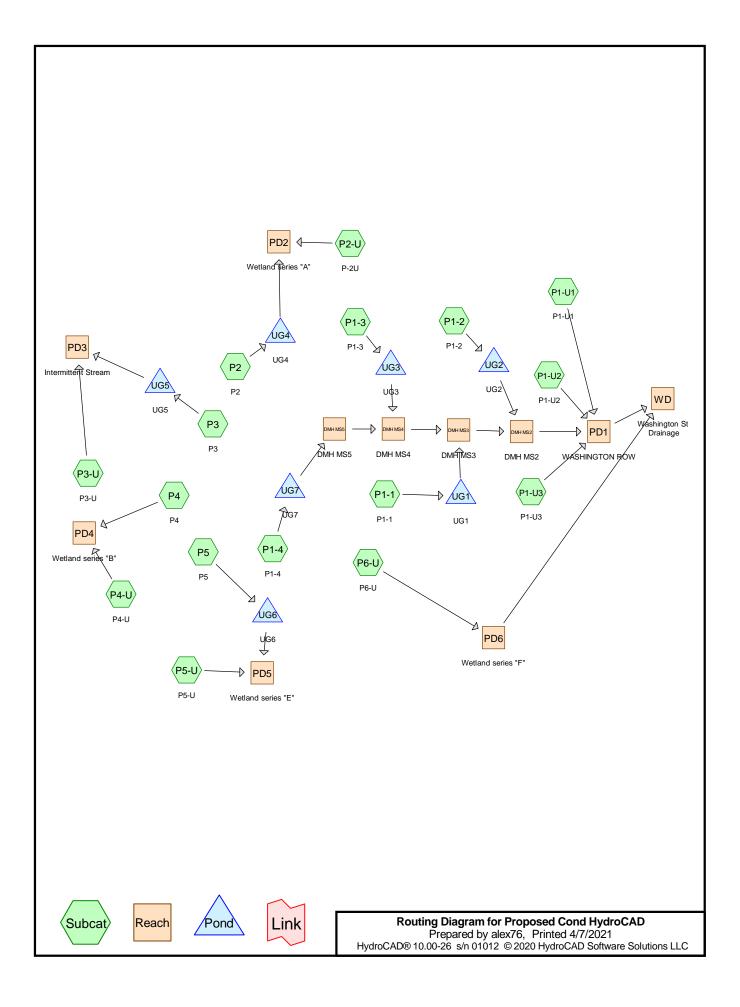
Inflow Are	ea =	33,666 sf, 10.01% Impervious, In	flow Depth = 4.58" for 100-Year event
Inflow	=	4.00 cfs @ 12.10 hrs, Volume=	12,861 cf
Outflow	=	4.00 cfs @ 12.10 hrs, Volume=	12,861 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage


[40] Hint: Not Described (Outflow=Inflow)


Inflow Are	ea =	173,950 sf, 10.19% Impervious, Inflow Depth = 4.67" for 100-Year event
Inflow	=	17.07 cfs @ 12.16 hrs, Volume= 67,741 cf
Outflow	=	17.07 cfs @ 12.16 hrs, Volume= 67,741 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach WD: Washington St Drainage

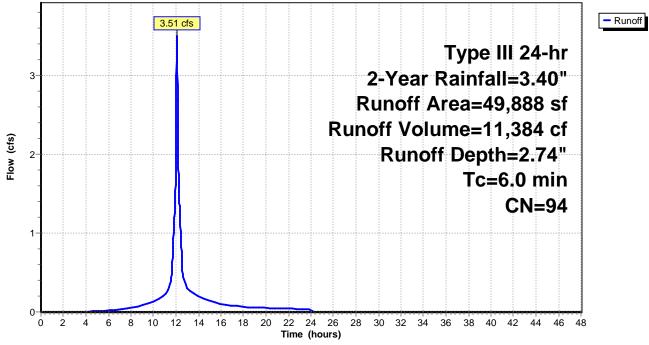
Proposed Cond HydroCAD

Prepared by alex76	
HydroCAD® 10.00-26 s/n 01012	© 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
50,800	80	>75% Grass cover, Good, HSG D (P1-1, P1-2, P1-3, P1-4, P1-U1, P1-U3, P2, P3,
		P4, P5)
19,600	89	Courtyard, HSG D (P1-1)
13,422	98	Ledge, HSG D (P2-U, P3-U, P4-U, P5, P5-U)
13,588	78	Meadow, non-grazed, HSG D (P2-U, P5-U)
1,097	80	Pasture/grassland/range, Good, HSG D (P6-U)
29,470	98	Paved parking, HSG D (P5)
238	98	Pavement, HSG D (P1-U2)
40,445	98	Roof & Paved parking, HSG D (P1-1, P1-2)
18,066	98	Roofs & Paved parking, HSG D (P4)
156,988	98	Roofs & Pavement, HSG D (P1-3, P1-4, P2, P3)
31,092	98	Wetland Surface, HSG D (P2-U, P3-U, P4-U, P5-U, P6-U)
51,425	77	Woods, Good, HSG D (P2-U, P3-U, P4-U, P5, P5-U, P6-U)
426,231	92	TOTAL AREA

Summary for Subcatchment P1-1: P1-1


Runoff = 3.51 cfs @ 12.08 hrs, Volume= 11,384 cf, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area (sf)	CN	Description				
*	19,600	89	Courtyard, HSG D				
	1,350	80	>75% Grass cover, Good, HSG D				
*	28,938	98	Roof & Paved parking, HSG D				
	49,888	94	4 Weighted Average				
	20,950	88	41.99% Pervious Area				
	28,938	98	58.01% Impervious Area				
	Tc Length (min) (feet)	Sloj (ft/					
	6.0		Direct Entry,				

Subcatchment P1-1: P1-1

Summary for Subcatchment P1-2: P1-2

Runoff = 1.11 cfs @ 12.09 hrs, Volume= 3,541 cf, Depth= 2.54"

A	rea (sf)	CN E	Description								
	5,213			s cover, Go		D					
*	11,507			ed parking,	HSG D						
	16,720		Veighted A	verage vious Area							
	5,213 11,507			vious Area pervious Ar							
	11,007	00 0	0.0270 mg		ou						
Тс	Length	Slope	Velocity	Capacity	Descript	ion					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
6.0					Direct E	ntry,					
				Subcat	chment l	P1-2: P	1-2				
	-			Hydr	ograph						_
			1.11 cfs								- Runoff
								Тур	e III 2	4-hr	
1-						2-Ye	ear F		fall=3		
						Runo					
(cfs)					RI	unoff	VOI	ume	=3,34	FI CI	
Flow (cfs)						Ru	nof	f Dep	oth=2	.54"	
ш								Тс	:=6.0	min	
									UN	l=92	
0-				+					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	0 2 4	6 8 1	0 12 14		22 24 26 Time (hours)	28 30 3	32 34	36 38	40 42	44 46 4	8
					· · · /						

Summary for Subcatchment P1-3: P1-3

Runoff = 3.46 cfs @ 12.08 hrs, Volume= 11,537 cf, Depth= 2.95"

	Area (sf)	CN Des	scription						
*	41,192			vement, HS					
	5,795				ood, HSG D				
	46,987 5,795		eighted A	verage vious Area					
	41,192			ervious Are	ea				
-									
To (min)	0	Slope \ (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0		(1010)	(10000)	(010)	Direct Entry	',			
				Subcate	chment P1-	3: P1-3			
			<u></u>	Hydr	ograph				
		3	.46 cfs						- Runoff
	-								
								III 24-hr	
3	-					2-Year	Rainfa	all=3.40"	
	-				R	unoff	Area=4	l6,987 sf	
-	-				Run	off Vol	ume=1	1,537 cf	
Flow (cfs)	2							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Nol	-					Nuno			
-	-						I C:	=6.0 min	
								CN=96	
1	-								
	-		八一						
-	-		· \						
C	0 2 4	6 8 10	12 14 1		22 24 26 28	30 32 34	36 38 4	40 42 44 46 4	8
				т	ime (hours)				

Summary for Subcatchment P1-4: P1-4

Runoff = 3.66 cfs @ 12.08 hrs, Volume= 12,029 cf, Depth= 2.84"

	Area (sf)	CN Descript	on					
*	41,376	98 Roofs &	Pavement, H					
	9,434		ass cover, Go	ood, HSG D				
	50,810 9,434		d Average Pervious Area					
	41,376		mpervious Ar					
(mi	Tc Length in) (feet)			Descriptio	n			
6	5.0			Direct Ent	ry,			
			Suboot	chment P [.]	I /I- D1	Λ		
					1-4. 61	-4		
	4		Hydi	ograph				1
	-	3.66 cfs						- Runoff
	-					TV	pe III 24-hr	
	-				0 V.			
	3						nfall=3.40"	
	-				1.1.1		=50,810 sf	
s)				Ru	noff \	/olume	=12,029 cf	
Flow (cfs)	2-				Ru	noff De	epth=2.84"	
Flov	-						Гc=6.0 min	
	-						CN=95	
	_						CIN-35	
	1							
	-							
	-	Л						
	0						****	
	0 2 4	6 8 10 12 1		22 24 26 2 Time (hours)	3 30 32	2 34 36 3	8 40 42 44 46 4	8

0.018-0.016-

0.014 0.012 0.01 0.008 0.006 0.004 0.004

0 2 4 6 8

10

12 14 16 18 20

Tc=6.0 min

30 32 34 36 38 40 42 44 46

CN=80

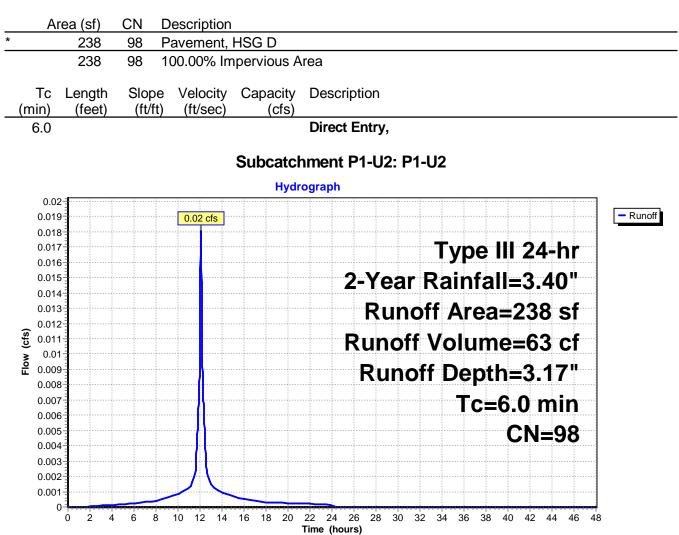
48

Summary for Subcatchment P1-U1: P1-U1

Runoff = 0.04 cfs @ 12.09 hrs, Volume= 130 cf, Depth= 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Ar	ea (sf)	CN E	Description			
	<i>,</i>			•		od HSG D	
		1,003	80 1	00.00% Pe	ervious Are	a	
(m	Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
(6.0					Direct Entry,	
					Subcatcl	nment P1-U1: P1-U1	
					Hydr	rograph	
		a 1 1]
		-		0.04 cfs			- Runoff
		-					
						Type III 24-hr	
						2-Year Rainfall=3.40"	
	0.032					B ((A (A A A A A A A A A A	
	(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment P1-U1: P1-U1 Hydrograph						
-	0.028						
cfs						RUNOTT VOIUME=130 CT	
3						Punoff Donth-1 56"	
Ъ Б						Runon Depin=1.30	
	0.02	-					


22 24 26 28

Time (hours)

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Summary for Subcatchment P1-U2: P1-U2

Runoff = 0.02 cfs @ 12.08 hrs, Volume= 63 cf, Depth= 3.17"

 0^{-1}

2

4

Summary for Subcatchment P1-U3: P1-U3

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 433 cf, Depth= 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area (sf)	CN Description
3,334	80 >75% Grass cover, Good, HSG D
3,334	80 100.00% Pervious Area
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry,
	Subcatchment P1-U3: P1-U3
	Hydrograph
0.15	
0.14	
0.13	Type III 24-hr
0.12	2-Year Rainfall=3.40"
0.11	Runoff Area=3,334 sf
	Runoff Volume=433 cf
<u></u>	Runon volume=455 Cl
0.08 0.08 0.07	Runoff Depth=1.56"
0.06	Tc=6.0 min
0.05	
0.04	CN=80
0.03	
0.02	
0.01	

22 24 26

Time (hours)

28 30 32 34 36

38 40 42 44

46 48

12 14 16 18 20

10

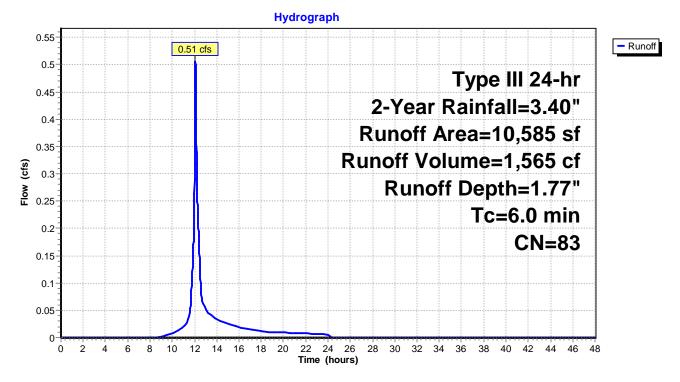
6 8

HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P2: P2

Runoff = 1.92 cfs @ 12.08 hrs, Volume= 6,531 cf, Depth= 3.06"

* 23,608 98 Roofs & Pavement, HSG D	
2,044 80 >75% Grass cover, Good, HSG D 25,652 97 Weighted Average	
2,044 80 7.97% Pervious Area	
23,608 98 92.03% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment P2: P2	
Hydrograph	
2	- Runoff
Type III 24-hr	
2-Year Rainfall=3.40"	
Runoff Area=25,652 sf	
हु । हु । Runoff Depth=3.06"	
Tc=6.0 min	
CN=97	
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)	


Summary for Subcatchment P2-U: P-2U

Runoff = 0.51 cfs @ 12.09 hrs, Volume= 1,565 cf, Depth= 1.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area (sf)	CN	Description
*	183	98	Ledge, HSG D
	6,620	77	Woods, Good, HSG D
*	2,902	98	Wetland Surface, HSG D
	880	78	Meadow, non-grazed, HSG D
	10,585	83	Weighted Average
	7,500	77	70.85% Pervious Area
	3,085	98	29.15% Impervious Area
	— 1 4		
	Tc Length	Slop	
(n	nin) (feet)	(ft/	ft) (ft/sec) (cfs)
	6.0		Direct Entry,

Subcatchment P2-U: P-2U

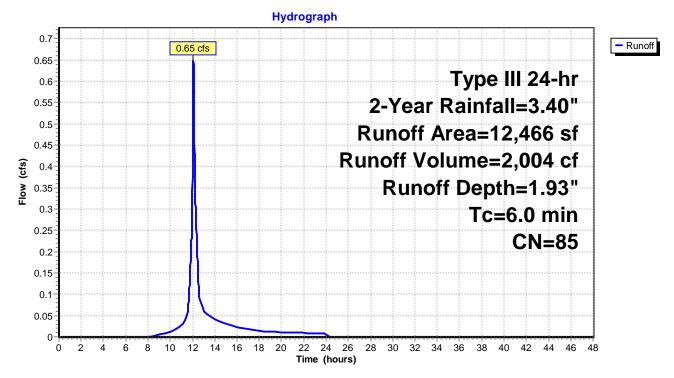
Summary for Subcatchment P3: P3

Runoff = 4.56 cfs @ 12.08 hrs, Volume= 14,789 cf, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(sf) CN	Description							
* 50,8	812 98	Roofs & Pa	vement, HS						
	000 80	>75% Gras		od, HSG	D				
	812 94 000 80	Weighted A 21.60% Per							
,	812 98	78.40% lmp		ea					
	ength Slop			Descript	tion				
<u>(min) (</u> 6.0	feet) (ft/f	t) (ft/sec)	(cfs)	Direct E	ntry				
0.0					, incly,				
			Subca	atchmer	nt P3: P3	3			
			Hydr	ograph					
5-		A EG ata							- Runoff
-		4.56 cfs							Runon
-						Ту	pe III :	24-hr	
4					2-Ye	ear Rai	nfall=	3.40"	
					Runo	off Area	-64 8	12 cf	
-				Þ					
(i)				Γ		Volume			
Flow (cfs)					Ru	inoff D	epth=2	2.74"	
Ĕ						•	Tc=6.0) min	
-							C	N=94	
-									
- 1									
-									
-									
0							40.40		
0 2	4 6 8	10 12 14		22 24 26 ime (hours)	28 30 32	2 34 36 3	38 40 42	44 46 4	ŏ

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)


Summary for Subcatchment P3-U: P3-U

Runoff = 0.65 cfs @ 12.09 hrs, Volume= 2,004 cf, Depth= 1.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

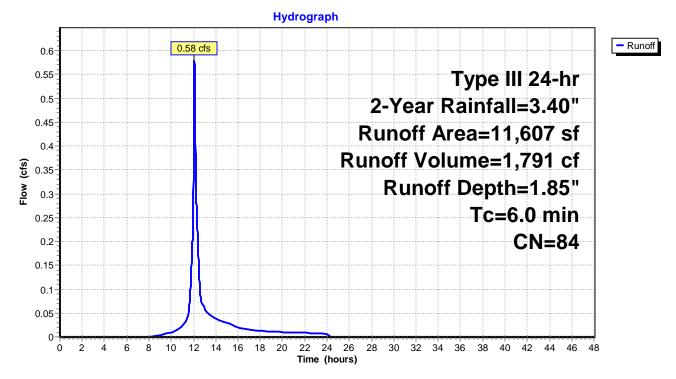
	A	rea (sf)	CN	Description			
*		700	98	Ledge, HS	GD		
		7,809	77	Woods, Go	od, HSG D)	
*		3,957	98	Wetland Su	irface, HSG	G D	
		12,466	85	Weighted A	verage		
		7,809	77	62.64% Pe	rvious Area	a	
		4,657	98	37.36% Impervious Area			
	Tc (min)	Length (feet)	Slop (ft/		Capacity (cfs)		
	6.0					Direct Entry,	

Subcatchment P3-U: P3-U

Summary for Subcatchment P4: P4

Runoff = 1.47 cfs @ 12.08 hrs, Volume= 5,001 cf, Depth= 3.06"

А	rea (sf)	CN I	Description						
	1,577	80 >	>75% Gras	,	ood, HSG D				
*	18,066		Roofs & Pa		g, HSG D				
	19,643 1,577		Neighted A 3.03% Perv						
	18,066		91.97% Imp		ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0	(1001)	(1011)	(14000)	(0.0)	Direct Entry	, ,			
				Suba	atchment P	4. D <i>4</i>			
						4. 24			
				Hydr	ograph				1
-			1.47 cfs						- Runoff
-							Type II	l 24-hr	
					•				
-						-Year R			
					Ru	inoff Ar	'ea=19	,643 sf	
1- (s					Run	off Volu	ume=5	,001 cf	
Flow (cfs)						Runoff		·	
Flo						Ranon	-		
-								6.0 min	
								CN=97	
-									
0-									
(0 2 4	68	10 12 14 1		22 24 26 28 Time (hours)	30 32 34	36 38 40	42 44 46 4	8

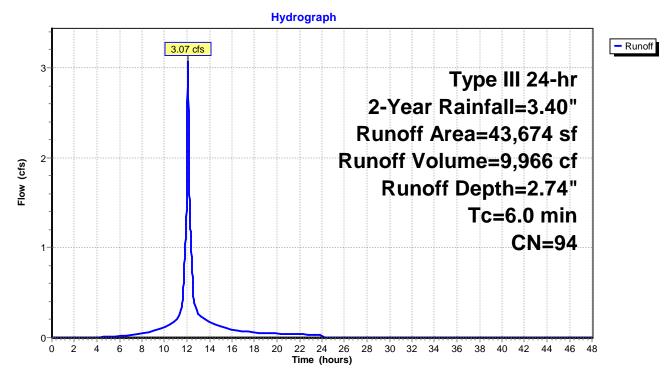

Summary for Subcatchment P4-U: P4-U

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 1,791 cf, Depth= 1.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area (sf)	CN	Description				
*	1,650	98	Ledge, HSG D				
	7,547	77	Woods, Good, HSG D				
*	2,410	98	Wetland Surface, HSG D				
	11,607	84	Weighted Average				
	7,547	77	65.02% Pervious Area				
	4,060	98	3 34.98% Impervious Area				
<u>(m</u>	Tc Length nin) (feet)	Slop (ft/					
	6.0		Direct Entry,				

Subcatchment P4-U: P4-U

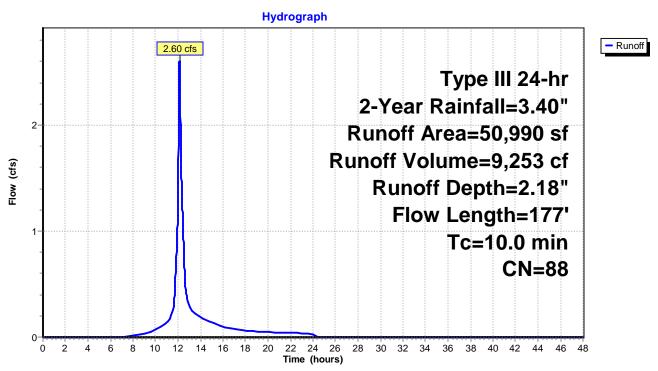

Summary for Subcatchment P5: P5

Runoff = 3.07 cfs @ 12.08 hrs, Volume= 9,966 cf, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area (sf)	CN	Description
*	5,025	98	Ledge, HSG D
	7,050	80	>75% Grass cover, Good, HSG D
*	29,470	98	Paved parking, HSG D
	2,129	77	Woods, Good, HSG D
	43,674	94	Weighted Average
	9,179	79	21.02% Pervious Area
	34,495	98	78.98% Impervious Area
	Tc Length	Slop	
(I	min) (feet)	(ft/	ft) (ft/sec) (cfs)
	6.0		Direct Entry,

Subcatchment P5: P5

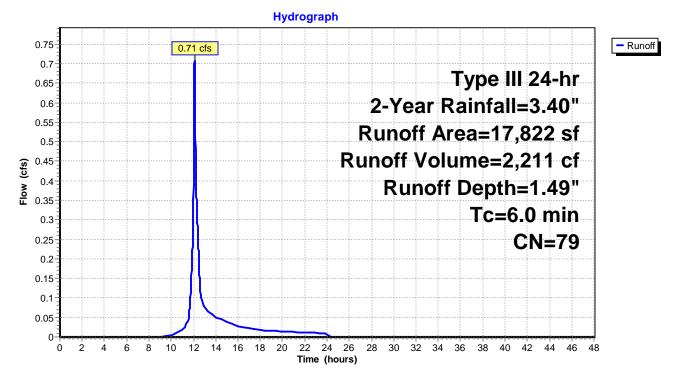

Summary for Subcatchment P5-U: P5-U

Runoff = 2.60 cfs @ 12.14 hrs, Volume= 9,253 cf, Depth= 2.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	A	rea (sf)	CN	Description		
*		5,864	98	Ledge, HS0	GD	
		12,095	77	Woods, Go	od, HSG D	
*		20,323	98	Wetland Su	irface, HSG	D
_		12,708	78	Meadow, n	on-grazed,	HSG D
		50,990	88	Weighted A	verage	
		24,803	78	48.64% Per	vious Area	
		26,187	98	51.36% Imp	pervious Are	ea
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	10.0	177	Total			

Subcatchment P5-U: P5-U

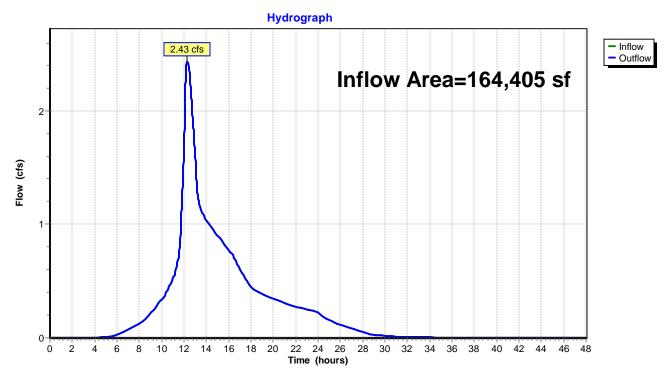

Summary for Subcatchment P6-U: P6-U

Runoff = 0.71 cfs @ 12.09 hrs, Volume= 2,211 cf, Depth= 1.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area (sf)	CN	Description		
	15,225	77	Woods, Good, HSG D		
	1,097	80	Pasture/grassland/range, Good, HSG D		
*	1,500	98	Wetland Surface, HSG D		
	17,822	79	Weighted Average		
	16,322	77	77 91.58% Pervious Area		
	1,500	98	8 8.42% Impervious Area		
(r	Tc Length nin) (feet)	Slop (ft/			
	6.0		Direct Entry,		

Subcatchment P6-U: P6-U

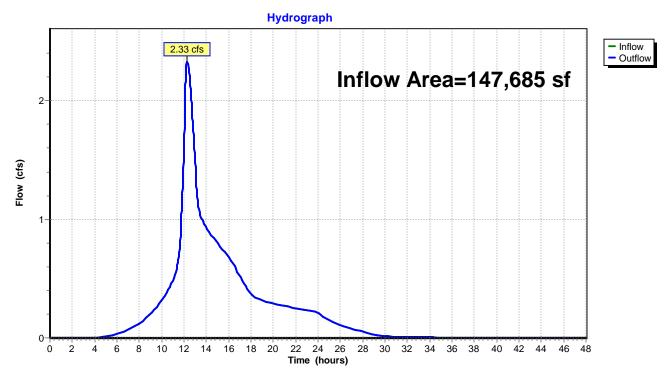


You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Summary for Reach DMH MS2: DMH MS2

Inflow Area =		164,405 sf, 74.82% Impervious, Inflow Depth = 2.81" for 2-Year even	nt
Inflow	=	2.43 cfs @ 12.31 hrs, Volume= 38,487 cf	
Outflow	=	2.43 cfs @ 12.31 hrs, Volume= 38,487 cf, Atten= 0%, Lag= 0.0	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

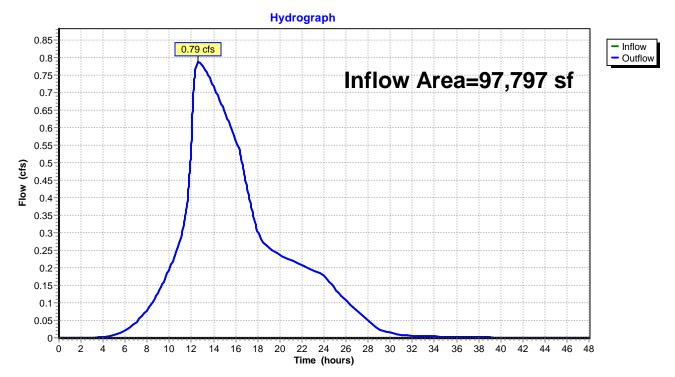


Reach DMH MS2: DMH MS2

Summary for Reach DMH MS3: DMH MS3

Inflow Area =		147,685 sf, 75.50% Impervious, Inflow Depth = 2.84" for 2-Year event	
Inflow	=	2.33 cfs @ 12.30 hrs, Volume= 34,947 cf	
Outflow	=	2.33 cfs @ 12.30 hrs, Volume= 34,947 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

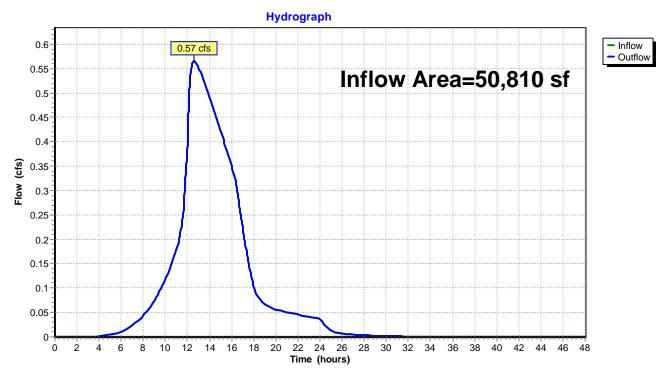


Reach DMH MS3: DMH MS3

Summary for Reach DMH MS4: DMH MS4

Inflow Area =		97,797 sf,	, 84.43% Impervious,	Inflow Depth > 2.89"	for 2-Year event
Inflow	=	0.79 cfs @	12.60 hrs, Volume=	23,563 cf	
Outflow	=	0.79 cfs @	12.60 hrs, Volume=	23,563 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

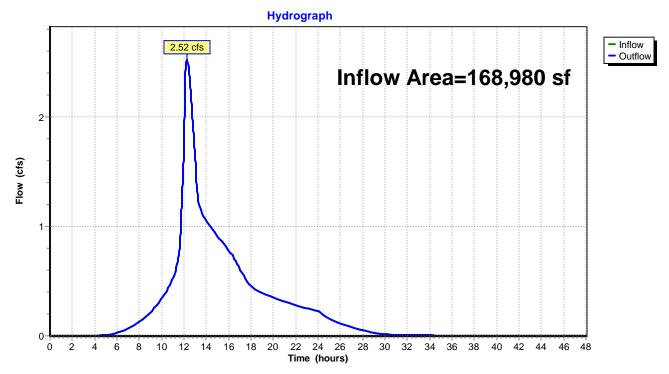


Reach DMH MS4: DMH MS4

Summary for Reach DMH MS5: DMH MS5

Inflow Area =		50,810 sf, 81.43% Impervious, Inflow Depth = 2.84" for 2-Year event	w Depth = 2.84" for 2-Year event
Inflow	=	0.57 cfs @ 12.57 hrs, Volume= 12,029 cf	12,029 cf
Outflow	=	0.57 cfs @ 12.57 hrs, Volume= 12,029 cf, Atten= 0%, Lag= 0.0 m	12,029 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

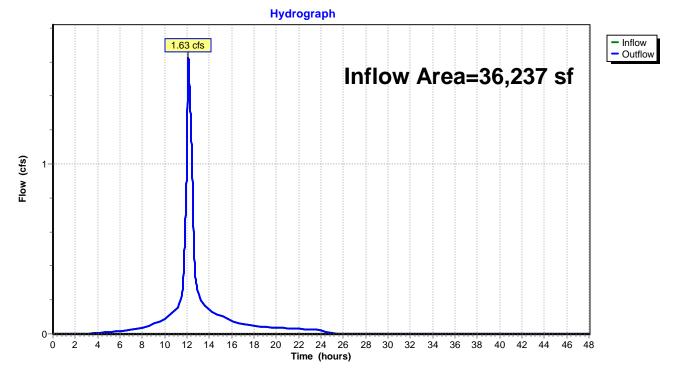


Reach DMH MS5: DMH MS5

Summary for Reach PD1: WASHINGTON ROW

Inflow Area =	168,980 sf, 72.94% Impervious,	Inflow Depth = 2.78" for 2-Year event
Inflow =	2.52 cfs @ 12.28 hrs, Volume=	39,113 cf
Outflow =	2.52 cfs @ 12.28 hrs, Volume=	39,113 cf, Atten= 0%, Lag= 0.0 min

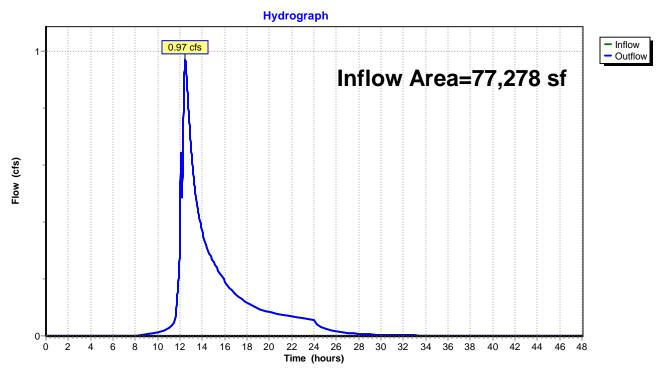
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

Inflow Area =		36,237 sf, 73.66% Impervious, Inflow Depth = 2.68" for 2-Year event	
Inflow	=	1.63 cfs @ 12.12 hrs, Volume= 8,096 cf	
Outflow	=	1.63 cfs @ 12.12 hrs, Volume= 8,096 cf, Atten= 0%, Lag= 0.0 min	٦

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

Inflow Area	a =	77,278 sf, 71.78% Impervious, Inflow Depth > 1.55" for 2-Yea	r event
Inflow	=	0.97 cfs @ 12.48 hrs, Volume= 9,950 cf	
Outflow	=	0.97 cfs @ 12.48 hrs, Volume= 9,950 cf, Atten= 0%, Lag	= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

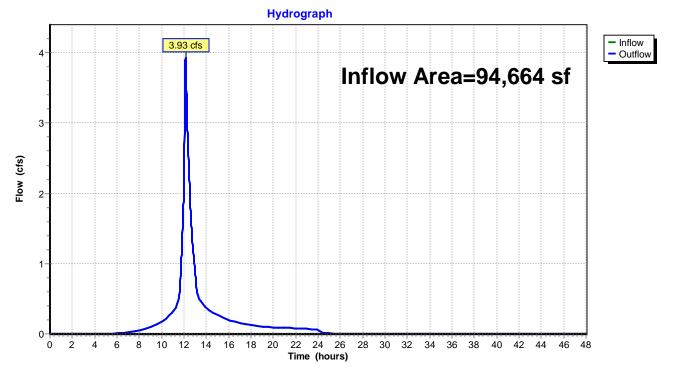
Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

Inflow Area	a =	31,250 sf, 70.80% Impervious, Inflow Depth = 2.61" for 2-Year even	ent
Inflow	=	2.05 cfs @ 12.09 hrs, Volume= 6,791 cf	
Outflow	=	2.05 cfs @ 12.09 hrs, Volume= 6,791 cf, Atten= 0%, Lag= 0.0	0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

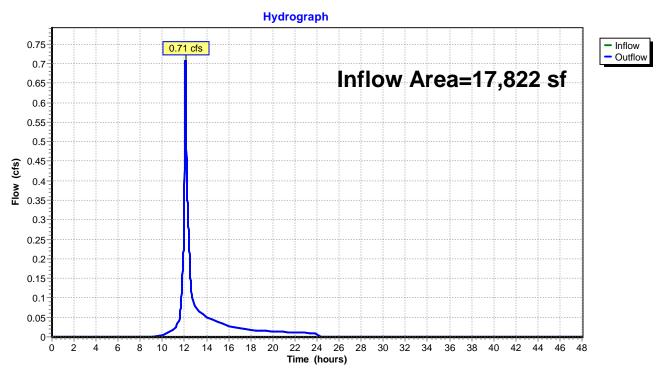
Hydrograph Inflow 2.05 cfs Outflow 2 Inflow Area=31,250 sf Flow (cfs) 1 0 2 10 12 14 16 18 20 28 30 32 34 36 38 40 42 44 46 48 ò 4 6 8 22 24 26 Time (hours)


Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

Inflow Area =	94,664 sf, 64.10% Impervious,	Inflow Depth = 2.44" for 2-Year event
Inflow =	3.93 cfs @ 12.15 hrs, Volume=	19,219 cf
Outflow =	3.93 cfs @ 12.15 hrs, Volume=	19,219 cf, Atten= 0%, Lag= 0.0 min

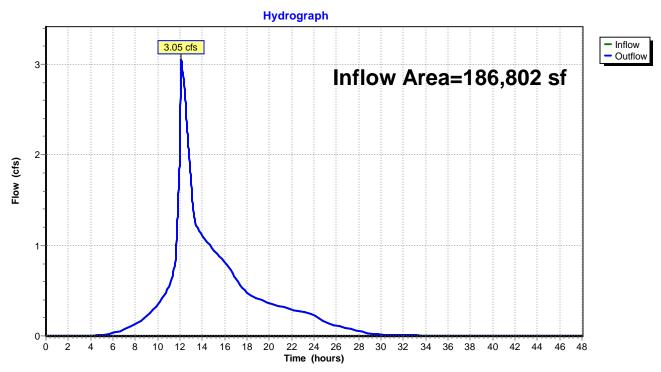
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

Inflow Are	a =	17,822 sf,	8.42% Impervious,	Inflow Depth = 1.49"	for 2-Year event
Inflow	=	0.71 cfs @ 1	12.09 hrs, Volume=	2,211 cf	
Outflow	=	0.71 cfs @ 1	12.09 hrs, Volume=	2,211 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

Inflow Are	a =	186,802 sf, 66.78% Impervious, Inflow Depth = 2.65" for 2-Year event	
Inflow	=	3.05 cfs @ 12.13 hrs, Volume= 41,324 cf	
Outflow	=	3.05 cfs @ 12.13 hrs, Volume= 41,324 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach WD: Washington St Drainage

Summary for Pond UG1: UG1

Inflow Area =	49,888 sf, 58.01% Impervious,	Inflow Depth = 2.74" for 2-Year event
Inflow =	3.51 cfs @ 12.08 hrs, Volume=	11,384 cf
Outflow =	1.58 cfs @ 12.26 hrs, Volume=	11,384 cf, Atten= 55%, Lag= 10.6 min
Primary =	1.58 cfs @ 12.26 hrs, Volume=	11,384 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 84.22' @ 12.26 hrs Surf.Area= 0.062 ac Storage= 0.048 af

Plug-Flow detention time= 25.1 min calculated for 11,384 cf (100% of inflow) Center-of-Mass det. time= 25.0 min (810.2 - 785.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	0.056 af	44.25'W x 60.58'L x 3.50'H Field A
			0.215 af Overall - 0.076 af Embedded = 0.139 af x 40.0% Voids
#2A	83.50'	0.076 af	ADS_StormTech SC-740 +Cap x 72 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			72 Chambers in 9 Rows
		0.132 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	83.00'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	83.00'	12.0" Round RCP_Round 12"
			L= 51.4' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 83.00' / 82.74' S= 0.0051 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.58 cfs @ 12.26 hrs HW=84.22' (Free Discharge)

-2=RCP_Round 12" (Passes 1.58 cfs of 3.11 cfs potential flow)

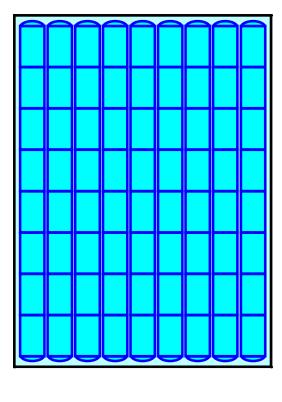
1=Orifice/Grate (Orifice Controls 1.58 cfs @ 4.53 fps)

Pond UG1: UG1 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

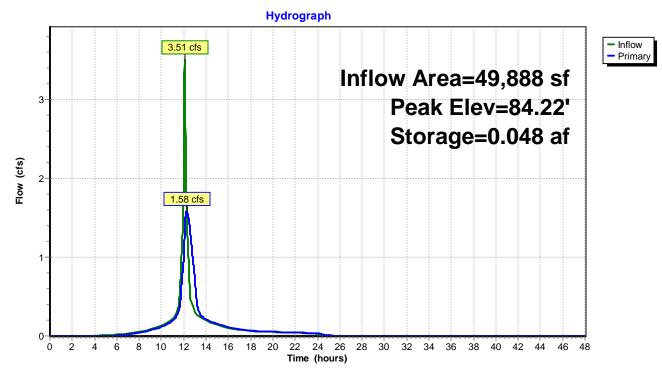

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

72 Chambers x 45.9 cf = 3,307.7 cf Chamber Storage

9,381.8 cf Field - 3,307.7 cf Chambers = 6,074.1 cf Stone x 40.0% Voids = 2,429.7 cf Stone Storage

Chamber Storage + Stone Storage = 5,737.3 cf = 0.132 af Overall Storage Efficiency = 61.2%Overall System Size = $60.58' \times 44.25' \times 3.50'$

72 Chambers 347.5 cy Field 225.0 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG1: UG1

Summary for Pond UG2: UG2

Inflow Area =	16,720 sf, 68.82% Impervious,	Inflow Depth = 2.54" for 2-Year event
Inflow =	1.11 cfs @ 12.09 hrs, Volume=	3,541 cf
Outflow =	0.11 cfs @ 12.89 hrs, Volume=	3,541 cf, Atten= 90%, Lag= 48.1 min
Primary =	0.11 cfs @ 12.89 hrs, Volume=	3,541 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 83.22' @ 12.89 hrs Surf.Area= 0.047 ac Storage= 0.037 af

Plug-Flow detention time= 164.8 min calculated for 3,541 cf (100% of inflow) Center-of-Mass det. time= 164.8 min (960.4 - 795.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	82.00'	0.043 af	25.25'W x 81.94'L x 3.50'H Field A
			0.166 af Overall - 0.058 af Embedded = 0.108 af x 40.0% Voids
#2A	82.50'	0.058 af	ADS_StormTech SC-740 +Cap x 55 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			55 Chambers in 5 Rows
		0.101 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	82.00'	2.0" Vert. Orifice/Grate C= 0.600
#2	Primary	82.00'	12.0" Round RCP_Round 12"
			L= 9.7' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 82.00' / 81.95' S= 0.0052 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 12.89 hrs HW=83.22' (Free Discharge)

-2=RCP_Round 12" (Passes 0.11 cfs of 3.07 cfs potential flow)

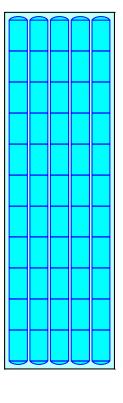
1=Orifice/Grate (Orifice Controls 0.11 cfs @ 5.13 fps)

Pond UG2: UG2 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

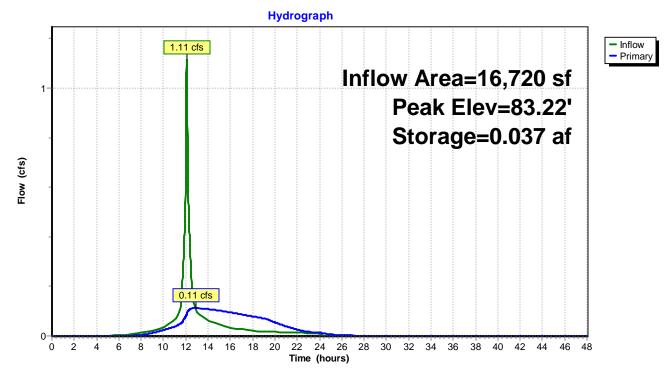

11 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 79.94' Row Length +12.0" End Stone x 2 = 81.94' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

55 Chambers x 45.9 cf = 2,526.7 cf Chamber Storage

7,241.2 cf Field - 2,526.7 cf Chambers = 4,714.5 cf Stone x 40.0% Voids = 1,885.8 cf Stone Storage

Chamber Storage + Stone Storage = 4,412.5 cf = 0.101 afOverall Storage Efficiency = 60.9%Overall System Size = $81.94' \times 25.25' \times 3.50'$

55 Chambers 268.2 cy Field 174.6 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG2: UG2

Summary for Pond UG3: UG3

Inflow Area =	46,987 sf, 87.67% Impervious,	Inflow Depth = 2.95" for 2-Year event
Inflow =	3.46 cfs @ 12.08 hrs, Volume=	11,537 cf
Outflow =	0.23 cfs @ 13.52 hrs, Volume=	11,534 cf, Atten= 93%, Lag= 86.4 min
Primary =	0.23 cfs @ 13.52 hrs, Volume=	11,534 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 91.02' @ 13.52 hrs Surf.Area= 0.103 ac Storage= 0.139 af

Plug-Flow detention time= 308.2 min calculated for 11,532 cf (100% of inflow) Center-of-Mass det. time= 308.2 min (1,080.5 - 772.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	89.00'	0.145 af	80.08'W x 55.89'L x 5.50'H Field A
			0.565 af Overall - 0.202 af Embedded = 0.363 af x 40.0% Voids
#2A	89.75'	0.202 af	
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			77 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		0.347 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Device 2	89.00'	2.5" Vert. Orifice/Grate C= 0.600
Primary	89.00'	12.0" Round RCP_Round 12"
		L= 20.9' RCP, groove end projecting, Ke= 0.200
		Inlet / Outlet Invert= 89.00' / 88.90' S= 0.0048 '/' Cc= 0.900
		n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf
	Device 2	Device 2 89.00'

Primary OutFlow Max=0.23 cfs @ 13.52 hrs HW=91.02' (Free Discharge)

-2=RCP_Round 12" (Passes 0.23 cfs of 5.16 cfs potential flow)

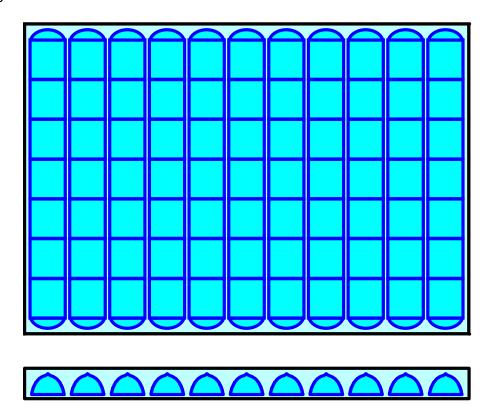
1=Orifice/Grate (Orifice Controls 0.23 cfs @ 6.66 fps)

Pond UG3: UG3 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

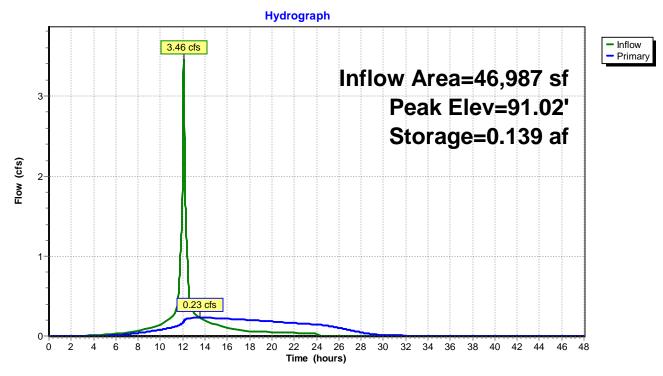
77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89'Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

77 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 8,794.1 cf Chamber Storage

24,617.2 cf Field - 8,794.1 cf Chambers = 15,823.1 cf Stone x 40.0% Voids = 6,329.2 cf Stone Storage

Chamber Storage + Stone Storage = 15,123.3 cf = 0.347 afOverall Storage Efficiency = 61.4%Overall System Size = $55.89' \times 80.08' \times 5.50'$


77 Chambers 911.7 cy Field 586.0 cy Stone

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG3: UG3

Summary for Pond UG4: UG4

Inflow Area =	25,652 sf, 92.03% Impervious,	Inflow Depth = 3.06" for 2-Year event
Inflow =	1.92 cfs @ 12.08 hrs, Volume=	6,531 cf
Outflow =	1.21 cfs @ 12.18 hrs, Volume=	6,531 cf, Atten= 37%, Lag= 5.7 min
Primary =	1.21 cfs @ 12.18 hrs, Volume=	6,531 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 100.35' @ 12.18 hrs Surf.Area= 0.037 ac Storage= 0.017 af

Plug-Flow detention time= 17.6 min calculated for 6,531 cf (100% of inflow) Center-of-Mass det. time= 17.5 min (782.1 - 764.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.50'	0.026 af	21.50'W x 74.40'L x 2.33'H Field A
			0.086 af Overall - 0.020 af Embedded = 0.065 af x 40.0% Voids
#2A	100.00'	0.020 af	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.046 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	99.50'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	99.50'	12.0" Round RCP_Round 12"
			L= 43.2' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 99.50' / 98.00' S= 0.0347 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.21 cfs @ 12.18 hrs HW=100.35' (Free Discharge)

-2=RCP_Round 12" (Passes 1.21 cfs of 2.80 cfs potential flow)

1=Orifice/Grate (Orifice Controls 1.21 cfs @ 3.47 fps)

Pond UG4: UG4 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage

3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = 74.40' x 21.50' x 2.33'

60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG4: UG4

Summary for Pond UG5: UG5

Inflow Area =	64,812 sf	, 78.40% Impervious,	Inflow Depth = 2.74"	for 2-Year event
Inflow =	4.56 cfs @	12.08 hrs, Volume=	14,789 cf	
Outflow =	0.82 cfs @	12.54 hrs, Volume=	7,945 cf, Atter	n= 82%, Lag= 27.1 min
Primary =	0.82 cfs @	12.54 hrs, Volume=	7,945 cf	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 110.76' @ 12.54 hrs Surf.Area= 4,461 sf Storage= 8,644 cf

Plug-Flow detention time= 285.7 min calculated for 7,944 cf (54% of inflow) Center-of-Mass det. time= 176.0 min (961.2 - 785.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	108.00'	6,247 cf	29.92'W x 149.10'L x 5.50'H Field A
			24,533 cf Overall - 8,915 cf Embedded = 15,618 cf x 40.0% Voids
#2A	108.75'	8,915 cf	ADS_StormTech MC-3500 d +Cap x 80 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			80 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		15,162 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	110.23'	9.0" Vert. Orifice/Grate C= 0.600
#2	Primary	101.47'	12.0" Round RCP_Round 12"
			L= 14.6' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 101.47' / 100.30' S= 0.0801 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.82 cfs @ 12.54 hrs HW=110.76' (Free Discharge)

-2=RCP_Round 12" (Passes 0.82 cfs of 14.01 cfs potential flow)

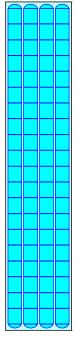
1=Orifice/Grate (Orifice Controls 0.82 cfs @ 2.47 fps)

Pond UG5: UG5 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

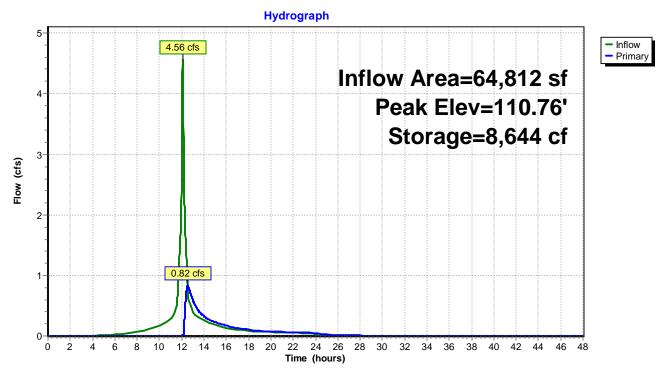

20 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 147.10' Row Length +12.0" End Stone x 2 = 149.10' Base Length 4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

80 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 8,915.4 cf Chamber Storage

24,533.2 cf Field - 8,915.4 cf Chambers = 15,617.8 cf Stone x 40.0% Voids = 6,247.1 cf Stone Storage

Chamber Storage + Stone Storage = 15,162.5 cf = 0.348 afOverall Storage Efficiency = 61.8%Overall System Size = $149.10' \times 29.92' \times 5.50'$

80 Chambers 908.6 cy Field 578.4 cy Stone



 $\square \square \square \square$

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG5: UG5

Summary for Pond UG6: UG6

Inflow Area :	=	43,674 sf, 78.98% Impervious, Inflow Depth = 2.74" for	2-Year event
Inflow =	:	3.07 cfs @ 12.08 hrs, Volume= 9,966 cf	
Outflow =	:	1.41 cfs @ 12.25 hrs, Volume= 9,966 cf, Atten= 54	%, Lag= 10.2 min
Primary =	:	1.41 cfs @ 12.25 hrs, Volume= 9,966 cf	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 113.02' @ 12.25 hrs Surf.Area= 2,249 sf Storage= 1,763 cf

Plug-Flow detention time= 22.6 min calculated for 9,964 cf (100% of inflow) Center-of-Mass det. time= 22.7 min (807.8 - 785.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	111.80'	2,046 cf	25.25'W x 89.06'L x 3.50'H Field A
			7,870 cf Overall - 2,756 cf Embedded = 5,114 cf x 40.0% Voids
#2A	112.30'	2,756 cf	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 5 Rows
		4,802 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	111.80'	7.5" Vert. Orifice/Grate C= 0.600
#2	Primary	111.80'	12.0" Round RCP_Round 12"
			L= 68.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 111.80' / 111.00' S= 0.0118 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.41 cfs @ 12.25 hrs HW=113.02' (Free Discharge)

-2=RCP_Round 12" (Passes 1.41 cfs of 4.02 cfs potential flow)

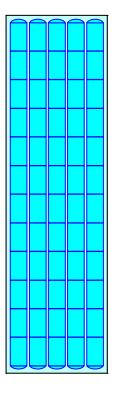
1=Orifice/Grate (Orifice Controls 1.41 cfs @ 4.59 fps)

Pond UG6: UG6 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

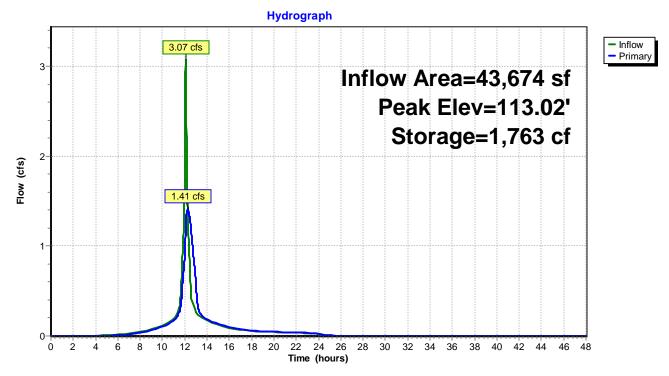

12 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 87.06' Row Length +12.0" End Stone x 2 = 89.06' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

7,870.4 cf Field - 2,756.4 cf Chambers = 5,114.0 cf Stone x 40.0% Voids = 2,045.6 cf Stone Storage

Chamber Storage + Stone Storage = 4,802.0 cf = 0.110 afOverall Storage Efficiency = 61.0%Overall System Size = $89.06' \times 25.25' \times 3.50'$

60 Chambers 291.5 cy Field 189.4 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG6: UG6

Summary for Pond UG7: UG7

Inflow Area =	50,810 sf, 81.43% Impervious,	Inflow Depth = 2.84" for 2-Year event
Inflow =	3.66 cfs @ 12.08 hrs, Volume=	12,029 cf
Outflow =	0.57 cfs @ 12.57 hrs, Volume=	12,029 cf, Atten= 85%, Lag= 28.9 min
Primary =	0.57 cfs @ 12.57 hrs, Volume=	12,029 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 100.48' @ 12.57 hrs Surf.Area= 0.079 ac Storage= 0.104 af

Plug-Flow detention time= 87.4 min calculated for 12,029 cf (100% of inflow) Center-of-Mass det. time= 87.4 min (866.5 - 779.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	98.50'	0.111 af	44.25'W x 77.40'L x 5.50'H Field A
			0.432 af Overall - 0.156 af Embedded = 0.277 af x 40.0% Voids
#2A	99.25'	0.156 af	ADS_StormTech MC-3500 d +Cap x 60 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			60 Chambers in 6 Rows
			Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf
		0.266 af	Total Available Storage

Storage Group A created with Chamber Wizard

Primary OutFlow Max=0.57 cfs @ 12.57 hrs HW=100.48' (Free Discharge)

-2=RCP_Round 12" (Passes 0.57 cfs of 4.80 cfs potential flow)

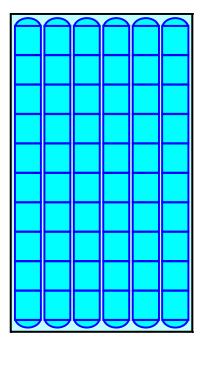
1=Orifice/Grate (Orifice Controls 0.57 cfs @ 6.49 fps)

Pond UG7: UG7 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

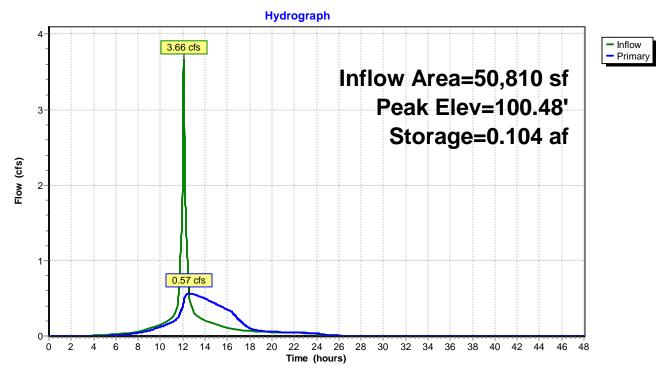

10 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 75.40' Row Length +12.0" End Stone x 2 = 77.40' Base Length 6 Rows x 77.0" Wide + 9.0" Spacing x 5 + 12.0" Side Stone x 2 = 44.25' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

60 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 6 Rows = 6,775.9 cf Chamber Storage

18,837.2 cf Field - 6,775.9 cf Chambers = 12,061.3 cf Stone x 40.0% Voids = 4,824.5 cf Stone Storage

Chamber Storage + Stone Storage = 11,600.4 cf = 0.266 af Overall Storage Efficiency = 61.6%Overall System Size = 77.40' x 44.25' x 5.50'

60 Chambers 697.7 cy Field 446.7 cy Stone

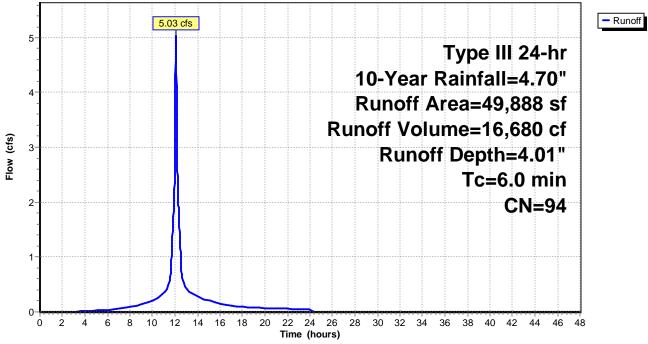


Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG7: UG7

Summary for Subcatchment P1-1: P1-1


Runoff = 5.03 cfs @ 12.08 hrs, Volume= 16,680 cf, Depth= 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area (sf)	CN	Description					
*	19,600	89	Courtyard, HSG D					
	1,350	80	>75% Grass cover, Good, HSG D					
*	28,938	98	Roof & Paved parking, HSG D					
	49,888	94 Weighted Average						
	20,950	88	41.99% Pervious Area					
	28,938	98	58.01% Impervious Area					
	Tc Length (min) (feet)	Sloj (ft/						
	6.0		Direct Entry,					

Subcatchment P1-1: P1-1

Summary for Subcatchment P1-2: P1-2

Runoff = 1.63 cfs @ 12.08 hrs, Volume= 5,290 cf, Depth= 3.80"

Area (sf)	CN Description
5,213	80 >75% Grass cover, Good, HSG D
* 11,507 16,720 5,213 11,507	98Roof & Paved parking, HSG D92Weighted Average8031.18% Pervious Area9868.82% Impervious Area
Tc Length (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry,
	Subcatchment P1-2: P1-2
	Hydrograph
- Low (cts)	Type III 24-hr 10-Year Rainfall=4.70" Runoff Area=16,720 sf Runoff Volume=5,290 cf Runoff Depth=3.80" Tc=6.0 min CN=92
	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Subcatchment P1-3: P1-3

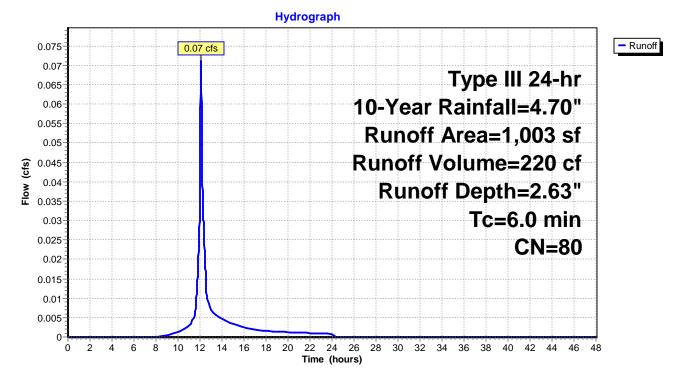
Runoff = 4.87 cfs @ 12.08 hrs, Volume= 16,581 cf, Depth= 4.23"

А	rea (sf)	CN E	Description								
*	41,192	98 F	Roofs & Pa	vement, HS							
	5,795			s cover, Go	od, HSG I)					
	46,987		Veighted A								
	5,795			rvious Area							
	41,192	90 0	07.07% IIII	pervious Ar	ea						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descripti	on					
6.0					Direct Er	ntry,					
				Suboot	chment F	21 2. 04	1 2				
						-1-3. F	1-3				
-				Hydr	ograph			; ;			l
- 5-			4.87 cfs								- Runoff
								Typo	111.2	∕l_hr	
-						40 V		Туре	1		
4-						10-Y	ear F	ainta	all=4	.70"	
-						Runc	off A	rea=4	6,98	57 sf	
					Rı	unoff \	Volu	me=1	6,58	1 cf	
- 3- - Llow (cfs)								Dep	·····		
- Flow								: : -	=6.0		
2-								16			
2									CN	 =96	
-											
- 1-											
-											
-			$/ \setminus$								
0-) 2 4	6 8 1	0 12 14	16 18 20 2	22 24 26	28 30 3	2 34 3	6 38 4	0 42	44 46 4	Q
,	2 4		0 12 14		ime (hours)	20 00 0	2 07 0	,0 00 4	-0 - 12		0

Summary for Subcatchment P1-4: P1-4

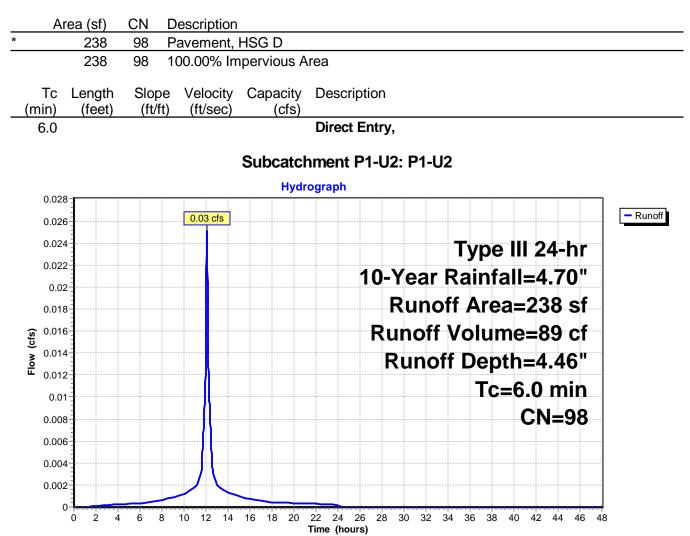
Runoff = 5.20 cfs @ 12.08 hrs, Volume= 17,455 cf, Depth= 4.12"

А	rea (sf)	CN E	Description							
	41,376	98 F	Roofs & Pa	vement, HS						
	9,434			s cover, Go	od, HSG D					
	50,810 9,434		Veighted A	verage vious Area						
	41,376			pervious Area	ea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					
				Subcat	chment P1-4:	P1-4				
				Hydr	ograph					
-			5.20 cfs							- Runoff
5-							Тур	be III 24	4-hr	
-					10 [.]	-Yeai		nfall=4.	1 1 1	
4-					Ru	noff	Area	=50,81	0 sf	
								=17,45		
Flow (cfs)								pth=4.		
Flow								c=6.0	1 1 1	
-									=95	
2-								UN	=95	
-										
1-										
-			\mathcal{I}							
0-	0 2 4	6 8 1	0 12 14	16 18 20 2	2 24 26 28 3) 32 34	4 36 38	40 42 4	14 46 48	
·	~		~ 1 <u>2</u> 1T		ime (hours)				10 40	


Summary for Subcatchment P1-U1: P1-U1

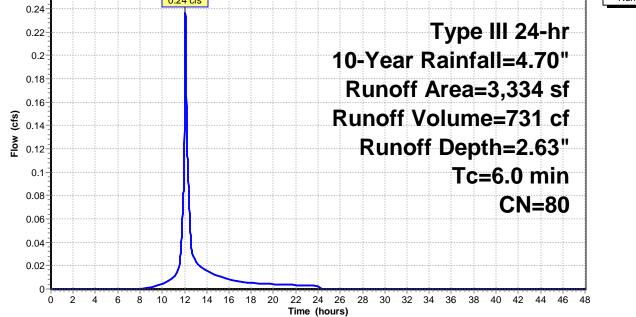
Runoff = 0.07 cfs @ 12.09 hrs, Volume= 220 cf, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"


Area (sf)	CN De	scription								
1,003	80 >7	80 >75% Grass cover, Good, HSG D								
1,003	1,003 80 100.00% Pervious Area									
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
6.0				Direct Entry,						

Subcatchment P1-U1: P1-U1

Summary for Subcatchment P1-U2: P1-U2


Runoff = 0.03 cfs @ 12.08 hrs, Volume= 89 cf, Depth= 4.46"

Summary for Subcatchment P1-U3: P1-U3

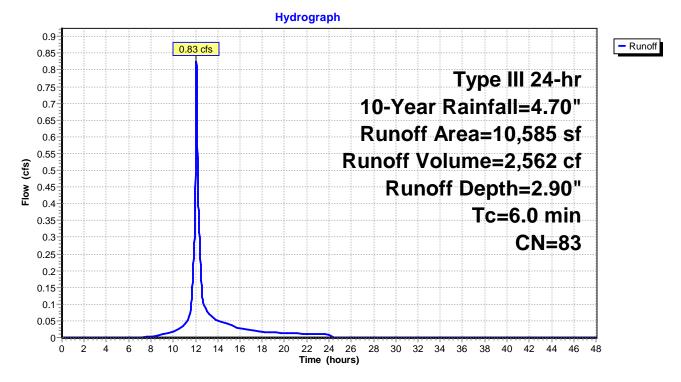
Runoff = 0.24 cfs @ 12.09 hrs, Volume= 731 cf, Depth= 2.63"

Area (s	sf) CN	Description								
	3,334 80 >75% Grass cover, Good, HSG D									
3,3	3,334 80 100.00% Pervious Area									
Tc Len (min) (fe	gth Slop eet) (ft/		Capacity (cfs)	Description						
6.0				Direct Entry,						
	Subcatchment P1-U3: P1-U3									
0.00			Hydr	ograph						
0.26		0.24 cfs					- Runoff			
0.24										
0.22					Туре	e III 24-hr				

Summary for Subcatchment P2: P2

Runoff = 2.68 cfs @ 12.08 hrs, Volume= 9,295 cf, Depth= 4.35"

-	Area (sf)	CN	Description						
*	23,608		Roofs & Pa						
	2,044 25,652		>75% Grass Weighted A		od, HSG D				
	25,652		7.97% Perv						
	23,608	98	92.03% Imp	pervious Are	ea				
Tc (min)	0	Slope (ft/ft		Capacity (cfs)	Descriptio	n			
6.0					Direct Ent	ry,			
				Subc	atchment	P2: P2			
				Hydr	ograph				
3	-		2.68 cfs						- Runoff
	-						Туре	e III 24-hr	
					1	0-Year	Rainf	all=4.70"	
2					R	unoff	Area=	25,652 sf	
-	-							=9,295 cf	
Flow (cfs)	-				nu			•	
Flow	-					Runo	-	oth=4.35"	
	-						TC	=6.0 min	
1								CN=97	
	-								
	-								
	-		\mathcal{A}						
0	0 2 4	6 8	10 12 14	16 18 20 2	22 24 26 2	3 30 32 3	34 36 38	40 42 44 46 4	8
				Т	ime (hours)				


Summary for Subcatchment P2-U: P-2U

Runoff = 0.83 cfs @ 12.09 hrs, Volume= 2,562 cf, Depth= 2.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area (sf)	CN	Description
*	183	98	Ledge, HSG D
	6,620	77	Woods, Good, HSG D
*	2,902	98	Wetland Surface, HSG D
	880	78	Meadow, non-grazed, HSG D
	10,585	83	Weighted Average
	7,500	77	70.85% Pervious Area
	3,085	98	29.15% Impervious Area
	Tc Length	Slo	be Velocity Capacity Description
(m	nin) (feet)	(ft/	
<u> </u>	/	(10	
	6.0		Direct Entry,

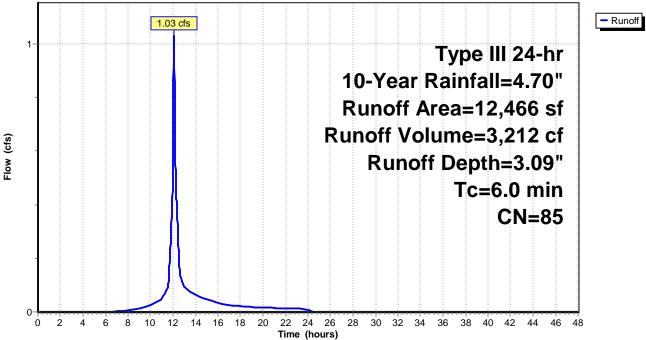
Subcatchment P2-U: P-2U

Summary for Subcatchment P3: P3

Runoff = 6.53 cfs @ 12.08 hrs, Volume= 21,670 cf, Depth= 4.01"

	Area (sf)	CN	Description									
*	50,812		Roofs & Pa									
	<u>14,000</u> 64,812		>75% Grass Weighted A		od, HSG [)						
	14,000		21.60% Per									
	50,812	98	78.40% Imp	pervious Ar	ea							
Tc (min)	0	Slope (ft/ft)		Capacity (cfs)	Descripti	on						
6.0)				Direct Er	ntry,						
				Subc	atchment	P3: P3	3					
					ograph							
7	•											Dura (
	-		6.53 cfs									- Runoff
6	-							Тур	e III	24-	hr	
	-					10-Y	ear F	Rain	fall:	=4.7	0"	
5	-					Rund	off A	rea:	=64,	812	sf	
~	-				Rı	noff \						
Flow (cfs)	-						unoff			·····		
_	-							1.1	c=6.	1	1 1 1	
3	-									CN=		
2	-								•	711	57	
1	-											
			\bigcirc									
0	0 2 4	6 8	10 12 14	16 18 20 2	22 24 26	28 30 3	2 34 3	36 38	40 4	2 44	46 4	I 8
				т	ime (hours)							

Summary for Subcatchment P3-U: P3-U


Runoff = 1.03 cfs @ 12.09 hrs, Volume= 3,212 cf, Depth= 3.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area (sf)	CN	Description				
*	700	98	Ledge, HSG D				
	7,809	77	Woods, Good, HSG D				
*	3,957	98	Wetland Surface, HSG D				
	12,466	85	Weighted Average				
	7,809	77	77 62.64% Pervious Area				
	4,657	98	98 37.36% Impervious Area				
_(Tc Length min) (feet)	Sloj (ft/					
	6.0		Direct Entry,				

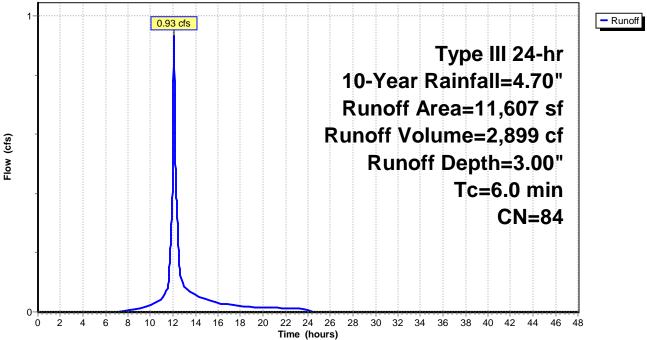
Subcatchment P3-U: P3-U

Summary for Subcatchment P4: P4

Runoff = 2.06 cfs @ 12.08 hrs, Volume= 7,118 cf, Depth= 4.35"

A	vrea (sf)	CN [Description								
	1,577			s cover, Go		D					
*	18,066			ved parking	g, HSG D						
	19,643 1,577		Neighted A 3.03% Perv								
	18,066			bervious Area	ea						
	·		·								
Tc (min)	Length	Slope			Descript	ion					
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct E	ntrv					
0.0					Dirott E	, i.i. y ,					
				Subc	atchmen	t P4: I	P4				
				Hydr	ograph						
			2.06 cfs								- Runoff
2-			2.00 0.0								
								Туре)	24-hr	
						10-Y	ear F	Rainf	all=	4.70"	
						Run	off A	rea='	19.6	43 sf	
		Runoff Area=19,643 sf Runoff Volume=7,118 cf									
(cfs)					Rι						
Flow (cfs)						R	unof	f Dep	oth=	4.35"	
– 1-								Тс	=6.0	0 min	
									C	N=97	
									v	11-57	
			Л								
			\nearrow								
0-	0 2 4	6 8	10 12 14	16 18 20 2	22 24 26	28 30	32 34	36 38	40 42	2 44 46 4	48
				т	ime (hours)						

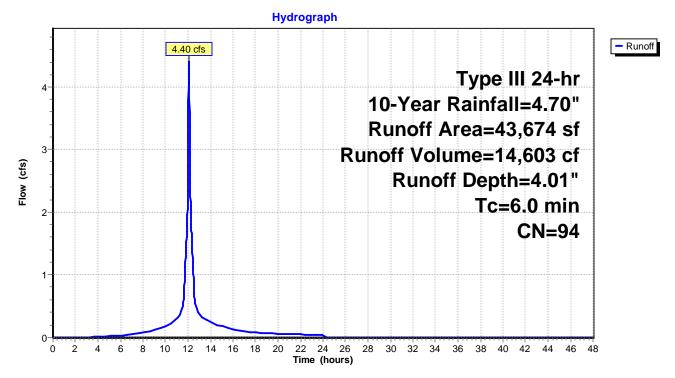
Summary for Subcatchment P4-U: P4-U


Runoff = 0.93 cfs @ 12.09 hrs, Volume= 2,899 cf, Depth= 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area (sf)	CN	Description					
*	1,650	98	Ledge, HSG D					
	7,547	77	Woods, Good, HSG D					
*	2,410	98	Wetland Surface, HSG D					
	11,607	84	Weighted Average					
	7,547	77 65.02% Pervious Area						
	4,060	98	98 34.98% Impervious Area					
(n	Tc Length nin) (feet)	Slor (ft/						
	6.0		Direct Entry,					

Subcatchment P4-U: P4-U

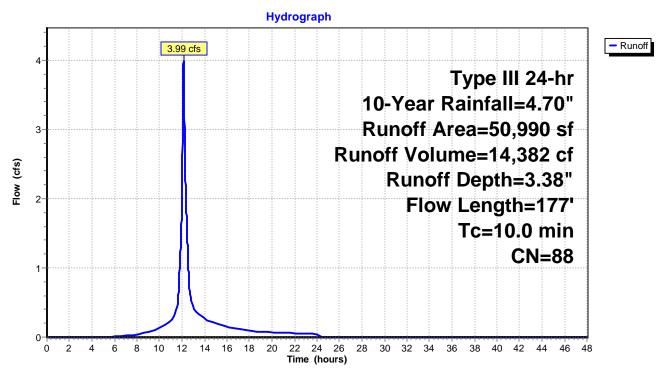

Summary for Subcatchment P5: P5

Runoff = 4.40 cfs @ 12.08 hrs, Volume= 14,603 cf, Depth= 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area (sf)	CN	Description
*	5,025	98	Ledge, HSG D
	7,050	80	>75% Grass cover, Good, HSG D
*	29,470	98	Paved parking, HSG D
	2,129	77	Woods, Good, HSG D
	43,674	94	Weighted Average
	9,179	79	21.02% Pervious Area
	34,495	98	78.98% Impervious Area
	Tc Length	Slop	e Velocity Capacity Description
(n	nin) (feet)	(ft/	
(11	/	(10	
	6.0		Direct Entry,

Subcatchment P5: P5


Summary for Subcatchment P5-U: P5-U

Runoff = 3.99 cfs @ 12.14 hrs, Volume= 14,382 cf, Depth= 3.38"

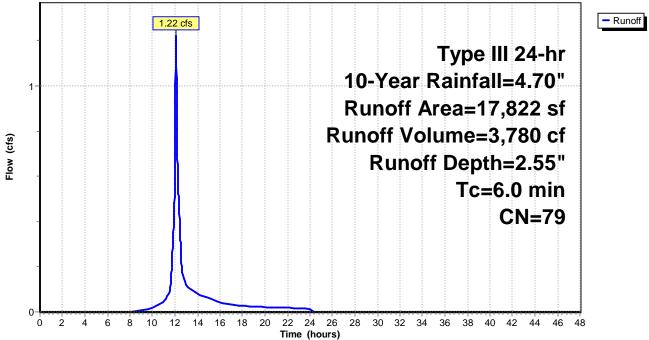
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	A	rea (sf)	CN	Description		
*		5,864	98	Ledge, HS0	GD	
		12,095	77	Woods, Go	od, HSG D	
*		20,323	98	Wetland Su	Irface, HSG	6 D
_		12,708	78	Meadow, n	on-grazed,	HSG D
		50,990	88	Weighted A	verage	
		24,803	78	48.64% Per	rvious Area	
		26,187	98	51.36% Imp	pervious Are	ea
	Тс	Length	Slop		Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	10.0	177	Total			

Subcatchment P5-U: P5-U

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

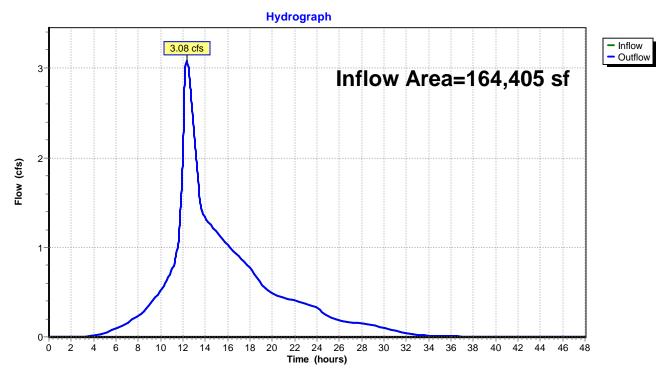
Summary for Subcatchment P6-U: P6-U


Runoff = 1.22 cfs @ 12.09 hrs, Volume= 3,780 cf, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Are	ea (sf)	CN	De	escription			
	1	5,225	77	77 Woods, Good, HSG D				
		1,097	80	Pa	asture/gra	ssland/rang	ge, Good, HSG D	
*		1,500	98	W	etland Su	rface, HSG	D	
	1	7,822	79	W	eighted A	verage		
	1	6,322	77	91	1.58% Per	vious Area		
		1,500	98	8.	42% Impe	ervious Area	a	
,		Length	Slop		Velocity	Capacity	Description	
1)	min)	(feet)	(ft/f	t)	(ft/sec)	(cfs)		
	6.0						Direct Entry,	

Subcatchment P6-U: P6-U



Summary for Reach DMH MS2: DMH MS2

Inflow Area	a =	164,405 sf, 74.82% Impervious, Inflow Depth > 4.09" for 10-Year event	
Inflow	=	3.08 cfs @ 12.35 hrs, Volume= 55,999 cf	
Outflow	=	3.08 cfs @ 12.35 hrs, Volume= 55,999 cf, Atten= 0%, Lag= 0.0 min	I

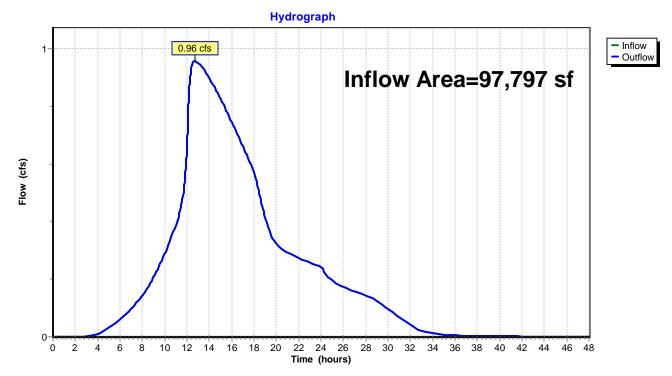
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach DMH MS2: DMH MS2

Summary for Reach DMH MS3: DMH MS3

Inflow Area =	147,685 sf, 75.50% Impervious,	Inflow Depth > 4.12" for 10-Year event
Inflow =	2.95 cfs @ 12.34 hrs, Volume=	50,709 cf
Outflow =	2.95 cfs @ 12.34 hrs, Volume=	50,709 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

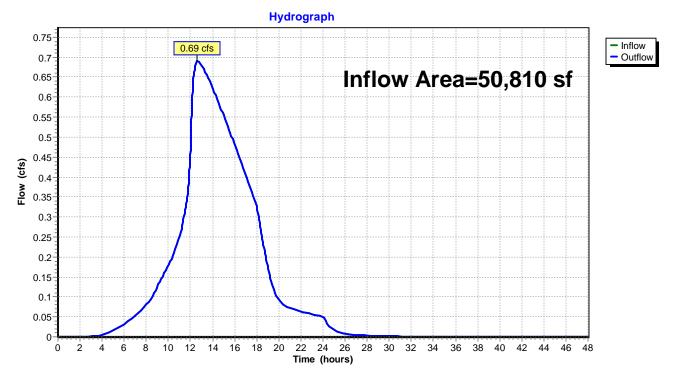

Hydrograph Inflow 2.95 cfs 3-- Outflow Inflow Area=147,685 sf 2 Flow (cfs) 1 0 2 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach DMH MS3: DMH MS3

Summary for Reach DMH MS4: DMH MS4

Inflow Area	a =	97,797 sf, 84.43% Impervious, Inflow Depth > 4.18" for 10-Year event
Inflow	=	0.96 cfs @ 12.69 hrs, Volume= 34,029 cf
Outflow	=	0.96 cfs @ 12.69 hrs, Volume= 34,029 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

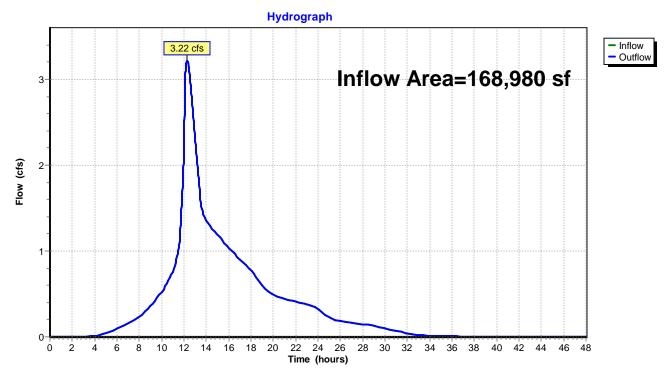


Reach DMH MS4: DMH MS4

Summary for Reach DMH MS5: DMH MS5

Inflow Area =	50,810 sf, 81.43% Impervious,	Inflow Depth = 4.12" for 10-Year event	
Inflow =	0.69 cfs @ 12.61 hrs, Volume=	17,455 cf	
Outflow =	0.69 cfs @ 12.61 hrs, Volume=	17,455 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach DMH MS5: DMH MS5

Summary for Reach PD1: WASHINGTON ROW

Inflow Area =	168,980 sf, 72.94% Impervious, Inflo	w Depth > 4.05" for 10-Year event
Inflow =	3.22 cfs @ 12.30 hrs, Volume=	57,039 cf
Outflow =	3.22 cfs @ 12.30 hrs, Volume=	57,039 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

Inflow Area	=	36,237 sf, 73.66% Impervious, Inflow Depth = 3.93" for 10-Year ev	'ent
Inflow =	=	2.23 cfs @ 12.12 hrs, Volume= 11,857 cf	
Outflow =	=	2.23 cfs @ 12.12 hrs, Volume= 11,857 cf, Atten= 0%, Lag= 0.0	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

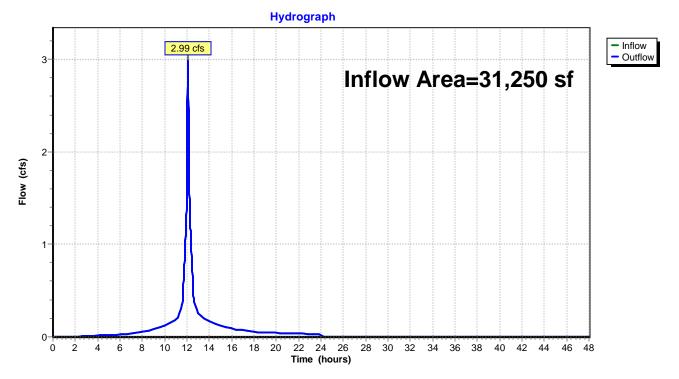

Hydrograph Inflow 2.23 cfs Outflow Inflow Area=36,237 sf 2 Flow (cfs) 1 0 2 28 30 32 34 36 38 40 42 44 46 48 ò 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

Inflow Are	a =	77,278 sf, 71.78% Impervious, Inflow Depth > 2.80" for 10-Year event
Inflow	=	2.45 cfs @ 12.15 hrs, Volume= 18,038 cf
Outflow	=	2.45 cfs @ 12.15 hrs, Volume= 18,038 cf, Atten= 0%, Lag= 0.0 min

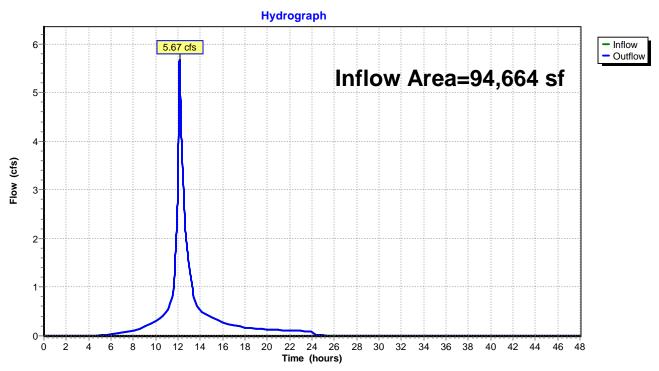
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

Inflow Are	a =	31,250 sf, 70.80% Impervious, Inflow Depth = 3.85" for 10-Year event
Inflow	=	2.99 cfs @ 12.08 hrs, Volume= 10,017 cf
Outflow	=	2.99 cfs @ 12.08 hrs, Volume= 10,017 cf, Atten= 0%, Lag= 0.0 min

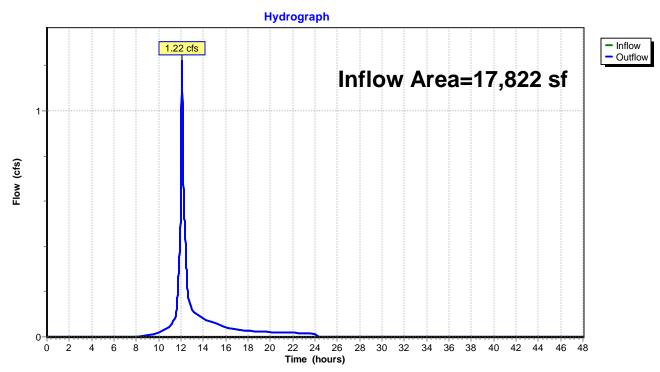
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

Inflow Area	a =	94,664 sf, 64.10% Impervious, Inflow Depth = 3.67" for 10-Year event	t
Inflow	=	5.67 cfs @ 12.14 hrs, Volume= 28,985 cf	
Outflow	=	5.67 cfs @ 12.14 hrs, Volume= 28,985 cf, Atten= 0%, Lag= 0.0 mi	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

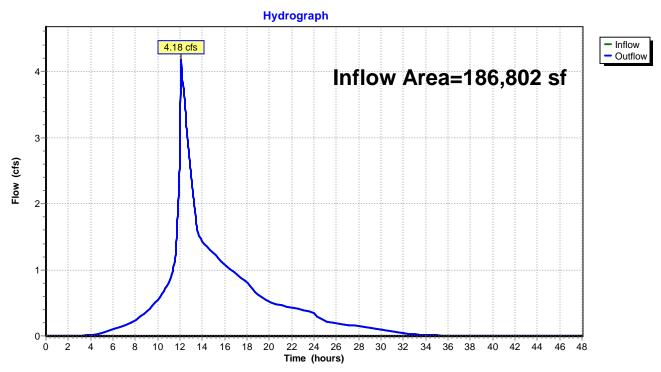


Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

Inflow Area =	17,822 sf,	8.42% Impervious,	Inflow Depth = 2.55"	for 10-Year event
Inflow =	1.22 cfs @ 1	2.09 hrs, Volume=	3,780 cf	
Outflow =	1.22 cfs @ 1	2.09 hrs, Volume=	3,780 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

Inflow Area =	186,802 sf, 66.78% Impervious,	Inflow Depth = 3.91" for 10-Year event
Inflow =	4.18 cfs @ 12.11 hrs, Volume=	60,819 cf
Outflow =	4.18 cfs @ 12.11 hrs, Volume=	60,819 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach WD: Washington St Drainage

Summary for Pond UG1: UG1

Inflow Area =	49,888 sf, 58.01% Impervious, I	Inflow Depth = 4.01" for 10-Year event
Inflow =	5.03 cfs @ 12.08 hrs, Volume=	16,680 cf
Outflow =	2.04 cfs @ 12.29 hrs, Volume=	16,680 cf, Atten= 59%, Lag= 12.6 min
Primary =	2.04 cfs @ 12.29 hrs, Volume=	16,680 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 84.81' @ 12.29 hrs Surf.Area= 0.062 ac Storage= 0.076 af

Plug-Flow detention time= 24.2 min calculated for 16,677 cf (100% of inflow) Center-of-Mass det. time= 24.3 min (799.6 - 775.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	0.056 af	44.25'W x 60.58'L x 3.50'H Field A
			0.215 af Overall - 0.076 af Embedded = 0.139 af x 40.0% Voids
#2A	83.50'	0.076 af	ADS_StormTech SC-740 +Cap x 72 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			72 Chambers in 9 Rows
		0.132 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	83.00'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	83.00'	12.0" Round RCP_Round 12"
			L= 51.4' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 83.00' / 82.74' S= 0.0051 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.04 cfs @ 12.29 hrs HW=84.81' (Free Discharge)

-2=RCP_Round 12" (Passes 2.04 cfs of 4.25 cfs potential flow)

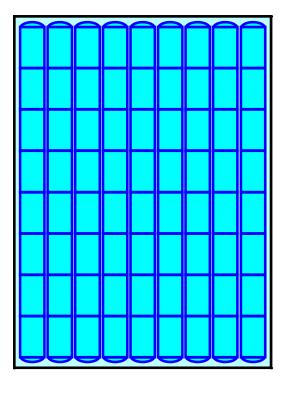
1=Orifice/Grate (Orifice Controls 2.04 cfs @ 5.85 fps)

Pond UG1: UG1 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

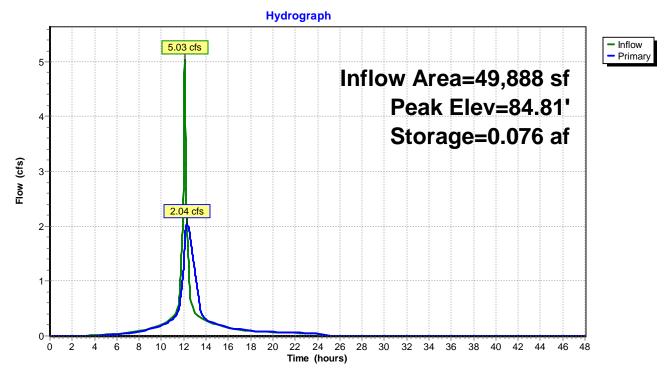

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

72 Chambers x 45.9 cf = 3,307.7 cf Chamber Storage

9,381.8 cf Field - 3,307.7 cf Chambers = 6,074.1 cf Stone x 40.0% Voids = 2,429.7 cf Stone Storage

Chamber Storage + Stone Storage = 5,737.3 cf = 0.132 af Overall Storage Efficiency = 61.2%Overall System Size = $60.58' \times 44.25' \times 3.50'$

72 Chambers 347.5 cy Field 225.0 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG1: UG1

Summary for Pond UG2: UG2

Inflow Area =	16,720 sf, 68.82% Impervious,	Inflow Depth = 3.80" for 10-Year event
Inflow =	1.63 cfs @ 12.08 hrs, Volume=	5,290 cf
Outflow =	0.14 cfs @ 13.03 hrs, Volume=	5,290 cf, Atten= 92%, Lag= 56.4 min
Primary =	0.14 cfs @ 13.03 hrs, Volume=	5,290 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 83.81' @ 13.03 hrs Surf.Area= 0.047 ac Storage= 0.058 af

Plug-Flow detention time= 210.0 min calculated for 5,289 cf (100% of inflow) Center-of-Mass det. time= 210.2 min (994.8 - 784.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	82.00'	0.043 af	25.25'W x 81.94'L x 3.50'H Field A
			0.166 af Overall - 0.058 af Embedded = 0.108 af x 40.0% Voids
#2A	82.50'	0.058 af	ADS_StormTech SC-740 +Cap x 55 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			55 Chambers in 5 Rows
		0.101 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	82.00'	2.0" Vert. Orifice/Grate C= 0.600
#2	Primary	82.00'	12.0" Round RCP_Round 12"
			L= 9.7' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 82.00' / 81.95' S= 0.0052 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.14 cfs @ 13.03 hrs HW=83.81' (Free Discharge)

-2=RCP_Round 12" (Passes 0.14 cfs of 4.90 cfs potential flow)

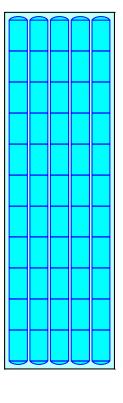
1=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.32 fps)

Pond UG2: UG2 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

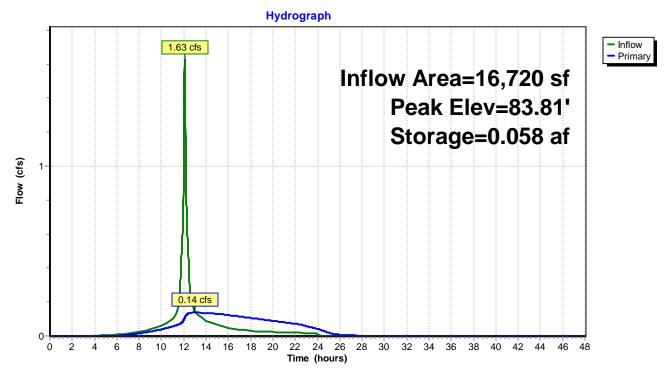

11 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 79.94' Row Length +12.0" End Stone x 2 = 81.94' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

55 Chambers x 45.9 cf = 2,526.7 cf Chamber Storage

7,241.2 cf Field - 2,526.7 cf Chambers = 4,714.5 cf Stone x 40.0% Voids = 1,885.8 cf Stone Storage

Chamber Storage + Stone Storage = 4,412.5 cf = 0.101 afOverall Storage Efficiency = 60.9%Overall System Size = $81.94' \times 25.25' \times 3.50'$

55 Chambers 268.2 cy Field 174.6 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG2: UG2

Summary for Pond UG3: UG3

Inflow Area	a =	46,987 sf, 87.67% Impervious, Inflow Depth = 4.23" for 10-Year event
Inflow	=	4.87 cfs @ 12.08 hrs, Volume= 16,581 cf
Outflow	=	0.27 cfs @ 13.87 hrs, Volume= 16,574 cf, Atten= 94%, Lag= 107.2 min
Primary	=	0.27 cfs @ 13.87 hrs, Volume= 16,574 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 91.91' @ 13.87 hrs Surf.Area= 0.103 ac Storage= 0.209 af

Plug-Flow detention time= 384.5 min calculated for 16,574 cf (100% of inflow) Center-of-Mass det. time= 384.2 min (1,148.1 - 763.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	89.00'	0.145 af	80.08'W x 55.89'L x 5.50'H Field A
			0.565 af Overall - 0.202 af Embedded = 0.363 af x 40.0% Voids
#2A	89.75'	0.202 af	
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			77 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		0.347 af	Total Available Storage

Storage Group A created with Chamber Wizard

Primary OutFlow Max=0.27 cfs @ 13.87 hrs HW=91.91' (Free Discharge)

-2=RCP_Round 12" (Passes 0.27 cfs of 6.91 cfs potential flow)

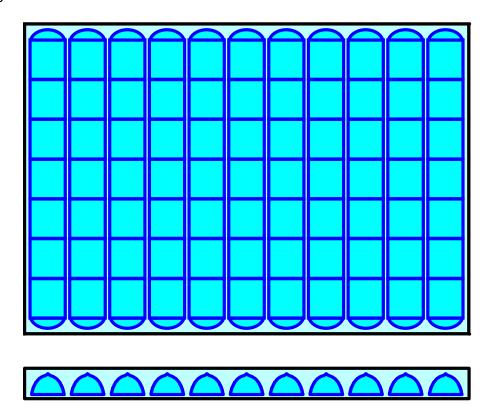
1=Orifice/Grate (Orifice Controls 0.27 cfs @ 8.06 fps)

Pond UG3: UG3 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

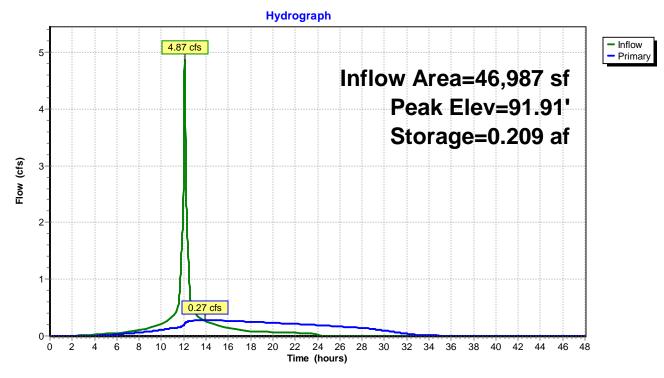
77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89'Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

77 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 8,794.1 cf Chamber Storage

24,617.2 cf Field - 8,794.1 cf Chambers = 15,823.1 cf Stone x 40.0% Voids = 6,329.2 cf Stone Storage

Chamber Storage + Stone Storage = 15,123.3 cf = 0.347 afOverall Storage Efficiency = 61.4%Overall System Size = $55.89' \times 80.08' \times 5.50'$


77 Chambers 911.7 cy Field 586.0 cy Stone

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG3: UG3

Summary for Pond UG4: UG4

Inflow Area =	25,652 sf, 92.03% Impervious,	Inflow Depth = 4.35" for 10-Year event
Inflow =	2.68 cfs @ 12.08 hrs, Volume=	9,295 cf
Outflow =	1.56 cfs @ 12.19 hrs, Volume=	9,295 cf, Atten= 42%, Lag= 6.5 min
Primary =	1.56 cfs @ 12.19 hrs, Volume=	9,295 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 100.70' @ 12.19 hrs Surf.Area= 0.037 ac Storage= 0.026 af

Plug-Flow detention time= 16.0 min calculated for 9,293 cf (100% of inflow) Center-of-Mass det. time= 16.0 min (773.1 - 757.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.50'	0.026 af	21.50'W x 74.40'L x 2.33'H Field A
			0.086 af Overall - 0.020 af Embedded = 0.065 af x 40.0% Voids
#2A	100.00'	0.020 af	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.046 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	99.50'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	99.50'	12.0" Round RCP_Round 12"
			L= 43.2' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 99.50' / 98.00' S= 0.0347 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.56 cfs @ 12.19 hrs HW=100.70' (Free Discharge)

-2=RCP_Round 12" (Passes 1.56 cfs of 3.95 cfs potential flow)

1=Orifice/Grate (Orifice Controls 1.56 cfs @ 4.47 fps)

Pond UG4: UG4 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

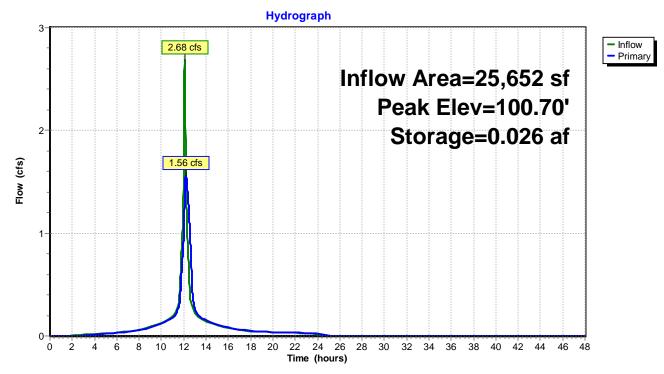
Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage

3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage


Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = 74.40' x 21.50' x 2.33'

60 Chambers 138.2 cy Field 105.5 cy Stone

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG4: UG4

Summary for Pond UG5: UG5

Inflow Area =	64,812 sf, 78.40% Impervious, In	flow Depth = 4.01" for 10-Year event
Inflow =	6.53 cfs @ 12.08 hrs, Volume=	21,670 cf
Outflow =	2.03 cfs @ 12.39 hrs, Volume=	14,826 cf, Atten= 69%, Lag= 18.4 min
Primary =	2.03 cfs @ 12.39 hrs, Volume=	14,826 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 111.51' @ 12.39 hrs Surf.Area= 4,461 sf Storage= 11,034 cf

Plug-Flow detention time= 220.1 min calculated for 14,822 cf (68% of inflow) Center-of-Mass det. time= 126.3 min (901.6 - 775.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	108.00'	6,247 cf	29.92'W x 149.10'L x 5.50'H Field A
			24,533 cf Overall - 8,915 cf Embedded = 15,618 cf x 40.0% Voids
#2A	108.75'	8,915 cf	ADS_StormTech MC-3500 d +Cap x 80 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			80 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		15,162 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	110.23'	9.0" Vert. Orifice/Grate C= 0.600
#2	Primary	101.47'	12.0" Round RCP_Round 12"
			L= 14.6' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 101.47' / 100.30' S= 0.0801 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.03 cfs @ 12.39 hrs HW=111.51' (Free Discharge)

-2=RCP_Round 12" (Passes 2.03 cfs of 14.60 cfs potential flow)

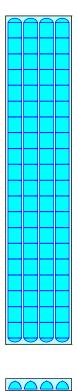
1=Orifice/Grate (Orifice Controls 2.03 cfs @ 4.59 fps)

Pond UG5: UG5 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

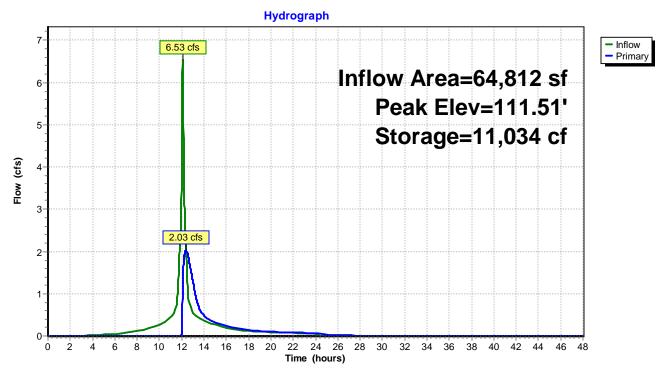

20 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 147.10' Row Length +12.0" End Stone x 2 = 149.10' Base Length 4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

80 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 8,915.4 cf Chamber Storage

24,533.2 cf Field - 8,915.4 cf Chambers = 15,617.8 cf Stone x 40.0% Voids = 6,247.1 cf Stone Storage

Chamber Storage + Stone Storage = 15,162.5 cf = 0.348 afOverall Storage Efficiency = 61.8%Overall System Size = $149.10' \times 29.92' \times 5.50'$

80 Chambers 908.6 cy Field 578.4 cy Stone



You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG5: UG5

Summary for Pond UG6: UG6

Inflow Area =	43,674 sf, 78.98% Impervious, I	nflow Depth = 4.01" for 10-Year event
Inflow =	4.40 cfs @ 12.08 hrs, Volume=	14,603 cf
Outflow =	1.82 cfs @ 12.29 hrs, Volume=	14,603 cf, Atten= 59%, Lag= 12.2 min
Primary =	1.82 cfs @ 12.29 hrs, Volume=	14,603 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 113.63' @ 12.29 hrs Surf.Area= 2,249 sf Storage= 2,797 cf

Plug-Flow detention time= 22.4 min calculated for 14,603 cf (100% of inflow) Center-of-Mass det. time= 22.3 min (797.5 - 775.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	111.80'	2,046 cf	25.25'W x 89.06'L x 3.50'H Field A
			7,870 cf Overall - 2,756 cf Embedded = 5,114 cf x 40.0% Voids
#2A	112.30'	2,756 cf	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 5 Rows
		4,802 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	111.80'	7.5" Vert. Orifice/Grate C= 0.600
#2	Primary	111.80'	12.0" Round RCP_Round 12"
			L= 68.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 111.80' / 111.00' S= 0.0118 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.82 cfs @ 12.29 hrs HW=113.63' (Free Discharge)

-2=RCP_Round 12" (Passes 1.82 cfs of 4.87 cfs potential flow)

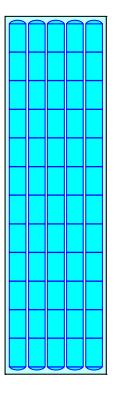
1=Orifice/Grate (Orifice Controls 1.82 cfs @ 5.93 fps)

Pond UG6: UG6 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

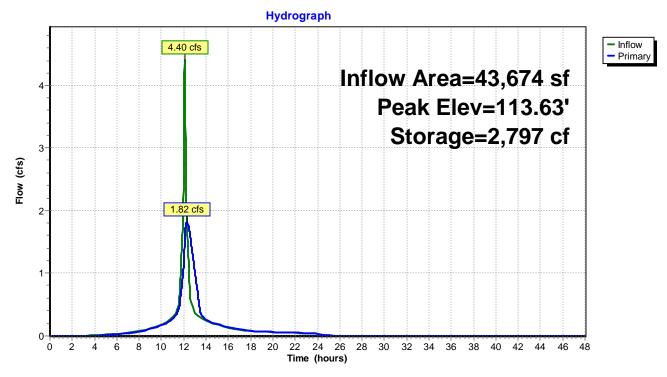

12 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 87.06' Row Length +12.0" End Stone x 2 = 89.06' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

7,870.4 cf Field - 2,756.4 cf Chambers = 5,114.0 cf Stone x 40.0% Voids = 2,045.6 cf Stone Storage

Chamber Storage + Stone Storage = 4,802.0 cf = 0.110 afOverall Storage Efficiency = 61.0%Overall System Size = $89.06' \times 25.25' \times 3.50'$

60 Chambers 291.5 cy Field 189.4 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG6: UG6

Summary for Pond UG7: UG7

Inflow Area =	50,810 sf, 81.43% Impervious,	Inflow Depth = 4.12" for 10-Year event
Inflow =	5.20 cfs @ 12.08 hrs, Volume=	17,455 cf
Outflow =	0.69 cfs @ 12.61 hrs, Volume=	17,455 cf, Atten= 87%, Lag= 31.3 min
Primary =	0.69 cfs @ 12.61 hrs, Volume=	17,455 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 101.37' @ 12.61 hrs Surf.Area= 0.079 ac Storage= 0.158 af

Plug-Flow detention time= 105.4 min calculated for 17,452 cf (100% of inflow) Center-of-Mass det. time= 105.6 min (875.4 - 769.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	98.50'	0.111 af	44.25'W x 77.40'L x 5.50'H Field A
			0.432 af Overall - 0.156 af Embedded = 0.277 af x 40.0% Voids
#2A	99.25'	0.156 af	ADS_StormTech MC-3500 d +Cap x 60 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			60 Chambers in 6 Rows
			Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf
		0.266 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Device 2	98.50'	4.0" Vert. Orifice/Grate C= 0.600
Primary	98.50'	12.0" Round RCP_Round 12"
		L= 34.7' RCP, groove end projecting, Ke= 0.200
		Inlet / Outlet Invert= 98.50' / 98.33' S= 0.0049 '/' Cc= 0.900
		n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf
	Device 2	Device 2 98.50'

Primary OutFlow Max=0.69 cfs @ 12.61 hrs HW=101.37' (Free Discharge)

-2=RCP_Round 12" (Passes 0.69 cfs of 6.40 cfs potential flow)

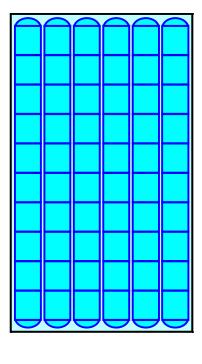
1=Orifice/Grate (Orifice Controls 0.69 cfs @ 7.92 fps)

Pond UG7: UG7 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

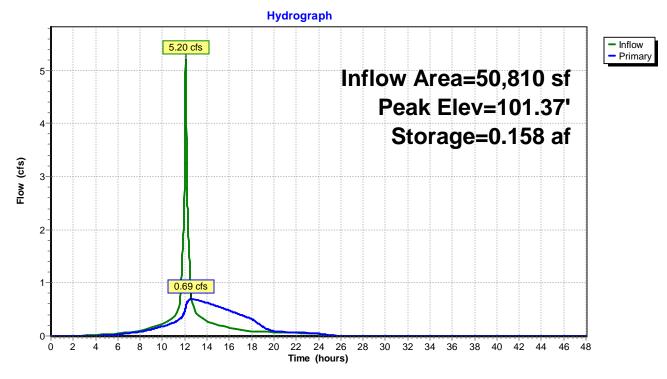

10 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 75.40' Row Length +12.0" End Stone x 2 = 77.40' Base Length 6 Rows x 77.0" Wide + 9.0" Spacing x 5 + 12.0" Side Stone x 2 = 44.25' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

60 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 6 Rows = 6,775.9 cf Chamber Storage

18,837.2 cf Field - 6,775.9 cf Chambers = 12,061.3 cf Stone x 40.0% Voids = 4,824.5 cf Stone Storage

Chamber Storage + Stone Storage = 11,600.4 cf = 0.266 af Overall Storage Efficiency = 61.6%Overall System Size = 77.40' x 44.25' x 5.50'

60 Chambers 697.7 cy Field 446.7 cy Stone

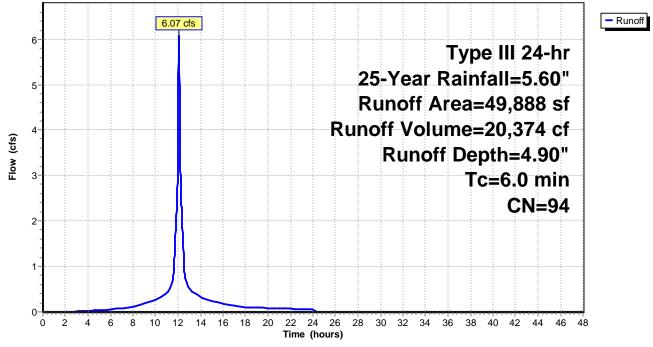


Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG7: UG7

Summary for Subcatchment P1-1: P1-1


Runoff = 6.07 cfs @ 12.08 hrs, Volume= 20,374 cf, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description
*	19,600	89	Courtyard, HSG D
	1,350	80	>75% Grass cover, Good, HSG D
*	28,938	98	Roof & Paved parking, HSG D
	49,888	94	Weighted Average
	20,950	88	41.99% Pervious Area
	28,938	98	58.01% Impervious Area
	Tc Length (min) (feet)	Sloj (ft/	
	6.0		Direct Entry,

Subcatchment P1-1: P1-1

Summary for Subcatchment P1-2: P1-2

Runoff = 1.98 cfs @ 12.08 hrs, Volume= 6,516 cf, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

,											
<i>F</i>	<u>Area (sf)</u> 5,213		escription	s cover, Go		<u> </u>					
*	11,507			ed parking,		,					
	16,720		Veighted A		1100 2						
	5,213			vious Area							
	11,507	98 6	8.82% Imp	pervious Are	ea						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	on					
6.0					Direct En	try,					
				Subcat	chment P	1_2. 0	1_2				
						I -2. F	1-2				
	-			Hydr	ograph						I
0			1.98 cfs								- Runoff
2-							-	Tvno	III 2	∕l₋hr	
	-					- \/					
	-				2	5-Ye	ar Ra	ainta	all=5	.60"	
	-				F	Runo	ff Are	ea=1	6,72	0 sf	
(Ru	noff	Volu	me=	6 51	6 cf	
Flow (cfs)	-										
он И 1-			<mark>.</mark>			RU	noff				
								Tc	=6.0	min	
									CN	=92	
	-										
	-										
	_										
			ノ〜								
0-	0 2 4	6 8 1	0 12 14 ⁻	16 18 20 2	22 24 26 2	28 30 3	2 34 3	6 38	40 42	44 46 48	8
				т	ime (hours)						

Summary for Subcatchment P1-3: P1-3

Runoff = 5.84 cfs @ 12.08 hrs, Volume= 20,084 cf, Depth= 5.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN Description					
*	41,192	98 Roofs & Pa	vement, HS				
	5,795		s cover, Go	ood, HSG D			
	46,987 5,795	96 Weighted A 80 12.33% Pe	rvious Area				
	41,192		pervious Are				
	Tc Length in) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description			
(6.0			Direct Entry,			
			Subcate	chment P1-3:	P1-3		
				ograph			
	-]
	6	5.84 cfs					- Runoff
	-				Ту	pe III 24-hr	
	5			25-	Year Rai	nfall=5.60"	-
	-			Rui	off Area	=46,987 sf	
	4-					=20,084 cf	-
Flow (cfs)	-					epth=5.13"	
Б	3-				T	ſc=6.0 min	
	-					CN=96	
	2-						
	-						
	1						
	-						
	0 2 4	6 8 10 12 14		22 24 26 28 30	32 34 36 3	8 40 42 44 46 4	₩ 48
			1	ïme (hours)			

Summary for Subcatchment P1-4: P1-4

Runoff = 6.25 cfs @ 12.08 hrs, Volume= 21,232 cf, Depth= 5.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

Area (sf)	CN Description
* 41,376	98 Roofs & Pavement, HSG D
9,434	80 >75% Grass cover, Good, HSG D
50,810 9,434	95 Weighted Average 80 18.57% Pervious Area
41,376	98 81.43% Impervious Area
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry,
	Subcatchment P1-4: P1-4
	Hydrograph
7	
-	6.25 cfs
6	Type III 24-hr
-	25-Year Rainfall=5.60"
5	Runoff Area=50,810 sf
- 1	Runoff Volume=21,232 cf
Elow (cfs)	Runoff Depth=5.01"
о Ч 3-	Tc=6.0 min
-	
2	CN=95
-	
1	
0-	
0 2 4	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Subcatchment P1-U1: P1-U1

Runoff = 0.09 cfs @ 12.09 hrs, Volume= 286 cf, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

1,003		ss cover, Good, HSG D	
1,003	80 100.00% P	Pervious Area	
Tc Length nin) (feet)	Slope Velocity (ft/ft) (ft/sec)		
6.0		Direct Entry,	
		Subcatchment P1-U1: P1-U1	
		Hydrograph	
0.1			
0.095	0.09 cfs		- Run
0.09		Type III 24 br	
0.085		Type III 24-hr	
0.08		25-Year Rainfall=5.60"	
0.07			
0.065		Runoff Area=1,003 sf	
0.06	· · · · · · · · · · · · · · · · · · ·	Runoff Volume=286 cf	
0.055			
0.05		Runoff Depth=3.42"	
0.04			
0.035		Tc=6.0 min	
0.03		CN=80	
0.025	·······	011-00	
0.02			
0.015	11		

Time (hours)

0.006 0.004 0.002

0 2 4 6

Summary for Subcatchment P1-U2: P1-U2

Runoff = 0.03 cfs @ 12.08 hrs, Volume= 106 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description								
*	238	98	Pavement,	HSG D							
	238	98	100.00% In	npervious A	rea						
(m	Tc Length in) (feet)			Capacity (cfs)	Descript	ion					
(6.0				Direct E	ntry,					
				Subcatcl	nment P	1-U2: P	1-U2				
				Hydr	ograph						
	0.032		0.03 cfs								- Runoff
	0.03										
	0.028						Τ	ype	III 24	l-hr	
	0.026				2	25-Ye	ar Ra	ainfa	11-5	60"	
	0.024										
	0.022					Ru	noff	Area	=23	8 sf	
s)	0.02				F	Runof	f Vol	lume	=10	6 cf	
Flow (cfs)	0.018										
Flox	0.016					Rur	noff l	Jept	h=5.	36"	
_	0.014							Tc=	6.0 I	min	
	0.012										
	0.01								CN	=98	
	0.008								1		

22 24 26

Time (hours)

28

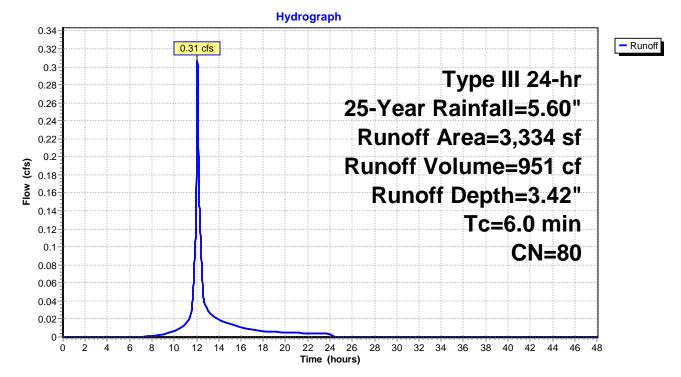
30 32 34 36

38 40 42 44 46

48

10 12 14 16 18 20

8


Summary for Subcatchment P1-U3: P1-U3

Runoff = 0.31 cfs @ 12.09 hrs, Volume= 951 cf, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

A	rea (sf)	CN	Description			
	3,334	80	>75% Gras	s cover, Go	ood, HSG D	
	3,334	80	100.00% Pe	ervious Are	а	
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description	
6.0					Direct Entry,	

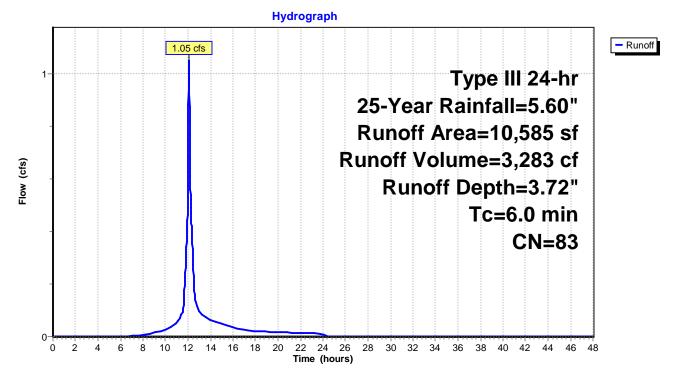
Subcatchment P1-U3: P1-U3

Summary for Subcatchment P2: P2

Runoff = 3.21 cfs @ 12.08 hrs, Volume= 11,213 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

A	Area (sf)	CN [Description							
*	23,608	98 F	Roofs & Pa	vement, HS						
	2,044			s cover, Go	ood, HSG	D				
	25,652 2,044		Veighted A 7.97% Perv							
	23,608			pervious Ar	ea					
То	Longth	Slope	Volocity	Conocity	Descript	ion				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descript	ION				
6.0	· · · ·				Direct E	ntry,				
				Suba	atchmen	+ 02- 01	2			
						I FZ. FZ	2			
				Hydr	ograph					7
	-		3.21 cfs							- Runoff
3	-						-	Tvne	III 24-hr	
5	-					25 V			ll=5.60"	
	-									
	-								5,652 sf	
(s 2)	-				R	Jnoff	Volur	ne=1	1,213 cf	
-Iow (cfs)	-					Rı	unoff	Dept	h=5.25"	
Flo	-							Tc=	:6.0 min	
									CN=97	
1									••.	
	-									
	-									
	-									
0-	hand		0 12 14	16 18 20 2	22 24 20	28 30 3	2 24 20	c 20 40	42 44 40	40
	0 2 4	6 8 1	0 12 14		22 24 26 "ime (hours)	28 30 3	2 34 36	6 38 40) 42 44 46 4	48


Summary for Subcatchment P2-U: P-2U

Runoff = 1.05 cfs @ 12.09 hrs, Volume= 3,283 cf, Depth= 3.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description	
*	183	98	Ledge, HSG D	
	6,620	77	Woods, Good, HSG D	
*	2,902	98	Wetland Surface, HSG D	
	880	78	Meadow, non-grazed, HSG D	
	10,585	83	Weighted Average	
	7,500	77	70.85% Pervious Area	
	3,085	98	29.15% Impervious Area	
	To Longth	Slo	na Valacity Canacity Description	
	Tc Length			
	(min) (feet)	(ft/		_
	6.0		Direct Entry,	

Subcatchment P2-U: P-2U

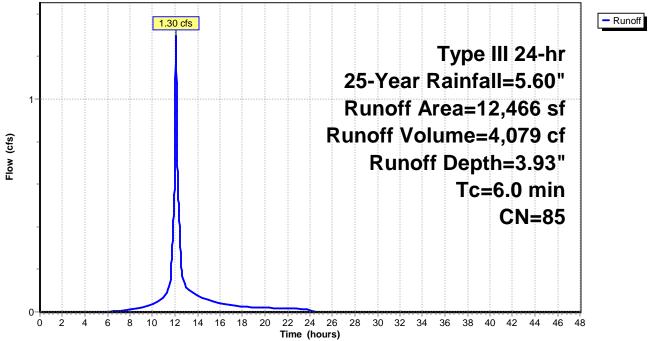
Summary for Subcatchment P3: P3

Runoff = 7.89 cfs @ 12.08 hrs, Volume= 26,469 cf, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Α	rea	(sf)	CN	De	scription										
*		50,8		98			vement, HS	SG D								
		14,0		80			s cover, Go		D							
		64,8		94		eighted A										
		14,0		80 98			rvious Area									
		50,8	512	90	10.	.40% ៣៣	pervious Ar	ea								
(n	Tc nin)		ngth feet)	Slop (ft/ft		Velocity (ft/sec)	Capacity (cfs)	Descript	ion							
	6.0							Direct E	ntry,							
							Subc	atchmer	+ D2+ I	22						
									IL Г Ј. I	-0						
	-						Hydr	ograph								I
	8-				7	7.89 cfs										- Runoff
												Туре	e III	24	-hr	
	7-								25-`	<i>l</i> ear	r R	ainf	all=	=5.6	60 "	
	6-								Rur	off	Δr	ea=	64 9	812	sf	
-								R	unoff							
Flow (cfs)	5									unc						
Ĕ	4-											Тс	=6.	0 m	nin	
	3-												C	N=	94	
	-														_	
	2-															
	-															
	1-															
	0-		****													
	() 2	4	68	10	12 14		22 24 26 Time (hours)	28 30	32 34	4 36	38	40 42	2 44	46 4	8

Summary for Subcatchment P3-U: P3-U


Runoff = 1.30 cfs @ 12.09 hrs, Volume= 4,079 cf, Depth= 3.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description				
*	700	98	Ledge, HSG D				
	7,809	77	Woods, Good, HSG D				
*	3,957	98	Wetland Surface, HSG D				
	12,466	85	Weighted Average				
	7,809	77	62.64% Pervious Area				
	4,657	98	8 37.36% Impervious Area				
(Tc Length min) (feet)	Slor (ft/					
	6.0		Direct Entry,				

Subcatchment P3-U: P3-U

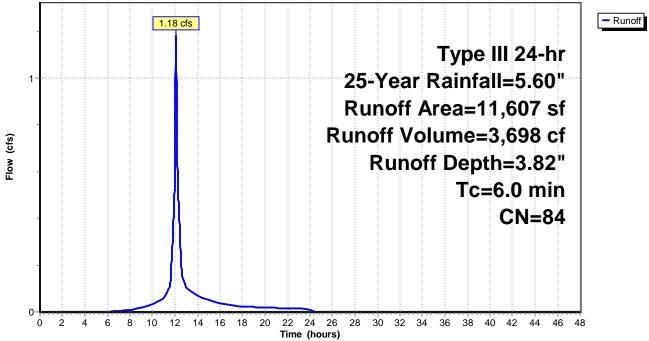
Summary for Subcatchment P4: P4

Runoff = 2.46 cfs @ 12.08 hrs, Volume= 8,586 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

Area (sf)	CN Description
1,577	80 >75% Grass cover, Good, HSG D
* 18,066	98 Roofs & Paved parking, HSG D
19,643	97 Weighted Average
1,577	80 8.03% Pervious Área
18,066	98 91.97% Impervious Area
Tc Length (min) (feet)	
6.0	Direct Entry,
	Subcatchment P4: P4
	Hydrograph
_	2.46 cfs
-	Type III 24-hr
	25-Year Rainfall=5.60"
2-	Runoff Area=19,643 sf
-	
cfs)	Runoff Volume=8,586 cf
Flow (cfs)	Runoff Depth=5.25"
Ĕ	Tc=6.0 min
1	
-	CN=97
-	
-	
-	
0 2 4	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
0 2 4	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

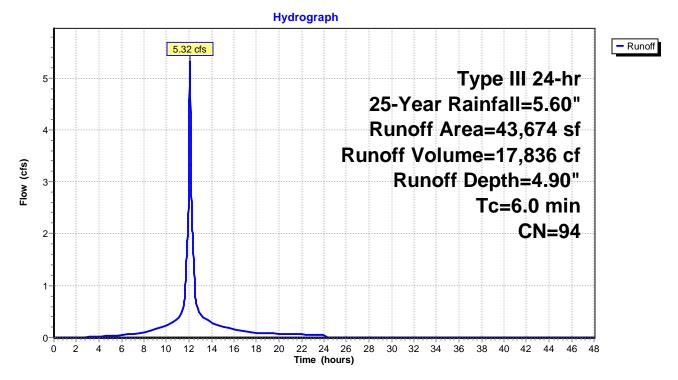
Summary for Subcatchment P4-U: P4-U


Runoff = 1.18 cfs @ 12.09 hrs, Volume= 3,698 cf, Depth= 3.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description
*	1,650	98	Ledge, HSG D
	7,547	77	Woods, Good, HSG D
*	2,410	98	Wetland Surface, HSG D
	11,607	84	Weighted Average
	7,547	77	65.02% Pervious Area
	4,060	98	34.98% Impervious Area
(I	Tc Length min) (feet)	Slor (ft/	
	6.0		Direct Entry,

Subcatchment P4-U: P4-U

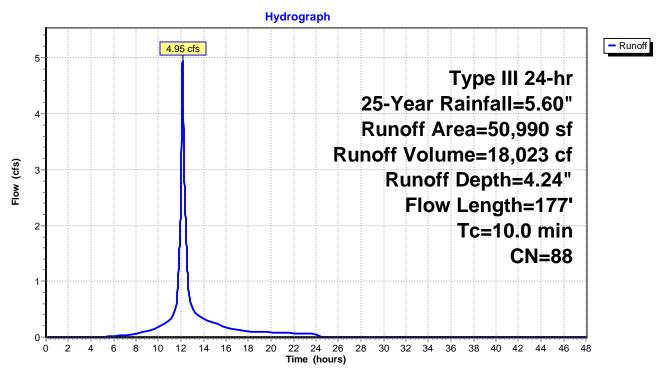

Summary for Subcatchment P5: P5

Runoff = 5.32 cfs @ 12.08 hrs, Volume= 17,836 cf, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description
*	5,025	98	Ledge, HSG D
	7,050	80	>75% Grass cover, Good, HSG D
*	29,470	98	Paved parking, HSG D
	2,129	77	Woods, Good, HSG D
	43,674	94	Weighted Average
	9,179	79	21.02% Pervious Area
	34,495	98	78.98% Impervious Area
	Tc Length	Slop	
(I	min) (feet)	(ft/	ft) (ft/sec) (cfs)
	6.0		Direct Entry,

Subcatchment P5: P5


Summary for Subcatchment P5-U: P5-U

Runoff = 4.95 cfs @ 12.14 hrs, Volume= 18,023 cf, Depth= 4.24"

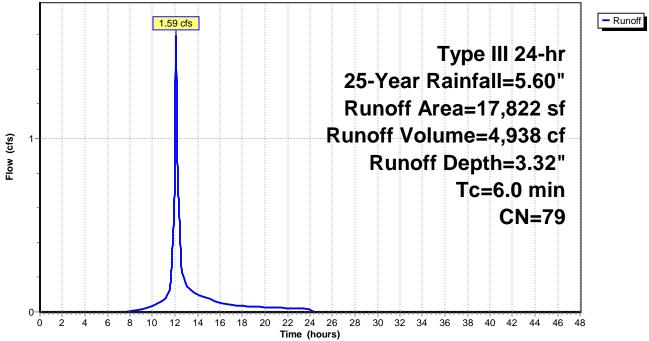
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

_	А	rea (sf)	CN	Description		
*		5,864	98	Ledge, HSC	GD	
		12,095	77	Woods, Go	od, HSG D	
*		20,323	98	Wetland Su	irface, HSG	6 D
		12,708	78	Meadow, no	on-grazed,	HSG D
		50,990	88	Weighted A	verage	
		24,803	78	48.64% Pei	vious Area	
		26,187	98	51.36% Imp	pervious Ar	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	10.0	177	Total			

Subcatchment P5-U: P5-U

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

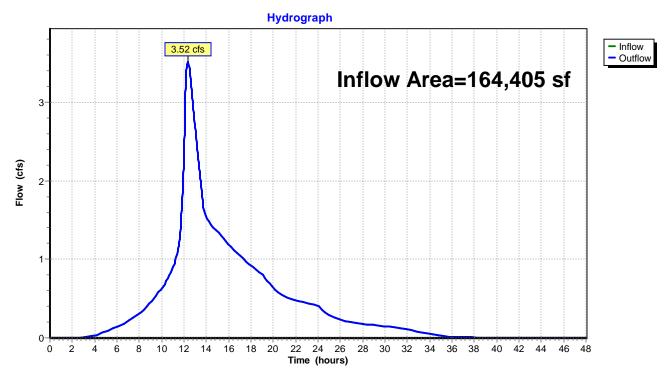
Summary for Subcatchment P6-U: P6-U


Runoff = 1.59 cfs @ 12.09 hrs, Volume= 4,938 cf, Depth= 3.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area (sf)	CN	Description					
	15,225	77	Woods, Good, HSG D					
	1,097	80	Pasture/grassland/range, Good, HSG D					
*	1,500	98	Wetland Surface, HSG D					
	17,822	79	Weighted Average					
	16,322	77	91.58% Pervious Area					
	1,500	98	8.42% Impervious Area					
(m)	Tc Length in) (feet)	Slor (ft/						
6	6.0		Direct Entry,					

Subcatchment P6-U: P6-U



Summary for Reach DMH MS2: DMH MS2

Inflow Area =		164,405 sf, 74.82% Impervious, Inflow Depth > 4.98" for 25-Year even	nt
Inflow	=	3.52 cfs @ 12.36 hrs, Volume= 68,195 cf	
Outflow	=	3.52 cfs @ 12.36 hrs, Volume= 68,195 cf, Atten= 0%, Lag= 0.0 n	nin

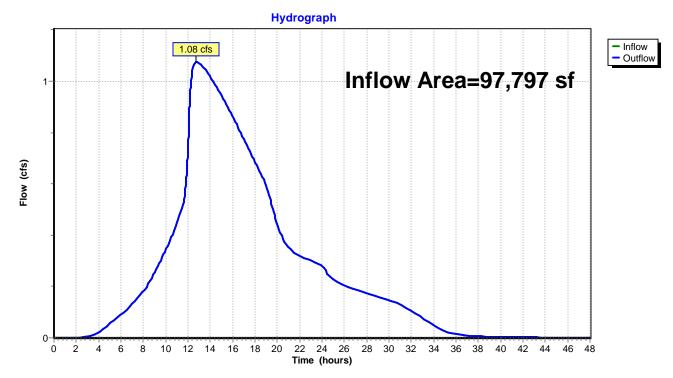
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach DMH MS2: DMH MS2

Summary for Reach DMH MS3: DMH MS3

Inflow Area =		147,685 sf, 75.50% Impervious, Inflow Depth > 5.01" for 25-Year event	
Inflow	=	3.37 cfs @ 12.36 hrs, Volume= 61,679 cf	
Outflow	=	3.37 cfs @ 12.36 hrs, Volume= 61,679 cf, Atten= 0%, Lag= 0.0 mir	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

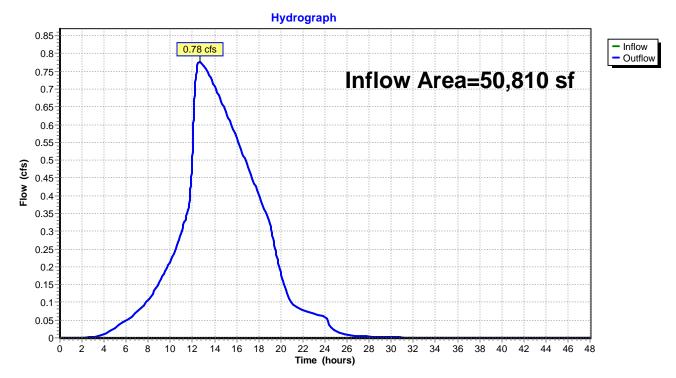

Hydrograph Inflow 3.37 cfs Outflow Inflow Area=147,685 sf 3 Flow (cfs) 2 1 0 2 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach DMH MS3: DMH MS3

Summary for Reach DMH MS4: DMH MS4

Inflow Area =		97,797 sf, 84.43% Impervious, Inflow Depth > 5.07" for 25-Year event
Inflow	=	1.08 cfs @ 12.75 hrs, Volume= 41,305 cf
Outflow	=	1.08 cfs @ 12.75 hrs, Volume= 41,305 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

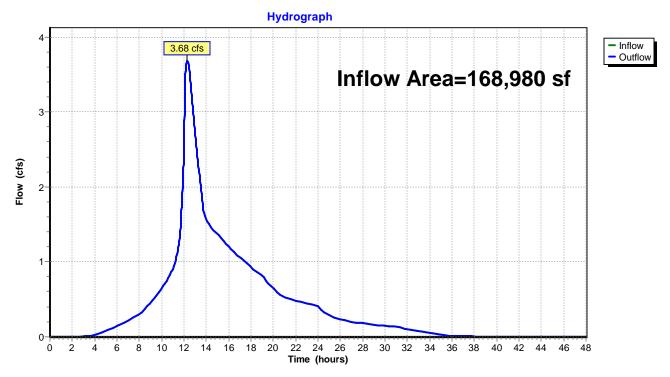


Reach DMH MS4: DMH MS4

Summary for Reach DMH MS5: DMH MS5

Inflow Area =		50,810 sf,	81.43% Impe	ervious, I	Inflow Depth =	5.01"	for 25-Year event
Inflow	=	0.78 cfs @ 1	2.64 hrs, Vo	lume=	21,232 cf		
Outflow	=	0.78 cfs @ 1	2.64 hrs, Vo	lume=	21,232 cf	, Atten	= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach DMH MS5: DMH MS5

Summary for Reach PD1: WASHINGTON ROW

Inflow Area	1 =	168,980 sf, 72.94% Impervious, Inflow Depth > 4.94" for 25-Y	ear event
Inflow	=	3.68 cfs @ 12.31 hrs, Volume= 69,538 cf	
Outflow	=	3.68 cfs @ 12.31 hrs, Volume= 69,538 cf, Atten= 0%, Lag	g= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

Inflow Area	ι =	36,237 sf, 73.66% Impervious, Inflow Depth = 4.80" for 25-Year event	
Inflow	=	2.65 cfs @ 12.12 hrs, Volume= 14,495 cf	
Outflow	=	2.65 cfs @ 12.12 hrs, Volume= 14,495 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Hydrograph Inflow 2.65 cfs Outflow Inflow Area=36,237 sf 2 Flow (cfs) 1 0 2 28 30 32 34 36 38 40 42 44 46 48 ò 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

Inflow Are	a =	77,278 sf, 71.78% Impervious, Inflow Depth > 3.68" for 25-Year e	event
Inflow	=	3.37 cfs @ 12.13 hrs, Volume= 23,703 cf	
Outflow	=	3.37 cfs @ 12.13 hrs, Volume= 23,703 cf, Atten= 0%, Lag= 0	.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Hydrograph Inflow 3.37 cfs Outflow Inflow Area=77,278 sf 3 Flow (cfs) 2 1 0 2 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

Inflow Area	a =	31,250 sf, 70.80% Impervious, Inflow Depth = 4.72" for 25-Year event	
Inflow	=	3.64 cfs @ 12.08 hrs, Volume= 12,284 cf	
Outflow	=	3.64 cfs @ 12.08 hrs, Volume= 12,284 cf, Atten= 0%, Lag= 0.0 min	1

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Hydrograph 4 Inflow 3.64 cfs Outflow Inflow Area=31,250 sf 3 Flow (cfs) 2 1 0 2 10 12 14 16 18 20 Ó 4 6 8 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

Inflow Are	a =	94,664 sf, 64.10% Impervious, Inflow Depth = 4.55" for 25-Year event	
Inflow	=	6.86 cfs @ 12.14 hrs, Volume= 35,859 cf	
Outflow	=	6.86 cfs @ 12.14 hrs, Volume= 35,859 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

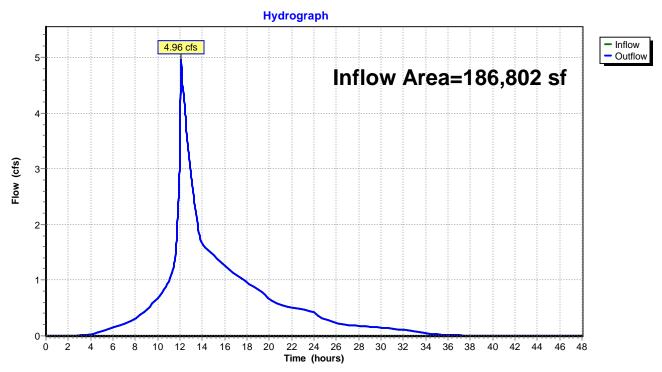
Hydrograph Inflow 6.86 cfs 7. - Outflow Inflow Area=94,664 sf 6-5-Flow (cfs) 4 3-2 1 0 2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 Time (hours)

Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

Inflow Area	a =	17,822 sf,	8.42% Impervious,	Inflow Depth = 3.32"	for 25-Year event
Inflow	=	1.59 cfs @ 1	12.09 hrs, Volume=	4,938 cf	
Outflow	=	1.59 cfs @ 1	12.09 hrs, Volume=	4,938 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Hydrograph Inflow 1.59 cfs Outflow Inflow Area=17,822 sf Flow (cfs) 0 2 28 30 32 34 36 38 40 42 44 46 48 ò 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

Inflow Area	a =	186,802 sf	, 66.78% Impervious,	Inflow Depth > 4.78	for 25-Year event
Inflow	=	4.96 cfs @	12.11 hrs, Volume=	74,476 cf	
Outflow	=	4.96 cfs @	12.11 hrs, Volume=	74,476 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach WD: Washington St Drainage

Summary for Pond UG1: UG1

Inflow Area =	49,888 sf, 58.01% Impervious, Inf	flow Depth = 4.90" for 25-Year event
Inflow =	6.07 cfs @ 12.08 hrs, Volume=	20,374 cf
Outflow =	2.35 cfs @ 12.31 hrs, Volume=	20,374 cf, Atten= 61%, Lag= 13.6 min
Primary =	2.35 cfs @ 12.31 hrs, Volume=	20,374 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 85.29' @ 12.31 hrs Surf.Area= 0.062 ac Storage= 0.096 af

Plug-Flow detention time= 24.2 min calculated for 20,370 cf (100% of inflow) Center-of-Mass det. time= 24.3 min (794.7 - 770.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	0.056 af	44.25'W x 60.58'L x 3.50'H Field A
			0.215 af Overall - 0.076 af Embedded = 0.139 af x 40.0% Voids
#2A	83.50'	0.076 af	ADS_StormTech SC-740 +Cap x 72 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			72 Chambers in 9 Rows
		0.132 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	83.00'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	83.00'	12.0" Round RCP_Round 12"
			L= 51.4' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 83.00' / 82.74' S= 0.0051 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.35 cfs @ 12.31 hrs HW=85.29' (Free Discharge)

-2=RCP_Round 12" (Passes 2.35 cfs of 5.10 cfs potential flow)

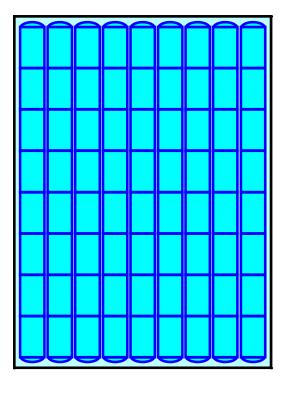
1=Orifice/Grate (Orifice Controls 2.35 cfs @ 6.73 fps)

Pond UG1: UG1 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

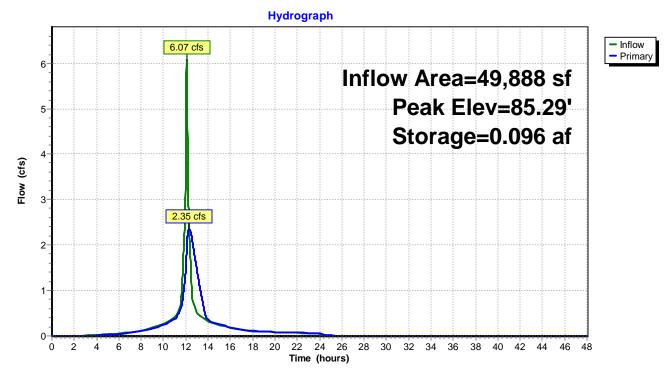

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

72 Chambers x 45.9 cf = 3,307.7 cf Chamber Storage

9,381.8 cf Field - 3,307.7 cf Chambers = 6,074.1 cf Stone x 40.0% Voids = 2,429.7 cf Stone Storage

Chamber Storage + Stone Storage = 5,737.3 cf = 0.132 af Overall Storage Efficiency = 61.2%Overall System Size = $60.58' \times 44.25' \times 3.50'$

72 Chambers 347.5 cy Field 225.0 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG1: UG1

Summary for Pond UG2: UG2

Inflow Area =	16,720 sf, 68.82% Impervious,	Inflow Depth = 4.68" for 25-Year event
Inflow =	1.98 cfs @ 12.08 hrs, Volume=	6,516 cf
Outflow =	0.16 cfs @ 13.09 hrs, Volume=	6,516 cf, Atten= 92%, Lag= 60.6 min
Primary =	0.16 cfs @ 13.09 hrs, Volume=	6,516 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 84.28' @ 13.09 hrs Surf.Area= 0.047 ac Storage= 0.074 af

Plug-Flow detention time= 238.0 min calculated for 6,515 cf (100% of inflow) Center-of-Mass det. time= 238.2 min (1,017.4 - 779.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	82.00'	0.043 af	25.25'W x 81.94'L x 3.50'H Field A
			0.166 af Overall - 0.058 af Embedded = 0.108 af x 40.0% Voids
#2A	82.50'	0.058 af	ADS_StormTech SC-740 +Cap x 55 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			55 Chambers in 5 Rows
		0.101 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	82.00'	2.0" Vert. Orifice/Grate C= 0.600
#2	Primary	82.00'	12.0" Round RCP_Round 12"
			L= 9.7' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 82.00' / 81.95' S= 0.0052 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.16 cfs @ 13.09 hrs HW=84.28' (Free Discharge)

-2=RCP_Round 12" (Passes 0.16 cfs of 6.09 cfs potential flow)

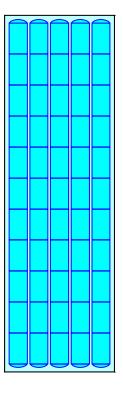
1=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.13 fps)

Pond UG2: UG2 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

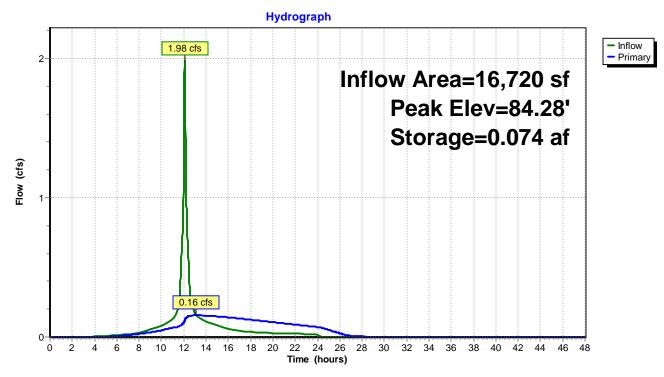

11 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 79.94' Row Length +12.0" End Stone x 2 = 81.94' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

55 Chambers x 45.9 cf = 2,526.7 cf Chamber Storage

7,241.2 cf Field - 2,526.7 cf Chambers = 4,714.5 cf Stone x 40.0% Voids = 1,885.8 cf Stone Storage

Chamber Storage + Stone Storage = 4,412.5 cf = 0.101 afOverall Storage Efficiency = 60.9%Overall System Size = $81.94' \times 25.25' \times 3.50'$

55 Chambers 268.2 cy Field 174.6 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG2: UG2

Summary for Pond UG3: UG3

Inflow Area =		46,987 sf, 87.67% Impervious, Inflow Depth = 5.13" for 25-Year event
Inflow	=	5.84 cfs @ 12.08 hrs, Volume= 20,084 cf
Outflow	=	0.31 cfs @ 14.01 hrs, Volume= 20,073 cf, Atten= 95%, Lag= 115.7 min
Primary	=	0.31 cfs @ 14.01 hrs, Volume= 20,073 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 92.62' @ 14.01 hrs Surf.Area= 0.103 ac Storage= 0.260 af

Plug-Flow detention time= 429.1 min calculated for 20,069 cf (100% of inflow) Center-of-Mass det. time= 428.9 min (1,188.7 - 759.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	89.00'	0.145 af	80.08'W x 55.89'L x 5.50'H Field A
			0.565 af Overall - 0.202 af Embedded = 0.363 af x 40.0% Voids
#2A	89.75'	0.202 af	
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			77 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		0.347 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Device 2	89.00'	2.5" Vert. Orifice/Grate C= 0.600
Primary	89.00'	12.0" Round RCP_Round 12"
		L= 20.9' RCP, groove end projecting, Ke= 0.200
		Inlet / Outlet Invert= 89.00' / 88.90' S= 0.0048 '/' Cc= 0.900
		n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf
[Device 2	Device 2 89.00'

Primary OutFlow Max=0.31 cfs @ 14.01 hrs HW=92.62' (Free Discharge)

-2=RCP_Round 12" (Passes 0.31 cfs of 8.05 cfs potential flow)

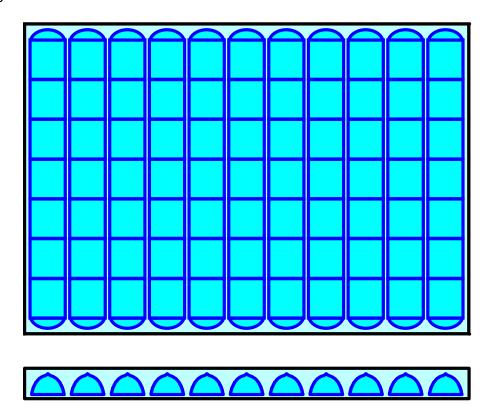
1=Orifice/Grate (Orifice Controls 0.31 cfs @ 9.03 fps)

Pond UG3: UG3 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

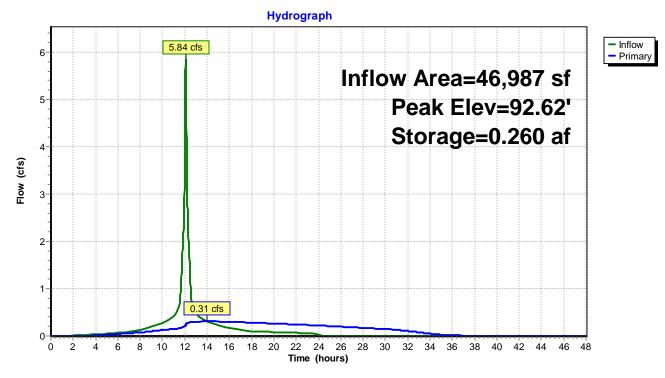
77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89'Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

77 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 8,794.1 cf Chamber Storage

24,617.2 cf Field - 8,794.1 cf Chambers = 15,823.1 cf Stone x 40.0% Voids = 6,329.2 cf Stone Storage

Chamber Storage + Stone Storage = 15,123.3 cf = 0.347 afOverall Storage Efficiency = 61.4%Overall System Size = $55.89' \times 80.08' \times 5.50'$


77 Chambers 911.7 cy Field 586.0 cy Stone

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG3: UG3

Summary for Pond UG4: UG4

Inflow Area =	25,652 sf, 92.03% Impervious,	Inflow Depth = 5.25" for 25-Year event
Inflow =	3.21 cfs @ 12.08 hrs, Volume=	11,213 cf
Outflow =	1.81 cfs @ 12.20 hrs, Volume=	11,213 cf, Atten= 44%, Lag= 6.9 min
Primary =	1.81 cfs @ 12.20 hrs, Volume=	11,213 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 100.99' @ 12.20 hrs Surf.Area= 0.037 ac Storage= 0.033 af

Plug-Flow detention time= 15.4 min calculated for 11,210 cf (100% of inflow) Center-of-Mass det. time= 15.5 min (768.9 - 753.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.50'	0.026 af	21.50'W x 74.40'L x 2.33'H Field A
			0.086 af Overall - 0.020 af Embedded = 0.065 af x 40.0% Voids
#2A	100.00'	0.020 af	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.046 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	99.50'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	99.50'	12.0" Round RCP_Round 12"
			L= 43.2' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 99.50' / 98.00' S= 0.0347 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.81 cfs @ 12.20 hrs HW=100.99' (Free Discharge)

-2=RCP_Round 12" (Passes 1.81 cfs of 4.70 cfs potential flow)

1=Orifice/Grate (Orifice Controls 1.81 cfs @ 5.17 fps)

Pond UG4: UG4 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

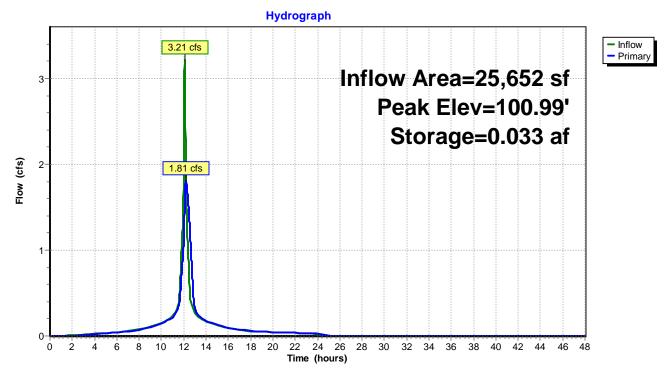
34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage

3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = 74.40' x 21.50' x 2.33'


60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG4: UG4

Summary for Pond UG5: UG5

Inflow Area =	64,812 sf, 78.40% Impervious, In	flow Depth = 4.90" for 25-Year event
Inflow =	7.89 cfs @ 12.08 hrs, Volume=	26,469 cf
Outflow =	2.68 cfs @ 12.36 hrs, Volume=	19,624 cf, Atten= 66%, Lag= 16.4 min
Primary =	2.68 cfs @ 12.36 hrs, Volume=	19,624 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 112.19' @ 12.36 hrs Surf.Area= 4,461 sf Storage= 12,788 cf

Plug-Flow detention time= 200.4 min calculated for 19,624 cf (74% of inflow) Center-of-Mass det. time= 114.2 min (884.5 - 770.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	108.00'	6,247 cf	29.92'W x 149.10'L x 5.50'H Field A
			24,533 cf Overall - 8,915 cf Embedded = 15,618 cf x 40.0% Voids
#2A	108.75'	8,915 cf	ADS_StormTech MC-3500 d +Cap x 80 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			80 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		15,162 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	110.23'	9.0" Vert. Orifice/Grate C= 0.600
#2	Primary	101.47'	12.0" Round RCP_Round 12"
			L= 14.6' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 101.47' / 100.30' S= 0.0801 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.68 cfs @ 12.36 hrs HW=112.19' (Free Discharge)

-2=RCP_Round 12" (Passes 2.68 cfs of 15.11 cfs potential flow)

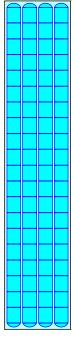
1=Orifice/Grate (Orifice Controls 2.68 cfs @ 6.07 fps)

Pond UG5: UG5 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

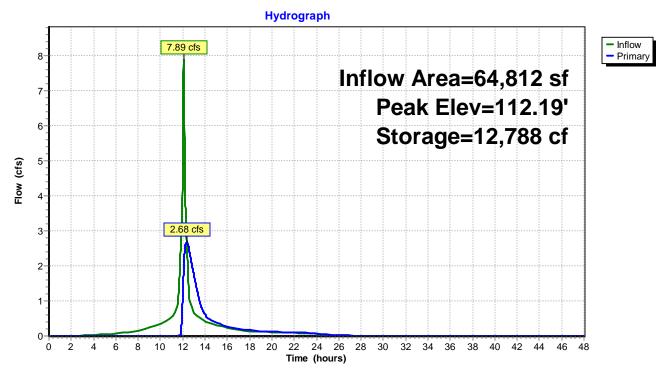

20 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 147.10' Row Length +12.0" End Stone x 2 = 149.10' Base Length 4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

80 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 8,915.4 cf Chamber Storage

24,533.2 cf Field - 8,915.4 cf Chambers = 15,617.8 cf Stone x 40.0% Voids = 6,247.1 cf Stone Storage

Chamber Storage + Stone Storage = 15,162.5 cf = 0.348 afOverall Storage Efficiency = 61.8%Overall System Size = $149.10' \times 29.92' \times 5.50'$

80 Chambers 908.6 cy Field 578.4 cy Stone



 $\square \square \square \square$

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG6: UG6

Inflow Area =	43,674 sf, 78.98% Impervious,	Inflow Depth = 4.90" for 25-Year event
Inflow =	5.32 cfs @ 12.08 hrs, Volume=	17,836 cf
Outflow =	2.10 cfs @ 12.30 hrs, Volume=	17,836 cf, Atten= 61%, Lag= 13.2 min
Primary =	2.10 cfs @ 12.30 hrs, Volume=	17,836 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 114.12' @ 12.30 hrs Surf.Area= 2,249 sf Storage= 3,555 cf

Plug-Flow detention time= 22.3 min calculated for 17,832 cf (100% of inflow) Center-of-Mass det. time= 22.4 min (792.8 - 770.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	111.80'	2,046 cf	25.25'W x 89.06'L x 3.50'H Field A
			7,870 cf Overall - 2,756 cf Embedded = 5,114 cf x 40.0% Voids
#2A	112.30'	2,756 cf	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 5 Rows
		4,802 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	111.80'	7.5" Vert. Orifice/Grate C= 0.600
#2	Primary	111.80'	12.0" Round RCP_Round 12"
			L= 68.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 111.80' / 111.00' S= 0.0118 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.10 cfs @ 12.30 hrs HW=114.12' (Free Discharge)

-2=RCP_Round 12" (Passes 2.10 cfs of 5.56 cfs potential flow)

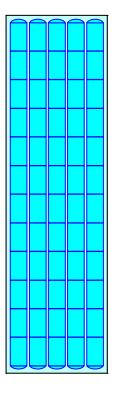
1=Orifice/Grate (Orifice Controls 2.10 cfs @ 6.83 fps)

Pond UG6: UG6 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

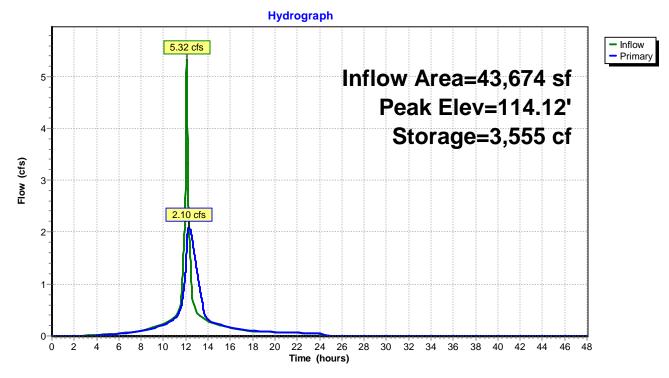

12 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 87.06' Row Length +12.0" End Stone x 2 = 89.06' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

7,870.4 cf Field - 2,756.4 cf Chambers = 5,114.0 cf Stone x 40.0% Voids = 2,045.6 cf Stone Storage

Chamber Storage + Stone Storage = 4,802.0 cf = 0.110 afOverall Storage Efficiency = 61.0%Overall System Size = $89.06' \times 25.25' \times 3.50'$

60 Chambers 291.5 cy Field 189.4 cy Stone



 $\square \square \square \square \square \square$

Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG6: UG6

Summary for Pond UG7: UG7

Inflow Area =	50,810 sf, 81.43% Impervious,	Inflow Depth = 5.01" for 25-Year event
Inflow =	6.25 cfs @ 12.08 hrs, Volume=	21,232 cf
Outflow =	0.78 cfs @ 12.64 hrs, Volume=	21,232 cf, Atten= 88%, Lag= 33.1 min
Primary =	0.78 cfs @ 12.64 hrs, Volume=	21,232 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 102.08' @ 12.64 hrs Surf.Area= 0.079 ac Storage= 0.197 af

Plug-Flow detention time= 117.2 min calculated for 21,227 cf (100% of inflow) Center-of-Mass det. time= 117.4 min (882.7 - 765.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	98.50'	0.111 af	44.25'W x 77.40'L x 5.50'H Field A
			0.432 af Overall - 0.156 af Embedded = 0.277 af x 40.0% Voids
#2A	99.25'	0.156 af	ADS_StormTech MC-3500 d +Cap x 60 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			60 Chambers in 6 Rows
			Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf
		0.266 af	Total Available Storage

Storage Group A created with Chamber Wizard

Primary OutFlow Max=0.78 cfs @ 12.64 hrs HW=102.08' (Free Discharge)

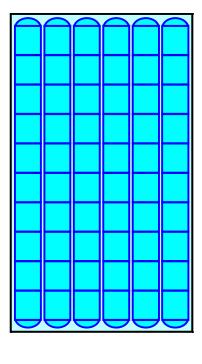
-2=RCP_Round 12" (Passes 0.78 cfs of 7.43 cfs potential flow) -1=Orifice/Grate (Orifice Controls 0.78 cfs @ 8.90 fps)

Pond UG7: UG7 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

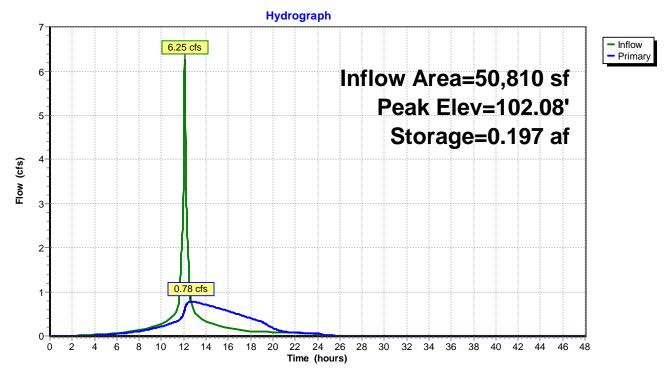

10 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 75.40' Row Length +12.0" End Stone x 2 = 77.40' Base Length 6 Rows x 77.0" Wide + 9.0" Spacing x 5 + 12.0" Side Stone x 2 = 44.25' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

60 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 6 Rows = 6,775.9 cf Chamber Storage

18,837.2 cf Field - 6,775.9 cf Chambers = 12,061.3 cf Stone x 40.0% Voids = 4,824.5 cf Stone Storage

Chamber Storage + Stone Storage = 11,600.4 cf = 0.266 af Overall Storage Efficiency = 61.6%Overall System Size = 77.40' x 44.25' x 5.50'

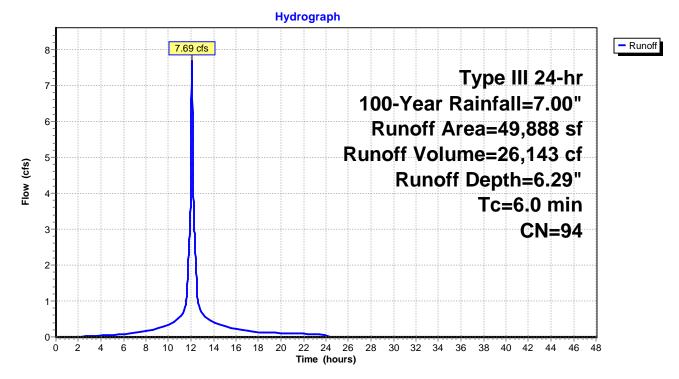
60 Chambers 697.7 cy Field 446.7 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG7: UG7


Summary for Subcatchment P1-1: P1-1

Runoff = 7.69 cfs @ 12.08 hrs, Volume= 26,143 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Ar	ea (sf)	CN	Description		
*		19,600	89	Courtyard,	HSG D	
		1,350	80	>75% Gras	s cover, Go	bood, HSG D
*		28,938	98	Roof & Pav	ed parking,	g, HSG D
		49,888	94	Weighted A	verage	
		20,950	88	41.99% Per	vious Area	a
		28,938	98	58.01% lmp	pervious Ar	rea
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f		(cfs)	1
	6.0					Direct Entry,

Subcatchment P1-1: P1-1

Summary for Subcatchment P1-2: P1-2

Runoff = 2.53 cfs @ 12.08 hrs, Volume= 8,436 cf, Depth= 6.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

<i>P</i>	Area (sf)		Description						
*	5,213 11,507			ed parking,	od, HSG D HSG D				
	16,720		Veighted A		1100 0				
	5,213	80 3	31.18% Per	vious Area					
	11,507	98 6	8.82% Imp	pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	n			
6.0					Direct Ent	ry,			
				Subcat	chment P [.]	1-2: P1-2	2		
				Hydr	ograph				
	-		2.53 cfs						- Runoff
	-				10			e III 24-hr all=7.00"	
2-									
	-				R	unott	Area=1	l6,720 sf	
ifs)	-				Ru	noff V	olume=	=8,436 cf	
Flow (cfs)	-					Runo	off Dep	th=6.05"	
Ĕ	-						· · · · ·	=6.0 min	
1-							1.0		
	-							CN=92	
	-								
	-		Щ						
			\nearrow						
0-	0 2 4	6 8 1	0 12 14 ⁻		22 24 26 2	8 30 32	34 36 38	40 42 44 46 4	8
				Т	ime (hours)				

Summary for Subcatchment P1-3: P1-3

Runoff = 7.34 cfs @ 12.08 hrs, Volume= 25,544 cf, Depth= 6.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

А	Area (sf)	CN	Description					
	41,192		Roofs & Pa		SG D			
	5,795				ood, HSG D			
	46,987		Weighted A 12.33% Per					
	5,795 41,192		12.33% Pei 87.67% Imp					
	·							
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			
				Subcat	chment P1-3: F	91-3		
				Hydr	ograph			
8-	-		7.34 cfs					- Runoff
7-	-						no III 24 hr	
	-				100 V		pe III 24-hr nfall=7.00"	
6-	-							
_							=46,987 sf	
5- (s	-				Runoff	Volume	=25,544 cf	
-1ow (cfs)					R	unoff De	epth=6.52"	
Flo	-					٦	Гс=6.0 min	
3-							CN=96	
2-								
	-							
1-	-							
	-		\checkmark \searrow					
0-	0 2 4	6 8	10 12 14		22 24 26 28 30 ime (hours)	32 34 36 3	8 40 42 44 46 4	8

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Proposed Cond HydroCAD

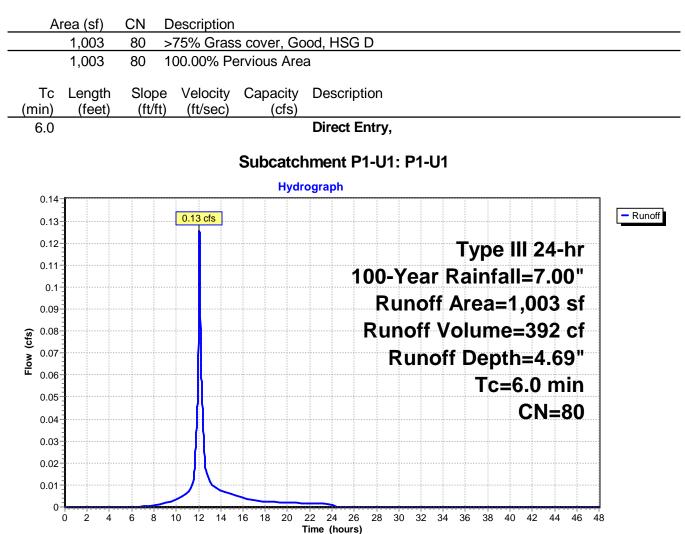
Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=7.00" Printed 4/7/2021 LC Page 150

Summary for Subcatchment P1-4: P1-4

Runoff = 7.89 cfs @ 12.08 hrs, Volume= 27,123 cf, Depth= 6.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"


Area (sf)	
41,376	
9,434	
50,810	
9,434 41,376	
41,370	30 01.45% impervious Area
Tc Length	h Slope Velocity Capacity Description
(min) (feet)	
6.0	Direct Entry,
	Subcatchment P1-4: P1-4
	Hydrograph
	7.89 cfs
8-	
-	Type III 24-hr
7	100-Year Rainfall=7.00"
6	Runoff Area=50,810 sf
∂ 5	Runoff Volume=27,123 cf
(cts) (cts)	Runoff Depth=6.41"
<u>×</u> 1 4	
ш. :	Tc=6.0 min
3-	CN=95
2	
-	
1-	
-	
0 2 4	4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

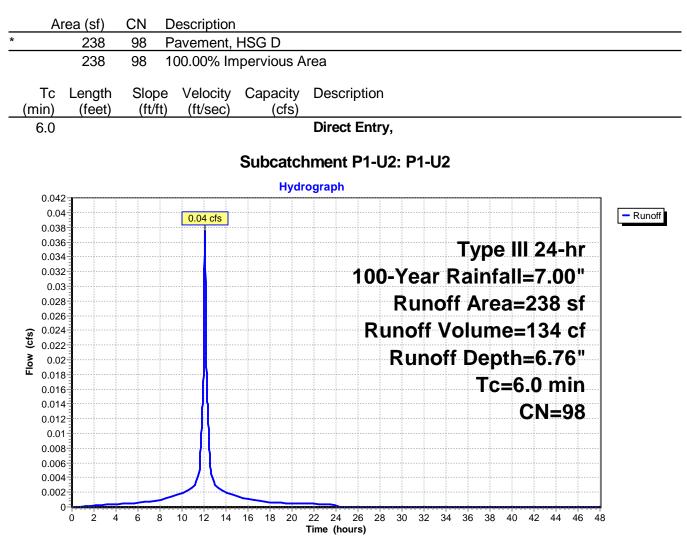
Time (hours)

Summary for Subcatchment P1-U1: P1-U1

Runoff = 0.13 cfs @ 12.09 hrs, Volume= 392 cf, Depth= 4.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

Proposed Cond HydroCAD

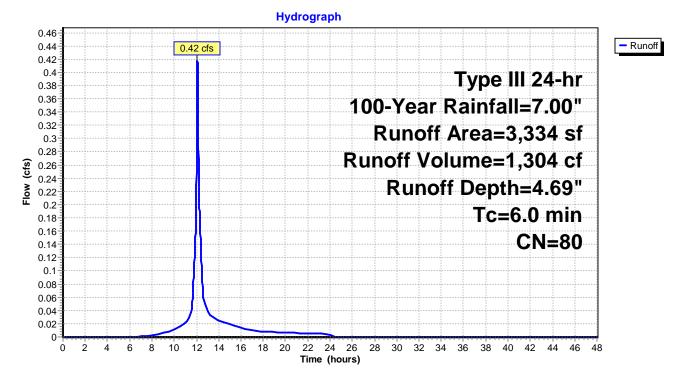

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=7.00" Printed 4/7/2021 LC Page 152

Summary for Subcatchment P1-U2: P1-U2

Runoff = 0.04 cfs @ 12.08 hrs, Volume= 134 cf, Depth= 6.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"


Summary for Subcatchment P1-U3: P1-U3

Runoff = 0.42 cfs @ 12.09 hrs, Volume= 1,304 cf, Depth= 4.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area (sf) CN	Description			
3,334	80	>75% Gras	s cover, Go	od, HSG D	
3,334	80	100.00% Pe	ervious Are	а	
Tc Leng (min) (fee			Capacity (cfs)	Description	
6.0				Direct Entry,	

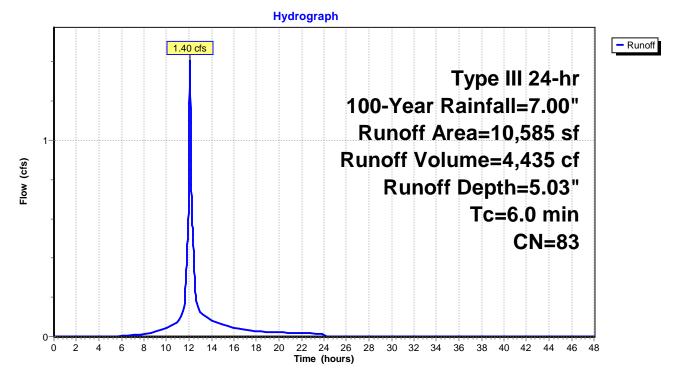
Subcatchment P1-U3: P1-U3

Summary for Subcatchment P2: P2

Runoff = 4.03 cfs @ 12.08 hrs, Volume= 14,199 cf, Depth= 6.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area (sf)	CN	Description								
*	23,608		Roofs & Pa			_					
	2,044		>75% Gras		ood, HSG	D					
	25,652 2,044		Weighted A 7.97% Perv								
	23,608		92.03% Imp		ea						
Т	0				Descrip	tion					
(min	<i>.</i>	(ft/ft)	(ft/sec)	(cfs)	D : (E						
6.0	0				Direct E	ntry,					
				Subc	atchmer	nt P2: P2	2				
	_			Hydr	ograph						
	-		4.03 cfs								- Runoff
	4							Туре)	24-hr	
	-					100-Ye	ear F	Rainf	all=	7.00"	
:	3					Rund	off A	rea=	25.6	652 sf	
	-				P	unoff					
(cfs)	-				•						
Flow (cfs)	_					RI	Inoti		1.1	6.64"	
Ē	2-				-			TC	=6.	0 min	
	-								C	N=97	
	-										
	1-										
	-										
	-										
(0 2 4	6 8	10 12 14	16 18 20 2	22 24 26	28 30 3	2 34	36 38	40 42	2 44 46 4	18
					ime (hours)	0	5.				-


Summary for Subcatchment P2-U: P-2U

Runoff = 1.40 cfs @ 12.09 hrs, Volume= 4,435 cf, Depth= 5.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area (sf)	CN	Description
*	183	98	Ledge, HSG D
	6,620	77	Woods, Good, HSG D
*	2,902	98	Wetland Surface, HSG D
	880	78	Meadow, non-grazed, HSG D
	10,585	83	Weighted Average
	7,500	77	70.85% Pervious Area
	3,085	98	29.15% Impervious Area
	T . 1	0	
,	Tc Length		
(m	nin) (feet)	(ft/	ft) (ft/sec) (cfs)
(6.0		Direct Entry,

Subcatchment P2-U: P-2U

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

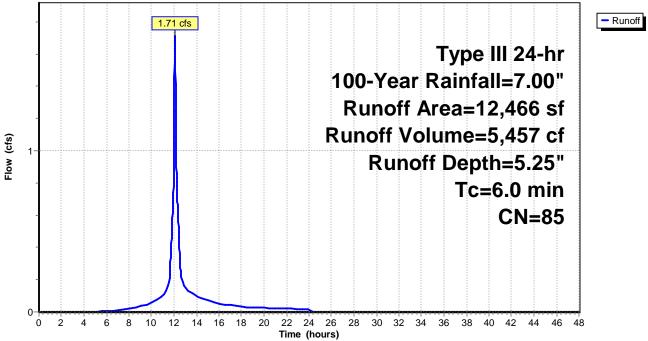
Summary for Subcatchment P3: P3

Runoff = 9.99 cfs @ 12.08 hrs, Volume= 33,963 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

A	٩rea	a (sf)	CN	De	scriptior	า							
),812	98			avement, H							
		1,000	80			ss cover, G	ood, HSG	D					
		1,812 1,000	94 80			Average rvious Area							
		i,000),812	80 98			pervious Area							
						•							
Tc (L	ength	Slope		Velocity		Descript	on					
<u>(min)</u> 6.0		(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct E	ntrv					
0.0							Direct	iciy,					
						Subc	atchmen	t P3: P	3				
						Hyd	rograph						
11-													- Runof
10				9.	.99 cfs								Kunoi
										Туре		24-hr	
9-								100-Y		lainfa			
8-										rea=6			
7-							D.						
cts)							ΓI			me=3			
NO 1								R	unoff	Dept	h=	6.29"	
Ĕ ⁵										Tc=	:6.0) min	
4											C	N=94	
3-													
-													
2-													
1-				7									
0-	Ļ			4		16 18 20				++			4

Summary for Subcatchment P3-U: P3-U


Runoff = 1.71 cfs @ 12.09 hrs, Volume= 5,457 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area (sf)	CN	Description
*	700	98	Ledge, HSG D
	7,809	77	Woods, Good, HSG D
*	3,957	98	Wetland Surface, HSG D
	12,466	85	Weighted Average
	7,809	77	62.64% Pervious Area
	4,657	98	37.36% Impervious Area
	Tc Length (min) (feet)		
	6.0		Direct Entry,

Subcatchment P3-U: P3-U

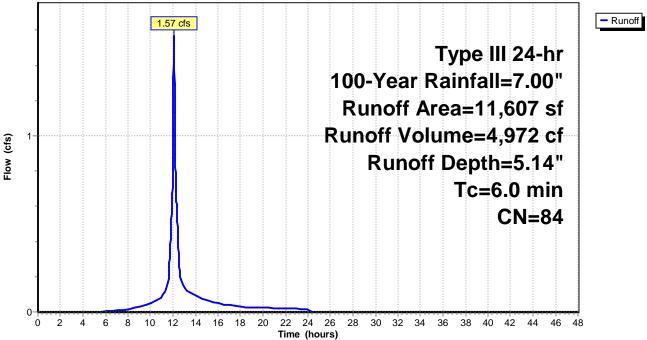
Summary for Subcatchment P4: P4

Runoff = 3.09 cfs @ 12.08 hrs, Volume= 10,873 cf, Depth= 6.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

A	Area (sf)	CN D	escription							
	1,577			s cover, Go	od, HSG	D				
*	18,066			ved parking	g, HSG D					
	19,643		Veighted A							
	1,577 18,066		.03% Perv 1 97% Imr	ous Area	ea					
	10,000	00 0	1.07 /0 111		ou -					
Tc	0	Slope	Velocity		Descript	ion				
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct E	ntry				
0.0					Direct Li	nu y,				
				Subc	atchmen	t P4: P4	4			
				Hydr	ograph					
	-		3.09 cfs							- Runoff
3-							Т	ype I	ll 24-hr	
	_				-	100-Y			l=7.00"	
	-),643 sf	
	-				ь.					
(sj: ²⁻),873 cf	
Flow (cfs)						Rι	unoff [Depth	າ=6.64"	
Ĕ	-							Tc=	6.0 min	
	-								CN=97	
1-	-									
	-									
	-									
0-	0 2 4	6 8 1	0 12 14	16 18 20 2	22 24 26	28 30 3	2 34 36	38 40	42 44 46 4	8
	~ _ 7	5 0 1			ime (hours)	_0 00 0	_ 07 00	00 40	.20 -	~

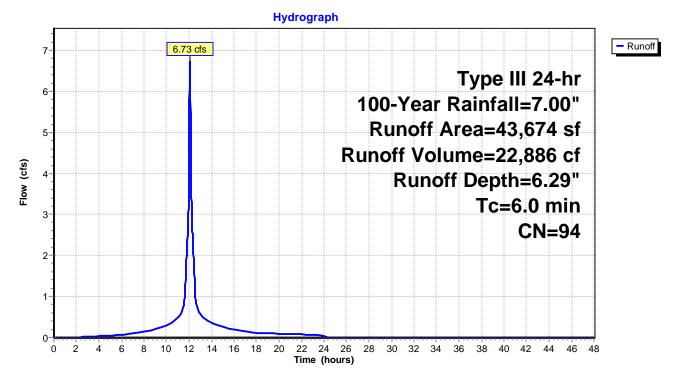
Summary for Subcatchment P4-U: P4-U


Runoff = 1.57 cfs @ 12.09 hrs, Volume= 4,972 cf, Depth= 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area (sf)	CN	Description		
*	1,650	98	Ledge, HSG D		
	7,547	77	Woods, Good, HSG D		
*	2,410	98	Wetland Surface, HSG D		
	11,607	84	Weighted Average		
	7,547	77	65.02% Pervious Area		
	4,060	98	34.98% Impervious Area		
(I	Tc Length min) (feet)	Slor (ft/			
	6.0		Direct Entry,		

Subcatchment P4-U: P4-U

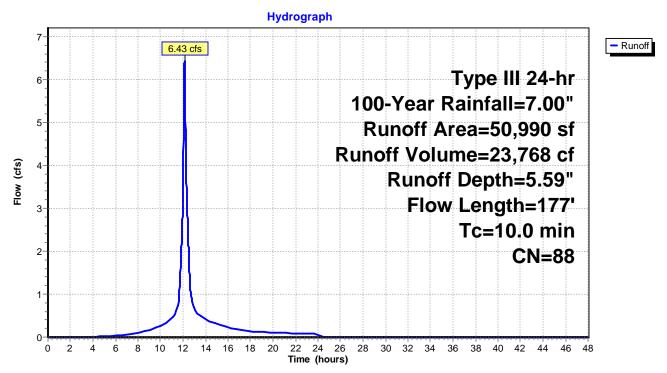

Summary for Subcatchment P5: P5

Runoff = 6.73 cfs @ 12.08 hrs, Volume= 22,886 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area (sf)	CN	Description	
*	5,025	98	Ledge, HSG D	
	7,050	80	>75% Grass cover, Good, HSG D	
*	29,470	98	Paved parking, HSG D	
	2,129	77	Woods, Good, HSG D	
	43,674	94	Weighted Average	
	9,179	79	21.02% Pervious Area	
	34,495	98	78.98% Impervious Area	
	Tc Length	Slo		
_	(min) (feet)	(ft/	/ft) (ft/sec) (cfs)	
	6.0		Direct Entry,	

Subcatchment P5: P5


Summary for Subcatchment P5-U: P5-U

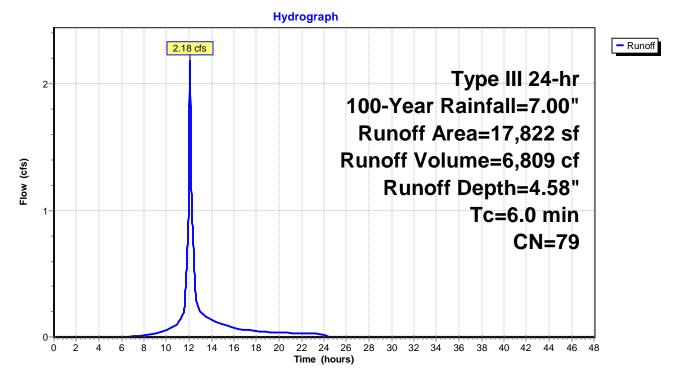
Runoff = 6.43 cfs @ 12.14 hrs, Volume= 23,768 cf, Depth= 5.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	А	rea (sf)	CN	Description		
*		5,864	98	Ledge, HS	GD	
		12,095	77	Woods, Go	od, HSG D	
*		20,323	98	Wetland Su	urface, HSG	i D
		12,708	78	Meadow, n	on-grazed,	HSG D
		50,990	88	Weighted A	verage	
		24,803	78	48.64% Pe	rvious Area	
		26,187	98	51.36% Im	pervious Are	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	8.3	50	0.050	0 0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	127	0.062	0 1.24		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
_	10.0	177	Total			

Subcatchment P5-U: P5-U

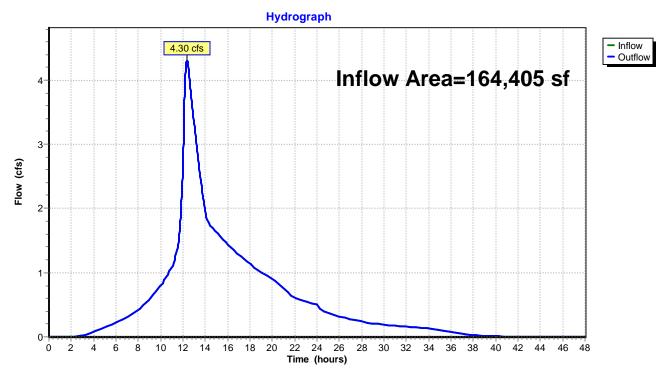
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)


Summary for Subcatchment P6-U: P6-U

Runoff = 2.18 cfs @ 12.09 hrs, Volume= 6,809 cf, Depth= 4.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=7.00"

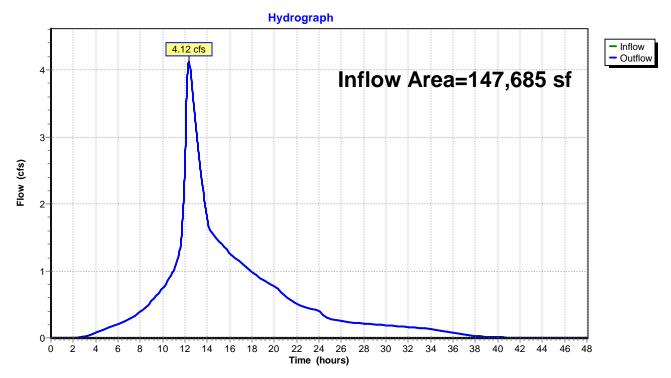
	Area (sf)	CN	Description		
	15,225	77	Woods, Good, HSG D		
	1,097	80	Pasture/grassland/range, G	ood, HSG D	
*	1,500	98	Wetland Surface, HSG D		
	17,822	79	Weighted Average		
	16,322	77	91.58% Pervious Area		
	1,500	98	8.42% Impervious Area		
	Tc Length in) (feet)	Slor (ft/		cription	
(5.0	•	Dire	ect Entry,	


Subcatchment P6-U: P6-U

Summary for Reach DMH MS2: DMH MS2

Inflow Area =	164,405 sf, 74.82% Impervious,	Inflow Depth > 6.37" for 100-Year even	t
Inflow =	4.30 cfs @ 12.37 hrs, Volume=	87,224 cf	
Outflow =	4.30 cfs @ 12.37 hrs, Volume=	87,224 cf, Atten= 0%, Lag= 0.0 mir	۱

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

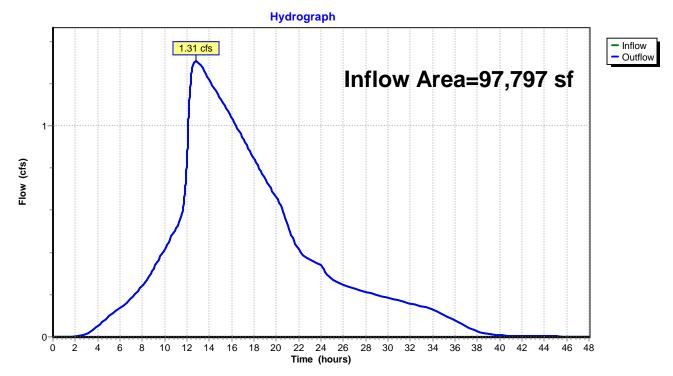


Reach DMH MS2: DMH MS2

Summary for Reach DMH MS3: DMH MS3

Inflow Area	ι =	147,685 sf,	75.50% Impervious,	Inflow Depth >	6.40"	for 100-Year event
Inflow	=	4.12 cfs @	12.37 hrs, Volume=	78,788 c	f	
Outflow	=	4.12 cfs @	12.37 hrs, Volume=	78,788 c	f, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

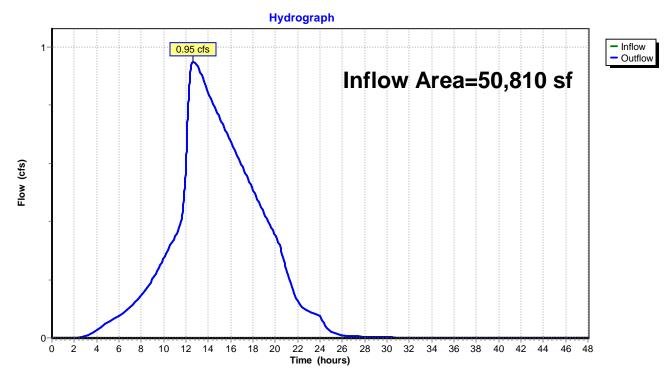


Reach DMH MS3: DMH MS3

Summary for Reach DMH MS4: DMH MS4

Inflow Area	a =	97,797 sf, 84.43% Impervious, Inflow Depth > 6.46" for 100-Year event	
Inflow	=	1.31 cfs @ 12.79 hrs, Volume= 52,646 cf	
Outflow	=	1.31 cfs @ 12.79 hrs, Volume= 52,646 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

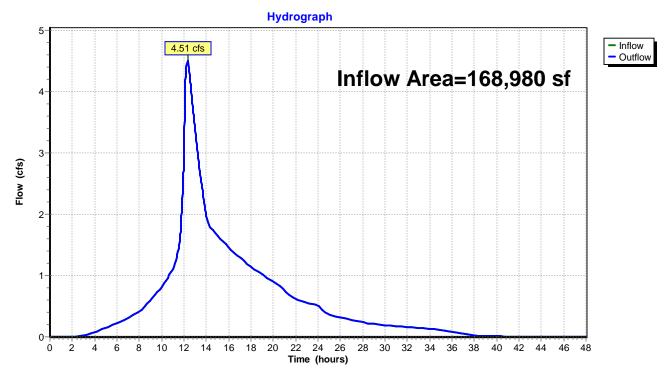


Reach DMH MS4: DMH MS4

Summary for Reach DMH MS5: DMH MS5

Inflow Area =	50,810 sf, 81.43% Impervious,	Inflow Depth = 6.41" for 100-Year	event
Inflow =	0.95 cfs @ 12.65 hrs, Volume=	27,123 cf	
Outflow =	0.95 cfs @ 12.65 hrs, Volume=	27,123 cf, Atten= 0%, Lag= 0.	0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

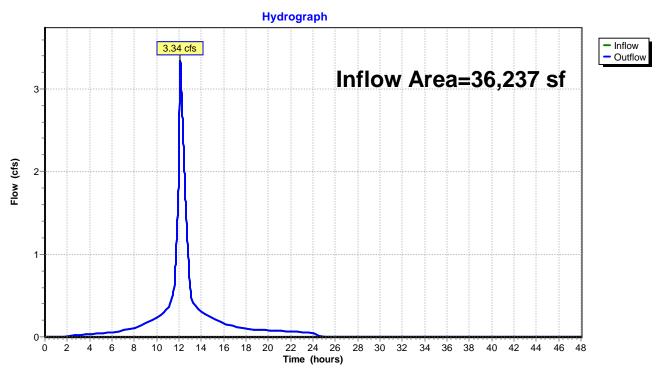


Reach DMH MS5: DMH MS5

Summary for Reach PD1: WASHINGTON ROW

Inflow Area	a =	168,980 sf, 72.94% Impervious, Inflow Depth > 6.32" for 100-Ye	ear event
Inflow	=	4.51 cfs @ 12.33 hrs, Volume= 89,055 cf	
Outflow	=	4.51 cfs @ 12.33 hrs, Volume= 89,055 cf, Atten= 0%, Lag=	= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach PD1: WASHINGTON ROW

Summary for Reach PD2: Wetland series "A"

Inflow Area =	36,237 sf, 73.66% Impervious,	Inflow Depth = 6.17" for 100-Year event	t
Inflow =	3.34 cfs @ 12.12 hrs, Volume=	18,633 cf	
Outflow =	3.34 cfs @ 12.12 hrs, Volume=	18,633 cf, Atten= 0%, Lag= 0.0 min	۱

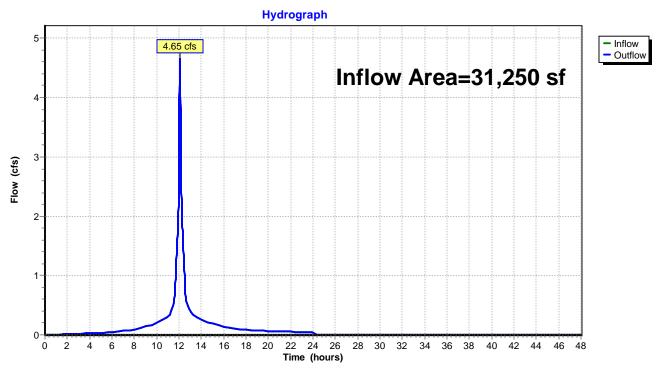
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach PD2: Wetland series "A"

Summary for Reach PD3: Intermittent Stream

Inflow Area =	77,278 sf, 7	71.78% Impervious,	Inflow Depth > 5.06"	for 100-Year event
Inflow =	4.61 cfs @ 12	2.13 hrs, Volume=	32,574 cf	
Outflow =	4.61 cfs @ 12	2.13 hrs, Volume=	32,574 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

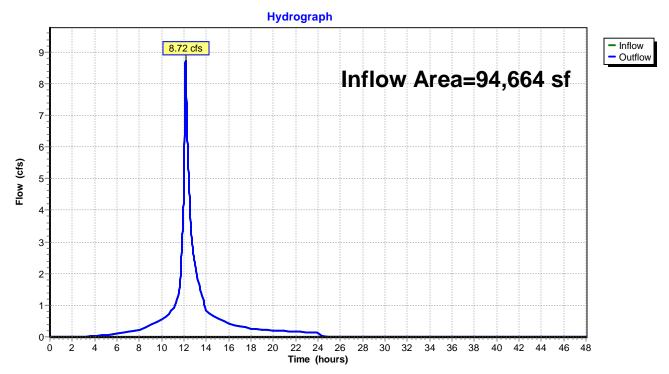

Hydrograph 5 Inflow 4.61 cfs Outflow Inflow Area=77,278 sf 4 3 Flow (cfs) 2 1 0 2 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 10 12 14 16 18 20 22 24 26 Time (hours)

Reach PD3: Intermittent Stream

Summary for Reach PD4: Wetland series "B"

Inflow Area =	31,250 sf, 70.80% Impervious,	Inflow Depth = 6.08"	for 100-Year event
Inflow =	4.65 cfs @ 12.08 hrs, Volume=	15,844 cf	
Outflow =	4.65 cfs @ 12.08 hrs, Volume=	15,844 cf, Atten	= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

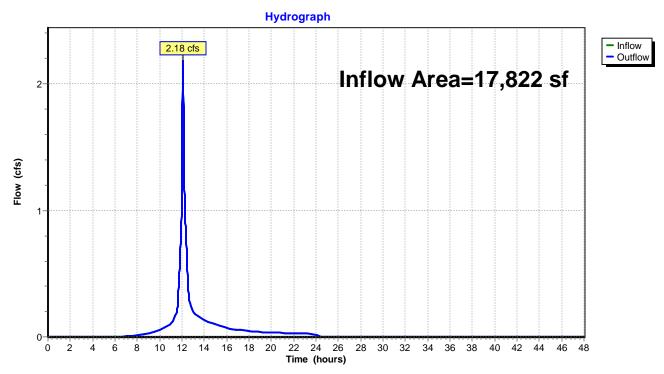


Reach PD4: Wetland series "B"

Summary for Reach PD5: Wetland series "E"

Inflow Area :	=	94,664 sf, (64.10% Impervi	ous, Inflow	Depth =	5.91"	for 100-Year event
Inflow =	:	8.72 cfs @ 1	2.14 hrs, Volun	ne=	46,654 c	•	
Outflow =		8.72 cfs @ 1	2.14 hrs, Volun	ne=	46,654 c	f, Atten	= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

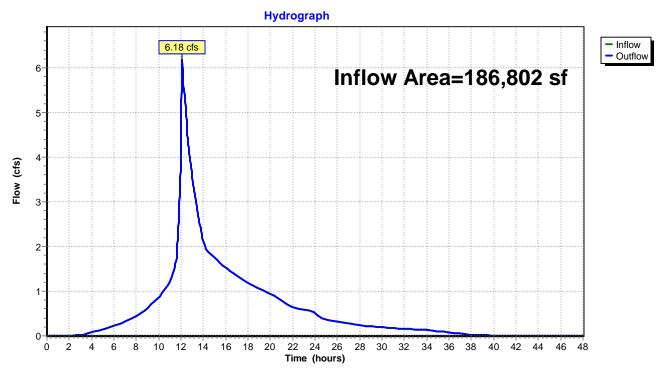


Reach PD5: Wetland series "E"

Summary for Reach PD6: Wetland series "F"

Inflow Area	=	17,822 sf,	8.42% Impervious,	Inflow Depth = 4.58	for 100-Year event
Inflow	=	2.18 cfs @ 1	2.09 hrs, Volume=	6,809 cf	
Outflow	=	2.18 cfs @ 1	2.09 hrs, Volume=	6,809 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach PD6: Wetland series "F"

Summary for Reach WD: Washington St Drainage

Inflow Area	a =	186,802 sf, 66.78% Impervious, Inflow Depth > 6.16" for 100-Year even	t
Inflow	=	6.18 cfs @ 12.11 hrs, Volume= 95,864 cf	
Outflow	=	6.18 cfs @ 12.11 hrs, Volume= 95,864 cf, Atten= 0%, Lag= 0.0 mir	٦

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach WD: Washington St Drainage

Summary for Pond UG1: UG1

Inflow Area =	:	49,888 sf,	, 58.01% Impervious	Inflow Depth = 6.29 "	for 100-Year event
Inflow =	7	7.69 cfs @	12.08 hrs, Volume=	26,143 cf	
Outflow =	2	2.91 cfs @	12.32 hrs, Volume=	26,142 cf, Atter	n= 62%, Lag= 14.0 min
Primary =	2	2.91 cfs @	12.32 hrs, Volume=	26,142 cf	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 86.33' @ 12.32 hrs Surf.Area= 0.062 ac Storage= 0.128 af

Plug-Flow detention time= 24.4 min calculated for 26,137 cf (100% of inflow) Center-of-Mass det. time= 24.5 min (789.1 - 764.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	0.056 af	44.25'W x 60.58'L x 3.50'H Field A
			0.215 af Overall - 0.076 af Embedded = 0.139 af x 40.0% Voids
#2A	83.50'	0.076 af	ADS_StormTech SC-740 +Cap x 72 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			72 Chambers in 9 Rows
		0.132 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	83.00'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	83.00'	12.0" Round RCP_Round 12"
			L= 51.4' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 83.00' / 82.74' S= 0.0051 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.91 cfs @ 12.32 hrs HW=86.33' (Free Discharge)

-2=RCP_Round 12" (Passes 2.91 cfs of 6.61 cfs potential flow)

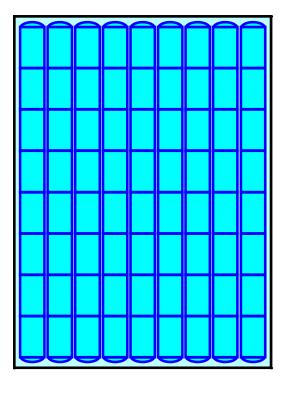
1=Orifice/Grate (Orifice Controls 2.91 cfs @ 8.33 fps)

Pond UG1: UG1 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

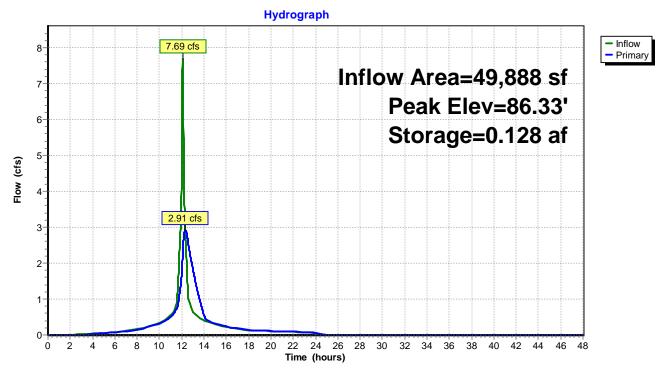

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

72 Chambers x 45.9 cf = 3,307.7 cf Chamber Storage

9,381.8 cf Field - 3,307.7 cf Chambers = 6,074.1 cf Stone x 40.0% Voids = 2,429.7 cf Stone Storage

Chamber Storage + Stone Storage = 5,737.3 cf = 0.132 af Overall Storage Efficiency = 61.2%Overall System Size = $60.58' \times 44.25' \times 3.50'$

72 Chambers 347.5 cy Field 225.0 cy Stone



Proposed Cond HydroCAD

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Summary for Pond UG2: UG2

Inflow Area =	16,720 sf, 68.82% Impervious,	Inflow Depth = 6.05" for 100-Year event
Inflow =	2.53 cfs @ 12.08 hrs, Volume=	8,436 cf
Outflow =	0.19 cfs @ 13.17 hrs, Volume=	8,436 cf, Atten= 93%, Lag= 65.4 min
Primary =	0.19 cfs @ 13.17 hrs, Volume=	8,436 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 85.32' @ 13.17 hrs Surf.Area= 0.047 ac Storage= 0.098 af

Plug-Flow detention time= 272.3 min calculated for 8,436 cf (100% of inflow) Center-of-Mass det. time= 272.2 min (1,045.0 - 772.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	82.00'	0.043 af	25.25'W x 81.94'L x 3.50'H Field A
			0.166 af Overall - 0.058 af Embedded = 0.108 af x 40.0% Voids
#2A	82.50'	0.058 af	ADS_StormTech SC-740 +Cap x 55 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			55 Chambers in 5 Rows
		0.101 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	82.00'	2.0" Vert. Orifice/Grate C= 0.600
#2	Primary	82.00'	12.0" Round RCP_Round 12"
			L= 9.7' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 82.00' / 81.95' S= 0.0052 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.19 cfs @ 13.17 hrs HW=85.32' (Free Discharge)

-2=RCP_Round 12" (Passes 0.19 cfs of 7.93 cfs potential flow)

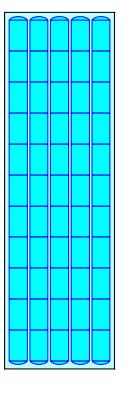
1=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.66 fps)

Pond UG2: UG2 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

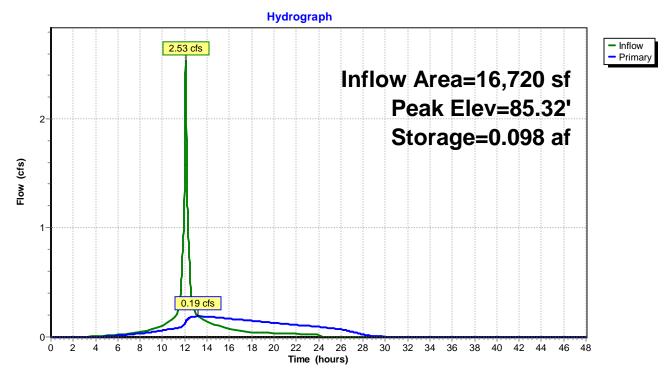
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


11 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 79.94' Row Length +12.0" End Stone x 2 = 81.94' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

55 Chambers x 45.9 cf = 2,526.7 cf Chamber Storage

7,241.2 cf Field - 2,526.7 cf Chambers = 4,714.5 cf Stone x 40.0% Voids = 1,885.8 cf Stone Storage

Chamber Storage + Stone Storage = 4,412.5 cf = 0.101 afOverall Storage Efficiency = 60.9%Overall System Size = $81.94' \times 25.25' \times 3.50'$


55 Chambers 268.2 cy Field 174.6 cy Stone

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG2: UG2

Summary for Pond UG3: UG3

Inflow Area =		46,987 sf, 87.67% Impervious, Inflow Depth = 6.52" for 100-Year event
Inflow	=	7.34 cfs @ 12.08 hrs, Volume= 25,544 cf
Outflow	=	0.37 cfs @ 14.09 hrs, Volume= 25,523 cf, Atten= 95%, Lag= 120.4 min
Primary	=	0.37 cfs @ 14.09 hrs, Volume= 25,523 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 94.28' @ 14.09 hrs Surf.Area= 0.103 ac Storage= 0.338 af

Plug-Flow detention time= 481.3 min calculated for 25,518 cf (100% of inflow) Center-of-Mass det. time= 480.9 min (1,235.9 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	89.00'	0.145 af	80.08'W x 55.89'L x 5.50'H Field A
			0.565 af Overall - 0.202 af Embedded = 0.363 af x 40.0% Voids
#2A	89.75'	0.202 af	ADS_StormTech MC-3500 d +Cap x 77 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			77 Chambers in 11 Rows
			Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf
		0.347 af	Total Available Storage

Storage Group A created with Chamber Wizard

Primary OutFlow Max=0.37 cfs @ 14.09 hrs HW=94.28' (Free Discharge)

-2=RCP_Round 12" (Passes 0.37 cfs of 10.20 cfs potential flow)

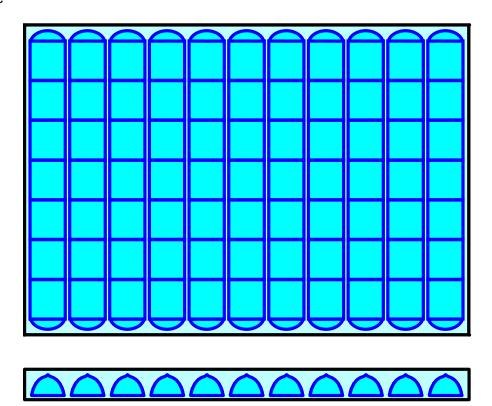
1=Orifice/Grate (Orifice Controls 0.37 cfs @ 10.95 fps)

Pond UG3: UG3 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

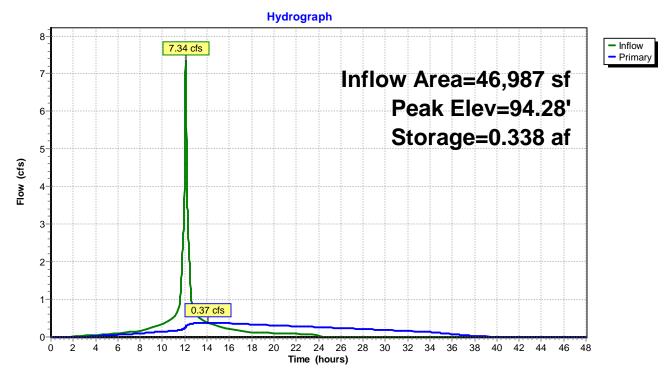
Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 11 rows = 327.8 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89'Base Length 11 Rows x 77.0" Wide + 9.0" Spacing x 10 + 12.0" Side Stone x 2 = 80.08' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

77 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 11 Rows = 8,794.1 cf Chamber Storage

24,617.2 cf Field - 8,794.1 cf Chambers = 15,823.1 cf Stone x 40.0% Voids = 6,329.2 cf Stone Storage


Chamber Storage + Stone Storage = 15,123.3 cf = 0.347 afOverall Storage Efficiency = 61.4%Overall System Size = $55.89' \times 80.08' \times 5.50'$

77 Chambers 911.7 cy Field 586.0 cy Stone

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG3: UG3

Summary for Pond UG4: UG4

Inflow Area =	25,652 sf, 92.03% Impervious,	Inflow Depth = 6.64" for 100-Year event
Inflow =	4.03 cfs @ 12.08 hrs, Volume=	14,199 cf
Outflow =	2.25 cfs @ 12.20 hrs, Volume=	14,199 cf, Atten= 44%, Lag= 6.9 min
Primary =	2.25 cfs @ 12.20 hrs, Volume=	14,199 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 101.63' @ 12.20 hrs Surf.Area= 0.037 ac Storage= 0.044 af

Plug-Flow detention time= 14.7 min calculated for 14,196 cf (100% of inflow) Center-of-Mass det. time= 14.8 min (764.2 - 749.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.50'	0.026 af	21.50'W x 74.40'L x 2.33'H Field A
			0.086 af Overall - 0.020 af Embedded = 0.065 af x 40.0% Voids
#2A	100.00'	0.020 af	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.046 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	99.50'	8.0" Vert. Orifice/Grate C= 0.600
#2	Primary	99.50'	12.0" Round RCP_Round 12"
			L= 43.2' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 99.50' / 98.00' S= 0.0347 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.25 cfs @ 12.20 hrs HW=101.63' (Free Discharge)

-2=RCP_Round 12" (Passes 2.25 cfs of 6.04 cfs potential flow)

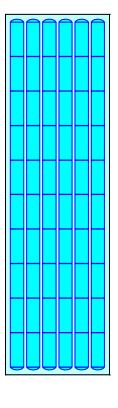
1=Orifice/Grate (Orifice Controls 2.25 cfs @ 6.46 fps)

Pond UG4: UG4 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

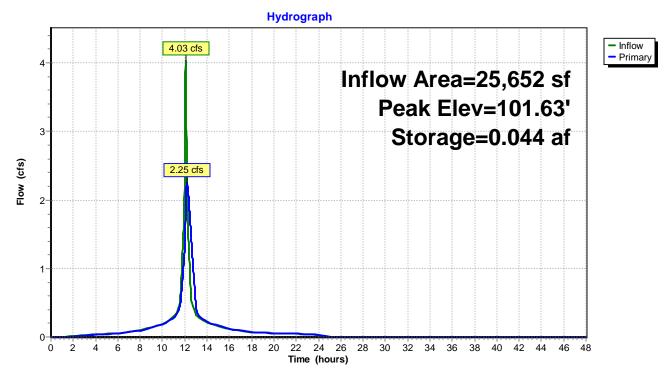
34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing


10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage

3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = 74.40' x 21.50' x 2.33'


60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle$

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG4: UG4

Summary for Pond UG5: UG5

Inflow Area =		64,812 sf	, 78.40% Impervious,	Inflow Depth = 6.29"	for 100-Year event
Inflow =	1	9.99 cfs @	12.08 hrs, Volume=	33,963 cf	
Outflow =		3.61 cfs @	12.33 hrs, Volume=	27,118 cf, Atte	n= 64%, Lag= 15.0 min
Primary =	:	3.61 cfs @	12.33 hrs, Volume=	27,118 cf	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 113.49' @ 12.33 hrs Surf.Area= 4,461 sf Storage= 15,138 cf

Plug-Flow detention time= 179.5 min calculated for 27,112 cf (80% of inflow) Center-of-Mass det. time= 103.8 min (868.3 - 764.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	108.00'	6,247 cf	29.92'W x 149.10'L x 5.50'H Field A
			24,533 cf Overall - 8,915 cf Embedded = 15,618 cf x 40.0% Voids
#2A	108.75'	8,915 cf	ADS_StormTech MC-3500 d +Cap x 80 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			80 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		15,162 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	110.23'	9.0" Vert. Orifice/Grate C= 0.600
#2	Primary	101.47'	12.0" Round RCP_Round 12"
			L= 14.6' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 101.47' / 100.30' S= 0.0801 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=3.61 cfs @ 12.33 hrs HW=113.49' (Free Discharge)

-2=RCP_Round 12" (Passes 3.61 cfs of 16.04 cfs potential flow)

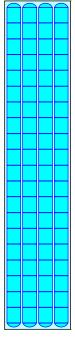
1=Orifice/Grate (Orifice Controls 3.61 cfs @ 8.17 fps)

Pond UG5: UG5 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

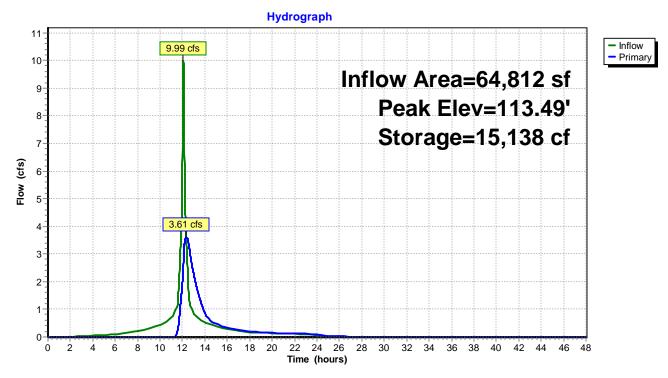
77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing


20 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 147.10' Row Length +12.0" End Stone x 2 = 149.10' Base Length 4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

80 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 8,915.4 cf Chamber Storage

24,533.2 cf Field - 8,915.4 cf Chambers = 15,617.8 cf Stone x 40.0% Voids = 6,247.1 cf Stone Storage

Chamber Storage + Stone Storage = 15,162.5 cf = 0.348 afOverall Storage Efficiency = 61.8%Overall System Size = $149.10' \times 29.92' \times 5.50'$


80 Chambers 908.6 cy Field 578.4 cy Stone

 $\square \square \square \square \square$

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG5: UG5

Summary for Pond UG6: UG6

Inflow Area =	43,674 sf, 78.98% Impervious,	Inflow Depth = 6.29" for 100-Year event
Inflow =	6.73 cfs @ 12.08 hrs, Volume=	22,886 cf
Outflow =	2.60 cfs @ 12.31 hrs, Volume=	22,886 cf, Atten= 61%, Lag= 13.5 min
Primary =	2.60 cfs @ 12.31 hrs, Volume=	22,886 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 115.22' @ 12.31 hrs Surf.Area= 2,249 sf Storage= 4,729 cf

Plug-Flow detention time= 22.8 min calculated for 22,886 cf (100% of inflow) Center-of-Mass det. time= 22.7 min (787.3 - 764.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	111.80'	2,046 cf	25.25'W x 89.06'L x 3.50'H Field A
			7,870 cf Overall - 2,756 cf Embedded = 5,114 cf x 40.0% Voids
#2A	112.30'	2,756 cf	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 5 Rows
		4,802 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	111.80'	7.5" Vert. Orifice/Grate C= 0.600
#2	Primary	111.80'	12.0" Round RCP_Round 12"
			L= 68.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 111.80' / 111.00' S= 0.0118 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.60 cfs @ 12.31 hrs HW=115.22' (Free Discharge)

-2=RCP_Round 12" (Passes 2.60 cfs of 6.85 cfs potential flow)

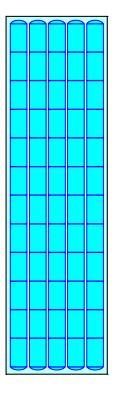
1=Orifice/Grate (Orifice Controls 2.60 cfs @ 8.49 fps)

Pond UG6: UG6 - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

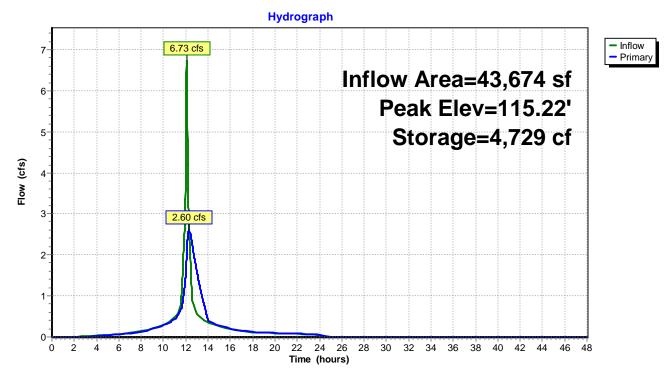
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


12 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 87.06' Row Length +12.0" End Stone x 2 = 89.06' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

7,870.4 cf Field - 2,756.4 cf Chambers = 5,114.0 cf Stone x 40.0% Voids = 2,045.6 cf Stone Storage

Chamber Storage + Stone Storage = 4,802.0 cf = 0.110 afOverall Storage Efficiency = 61.0%Overall System Size = $89.06' \times 25.25' \times 3.50'$


60 Chambers 291.5 cy Field 189.4 cy Stone

 $\square \square \square \square \square \square$

Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Pond UG6: UG6

Summary for Pond UG7: UG7

Inflow Area =	50,810 sf, 81.43% Impervious, In	flow Depth = 6.41" for 100-Year event
Inflow =	7.89 cfs @ 12.08 hrs, Volume=	27,123 cf
Outflow =	0.95 cfs @ 12.65 hrs, Volume=	27,123 cf, Atten= 88%, Lag= 34.2 min
Primary =	0.95 cfs @ 12.65 hrs, Volume=	27,123 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 103.77' @ 12.65 hrs Surf.Area= 0.079 ac Storage= 0.259 af

Plug-Flow detention time= 132.5 min calculated for 27,123 cf (100% of inflow) Center-of-Mass det. time= 132.4 min (892.4 - 760.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	98.50'	0.111 af	44.25'W x 77.40'L x 5.50'H Field A
			0.432 af Overall - 0.156 af Embedded = 0.277 af x 40.0% Voids
#2A	99.25'	0.156 af	ADS_StormTech MC-3500 d +Cap x 60 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			60 Chambers in 6 Rows
			Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf
		0.266 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Device 2	98.50'	4.0" Vert. Orifice/Grate C= 0.600
Primary	98.50'	12.0" Round RCP_Round 12"
		L= 34.7' RCP, groove end projecting, Ke= 0.200
		Inlet / Outlet Invert= 98.50' / 98.33' S= 0.0049 '/' Cc= 0.900
		n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf
	Device 2	Device 2 98.50'

Primary OutFlow Max=0.95 cfs @ 12.65 hrs HW=103.77' (Free Discharge)

-2=RCP_Round 12" (Passes 0.95 cfs of 9.43 cfs potential flow)

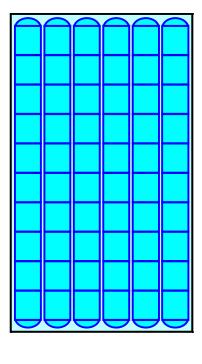
1=Orifice/Grate (Orifice Controls 0.95 cfs @ 10.87 fps)

Pond UG7: UG7 - Chamber Wizard Field A

Chamber Model = ADS_StormTech MC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 6 rows = 178.8 cf

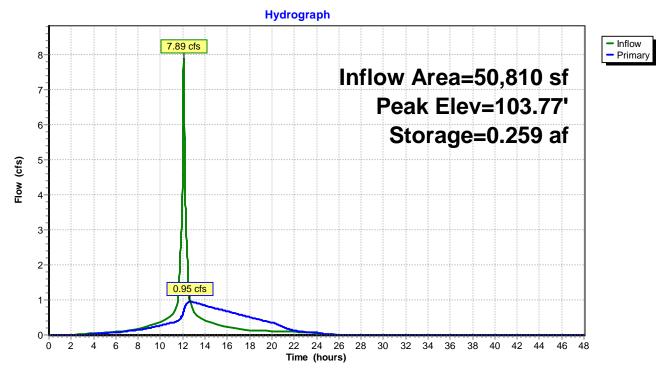
77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

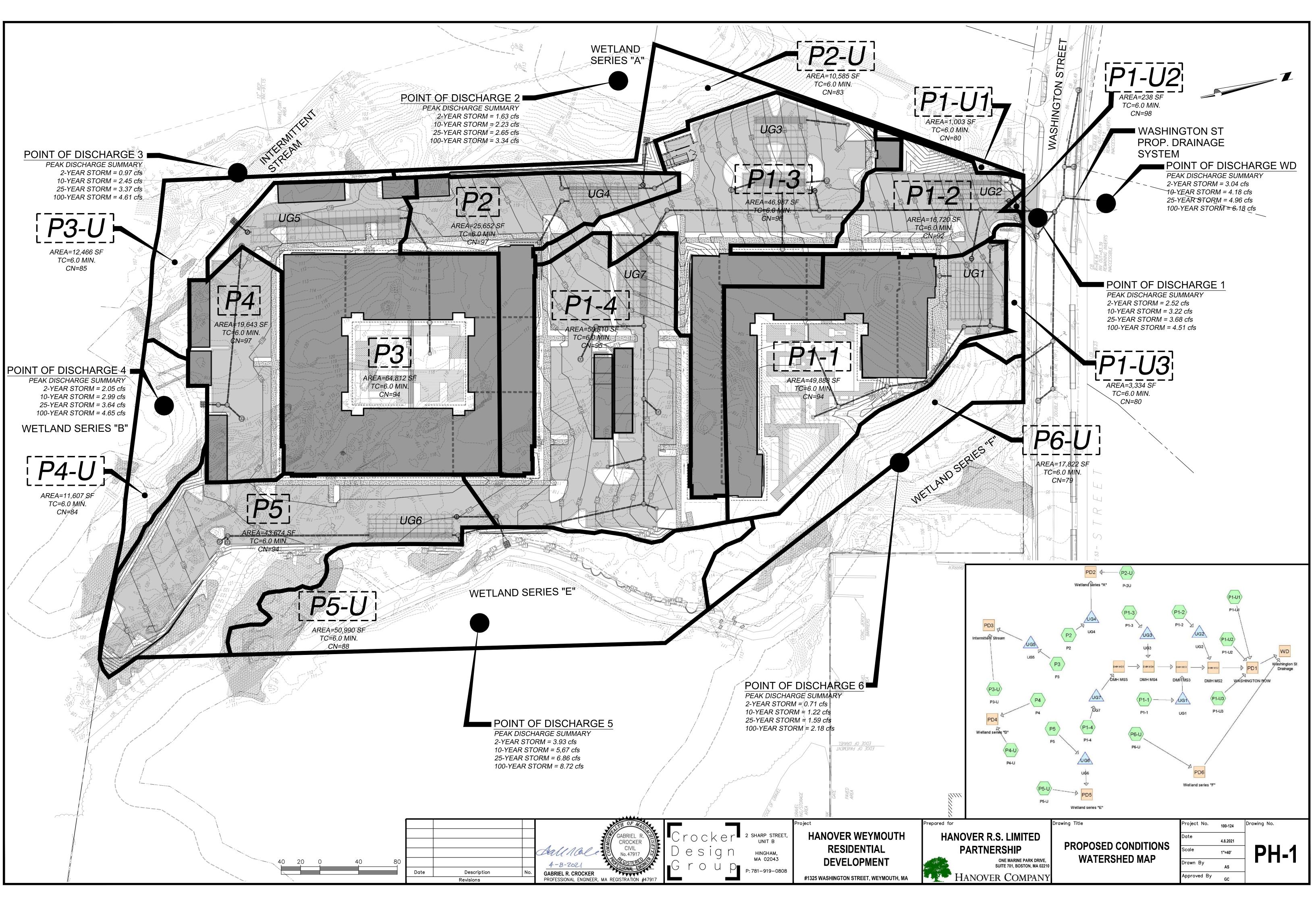

10 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 75.40' Row Length +12.0" End Stone x 2 = 77.40' Base Length 6 Rows x 77.0" Wide + 9.0" Spacing x 5 + 12.0" Side Stone x 2 = 44.25' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

60 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 6 Rows = 6,775.9 cf Chamber Storage

18,837.2 cf Field - 6,775.9 cf Chambers = 12,061.3 cf Stone x 40.0% Voids = 4,824.5 cf Stone Storage

Chamber Storage + Stone Storage = 11,600.4 cf = 0.266 af Overall Storage Efficiency = 61.6%Overall System Size = 77.40' x 44.25' x 5.50'


60 Chambers 697.7 cy Field 446.7 cy Stone



Prepared by alex76 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

SECTION 4 – STORMWATER MANAGEMENT CALCS

4.1 STANDARD 3: RECHARGE CALCULATIONS

The Required Recharge Volume is computed using the equation provided in the 2008 Massachusetts Stormwater Handbook. The volume is computed as an equivalent depth of rainfall over the proposed impervious areas in accordance with a Target Depth Factor based on the soil classifications. The Calculations is as follows:

Rv = (F) X (Impervious Area)

(Equation 1) Volume 3, Ch 1, page 15

- Rv = Required Recharge Volume, expressed in cubic feet, cubic yards, or acre-feet
- F = Target Depth Factor associated with each Hydrologic Soil Group (HSG)
- Impervious Area = new pavement, new rooftop area and courtyard areas
- The Target Depth Factor "F" per Table 2.3.2, Volume 3, Chapter 1 for each soil classification is as follows:
 - A soils = 0.60 inches
 - B soils = 0.35 inches
 - C soils = 0.25 inches
 - D soils = 0.10 inches

The proposed impervious area (pavement, roofs, and courtyards but not including ledge outcrops) within limit of work is 264,677 SF. Based on the above formula, the required recharge volume for the site is as follows:

Per Section 1.3, the onsite soils are considered "D" soils:

- F (D soils) = 0.10 inches
- Impervious Area (New Impervious) =264,677 SF

Rv = (F) X (Impervious Area) Rv= (0.10 inches) x (1in/12 ft) x 264,677 SF = 2,206 CF

TOTAL RECHARGE VOLUME REQUIRED (Rv)= 2,206 CF

Capture Area Adjustment:

In the proposed conditions 58,895 SF of stormwater runoff from impervious surfaces is directed to the recharge BMP (UG-5), thus there is 205,782 SF of impervious is not directed to recharge BMP's. Dividing total impervious area of 264,677 SF by impervious area draining to recharge areas, 58,895 SF yields an adjusted required recharge volume of 4.49 times the calculated amount.

Adjusted RV = 4.49 x Rv

Adjusted RV = 4.49 x 2,206SF Adjusted RV = 9,914 CF

ADJUSTED TOTAL RECHARGE VOLUME REQUIRED = 9,914 CF

Recharge Volume BMP Table

Infiltration BMP	Infiltration Rate (in/hr) k	Storage (Recharge) Volume (CF) Rv			
UG-5	0.17	6,858 CF			
Totals		6,858 CF			
k = saturated hydr	aulic conductivity (in/hr)			
Rv = storage volume (CF)					
Bottom Area (SF)					
Volume 3, Chapte	r 1 of the MA Storm	nwater Handbook			

TOTAL RECHARGE VOLUME PROVIDED = 6,858CF

The Storage Recharge volume numbers provided in the table above have been derived utilizing the HydroCAD output for stage storage. The following pages provide a copy of those printouts and the cumulative stage-storage up to the controlling invert elevation has been highlighted.

Conclusion:

The recharge provided by the proposed underground system meets the recharge requirements outlined in Standard 3 of the Massachusetts DEP Stormwater Standards to the maximum extent practicable, due to the presence of D soils throughout the site.

4.2 DRAWDOWN TIME

Below are the drawdown time calculations for the infiltration systems proposed on the site. The calculation uses estimated hydraulic conductivity values "K" in accordance with the Rawls Rates table. The formula below utilized the recommended formula per the MA Stormwater Handbook as follows:

Drawdown Time = Rv / [(K*Bottom Area)*(1FT/12IN)]

- Rv = Storage Volume (CF)
- K = Saturated Hydraulic Conductivity per Rawls Rate Table (IN/HR)
- Bottom Area = Area of Bottom of Proposed Recharge Structure (SF)

Below is a summary table of the drawdown calculations:

BASIN DRAWDOWN CALCULATIONS						
Infiltration BMP	Infiltration Rate (IN/HR) k	Storage (Recharge) Volume Provided (CF) Rv	Bottom Area (SF)	Draw Down Time (HR)		
UG-5	0.17	6,858	4,461	108.5		
Totals		6,858				
k = saturated hyd	draulic conductivity	(IN/HR)				
Rv = storage volu	ıme (CF)					
Bottom Area (SF))					
Volume 3, Chapte	er 1 of the MA Storr	nwater Handbook				

Conclusion:

The calculations above show that the infiltration BMP does not draw down in less than 72 hours, as required by Standard 3. The infiltration system was modeled in HydroCAD without claiming infiltration, because there is only 2ft of groundwater separation. Thus, we are not claiming to reduce peak flow rates using infiltration. This is the only area within the proposed project area that had the groundwater separation necessary to infiltrate stormwater, thus we are making all reasonable efforts to meet this standard with the constraint of D soils.

 Proposed Cond HydroCAD
 Type III

 Prepared by {enter your company name here}

 HydroCAD® 10.00-26 s/n 01012 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond UG5: UG5

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
108.00	0	110.12	6,431	112.24	12,886
108.04	71	110.16	6,574	112.28	12,965
108.08	143	110.20	6,716	112.32	13,043
108.12	214	<mark>110.24</mark>	6,858	112.36	13,120
108.16	285	110.28	6,999	112.40	13,195
108.20 108.24	357	110.32	7,139	112.44	13,270
108.24	428 500	110.36 110.40	7,279 7,419	112.48 112.52	13,342 13,414
108.32	571	110.44	7,558	112.52	13,414
108.36	642	110.44	7,696	112.60	13,557
108.40	714	110.52	7,834	112.64	13,628
108.44	785	110.56	7,972	112.68	13,699
108.48	856	110.60	8,108	112.72	13,771
108.52	928	110.64	8,245	112.76	13,842
108.56	999	110.68	8,380	112.80	13,914
108.60	1,071	110.72	8,515	112.84	13,985
108.64	1,142	110.76	8,650	112.88	14,056
108.68	1,213	110.80	8,783	112.92	14,128
108.72	1,285	110.84	8,916	112.96	14,199
108.76	1,376	110.88	9,048	113.00	14,270
108.80	1,530	110.92	9,180	113.04	14,342
108.84 108.88	1,683 1,835	110.96 111.00	9,311 9,441	113.08 113.12	14,413 14,484
108.92	1,988	111.04	9,570	113.12	14,404
108.96	2,140	111.08	9,698	113.20	14,627
109.00	2,292	111.12	9,826	113.24	14,699
109.04	2,444	111.16	9,953	113.28	14,770
109.08	2,595	111.20	10,079	113.32	14,841
109.12	2,747	111.24	10,204	113.36	14,913
109.16	2,898	111.28	10,328	113.40	14,984
109.20	3,048	111.32	10,451	113.44	15,055
109.24	3,199	111.36	10,573	113.48	15,127
109.28	3,349	111.40	10,694		
109.32 109.36	3,499 3,649	111.44 111.48	10,814 10,933		
109.40	3,798	111.52	11,051		
109.44	3,948	111.56	11,167		
109.48	4,096	111.60	11,283		
109.52	4,245	111.64	11,397		
109.56	4,393	111.68	11,510		
109.60	4,541	111.72	11,621		
109.64	4,689	111.76	11,731		
109.68	4,836	111.80	11,840		
109.72	4,983	111.84	11,947		
109.76 109.80	5,129	111.88	12,052		
109.80	5,276 5,421	111.92 111.96	12,155 12,256		
109.88	5,567	112.00	12,250		
109.92	5,712	112.00	12,355		
109.96	5,857	112.08	12,545		
110.00	6,001	112.12	12,635		
110.04	6,145	112.16	12,721		
110.08	6,288	112.20	12,805		
		I		I	

4.3 STANDARD 4: WATER QUALITY

The BMP's have been designed to treat 1.0" of water quality volume (WQV), which exceeds the required 0.5" of WQV. A table has been provided below that provides the sizing of ADS Isolator Row treatment chamber systems, and one (1) Water Quality Unit (WQU).

UG Basin /	Tributary Area	Tributary Area	Pervious	Impervious	CN Value	WQV	Tc	qu	WQF = qu A Q
Isolator row	(acres)	(sq miles)	(sf)	%	Estimated	(In)	(min)	csm/ir	(cfs)
UG-1/IR-1	0.65	0.0010	18,186	36%	74	1.00	5	795	0.29
UG-2/IR-2	0.38	0.0006	4,790	71%	87	1.00	5	795	0.34
UG-3/IR-3A	0.41	0.0006	7,050	61%	83	1.00	5	795	0.31
UG-3/IR-3B	0.38	0.0006	4,050	76%	89	1.00	5	795	0.36
UG-4/IR-4	0.39	0.0006	1,755	90%	94	1.00	5	795	0.43
UG-5/IR-5	1.48	0.0023	14,662	77%	90	1.00	5	795	1.42
UG-6/IR-6	1.00	0.0016	16,393	62%	84	1.00	5	795	0.77
UG-7/IR-7	1.16	0.0018	7,305	86%	93	1.00	5	795	1.23
WQ	0.45	0.0007	1,330	93%	95	1.00	5	795	0.52

Water Quality Unit Sizing Using Equivalent Flow from 1" Rainfall Depth

The WQU proposed is the SciClone Hydrodynamic Separator by BioClean Environmental Services, Inc. BioClean applied for and was granted a 50% TSS removal rate for the SciClone WQU which has been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and certified by the New Jersey Department of Environmental Protection (NJDEP). In fact, the testing report, which is enclosed in this section, provides a removal efficiency of 65%. NJDEP only certifies for 50% and 80%; however, the testing completed by NJCAT resulted in a removal efficiency of 65%. Please refer to page 22 of the NJCAT Certification, enclosed in this section of the report. Based on the results of the NJCAT testing, 65% was used in the TSS Treatment Calculations enclosed in Section 4.5. The units were sized per NJDEP design criteria, which requires sizing based on Water Quality Flow (WQF), to the unit. There is 0.52CFS of WQF proposed to be routed through the SciClone model, therefore, the SC-4, is proposed.

SciClone Model	Maximum Treatment Flow Rate (cfs)	Treatment Area (ft ²)	Hydraulic Loading Rate (gpm/ft ²)	50% Maximum Sediment Storage (ft ³)
SC-3	0.39	7.1	25	5.3
SC-4	0.70	12.6	25	9.4
SC-5	1.09	19.6	25	14.7
SC-6	1.57	28.3	25	21.2
SC-7	2.14	38.5	25	28.9
SC-8	2.80	50.2	25	37.7
SC-9	3.54	63.6	25	47.7
SC-10	4.37	78.5	25	58.9
SC-11	5.29	95.0	25	71.2
SC-12	6.30	113.0	25	84.8
SC-13	7.39	132.7	25	99.5
SC-14	8.57	153.9	25	115.4

The ADS Isolator Row systems were sized per the manufacturer recommendations, shown below. The manufacturer limits the amount of WQF per chamber for each of the systems proposed. The project proposes the SC-310, SC-740 and MC-3500 Stormtech Isolator Row Systems, each with their own treatment capabilities, shown below.

Detentio				ter Qu	ality DS
STORMTECH					
	SC-310	SC-740	DC-780	MC-3500	MC-450
Chamber Area (Sq.Ft.)	20	27.8	27.8	43.2	30.1
Freated Flow Rate per chamber (CFS)	0.11	0.15	0.15	0.24	0.17

The table below shows the isolation chambers that have been provided in each underground system to treat the required WQV and to limit the flow in each chamber to the allowed WQF.

ISOLATOR ROW	UNIT TYPE	Treated flow per unit	Flow required to be treated	Number of units Provided	Treated Flow per Isolator Row
		cfs	cfs		cfs
UG-1 IR-1	SC-740	0.26	0.29	8	2.08
UG-2 IR-2	SC-740	0.26	0.34	11	2.86
UG-3 IR-3A	MC-3500	0.40	0.31	7	2.80
UG-3 IR-3B	MC-3500	0.40	0.36	7	2.80
UG-4 IR-4	SC-310	0.16	0.43	10	1.60
UG-5 IR-5	MC-3500	0.40	1.42	19	7.60
UG-6 IR-6	SC-740	0.26	0.77	12	3.12
UG-7 IR-7	MC-3500	0.40	1.23	10	4.00

UG Basin /	Tributary Area	Tributary Area	Pervious	Impervious	CN Value	WQV
Isolator row	(acres)	(sq miles)	(sf)	%	Estimated	(In)
UG-1/IR-1	0.65	0.0010	18,186	36%	74	1.00
UG-2/IR-2	0.38	0.0006	4,790	71%	87	1.00
UG-3/IR-3A	0.41	0.0006	7,050	61%	83	1.00
UG-3/IR-3B	0.38	0.0006	4,050	76%	89	1.00
UG-4/IR-4	0.39	0.0006	1,755	90%	94	1.00
UG-5/IR-5	1.48	0.0023	14,662	77%	90	1.00
UG-6/IR-6	1.00	0.0016	16,393	62%	84	1.00
UG-7/IR-7	1.16	0.0018	7,305	86%	93	1.00
WQ	0.45	0.0007	1,330	93%	95	1.00

	ROW	UNIT TYPE	unit	be treated	units Provided	Isolato Row
			cfs	cfs		cfs
	UG-1 IR-1	SC-740	0.26	0.29	8	2.08
	UG-2 IR-2	SC-740	0.26	0.34	11	2.86
	UG-3 IR-3A	MC-3500	0.40	0.31	7	2.80
	UG-3 IR-3B	MC-3500	0.40	0.36	7	2.80
	UG-4 IR-4	SC-310	0.16	0.43	10	1.60
	UG-5 IR-5	MC-3500	0.40	1.42	19	7.60
	UG-6 IR-6	SC-740	0.26	0.77	12	3.12
	UG-7 IR-7	MC-3500	0.40	1.23	10	4.00
1						

Project No.	100-124	Drawing No.
Date	3.26.2021	
Scale	1''=40'	PH_
)rawn By	AS	
Approved By	GC	

NJCAT TECHNOLOGY VERIFICATION

SciCloneTM Hydrodynamic Separator

Performance Verification of Sediment Capture and Light Liquid Retention

Bio Clean Environmental Services Inc.

September 2017

TABLE OF CONTENTS

		1 450	
List	of Tables	ii	
List	of Figures	iv	
1.	Introduction		
2.			
3.	Laboratory Testing3.1Test Setup3.2Test Sediment3.3Removal Efficiency Testing3.4Scour Testing3.5Light Liquid Re-Entrainment Simulation Test	4 	
4.	Performance Claims		
5.	Supporting Documentation5.1Removal Efficiency5.2Scour5.3Light Liquid Re-Entrainment	12 25	
6.	Maintenance Plans	30	
7.	Scaling		
8.	Statements		
9.	References		

Page

List of Tables Pa	ge
Table 1 SciClone [™] Model SC-4 Dimensions	.4
Table 2 Particle Size Distribution of #110 Test Sediment	. 8
Table 3 Particle Size Distribution of Scour Test Sediment	. 9
Table 4 LDPE Bead Specifications	11
Table 5 Sampling Schedule - 25% MTFR	13
Table 6 Water Flow and Temperature - 25% MTFR	14
Table 7 Sediment Feed Rate Summary – 25% MTFR	15
Table 8 SSC and Removal Efficiency - 25% MTFR	15
Table 9 Sampling Schedule - 50% MTFR	16
Table 10 Water Flow and Temperature - 50% MTFR	16
Table 11 Sediment Feed Rate Summary – 50% MTFR	17
Table 12 SSC and Removal Efficiency - 50% MTFR	18
Table 13 Sampling Schedule - 75% MTFR	18
Table 14 Water Flow and Temperature - 75% MTFR	19
Table 15 Sediment Feed Rate Summary – 75% MTFR	19
Table 16 SSC and Removal Efficiency - 75% MTFR	20
Table 17 Sampling Schedule - 100% MTFR	20
Table 18 Water Flow and Temperature - 100% MTFR	21
Table 19 Sediment Feed Rate Summary – 100% MTFR	21
Table 20 SSC and Removal Efficiency - 100% MTFR	22
Table 21 Sampling Schedule - 125% MTFR	22
Table 22 Water Flow and Temperature - 125% MTFR	23
Table 23 Sediment Feed Rate Summary – 125% MTFR	24
Table 24 SSC and Removal Efficiency - 125% MTFR	24

Table 25	Annualized Weighted Removal Efficiency for SciClone [™] Model SC-4	25
Table 26	Scour Test Sampling Frequency	25
Table 27	Water Flow and Temperature - Scour Test	26
Table 28	Suspended Sediment Concentrations for Scour Test	27
Table 29	Light Liquid Re-Entrainment Testing Water Flow Rates	29
Table 30	Amount of Scoured Beads Based on Flow Rate	29
Table 31	Scaling of SciClone TM Models	32

List of Figures	Page
Figure 1 Cut-Away View	2
Figure 2 Operational Diagram	2
Figure 3 Effective Treatment Area and Flow Path Diagram	
Figure 4 View During Treatment and Bypass Flows	
Figure 5 Test Flow Apparatus	5
Figure 6 Background Sampling Point	6
Figure 7 Effluent Sampling Point	6
Figure 8 Sediment Addition Point	7
Figure 9 Particle Size Distribution of Test Sediment	
Figure 10 Particle Size Distribution of Scour Test Sediment	9
Figure 11 Water Flow and Temperature - 25% MTFR	
Figure 12 Water Flow and Temperature - 50% MTFR	
Figure 13 Water Flow and Temperature - 75% MTFR	
Figure 14 Water Flow and Temperature - 100% MTFR	
Figure 15 Water Flow and Temperature - 125% MTFR	
Figure 16 Water Flow and Temperature – Scour Test	
Figure 17 SciClone [™] Inlet Loaded with LDPE Beads	
Figure 18 Screening of Scoured LDPE Beads	

1. Introduction

The SciClone^{$^{\text{M}}$} is a manufactured treatment device (MTD) designed by Bio Clean Environmental Services Inc., a Forterra Company. The SciClone is designed to remove pollutants from stormwater runoff using a series of flow splitters, weirs and baffles. The device traps suspended particulates by promoting gravity separation, as well as being able to capture and retain floatables and light liquids, such as oil.

The test program was conducted by Good Harbour Laboratories (GHL), an independent water technology testing lab based in Ontario, Canada. The study results were submitted to the New Jersey Corporation for Advanced Technology (NJCAT) for verification. NJCAT is a private/public partnership that provides independent technology verification, education and information on emerging environmental and energy technology fields.

This testing program was based primarily on the *New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device (January 25, 2013).* However, the particle size distribution (PSD) of the test sediment used is larger than what is required for NJDEP approval. This larger PSD is common in many regions throughout the nation and thus is more applicable in these areas.

In addition to sediment capture, the testing program incorporated an assessment for the retention of light liquids. This portion of the study was based on the Canada Environmental Technologies Verification (ETV) procedure: *Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0)*. The performance test results have been submitted to NJCAT for verification only.

2. Description of Technology

The SciClone[™] system captures the following pollutants: total suspended solids, particulate bound nutrients and metals, debris, floatables and free-floating oil from contaminated runoff.

The SciClone^{$^{\text{TM}}$} is designed to maximize the flow path of entering stormwater thus optimizing its ability to capture suspended solids efficiently with minimal surface area. The system has no moving parts and operates utilizing the principles of gravity separation and flow path maximization to increase settling of finer particulates. It is composed of three components as shown in **Figure 1**.

Runoff is directed into the system via the inflow pipe and enters the flow splitter deck, as illustrated in **Figure 2**. From the flow splitter, water is channeled along the chamber wall on both sides of the inlet pipe. This splitting of the flow reduces inlet velocity into the system and channels flow along the walls of the chamber. As the split flow encounters the oil/floatables skimmer wall, it is directed along the skimmer wall toward the center of the chamber. At the center of the chamber the flow paths from both sides meet one another. As this occurs the flow path from both directions circles back toward the inlet pipe. This configuration directs the flow back toward the inlet and underneath the flow splitter deck thus maximizing the flow path. Finer sediments are directed into the sump chamber below the flow splitter to the chamber wall under the inlet as shown in **Figure 3**.

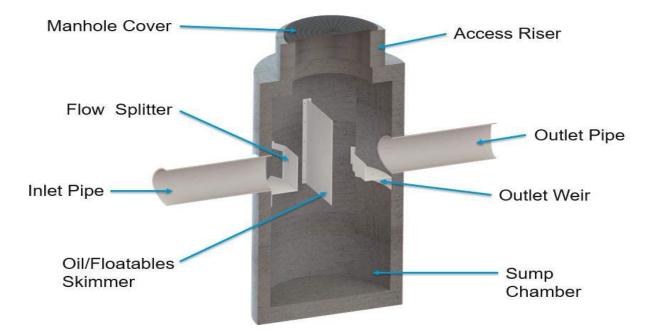
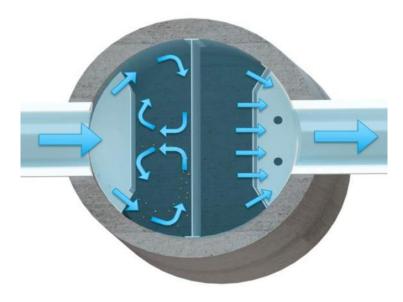
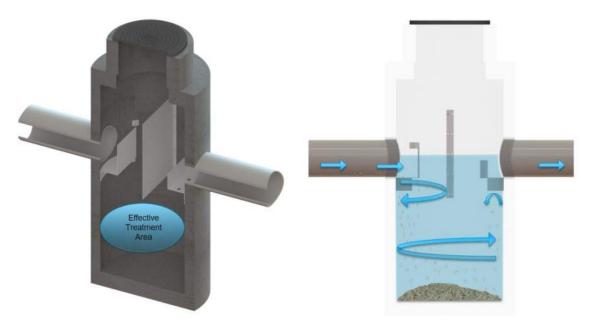




Figure 1 Cut-Away View

Figure 2 Operational Diagram

The oil/floatables skimmer is installed in the middle of the chamber and extends downward and upward to isolate free-floating oils and floatable trash and debris. Flows are forced to travel under the skimmer in the center of the system where the system is the widest thus creating a laminar flow under the weir and minimizing velocity. As water passes under the oil/floatables skimmer it rises back up and toward the outlet weir. The outlet weir extends across the width of the outlet pipe and protrudes up slightly above the outlet pipe invert. The outlet weir is much wider than the pipe and creates a laminar flow from the system into the outlet pipe to reduce entrance velocity back into the pipe in order to prevent channeling of flow as shown in **Figure 3**.

Figure 3 Effective Treatment Area and Flow Path Diagram

The unique design of the SciCloneTM, with a flow splitter, oil/floatables skimmer, and outlet weir maximizes the flow path and minimizes velocity for maximum performance. The system is designed to be installed online and process high flows internally. Higher flows are able to pass over the top of the flow splitter without impedance, under the oil/floatables skimmer and to the outlet. The outlet weir creates less turbulent conditions into the pipe and thus reduces head-loss during peak flow conditions as shown in **Figure 4**.

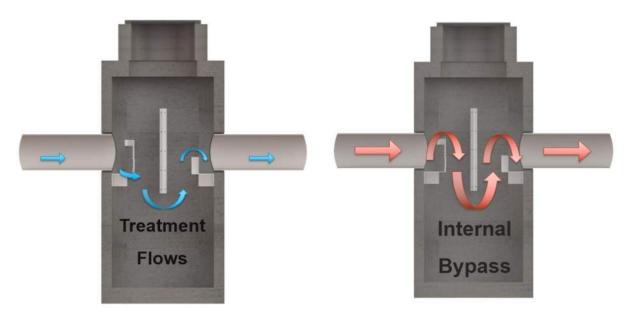


Figure 4 View During Treatment and Bypass Flows

3. Laboratory Testing

The device tested was a four-foot diameter SciCloneTM unit (Model SC-4) consisting of internal components housed in a metal manhole. In commercial systems, the internal components are typically housed in a concrete manhole. The metal manhole of the test unit was equivalent to commercial concrete manholes in all key dimensions. The use of a metal manhole was proposed due to the difficulties associated with transporting and physically supporting the weight of a concrete vessel. Using a metal manhole in lieu of concrete did not impact system performance.

3.1 Test Setup

The specifications of the tested SciCloneTM Hydrodynamic Separator (HDS) (Model SC-4) are provided in **Table 1**. The test unit had a total sedimentation area of 12.6 ft² and a maximum treatment flow rate (MTFR) of 0.70 cfs (315 gpm).

MTFR (cfs)	Diameter (ft)	50% of Sediment Storage Volume (ft ³)	Oil Capacity (Gal)	Effective Treatment Area (ft ²)
0.701	4	9.4	15.4	12.6

Table 1 SciClone[™] Model SC-4 Dimensions

The laboratory test set-up was a water flow loop, capable of moving water at a rate of up to 2.2 cfs. The test loop, illustrated in **Figure 5**, was comprised of water storage tanks, pumps, sediment filter, receiving tank and flow meters.

Figure 5 Test Flow Apparatus

Water Flow and Measurement

From the water supply tanks, water was pumped using either a WEG Model FC00312 (1 – 200 gpm) or an Armstrong Model 8X8X10 4380 (200 – 1000 gpm) centrifugal pump. Flow measurement was done using either a 3" Toshiba Model GF630 electromagnetic type flow meter with an accuracy of $\pm 0.5\%$ of reading (1 – 200 gpm) or a MJK Magflux Type 7200 flow meter Model 297237 with an accuracy of $\pm 0.25\%$ of reading (100 – 1000 gpm). The data logger used was a MadgeTech Process 101A data logger, configured to record a flow measurement once every minute.

The water in the flow loop was circulated through a filter housing containing high-efficiency pleated bag filters with a 0.5 µm absolute rating. The influent pipe was 24 inches in diameter and 132 inches long. Sediment addition was done through a port at the crown of the influent pipe, 118 inches upstream of the SciCloneTM. The sediment feeder was an Auger Feeders Model VF-1 volumetric screw feeder with vibratory hopper. The feeder had a 10-gallon hopper above the auger screw to provide a constant supply of sediment.

Water flow exited the SciClone[™] and terminated with a free-fall into the receiving tank to complete the flow loop.

Sample Collection

Background water samples were collected in a 1 L jar from a sampling port located upstream of the auger feeder. The sampling port was controlled manually by a ball valve (**Figure 6**) that was opened approximately 5 seconds prior to sampling.

Effluent samples were also grabbed by hand. The effluent pipe drained freely into the receiving tank and the effluent sample was taken at that point (**Figure 7**). The sampling technique was to take the grab sample by sweeping a 1 L jar through the stream of effluent flow such that the jar was full after a single pass.

Figure 6 Background Sampling Point

Figure 7 Effluent Sampling Point

Duplicate samples were taken for both background and effluent. The primary set was analysed and reported while the second set was held under refrigerated conditions in case there was a need for an investigation following an aberrant result.

Other Instrumentation and Measurement

Effluent water temperature was taken as it exited the effluent pipe stub, using a Kangaroo digital, thermometer, Model 21800-068.

Run and sampling times were measured using a NIST traceable stopwatch, Control Company Model 62379-460.

The sediment feed samples that were taken during the run were collected in 500 mL jars and weighed on an analytical balance (Mettler Toledo, AB204-S).

3.2 Test Sediment

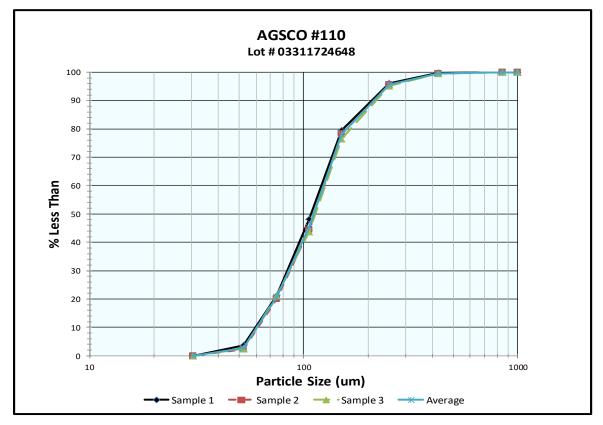

The test sediment was fed through an opening in the crown of the influent pipe, 118" upstream of the SciCloneTM. A funnel was used to direct the sediment into the pipe (**Figure 8**). The test sediment used for the removal efficiency study was commercially available silica sediment supplied by AGSCO Corporation, generally referred to as #110 but labeled #140-200. This particular batch was lot # 03311724648. Three samples of sediment were sent out for particle size analysis using the methodology of ASTM method D422-63 (reapproved 2007). The samples were composite samples created by taking a sediment sample from the hopper before the start of each of the five runs. The testing lab was Maxxam Analytics, an independent test lab also located in Ontario, Canada. The PSD results are summarized in **Table 2** and shown graphically in **Figure 9**.

Figure 8 Sediment Addition Point

	Test	Sediment Parti	cle size (%pass	ing)
Particle Size (µm)	Sample 1	Sample 2	Sample 3	Average
1000	100.0	100.0	100.0	100.0
500	99.8	99.7	99.6	99.7
250	96.1	95.7	95.1	95.6
150	79.5	78.4	76.5	78.1
100	42.9	39.7	39.4	40.7
75	21.2	20.0	21.2	20.8
50	3.3	2.0	2.1	2.5
20	0	0	0	0
8	0	0	0	0
5	0	0	0	0
2	0	0	0	0
d ₅₀ (μm)	109	113	114	112

Table 2 Particle Size Distribution of #110 Test Sediment

Figure 9 Particle Size Distribution of Test Sediment

For the scour test, the NJDEP specified scour test sediment was used. The sediment was blended by GHL using commercially available silica sands and the PSD of the sediment meet the specifications for the scour test sediment specified in the NJDEP laboratory test protocol. The scour test sediment PSD results are summarized in **Table 3** and shown graphically in **Figure 10**.

Particle Size	Test Sed	iment Partic	NJDEP Specification		
(µm)	Sample 1	Sample 2	Sample 3	Average	(Minimum % Less Than)
1000	100	99	100	100	100
500	95	92	94	94	90
250	63	58	61	61	55
150	52	43	46	47	40
100	33	20	23	25	25
75	22	10	13	15	10
50	14	4	6	8	0

Table 3 Particle Size Distribution of Scour Test Sediment

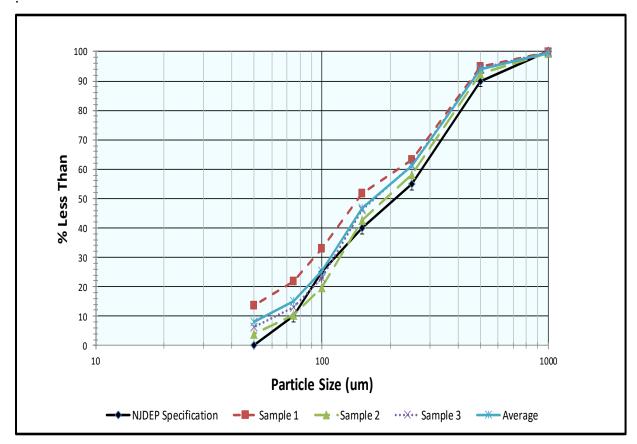


Figure 10 Particle Size Distribution of Scour Test Sediment

3.3 Removal Efficiency Testing

Removal efficiency testing was conducted on a clean unit with a false floor installed at 50% of the sump sediment storage depth, 9 inches above the device floor. Removal Efficiency Testing was based on Section 5 of the NJDEP Laboratory Protocol for Hydrodynamic Sedimentation MTDs.

The test sediment was sampled six times per run to confirm the sediment feed rate. Each sediment feed rate sample was collected in a 500-mL jar over an interval timed to the nearest second and was a minimum 0.1 liter or the collection interval did not exceed one minute, whichever came first.

Effluent grab sampling began following three MTD detention times after the initial sediment feed sample. The time interval between sequential samples was 1 minute, however, if the test sediment feed was interrupted for measurement, the next effluent sample was collected following three MTD detention times from the time the sediment feed was re-established. A total of 15 effluent samples were taken during each run.

Background water samples were taken with the odd-numbered effluent samples.

3.4 Scour Testing

Prior to the start of testing, sediment was loaded onto a 5-inch false floor of the sump of the SciCloneTM and leveled at a depth of 4 inches. The final height of the sediment was at an elevation equivalent to 50% of the maximum sediment storage capacity of the MTD. After loading of the sediment, the unit was gradually filled with clear water, so as not to disturb the sediment, to the invert of the inlet pipe. The filled unit was allowed to sit for 89 hours.

The scour test was conducted at a flow rate of 630 gpm (1.4 cfs), two times the MTFR.

During the scour test, the water flow rate and temperature were recorded once every minute using a MadgeTech Process 101 data logger and a MicroTemp data logger. Testing commenced by gradually increasing the water flow into the system until the target flow rate was achieved (within five minutes of commencing the test). Background and effluent sampling began five minutes after adding water to the system. Sampling of background and effluent was completed as per the removal efficiency test. An effluent grab sample was taken once every two minutes, starting after achieving the target flow rate, until a total of 15 effluent samples were taken. A total of eight background water samples were collected at evenly spaced intervals throughout the scour test.

3.5 Light Liquid Re-Entrainment Simulation Test

The objective of this test was to assess whether light liquids captured in the SciClone^{$^{\text{IM}}$} are effectively retained at design flow rates. The test used low density polyethylene (LDPE) plastic beads as a surrogate for light liquids. The specifications of the LDPE beads are provided in **Table 4**. Since the density of the beads is similar to that of motor oil, the beads mimic the behaviour of light liquids trapped in a hydrodynamic separator.

Manufacturer	Dow Chemical
Product Name	DOWLEX [™] 2517 Polyethylene Resin
Batch Number	D204F5D01E
Density	0.9166 g/cm ³
Bulk Density	0.56074 g/cm ³

Table 4 LDPE Bead Specifications

This test was run with clean water and with the false floor set at 50% of the maximum recommended sediment storage depth to ensure that the hydrodynamics of the SciCloneTM were representative of an average condition. For the test, the SciCloneTM was pre-loaded to its maximum recommended oil storage capacity, 15.4 gallons, with LDPE beads.

The potential for oil re-entrainment and washout was determined at five flow rates, ranging from 25% to 125% MTFR, increased in 5-minute intervals. Flow rates were recorded once every 30 seconds over the duration of the test and maintained within $\pm 10\%$ of the target flow rate with a COV of less than 0.03. The time to increase the flow initially, and from one rate to the next, did not exceed 1 minute.

All effluent during the test was screened for the entire duration of the test. The screen mesh size used ensured that all plastic beads washed out of the SciCloneTM were retained on the screens while allowing water to pass through. The way the LDPE beads were collected and quantified ensured that they were associated with the flow rate interval in which they were washed out. Beads that washed out during a transition flow were associated with the higher target flow rate.

The volume, mass, and percentage of plastic beads washed out of the $SciClone^{TM}$ were determined for each flow rate.

4. **Performance Claims**

The following are the performance claims made by Bio Clean Environmental Services and/or established via the laboratory testing conducted for the SciClone[™] Hydrodynamic Separator.

Total Suspended Solids (TSS) Removal Rate

The TSS removal rate of the SciCloneTM using sediment with a median particle size (d_{50}) of 112 µm was determined using the weighted method specified by the NJDEP HDS MTD protocol. Based on a MTFR of 0.70 cfs, the SciCloneTM achieved a weighted TSS removal rate, reported as Suspended Sediment Concentration (SSC) per the NJDEP protocol, of at least 80%.

Maximum Treatment Flow Rate (MTFR).

The SciCloneTM unit had a total sedimentation area of 12.6 ft² and a maximum treatment flow rate (MTFR) of 0.70 cfs (315 gpm), which corresponds to a surface loading rate of 25 gpm/ft² of sedimentation area.

Maximum Sediment Storage Depth and Volume

The maximum sediment storage depth is 18" which equates to 18.8 ft^3 of sediment storage volume. A sediment storage depth of 9" corresponds to 50% full storage capacity (9.4 ft^3).

Effective Treatment/Sedimentation Area

The effective treatment area is 12.6 ft^2 .

Detention Time and Wet Volume

The wet volume for the SciCloneTM is 470 gallons. The detention time of the SciCloneTM is dependent upon flow rate. The minimum design detention time, calculated by dividing the treatment volume by the MTFR of 315 gpm, is 89.5 seconds.

Light Liquid Retention

Based on the laboratory testing using polyethylene beads as a surrogate for light liquids, the SciCloneTM can retain a minimum of 98.7% (on a mass basis) of trapped light liquids up to a flow rate of 100% MTFR and 89.1% at 125% MTFR.

5. Supporting Documentation

To support the performance claims, copies of the laboratory test reports, including all collected and measured data; all data from performance evaluation test runs; spreadsheets containing original data from all performance test runs; all pertinent calculations; etc. were made available to NJCAT for review. It was agreed that as long as such documentation could be made available upon request that it would not be prudent or necessary to include all this information in this verification report. All supporting documentation will be retained securely by GHL and has been provided to NJCAT.

5.1 Removal Efficiency

A total of 5 removal efficiency testing runs were completed in accordance with the NJDEP HDS protocol. The target flow rate ranged from 25 - 125% MTFR and the target influent sediment concentration was 200 mg/L. The results from all 5 runs were used to calculate an annualized weighted removal efficiency for the SciCloneTM.

The total water volume and average flow rate per run were calculated from the data collected by the flow data logger, one reading every minute. The average influent sediment concentration for each test flow was determined by mass balance. The amount of sediment fed into the auger feeder during dosing, and the amount remaining at the end of a run, was used to determine the amount of sediment fed during a run. The sediment mass was corrected for the mass of the six feed rate samples taken during the run. The mass of the sediment fed was divided by the volume of water that flowed through the SciCloneTM during dosing to determine the average influent sediment concentration for each run.

Six feed rate samples were collected at evenly spaced intervals during the run to ensure the rate was stable. The COV of the samples had to be < 0.10 per the NJDEP protocol. The feed rate samples were also used to calculate an influent concentration in order to double check the concentration calculated by mass balance.

The average effluent sediment concentration was adjusted for the background sediment concentration. In cases where the reported background sediment concentration was less than 2.3 mg/L (the method quantitation limit), 2 mg/L was used in calculating the adjusted effluent concentration.

Removal efficiency for each test run was computed as follows:

$$Removal Efficiency (\%) = \begin{pmatrix} \frac{Average Influent}{Concentration} & Adjusted Average}{Concentration} \\ \frac{Average Influent}{Concentration} \end{pmatrix} \times 100\%$$

The data collected for each removal efficiency run is presented below.

25% MTFR

Runtime	Sai	mpling Schedule	
(min)	Sediment Feed	Background	Effluent
0	1		
18.91		1	1
19.91			2
20.91	2	2	3
39.81			4
40.81		3	5
41.81	3		6
60.72		4	7
61.72			8
62.72	4	5	9
81.62			10
82.62		6	11
83.62	5		12
102.53		7	13
103.53			14
104.53	6	8	15
105.53]	End of Testing	
	MTD Detention Time = set Sediment Sampling		

Table 5 Sampling Schedule - 25% MTFR

_		Water Flow	Maximum Water					
Run Parameters	Target	Actual	Difference	COV	Temperature (°F)			
	78.8	78.9	0.13%	0.006	64.2			
QA/QC Limit			±10%	0.03	80			
Q	-	-	PASS	PASS	PASS			

Table 6 Water Flow and Temperature - 25% MTFR

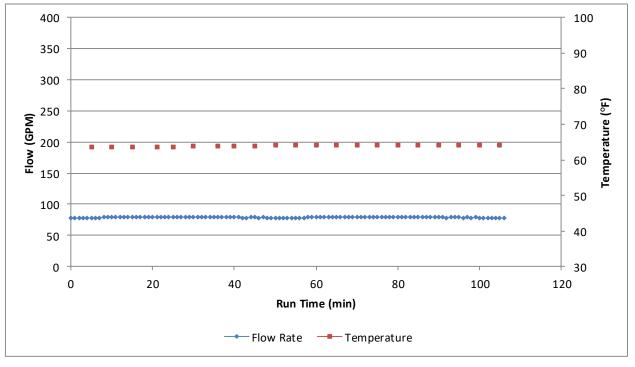


Figure 11 Water Flow and Temperature - 25% MTFR

Sediment Feed	l Rate (g/min)	Sediment Mass Balance				
1	59.404	Starting Weight of Sediment	58.081			
2	60.125	(lbs.)	38.081			
3	61.024	Recovered Weight of Sediment 43.850				
4	62.398	(lbs.)	45.850			
5	60.995	Mass of Sediment Used (lbs.)	14.231			
6	62.439	Volume of Water Through	7,860			
Average	61.064	MTD During Dosing (gal)	7,800			
COV	0.020	Average Influent Sediment Concentration (mg/L)	204.7*			
QA/QC Limit	0.10 PASS	QA/QC Limit	180 – 220 mg/L PASS			

Table 7 Sediment Feed Rate Summary – 25% MTFR

*Corrected for sediment feed rate samples

		Suspended Sediment Concentration (mg/L)													
Sample #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	6.9	7.4	6.5	6.9	7.4	6.6	6.9	7.5	6.7	7.3	7.5	7.9	6.7	6.8	7.3
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	4.9	5.4	4.5	4.9	5.4	4.6	4.9	5.5	4.7	5.3	5.5	5.9	4.7	4.8	5.3
Averag	e Adju Concent		fluent		5	5.1 mg/L Removal Efficiency 97.				97.5%	,				

Table 8 SSC and Removal Efficiency - 25% MTFR

Runtime	Sai	npling Schedule	
(min)	Sediment Feed	Background	Effluent
0	1		
9.95		1	1
10.95			2
11.95	2	2	3
21.91			4
22.91		3	5
23.91	3		6
33.86		4	7
34.86			8
35.86	4	5	9
45.81			10
46.81		6	11
47.81	5		12
57.76		7	13
58.76			14
59.76	6	8	15
60.76]	End of Testing	
	MTD Detention Time = et Sediment Sampling		

Table 9 Sampling Schedule - 50% MTFR

Table 10	Water Flow and	l Temperature -	50% MTFR
I dole IV	ruce i ion and	· i cimperature	

Run Parameters Target Actu	Water Flow	Rate (GPM)		Maximum Water	
	Target	Actual	Difference	COV	Temperature (°F)
	157.5	157.0	- 0.32%	0.010	64.4
QA/QC Limit			±10%	0.03	80
<u> </u>	-	-	PASS	PASS	PASS

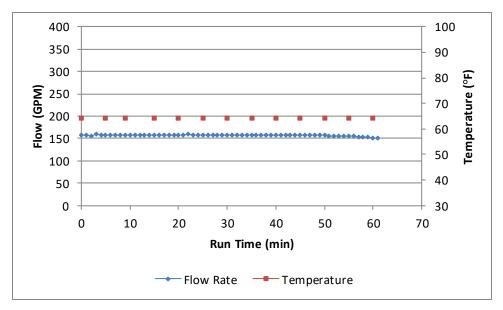


Figure 12 Water Flow and Temperature - 50% MTFR

Sediment Feed	l Rate (g/min)	Sediment Mass Balance				
1	120.296	Starting Weight of Sediment	62.26			
2	119.098	(lbs.)	02.20			
3	122.968	Recovered Weight of Sediment	45.91			
4	123.317	(lbs.)	43.91			
5	122.352	Mass of Sediment Used (lbs.)	16.35			
6	124.900	Volume of Water Through	9 607			
Average	122.155	MTD During Dosing (gal)	8,607			
COV	0.017	Average Influent Sediment Concentration (mg/L)	205.3*			
QA/QC Limit	QA/QC Limit 0.10 PASS		180 – 220 mg/L PASS			

Table 11 Sediment Feed Rate Summary – 50% MTFR

*Corrected for sediment feed rate samples

		Suspended Sediment Concentration (mg/L)													
Sample #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	28.8	28.1	28.4	29.0	29.4	31.4	28.8	28.9	26.4	28.5	27.9	30.2	33.2	30.9	31.8
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	26.8	26.1	26.4	27.0	27.4	29.4	26.8	26.9	24.4	26.5	25.9	28.2	31.2	28.9	29.8
Averag (e Adju Concent		fluent			27.4			Removal Efficiency				86.6%		

Table 12 SSC and Removal Efficiency - 50% MTFR

75% MTFR

Runtime	Sa	mpling Schedule	
(min)	Sediment Feed	Background	Effluent
0	1		
6.89		1	1
7.89			2
8.89	2	2	3
15.77			4
16.77		3	5
17.77	3		6
24.66		4	7
25.66			8
26.66	4	5	9
33.54			10
34.54		6	11
35.54	5		12
42.43		7	13
43.43			14
44.43	6	8	15
45.34		End of Testing	
	MTD Detention Time = get Sediment Sampling		

Table 13 Sampling Schedule - 75% MTFR

		Water Flow		Maximum Water	
Run Parameters	Target	Actual	Difference	COV	Temperature (°F)
	236.6	234.7	-0.80%	0.009	64.8
QA/QC Limit			±10%	0.03	80
QA/QC Linin	-	-	PASS	PASS	PASS

Table 14 Water Flow and Temperature - 75% MTFR

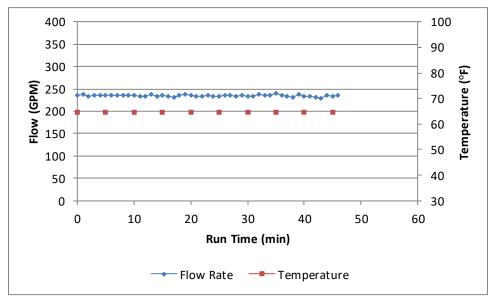


Figure 13 Water Flow and Temperature - 75% MTFR

Sediment Fee	l Rate (g/min)	Sediment Mass Balance				
1	170.186	Starting Weight of Sediment	72.95			
2	169.005	(lbs.)	12.95			
3	170.214	Recovered Weight of Sediment	55.96			
4	169.504	(lbs.)	55.90			
5	171.289	Mass of Sediment Used (lbs.)	16.99			
6	169.844	Volume of Water Through	9,355			
Average	170.007	MTD During Dosing (gal)	9,555			
COV	0.005	Average Influent Sediment Concentration (mg/L)	191.3*			
QA/QC Limit	0.10 PASS	QA/QC Limit	180 – 220 mg/L PASS			

Table 15 Sediment Feed Rate Summary – 75% MTFR

*Corrected for sediment feed rate samples

	Suspended Sediment Concentration (mg/L)														
Sample #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	46.0	47.4	46.2	44.8	52.0	51.7	55.2	48.4	51.5	57.1	54.2	53.2	51.7	49.6	51.0
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	44.0	45.4	44.2	42.8	50.0	49.7	53.2	46.4	49.5	55.1	52.2	51.2	49.7	47.6	49.0
Average Adju	sted Ef	fluent C	oncentr	ation	48.7 mg/L		Removal Efficiency				74.6%				

Table 16 SSC and Removal Efficiency - 75% MTFR

100% MTFR

Runtime	Sa	mpling Schedule	
(min)	Sediment Feed	Background	Effluent
0	1		
5.14		1	1
6.14			2
7.14	2	2	3
12.29			4
13.29		3	5
14.29	3		6
19.43		4	7
20.43			8
21.43	4	5	9
26.57			10
27.57		6	11
28.57	5		12
33.72		7	13
34.72			14
35.72	6	8	15
36.38		End of Testing	
	MTD Detention Time = et Sediment Sampling		

Table 17 Sampling Schedule - 100% MTFR

		Water Flow		Maximum Water	
Run Parameters	Target	Actual	Difference	COV	Temperature (°F)
	315.0	310.6	-1.40	0.008	64.9
QA/QC Limit			±10%	0.03	80
QA/QC Linin	-	-	PASS	PASS	PASS

Table 18 Water Flow and Temperature - 100% MTFR

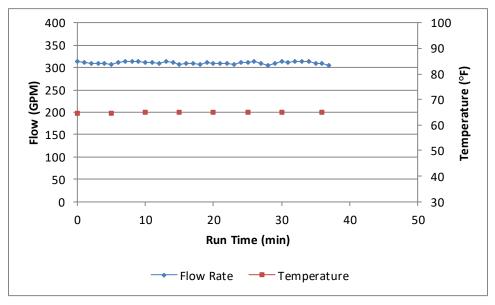


Figure 14 Water Flow and Temperature - 100% MTFR

Sediment Fee	l Rate (g/min)	Sediment Mass Balance				
1	238.018	Starting Weight of Sediment	63.43			
2	235.121	(lbs.)	03.43			
3	240.393	Recovered Weight of Sediment	44.26			
4	237.182	(lbs.)	44.20			
5	236.349	Mass of Sediment Used (lbs.)	19.17			
6	239.425	Volume of Water Through	10,056			
Average	237.748	MTD During Dosing (gal)	10,030			
COV	0.008	Average Influent Sediment Concentration (mg/L)	203.4*			
QA/QC Limit	0.10 PASS	QA/QC Limit	180 – 220 mg/L PASS			

Table 19 Sediment Feed Rate Summary – 100% MTFR

*Corrected for sediment feed rate samples

	Suspended Sediment Concentration (mg/L)														
Sample #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	68.9	66.7	59.6	75.0	69.2	70.0	73.3	74.1	71.6	72.9	71.3	75.1	73.4	78.8	72.6
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	66.9	64.7	57.6	73.0	67.2	68.0	71.3	72.1	69.6	70.9	69.3	73.1	71.4	76.8	70.6
-	e Adjusted Effluent oncentration 69.5 n		9.5 mg/.	L	. Removal Efficiency					<mark>65.8%</mark>					

Table 20 SSC and Removal Efficiency - 100% MTFR

125% MTFR

Runtime	Sai	mpling Schedule	
(min)	Sediment Feed	Background	Effluent
0	1		
4.08		1	1
5.08			2
6.08	2	2	3
10.16			4
11.16		3	5
12.16	3		6
16.24		4	7
17.24			8
18.24	4	5	9
22.32			10
23.32		6	11
24.32	5		12
28.41		7	13
29.41			14
30.41	6	8	15
30.91]	End of Testing	
	MTD Detention Time = get Sediment Sampling		

Table 21 Sampling Schedule - 125% MTFR

_		Water Flow		Maximum Water	
Run Parameters	Target	Actual	Difference	Temperature (°F)	
	393.8	388.6	-1.32%	0.009	65.1
QA/QC Limit	-	-	±10%	0.03	80 DASS
			PASS	PASS	PASS

Table 22 Water Flow and Temperature - 125% MTFR

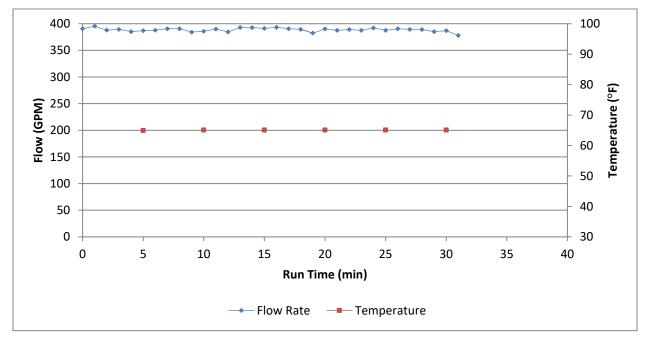


Figure 15 Water Flow and Temperature - 125% MTFR

Sediment Fee	d Rate (g/min)	Sediment Mass Balance				
1	295.648	Starting Weight of Sediment	62.62			
2	295.912	(lbs.)	63.63			
3	293.050	Recovered Weight of Sediment	43.30			
4	300.450	(lbs.)	43.30			
5	297.978	Mass of Sediment Used (lbs.)	20.33			
6	297.430	Volume of Water Through	10.941			
Average	296.745	MTD During Dosing (gal)	10,841			
COV	0.008	Average Influent Sediment Concentration (mg/L)	203.0*			
QA/QC Limit	0.10 PASS	QA/QC Limit	180 – 220 mg/L PASS			

Table 23 Sediment Feed Rate Summary – 125% MTFR

*Corrected for sediment feed rate samples

		Suspended Sediment Concentration (mg/L)													
Sample #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent	84.2	83.2	94.6	96.6	89.4	89.2	99.7	92.5	95.2	99.0	98.8	95.2	100	94.0	98.4
Background	2		2		2		2		2		2		2		2
Adjusted Effluent	82.2	81.2	92.6	94.6	87.4	87.2	97.7	90.5	93.2	97.0	96.8	93.2	98.0	92.0	96.4
Average A Cor	Adjustec ncentrat		nt	t 92.0				Removal Efficiency					54.7%		

Table 24 SSC and Removal Efficiency - 125% MTFR

Annualized Weighted Removal Efficiency

The annualized weighted removal efficiency for sediment in stormwater has been calculated using the rainfall weighting factors provided in the NJDEP laboratory test protocol. The SciCloneTM Hydrodynamic Separator annual weighted removal for a MTFR of 315 gpm is 80.6%, as shown in **Table 25.**

%MTFR	Removal Efficiency (%)	Annual Weighting Fact	Weighted Removal Efficiency (%)
25	97.5	0.25	24.4
50	86.6	0.30	26.0
75	74.6	0.20	14.9
100	65.8	0.15	9.87
125	54.7	0.10	5.47
Α	80.6%		

Table 25 Annualized Weighted Removal Efficiency for SciClone[™] Model SC-4

5.2 Scour

Scour testing was conducted in accordance with Section 4 of the NJDEP Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation MTD. Testing was conducted at a target flow rate of 630 gpm, 200% of the maximum treatment flow rate (MTFR).

In preparation for the scour test, the sump of the SciCloneTM was cleaned out to remove all of the accumulated sediment from the previous removal efficiency testing. A false floor was installed 4 inches below the depth of the 50% maximum sediment storage height. The sump was then loaded with scour test sediment so that when levelled, the sediment formed a layer at least 4 inches thick, confirmed by measuring the sediment thickness with a yard stick. After sediment loading, the sump was filled with water and allowed to sit for 89 hours.

Scour testing began by gradually increasing the flow rate to the target flow within a 5-minute period. Effluent and background samples were taken from the same locations as for the removal efficiency testing, starting 5 minutes after flow was initiated. The sampling frequency is summarized in Table **26**.

 Table 26 Scour Test Sampling Frequency

Sample/	Run Time (min.)															
Measurement Taken	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Effluent		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Background	Х		Х		Х		Х		Х		Х		Х		Х	

Note: The Run Time of 0 minutes was the time that the 1st background sample was taken, just after achieving the target flow.

Water flow rate and water temperature measured during the scour testing are shown in **Table 27** and on **Figure 16**.

		Water Flow	Maximum Water		
Run Parameters	Target	Actual	Difference	COV	Temperature (°F)
	630	630.2	0.0032 %	0.005	72
QA/QC Limit	_		±10%	0.03	80
····	-	-	PASS	PASS	PASS

Table 27 Water Flow and Temperature - Scour Test

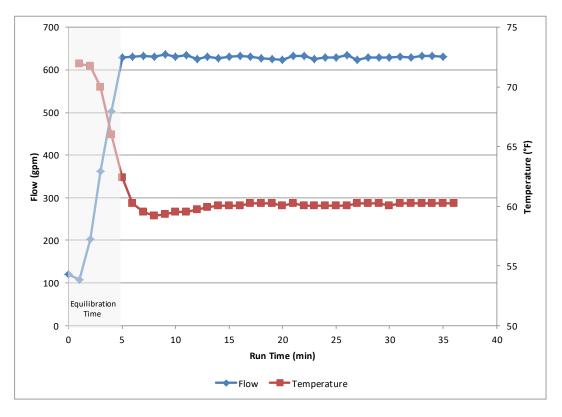


Figure 16 Water Flow and Temperature - Scour Test

The effluent and background SSC results are reported in **Table 28**. The adjusted effluent concentration was calculated as:

Adjusted Effluent Concentration
$$\left(\frac{mg}{L}\right)$$
 = Initial Concentration – Background Concentration

The SSC method reporting limit was 2.3 mg/L. Any results below this value were reported as 2 mg/L for calculation purposes. For effluent samples that did not have a corresponding background sample, the background value was interpolated from the previous and subsequent samples. The

average adjusted effluent concentration was 0.2 mg/L; therefore, when operated at 200% of the MTFR, the SciCloneTM meets the criteria for online use.

		Scour Suspended Sediment Concentration (mg/L)														
Sample #		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effluent		2	2	2	2	2	2.3	2	2	2.4	2.6	2.3	2	2.6	2.9	2.5
Background	2		2		2		2		2		2		2.6		2	
Adjusted Effluent		0	0	0	0	0	0.3	0	0	0.4	0.6	0	0	0.3	0.9	0.5
Average Adjusted Effluent Concentration										0.2 1	ng/L					

Table 28 Suspended Sediment Concentrations for Scour Test

5.3 Light Liquid Re-Entrainment

For the test, the SciCloneTM had a false floor in place, set to represent 50% of the maximum recommended sediment storage depth, and the unit was pre-filled with clean water. The volume of beads added was 15.4 gallons, equivalent to 32.7 kg (72.1 lbs). The material was weighed into buckets and poured into the SciCloneTM on the influent side of the Oil/Floatables Skimmer. To prevent the beads from traveling up the inlet pipe, a piece of acrylic sheet was placed over the mouth of the inlet and wedged in place. The acrylic sheet was pulled at the start of the test, immediately after the pump was started. The loaded SciCloneTM is illustrated in **Figure 17**.

During the test, the effluent was screened through a mesh that captured any of the scoured beads (**Figure 18**). The captured beads were separated according to the scoured flow rate.

Following the test, the beads were dried in non-ferrous containers in an oven set at 103 °C until a constant weight was achieved. The mass, volume (calculated based on bulk density) and percentage of the pre-loaded beads scoured was determined for each flow rate.

Figure 17 SciClone[™] Inlet Loaded with LDPE Beads

Figure 18 Screening of Scoured LDPE Beads

The flow rates for all five runs were recorded using a data logger, recording at 30 second intervals; the flow data is summarized in **Table 29**. The water temperature for the duration of the test was 74 °F.

Target Flow Rate	Ac	tual Flow (g	gpm)	COV	QA/QC Compliance
gpm	Min	Max	Average	COV	(COV < 0.03 and avg. ± 10% of target)
78.8	77.3	83.8	80.1	0.022	Pass
157.5	153.8	158.3	155.9	0.010	Pass
236.7	236.5	239.6	237.9	0.004	Pass
315.0	313.9	318.7	316.0	0.004	Pass
393.8	390.2	396.1	392.5	0.005	Pass

Table 29 Light Liquid Re-Entrainment Testing Water Flow Rates

The recovered scoured beads were dried to constant weight. **Table 30** summarizes the amount of beads scoured and captured at each flow rate. For flow rates up to the designed MTFR (315 gpm), the SciCloneTM had retained 98.7% of the added LDPE beads. At 125% of the MTFR, the SciCloneTM retained 89.1% of the LDPE beads.

Target Flow	Amount of Scoured Beads									
Rate (GPM)	Ma	ISS	Volu	me *	% of Total	Compared atting 0/				
(GI MI)	g	lbs	L	gal	Beads Scoured	Cumulative %				
78.8	0.44	0.0010	0.0008	0.0002	0.001	0.001				
157.5	0.23	0.0005	0.0004	0.0001	0.001	0.002				
236.7	131.86	0.2907	0.2352	0.0621	0.403	0.405				
315.0	300.38	0.6622	0.5357	0.1415	0.918	1.323				
393.8	3144.62	6.9327	5.6080	1.4815	9.608	10.930				
Total	3577.53	7.8871	6.3880	1.6854	10.930					

Table 30 Amount of Scoured Beads Based on Flow Rate

* Determined from bead bulk density

6. Maintenance Plans

As with all stormwater BMPs inspection and maintenance on the SciCloneTM Hydrodynamic Separator is necessary. Stormwater regulations require that all BMPs be inspected and maintained to ensure they are operating as designed to allow for effective pollutant removal and provide protection to receiving water bodies. It is recommended that inspections be performed multiple times during the first year to assess site specific loading conditions. This is recommended because pollutant loading can vary greatly from site to site. Variables such as nearby soil erosion or construction sites, winter sanding of roads, amount of daily traffic and land use can increase pollutant loading on the system. The first year of inspections can be used to set inspection and maintenance intervals for subsequent years. Without appropriate maintenance, a BMP can exceed its storage capacity which can negatively affect its continued performance in removing and retaining captured pollutants. The SciCloneTM Operation & Maintenance Manual is available at: http://www.biocleanenvironmental.com

Inspection Equipment

Following is a list of equipment to allow for simple and effective inspection of the SciClone[™] Hydrodynamic Separator:

- Bio Clean Environmental Inspection Form (contained in O&M Manual).
- Flashlight.
- Manhole hook or appropriate tools to access hatches and covers.
- Appropriate traffic control signage and procedures.
- Measuring pole and/or tape measure.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections of the system.

Inspection Steps

The core to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the SciCloneTM Hydrodynamic Separator are quick and easy. As mentioned above, the first year should be seen as the maintenance interval establishment phase. During the first year more frequent inspections should occur in order to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long-term inspection and maintenance interval requirements.

The SciClone[™] Separator can be inspected though visual observation without entry into the system. All necessary pre-inspection steps must be carried out before inspection occurs, especially traffic control and other safety measures to protect the inspector and near-by pedestrians from any dangers associated with an open access hatch or manhole. Once these access covers have been safely opened the inspection process can proceed:

• Prepare the inspection form by writing in the necessary information including project name, location, date & time, unit number and other info (see inspection form).

- Observe the inside of the system through the access hatches. If minimal light is available and vision into the unit is impaired utilize a flashlight to see inside the system.
- Look for any out of the ordinary obstructions in the inflow pipe, sump chamber, or outflow pipe. Write down any observations on the inspection form.
- Through observation and/or digital photographs estimate the amount of floatable debris accumulated on the influent side of the oil/floatables skimmer. Record this information on the inspection form. Next utilizing a tape measure or measuring stick estimate the amount of sediment accumulated in the sump. Record this depth on the inspection form.
- Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Maintenance Indicators

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

- Missing or damaged internal components.
- Obstructions in the system or its inlet or outlet.
- Excessive accumulation of floatable in the sump chambers in which the length and width of the chambers behind oil/floatables skimmer is fully impacted extending down more than 9".
- Excessive accumulation of sediment in the sump chamber of more than 18" in depth.

Maintenance Equipment

It is recommended that a vacuum truck be utilized to minimize the time required to maintain the SciClone[™] Separator:

- Bio Clean Environmental Maintenance Form (contained in O&M Manual).
- Flashlight.
- Manhole hook or appropriate tools to access hatches and covers.
- Appropriate traffic control signage and procedures.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine maintenance of the system.
- Vacuum truck (with pressure washer attachment preferred).

Maintenance Procedures

It is recommended that maintenance occurs at least three days after the most recent rain event to allow for drain down of any associated upstream detention systems. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Cleaning of the sump chamber can be performed from the finish surface without entry into the vault utilizing a vacuum truck. Once all safety measures have been set up cleaning of the sump chamber can proceed as follows:

• Using an extension on a vacuum truck position the hose over the opened access hatch and lower into the center of the sump chamber on the inlet side of the oil/floatables

skimmer. Remove all floating debris, standing water and sediment from the sump chamber. Access to the bottom of the sump chamber is unimpeded. The vac hose can be moved from side-to-side to fully remove sediments at the corners. A power washer can be used to assist if sediments have become hardened and stuck to the walls or the floor of the chamber. Repeat the same procedure on the effluent side of the oil/floatables skimmer to remove any remaining sediment. This completes the maintenance procedure required on the sump chamber and the SciCloneTM Separator.

- The last step is to close and replace all access hatches and remove all traffic control.
- All removed debris and pollutants shall be disposed of following local and state requirements.
- Disposal requirements for recovered pollutants and spent cartridges may vary depending on local guidelines. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste.
- In the case of damaged components, replacement parts can be ordered by the manufacturer.

7. Scaling

Based on the test results of the SciCloneTM Hydrodynamic Separator (model SC-4), the capacity of other model sizes has been determined based on a standard ratio of MTFR to effective treatment area.

Model #	Diameter (ft)	Maximum Treatment Flow Rate ¹ (cfs)	Surface Area (sq ft)	Storage Capacity (cu ft)
SC-3	3	0.39	7.1	11
SC-4	4	0.70	12.6	19
SC-5	5	1.09	19.6	29
SC-6	6	1.57	28.3	42
SC-7	7	2.14	38.5	58
SC-8	8	2.80	50.2	75
SC-9	9	3.54	63.6	95
SC-10	10	4.37	78.5	118
SC-11	11	5.29	95.0	142
SC-12	12	6.30	113.0	170
SC-13	13	7.39	132.7	199
SC-14	14	8.57	153.9	231

 Table 31 Scaling of SciCloneTM Models

¹Based on a verified loading rate of 25 gpm/ft² for sediment with a mean particle size of 112 μ m and an annualized weighted TSS removal of at least 80% using the method specified in the current NJDEP HDS protocol.

8. Statements

The following attached pages are signed statements from the manufacturer (Bio Clean Environmental), the independent testing lab (Good Harbour Labs), and NJCAT. These statements are included to document that the requirements of the New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device (January 25, 2013) were followed with the exceptions as noted.

Date: 7/7/2017

To Whom It May Concern,

We are providing this letter as our statement certifying that the protocol titled "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device" (NJDEP HDS Protocol, January 2013) has been strictly followed with these exceptions. A larger particle size distribution (PSD) was used having a mean of 112 microns (d50) which replicates an OK110 PSD. A light liquid retention test was added to test the system's ability to retain hydrocarbons

With exception of the above deviations, we certify that all requirements and criteria were met and/or exceeded during testing of the SciClone[™] Hydrodynamic Separator.

If you have any questions please contact us at your convenience.

Sincerely,

Zachariha J. Kent Director of Research & Development Bio Clean, a Forterra Company.

Signature: ______ Zack Kent ____ Date:____ 7/7/2017

July 7, 2017

Dr. Greg Williams, Managing Director Good Harbour Laboratories Ltd. 2596 Dunwin Dr., Mississauga, ON

Dr. Richard Magee Executive Director, New Jersey Corporation for Advancement of Technology

RE: Third party testing of the SciClone using Agsco 110

Dear Dr. Magee,

This purpose of this letter is to confirm that all of the testing described in the report SciClone™ Hydrodynamic Separator - Performance Verification of Sediment Capture and Light Liquid Retention (July 2017) was conducted at the Good Harbour Laboratories (GHL) facility in Mississauga, Ontario, in May and June of 2017.

The sediment and plastic beads used were delivered directly to GHL and were under our control at all times. Prior to testing we confirmed that the instrumentation being used was calibrated and in good working order. Testing was done and log books were maintained as required by our ISO 9001:2008 certification. GHL staff verified all sample bottle labels and confirmed the chains of custody for all samples sent to Maxxam.

After the testing was completed GHL wrote the test report, except for the sections not related to performance testing, and separately reviewed all of the data, calculations and conclusions contained in the report. I can confirm that the report accurately represents what we observed. Furthermore, we have retained copies of the background data, analytical reports and calibration certificates, as well as the calculations, in an independent and secure location on the GHL server. This supporting information is available to you upon request.

Sincerely,

They Willi

Greg Williams, Ph.D., P.Eng.

CC: Zach Kent, Bio Clean Environmental Services Inc.

Good Harbour Laboratories 11:905.696.7276 | 13:905.696.7279 /AY:2596 Dunwin Drive, Mississauga, ON L5L 115 VV:VVgoodharbourlabs.com

July 7, 2017

Dr. Richard Magee, ScD., P.E., BCEE Executive Director New Jersey Corporation for Advanced Technology (NJCAT)

Re: Performance Verification of the Bio Clean Environmental Services SciCLone HDS using Agsco 110

Dear Dr. Magee,

Good Harbour Laboratories was contracted by Bio Clean Environmental Servicers to test the performance of their SciClone using a coarser material than that specified by the New Jersey Department of Environmental Protection (NJDEP) Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device (January, 2013). While the testing was not intended for submission to NJDEP the intent was to follow best practices for independent verification of the results.

Good Harbour Laboratories (GHL), a wholly owned subsidiary of Monteco Ltd., is an independent hydraulic test facility located in Mississauga, Ontario, Canada. GHL provides testing and verification services for numerous water treatment technologies including stormwater treatment devices. GHL has had several different stormwater equipment manufacturers as clients and we have accumulated considerable experience in testing these devices. In order to be able to make this experience available to as many potential clients as possible, GHL is careful to maintain its position as an independent service provider.

With the above in mind I, the undersigned, on behalf of GHL and Monteco, confirm:

-that I do not have any conflict of interest in connection to the contracted testing. Potential conflict of interest may arise in particular as a result of economic interests, political or national affinities, family or emotional ties, or any other relevant connection or shared interest;

-that I will inform NJCAT, without delay, of any situation constituting a conflict of interest or potentially giving rise to a conflict of interest;

Good Harbour Laboratories 17: 905.696.7276 | الله: 905.696.7279 (۲ 2596 Dunwin Drive, Mississauga, ON LSL 115) بينيوندوodharbourlabs.com

-that I have not granted, sought, attempted to obtain or accepted and will not grant, seek, attempt to obtain, or accept any advantage, financial or in kind, to or from any party whatsoever, constituting an illegal or corrupt practice, either directly or indirectly, as an incentive or reward relating to the award of the contract.

Sincerely,

Date

Jillions

Dr. Greg Williams, P.Eng. Managing Director Good Harbour Laboratories

CC: Zach Kent, Bio Clean Environmental Services

Center for Environmental Systems Stevens Institute of Technology One Castle Point Hoboken, NJ 07030-0000

August 20, 2017

Mr. Zach J. Kent VP of Product Development & Regulatory Compliance Bio Clean Environmental Services Inc. 398 Via El Centro Oceanside, CA 92058

Dear Mr. Kent,

Based on my review, evaluation and assessment of the testing on the SciCloneTM Hydrodynamic Separator (Model SC-4) conducted by Good Harbour Laboratories, Ltd., Mississauga, Ontario, Canada, the test protocol requirements contained in the "New Jersey Laboratory Testing Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device" (NJDEP HDS Protocol) were met with two exceptions. The deviations from the protocol were: 1) the use of a coarser test sediment, and 2) the addition of a light liquid entrainment test.

Test Sediment Feed -The mean PSD of the test sediment utilized for removal efficiency testing was significantly coarser than the PSD criteria established by the NJDEP HDS protocol (112 μ m vs 75 μ m).

Removal Efficiency Testing – The New Jersey annualized weighted TSS removal efficiency was calculated to be 80.6% at an MTFR of 0.70 cfs for the coarser sediment.

Scour Testing – Scour testing was conducted with the NJDEP scour test sediment PSD requirement met, at a flow rate meeting the 200% MTFR requirement. The results qualified the SciCloneTM Hydrodynamic Separator for online installation.

All other criteria and requirements of the NJDEP protocol were met. These include: flow rate measurements COV <0.03; test sediment influent concentration COV <0.10; test sediment influent

concentration within 10% of the targeted value of 200 mg/L; influent background concentrations <20 mg/L; water temperature <80 °F; and adjusted scour effluent concentration <20 mg/L.

An additional test, based on the Canadian Environmental Technology Verification (CETV) *Procedure for Laboratory Testing of Oil-Grit Separators, June 6, 2014 – Version 3.0*, was conducted to demonstrate the light liquid retention capability of the SciCloneTM Hydrodynamic Separator.

Sincerely,

Behand & Magee

Richard S. Magee, Sc.D., P.E., BCEE Executive Director

9. References

- 1. NJDEP 2013. New Jersey Department of Environmental Protection Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advanced Technology. January 25, 2013.
- 2. NJDEP 2013. New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device. January 25, 2013.
- 3. Canadian Environmental Technology Verification Program (CETV) Procedure for Laboratory Testing of Oil-Grit Separators, June 6, 2014 Version 3.0.
- 4. GHL Laboratory Notebook: A016, pp. 59 125.

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Nonpoint Pollution Control Division of Water Quality 401-02B Post Office Box 420 Trenton, New Jersey 08625-0420 609-633-7021 Fax: 609-777-0432 http://www.state.nj.us/dep/dwq/bnpc home.htm

BOB MARTIN Commissioner

December 21, 2017

Zachariha J. Kent Director of Research & Development BioClean Environmental Services, Inc. P O Box 869 Oceanside, CA 92049

Re: MTD Lab Certification SciClone[™] Hydrodynamic Separator by BioClean Environmental Services, Inc. On-line Installation

TSS Removal Rate 50%

Dear Mr. Kent:

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7 (c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). BioClean Environmental Services, Inc. has requested an MTD Laboratory Certification for the SciCloneTM Hydrodynamic Separator (SciClone).

The project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advance Technology" dated January 25, 2013. The applicable protocol is the "New Jersey Laboratory Testing Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device" dated January 25, 2013.

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix (dated December 2017) for this device is published online at http://www.njcat.org/verification-process/technology-verification-database.html.

KIM GUADAGNO

CHRIS CHRISTIE Governor

Lt. Governor

The NJDEP certifies the use of the SciClone by BioClean Environmental Services, Inc. at a TSS removal rate of 50% when designed, operated, and maintained in accordance with the information provided in the Verification Appendix and the following conditions:

- 1. The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5.
- 2. The SciClone shall be installed using the same configuration reviewed by NJCAT and shall be sized in accordance with the criteria specified in item 6 below.
- 3. This SciClone cannot be used in series with another MTD or a media filter (such as a sand filter) to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- Additional design criteria for MTDs can be found in Chapter 9.6 of the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual, which can be found online at www.njstormwater.org.
- 5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the SciClone. A copy of the maintenance plan is attached to this certification. However, it is recommended to review the maintenance website at <u>http://www.biocleanenvironmental.com/wp-content/uploads/2017/07/Operations-</u>Maintenance-SciClone-1.pdf for any changes to the maintenance requirements.
- 6. Sizing Requirement:

The example below demonstrates the sizing procedure for the SciClone:

Example: A 0.25-acre impervious site is to be treated to 50% TSS removal using a SciClone. The impervious site runoff (Q) based on the New Jersey Water Quality Design Storm was determined to be 0.79 cfs.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was based on the following: time of concentration = 10 minutes i = 3.2 in/hr (page 5-8, Fig. 5-3 of the NJ Stormwater BMP Manual) c = 0.99 (runoff coefficient for impervious) Q = ciA = 0.99 x 3.2 x 0.25 = 0.79 cfs

Given the site runoff is 0.79 cfs and based on Table 1 below, the SciClone Model SC-5 with a MTFR of 1.09 cfs could be used for this site to remove 50% of the TSS from the impervious area without exceeding the MTFR.

The sizing table corresponding to the available system models is noted below. Additional specifications regarding each model can be found in the Verification Appendix under Tables A-1 and A-2.

SciClone Model	Maximum Treatment Flow Rate (cfs)	Treatment Area (ft ²)	Hydraulic Loading Rate (gpm/ft ²)	50% Maximum Sediment Storage (ft ³)
SC-3	0.39	7.1	25	5.3
SC-4	0.70	12.6	25	9.4
SC-5	1.09	19.6	25	14.7
SC-6	1.57	28.3	25	21.2
SC-7	2.14	38.5	25	28.9
SC-8	2.80	50.2	25	37.7
SC-9	3.54	63.6	25	47.7
SC-10	4.37	78.5	25	58.9
SC-11	5.29	95.0	25	71.2
SC-12	6.30	113.0	25	84.8
SC-13	7.39	132.7	25	99.5
SC-14	8.57	153.9	25	115.4

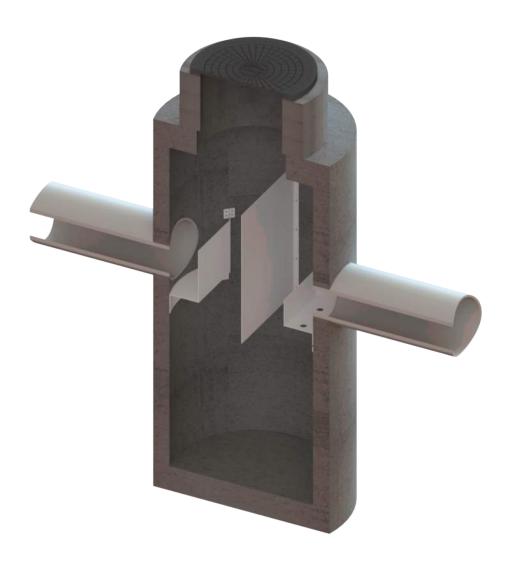
Table 1 SciClone Sizing Information

A detailed maintenance plan is mandatory for any project with a Stormwater BMP subject to the Stormwater Management Rules, N.J.A.C. 7:8. The plan must include all of the items identified in the Stormwater Management Rules, N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Measures.

If you have any questions regarding the above information, please contact Mr. Shashi Nayak of my office at (609) 633-7021.

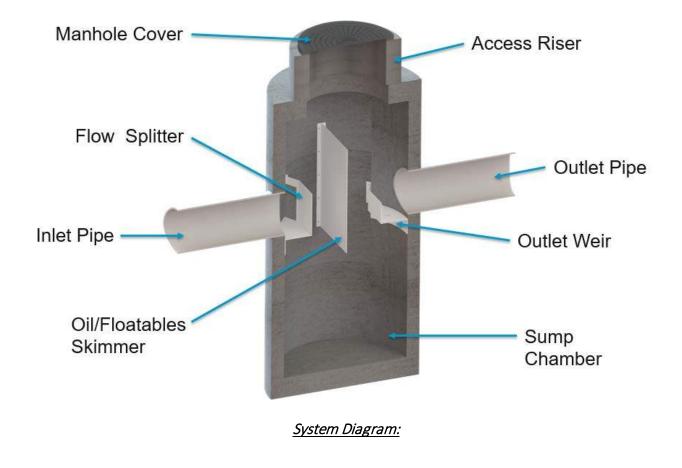
Sincerely,

James J. Murphy, Chief Bureau of Nonpoint Pollution Control


Attachment: Maintenance Plan

cc: Chron File Richard Magee, NJCAT Vince Mazzei, NJDEP - DLUR Ravi Patraju, NJDEP - BES Gabriel Mahon, NJDEP - BNPC Shashi Nayak, NJDEP - BNPC

OPERATION & MAINTENANCE


Bio Clean Environmental Services, Inc. 398 Via El Centro Oceanside, CA 92058 www.BioCleanEnvironmental.com p: 760.433.7640 f: 760.433.3176

OPERATION & MAINTENANCE

The SciCLONE[™] Hydrodynamic Separator is designed to remove high levels of trash, debris, sediments and hydrocarbons. Its efficient design and construction maximize longevity and minimize maintenance requirements. The simple design of the system allows for unimpeded access for quick and easy maintenance. The SciCLONE[™] is able to effectively capture and store sediment with no maintenance or loss of treatment capacity for a several years based on annual average loading in most regions.

Yet, as with all stormwater BMPs inspection and maintenance on the SciCLONE[™] Hydrodynamic Separator is necessary. Stormwater regulations require that all BMPs be inspected and maintained to ensure they are operating as designed to allow for effective pollutant removal and provide protection to receiving water bodies. It is recommended that inspections be performed multiple times during the first year to assess site-specific loading conditions. This is recommended because pollutant loading can vary greatly from site to site. Variables such as nearby soil erosion or construction sites, winter sanding of roads, amount of daily traffic and land use can increase pollutant loading on the system. The first year of inspections can be used to set inspection and maintenance intervals for subsequent years. Without appropriate maintenance a BMP can exceed its storage capacity which can negatively affect its continued performance in removing and retaining captured pollutants.

Inspection Equipment

Following is a list of equipment to allow for simple and effective inspection of the SciCLONE™ Separator:

- Bio Clean Environmental Inspection Form (contained within this manual).
- Flashlight.
- Manhole hook or appropriate tools to remove access hatches and covers.
- Appropriate traffic control signage and procedures.
- Measuring pole and/or tape measure.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections or maintenance of the system.

Inspection Steps

The core to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the SciCLONE[™] Separator are quick and easy. As mentioned above the first year should be seen as the maintenance interval establishment phase. During the first year more frequent inspections should occur in order to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long-term inspection and maintenance interval requirements.

The SciCLONE[™] Separator can be inspected though visual observation without entry into the system. All necessary pre-inspection steps must be carried out before inspection occurs, especially traffic control and other safety measures to protect the inspector and near-by pedestrians from any dangers associated with an open access hatch or manhole. Once these access covers have been safely opened the inspection process can proceed:

- Prepare the inspection form by writing in the necessary information including project name, location, date & time, unit number and other info (see inspection form).
- Observe the inside of the system through the access hatches. If minimal light is available and vision into the unit is impaired utilize a flashlight to see inside the system.
- Look for any out of the ordinary obstructions in the inflow pipe, sump chamber, or outflow pipe. Write down any observations on the inspection form.
- Through observation and/or digital photographs estimate the amount of floatable debris accumulated on the influent side of the oil/floatables skimmer. Record this information on the inspection form. Next utilizing a tape measure or measuring stick estimate the amount of sediment accumulated in the sump. Record this depth on the inspection form.

• Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Maintenance Indicators

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

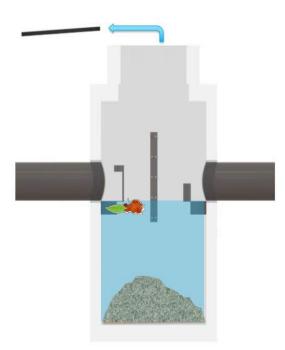
- Missing or damaged internal components.
- Obstructions in the system or its inlet or outlet.
- Excessive accumulation of floatable in the sump chambers in which the length and width of the chambers behind oil/floatables skimmer is fully impacted extending down more than 9".
- Excessive accumulation of sediment in the sump chamber of more than 18" in depth.

Maintenance Equipment

It is recommended that a vacuum truck be utilized to minimize the time required to maintain the SciCLONE[™] Separator:

- Bio Clean Environmental Maintenance Form (contained in O&M Manual).
- Flashlight.
- Manhole hook or appropriate tools to access hatches and covers.
- Appropriate traffic control signage and procedures.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine maintenance of the system.
- Vacuum truck (with pressure washer attachment preferred).

Maintenance Procedures

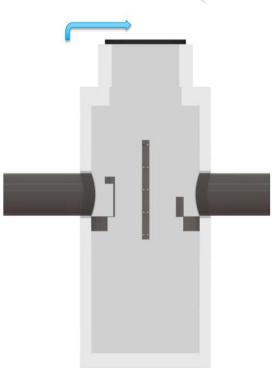

It is recommended that maintenance occurs at least three days after the most recent rain event to allow for drain down of any associated upstream detention systems. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Cleaning of the sump chamber can be performed from finish surface without entry into the vault utilizing a vacuum truck. Once all safety measures have been set up cleaning of the sump chamber can proceed as followed:

- Remove all access hatches (requires traffic control and safety measures to be completed prior).
- Using an extension on a vacuum truck position the hose over the opened access hatch and lower into the center of the sump chamber on the inlet side of the oil/floatables skimmer.

Remove all floating debris, standing water and sediment from the sump chamber. Access to the bottom of the sump chamber is unimpeded. The vac hose can be moved from side-toside to fully remove sediments at the corners. A power washer can be used to assist if sediments have become hardened and stuck to the walls or the floor of the chamber. Repeat the same procedure on the effluent side of the oil/floatables skimmer to remove any remaining sediment. This completes the maintenance procedure required on the sump chamber and the SciCLONE[™] Separator.

- The last step is to close up and replace all access hatches and remove all traffic control.
- All removed debris and pollutants shall be disposed of following local and state requirements.
- Disposal requirements for recovered pollutants may vary depending on local guidelines. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste.
- In the case of damaged components, replacement parts can be ordered by the manufacture.

Maintenance Sequence



Remove Access Hatches Set Up Vacuum Truck to Clean the Sump Chamber.

Insert Vacuum Hose On the Inlet Side of the Oil/Floatables Skimmer and Vacuum Out All Trash, Sediment and Standing Water.

Insert Vacuum Hose On the Outlet Side of the Oil/Floatables Skimmer and Vacuum Out Any Remaining Sediment.

Replace Access Hatches and Remove Traffic Control and Safety Equipment.

For Maintenance Services or Information Please Contact Us At: 760-433-7640 Or Email: info@biocleanenvironmental.com

SciCLONE[™]

Project N	ame				For	Office Use Only
Project A	ddress			(city) (Zip Code)	(Bey	viewed By)
Owner / I	Management Company				().(Dat	
Contact			Phone () –		ice personnel to complete section to the left.
Inspector	Name		Date	//	Time	AM / PM
Type of I	nspection	e 🗌 Follow Up 🗌	Complaint 🗌 Stor	Storm Event in	Last 72-hours?	🗌 No 📋 Yes
Weather	Condition		Additional Notes	3		
Site Map #	GPS Coordinates of Vault	Model #	Oils and Floatables Accumilation on Inlet Side of Oil/Floatables Skimmers (lbs)	Sediment Accumulation In Sump Chamber (lbs) & Depth (inches)	Structural Note	Operational Per Manufactures' Specifications (If not, why?)
	Lat:					
	Long:					
	Lat:					
	Long:					
	Lat:					
	Long:					
Commen	ts:					

NJCAT TECHNOLOGY VERIFICATION

Isolator[®] Row PLUS StormTech, LLC

July 2020

Table of Contents	i
List of Figures	ii
List of Tables	iii
1. Description of Technology	1
2. Laboratory Testing	2
2.1 Test Setup	2
2.2 Test Sediment	
2.3 Sediment Removal Efficiency Testing	8
2.4 Sediment Mass Loading Capacity	9
3. Supporting Documentation	9
4. Testing Results	9
4.1 Flow Rate	
4.2 Water Temperature	
4.3 Head	
4.4 Sediment Concentration and Removal Efficiency	
4.5 Sediment Mass Loading	
5. Performance Verification	20
6. Design Limitations	21
7. Maintenance Plan	
8. Statements	23
Specifications	29

Table of Contents

List of Figures

Figure 1 Schematic of the StormTech Isolator Row PLUS System	1
Figure 2 Isolator Row PLUS Detail	2
Figure 3 Schematic of the Isolator Row PLUS Test Configuration	3
Figure 4 Photograph of Flow Meter	4
Figure 5 Photograph of Sediment Delivery Port	4
Figure 6 Side View Photograph of Isolator Row PLUS Test Box	4
Figure 7 Top View Photograph of Isolator Row PLUS Test Box	5
Figure 8 Photograph of Background Sampling Port	6
Figure 9 Average Particle Size Distribution of Test Sediment Verified by ECS	7
Figure 10 Removal Efficiency vs. Sediment Mass Loading	19
Figure 11 Driving Head vs. Sediment Mass Loading	_20

List of Tables

Table 1 Sampling Schedule for the Isolator Row PLUS Tests	6
Table 2 Particle Size Distribution of Test Sediment as Analyzed by ECS	8
Table 3 Flow Rate and Temperature Summary for All Runs	10
Table 4 Sediment Maximum Head (inches) for All Runs	11
Table 5 Background TSS Concentrations	12
Table 6 Sediment Rate Measurements for Runs 1-10	13
Table 7 Sediment Rate Measurements for Runs 11-16	14
Table 8 Effluent Sample TSS Concentrations	15
Table 9 Drawdown Sample TSS Concentrations	16
Table 10 Removal Efficiency Drawdown Losses	17
Table 11 Summary of Sediment Concentrations and Removal Efficiency	18
Table 12 Sediment Mass Loading Summary	19
Table 13 Isolator Row PLUS Model Sizes and New Jersey Treatment Capacities	21

1. Description of Technology

The Isolator[®] Row PLUS (**shown in Figures 1 and 2**) is the first row of StormTech chambers that is surrounded with filter fabric and connected to a closely located manhole for easy access. The Isolator Row PLUS provides for settling and filtration of sediment as stormwater rises in the chamber and ultimately passes through the filter fabric. The open-bottom chambers allow stormwater to flow out of the chambers, while sediment is captured in the Isolator Row PLUS.

A single layer of proprietary Advanced Drainage Systems (ADS) PLUS fabric is placed between the angular base stone and the Isolator Row PLUS chamber. The geotextile provides the means for stormwater filtration and provides a durable surface for maintenance operations. A non-woven fabric is placed over the chambers. See link to O&M Manual (pg. 23) for installation pictures.

The Isolator Row PLUS is designed to capture the "first flush" runoff and offers the versatility to be sized on a volume basis or a flow basis. An upstream manhole not only provides access to the Isolator Row PLUS but includes a high/low concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row PLUS bypass through a manifold to the other chambers. This is achieved with either an elevated bypass manifold or a high-flow weir. This creates a differential between the Isolator Row PLUS row of chambers and the manifold to the rest of the system, thus allowing for settlement time in the Isolator Row PLUS. After Stormwater flows through the Isolator Row PLUS and into the rest of the StormTech chamber system it is either infiltrated into the soils below or passed at a controlled rate through an outlet manifold and outlet control structure. Since this technology fits under the infiltration basin BMP in the New Jersey Stormwater BMP Manual, it is not eligible for NJDEP MTD certification.

Figure 1 Schematic of the StormTech Isolator Row PLUS System

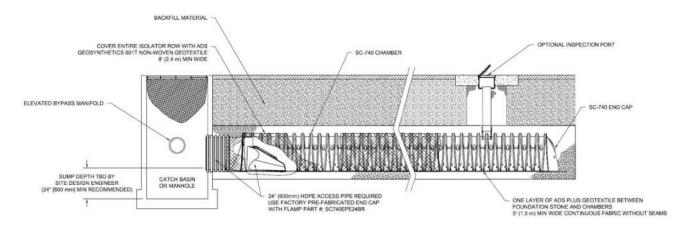
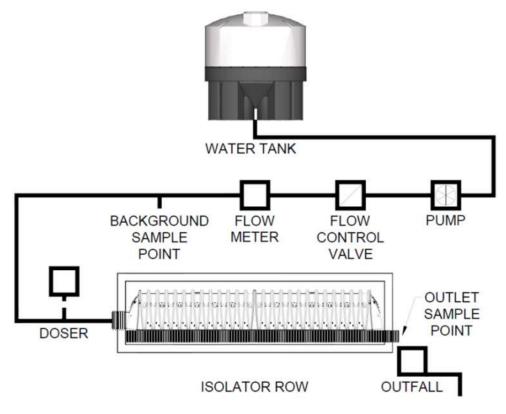


Figure 2 Isolator Row PLUS Detail

2. Laboratory Testing

Beginning in January 2020, two overlapping StormTech SC-740 Isolator Row PLUS commercial size chambers were installed at the BaySaver Laboratory in Mount Airy, Maryland, to evaluate the performance of Isolator Row PLUS on Total Suspended Solid (TSS) removal. Boggs Environmental Consultants (BEC) provided third-party review and oversight of all testing and data collection procedures, in accordance with the *New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January 2013)*. All sediment concentration samples were analyzed by Fredericktowne Labs (FTL) using ASTM D3977-97 (2019). All sediment PSD analysis was performed by Environmental Consulting Services (ECS), using the methodology of ASTM D422-63 (2007). Prior to the start of testing, a Quality Assurance Project Plan (QAPP), revision dated January 9, 2020, was submitted to, and approved by the New Jersey Corporation for Advanced Technology (NJCAT).


2.1 Test Setup

The testing system, shown in **Figure 3**, consisted of a source tank, feed pump, flow control valve, flow meter, background sample port, screw-auger sediment feeder (doser), and an Isolator Row PLUS test system. This verification report only addresses the performance of the Isolator Row PLUS and not the entire StormTech system, since this is the row designed to remove sediment until the system goes into bypass.

Testing Procedure

The water source was potable water from the Town of Mount Airy Water & Sewer Department, obtained from an onsite tap, which served as the raw water supply for the testing system. Municipal tap water was used to fill the source tank, and then pumped to the system. Flow rate was controlled to the target of 225 gpm by a flow control valve. An inline flow meter (FloCat MFE electromagnetic flow meter) was used to measure the flow, and a SeaMetrics DL76 data logger (pictured in **Figure 4**) recorded the flow at one-minute intervals. The test sediment was

introduced to the inlet stream via a 12 -inch dosing port teed with a 12-inch influent line (pictured in **Figure 5**) located approximately 4 feet upstream of the system inlet. The dosing rate was controlled by a screw-auger Velodyne Barracuda 1000A volumetric feeder with a ½ HP variable speed motor. The dosing rate was set to deliver an amount of sediment that, when mixed with the water from the source tank, would produce influent water with a target test sediment concentration of 200 mg/L.

Figure 3 Schematic of the Isolator Row PLUS Test Configuration

The Isolator Row PLUS was installed inside a watertight 16'L x 6'W x 4'H test box (pictured in **Figures 6 and 7**). The Isolator Row PLUS is an arch-shaped stormwater detention/retention sediment collection and filtering device, sealed with end caps, with a 12"-inch inlet pipe welded into the upstream end cap. A ramp apparatus (patent pending) was attached to the inside of the chamber end cap to provide a smooth transition from pipe invert to fabric bottom. It is configured to improve chamber function performance over time by distributing sediment and debris that would otherwise collect at the inlet. It also serves to improve the fluid and solid flow back into the inlet pipe during maintenance and cleaning, and to guide cleaning and inspection equipment back into the inlet pipe when complete.

The chambers were installed on a 10-inch base of washed, angular, crushed stone, (#57, ³/₄ inch blue stone) containing an 8-inch perforated underdrain pipe running the length of the test box, penetrating the wall of the downstream end of the test box to the discharge collection point. An ADS non-woven geotextile fabric was placed over the top of the chamber row. The chambers were then backfilled with the washed crushed stone up to the top of the chamber elevation.

Additionally, an opening was cut into the top of one chamber to allow for visual monitoring and head measurement. No bypass or weir was installed upstream of the test box.

The test flow entered the chamber via the influent pipe and flowed across the filter fabric, filling the row. The water then flowed through the filter fabric, driven by hydrostatic head. The treated water exited the test box via the underdrain.

Figures 4 and 5 Photographs of Flow Meter and Sediment Delivery Port

Figure 6 Side View Photograph of Isolator Row PLUS Test Box

Figure 7 Top View Photograph of Isolator Row PLUS Test Box

Test Unit and Scaling Explanation

The Isolator Row PLUS used in this test was constructed from two (2) overlapping polypropylene open-bottom StormTech SC-740 chambers (one shortened by 5-in. to enable fitting into the test box), two (2) SC-740 end caps, a ramp apparatus and one layer of ADS PLUS geotextile fabric. The chamber floor filtration area (effective filtration treatment area, EFTA) was approximately 54.5 ft². (calculated using an average contact width inside the chamber of 45 in). The target test flow was 225 gpm. The calculated hydraulic loading rate, flow rate/EFTA is 4.13 gpm/ft² and the ratio of effective sedimentation treatment area to EFTA is 1.0. Given these data, one can effectively scale the test results for all commercial systems.

Sample Collection

The grab sampling method was used for all sample collection by sweeping a wide-mouth 1-L plastic bottle through the free-discharge effluent stream, to ensure the full cross section of the flow was sampled. The start time for each run was recorded.

The sampling schedule is provided in **Table 1**. The detention time for the Isolator Row PLUS unit operating at 20 inches hydrostatic head (maximum head tested) is 2.1 minutes. To comply with the NJDEP Filter Protocol, after initiating and stabilizing the flow rate at the MTFR and beginning sediment feed, effluent sampling did not begin until the filtration MTD has been in operation for a minimum of three detention times.

Background water samples were collected upstream of the doser (shown in **Figures 3 and 8**) in correspondence with the odd-numbered effluent samples (i.e., Samples E1, E3, E5 at t = 9, 20, 31 minutes).

Time (min)	Sample(s)	Time (min)	Sample(s)
0	S1	22	S3
9	E1, BG1	31	E5, BG3
10	E2	32	E6
11	S2	33	Stop Flow
20	E3, BG2	N/A	DDA
21	E4	N/A	DDB

Table 1 Sampling Schedule for the Isolator Row PLUS Tests

NOTE: S = sediment rate; E = effluent; BG = background; DD = drawdown

Figure 8 Photograph of Background Sampling Port

Two evenly-volume-spaced drawdown samples, DDA and DDB, were taken after the flow and sediment feed to the unit had been stopped.

Sediment injection rates were measured using a stopwatch and the mass collected measured on a calibrated scale once at the very beginning of the run and twice more during the run. A fourth sediment rate sample was taken after the run was finished as an internal check but was not included in the calculations for the report. The duration of each run was 33 minutes.

A Chain of Custody (COC) form was used for each test run to record sampling date and time for externally analyzed samples. Copies of these forms were maintained by BaySaver Laboratory and FTL. Sample bottles were labeled to identify the test run number and sample type (e.g., background, effluent), corresponding to the sample identification on the COC form. BEC was present during each test run and witnessed labeling, completion of COC forms, and packaging of

samples for delivery to the external laboratory (FTL). Each person taking or relinquishing possession of the samples was required to sign a COC form before samples changed hands.

Other Instrumentation and Measurement

Water temperature was recorded every minute by a HOBO data logger placed in the source water tank of the test system. The water level in the Isolator Row PLUS was recorded every 5 minutes by visual observation of a yardstick mounted through the observation port on top of the first chamber. Run and sampling times were measured using a digital timer and a stopwatch, respectively.

2.2 Test Sediment

The test sediment had the particle size distribution (PSD) presented in **Figure 9**. The test sediment was custom-blended using various commercially available silica sands. The resulting blended sediment met the specification for the NJDEP Filter Protocol. The test sediment was batched, labeled, and stored in covered bins for the duration of this project. Under the supervision of BEC, twenty-one subsamples, taken from various locations within the test sediment containers, were composited. From the composite, three random samples were taken for PSD and moisture content analyses, which were performed by ECS, using the methodology of ASTM method D422-63 (2007).

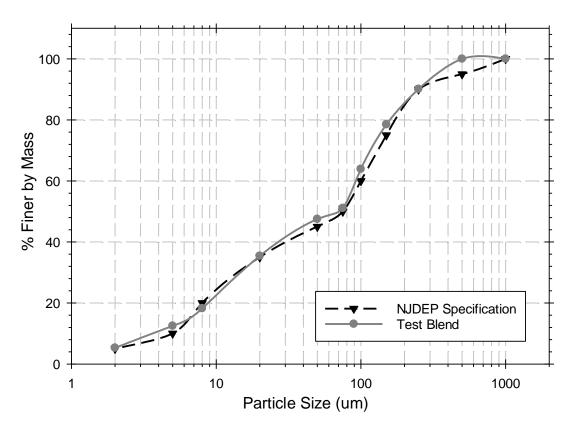


Figure 9 Average Particle Size Distribution of Test Sediment Verified by ECS

The PSD test analysis results are summarized in **Table 2**. ECS results showed that 17-19% of the particles were less than 8 μ m and 89-90% of the particles were less than 250 μ m. The d₅₀ values (approximately 72 μ m) also indicated that there was no significant difference between the NJDEP target gradation and the ECS-verified gradation of the test sediment. Thus, the blended test sediment was found to meet the NJDEP particle size specification and was acceptable for use. ECS also analyzed the sediment samples for moisture. The average moisture content was 0.1%.

Particle Size		Test Blend	% Finer by M	ass Analyzed	by ECS
μm)	<u>NJ Blend A</u>	<u>NJ Blend B</u>	NJ Blend C	<u>Average</u>	NJDEP Specification (minimum % finer)
1000	100.0	100.0	100.0	100.0	98
500	100.0	100.0	100.0	100.0	93
250	90.3	89.8	90.2	90.1	88
150	79.3	78.1	78.1	78.5	73
100	66.0	63.2	62.7	63.9	58
75	52.0	50.9	50.3	51.1	50
50	47.5	47.7	47.4	47.5	43
20	35.9	36.0	34.3	35.4	33
8	18.6	18.7	17.4	18.2	18
5	13.0	13.0	11.6	12.5	8
2	5.5	5.4	5.1	5.3	3
d ₅₀	69 µm	72 µm	74 µm	72 µm	75 μm

Table 2 Particle Size Distribution of Test Sediment as Analyzed by ECS

2.3 Sediment Removal Efficiency Testing

Sediment removal efficiency testing adhered to the guidelines set forth in Section 5 of the NJDEP Laboratory Protocol for Filtration MTDs. The target flow through the system was 225 gpm, with a target sediment concentration of 200 mg/L. All samples were collected in clean, 1-L wide-mouth bottles. Three background samples were taken at 9, 20 and 31 minutes after the test began to ensure the supply water met the sediment concentration requirement. According to the NJDEP Filter Protocol, these background concentrations cannot exceed a TSS concentration of 20 mg/L.

The test sediment screw-auger feeder introduced the test sediment into the influent stream to achieve the target influent TSS concentration of 200 mg/L. According to the NJDEP Filter Protocol, this influent concentration must stay within 10% of target, allowing for a 180 mg/L to 220 mg/L influent concentration. The feeder was calibrated prior to each run. In order to confirm sediment feed rates during the test, in accordance with the NJDEP Filter Protocol, three samples of the test sediment were collected from the injection point (**Figure 3**, "Doser") into a clean one-liter container for verification of sediment feed rate, over an interval timed to the nearest second, with a minimum volume of 0.1 liter or a collection interval not exceeding one minute (whichever came first). The time was measured with a stopwatch. The samples were weighed to the nearest

milligram in the BaySaver Laboratory under the observation of BEC. The sediment feed rate coefficient of variance (COV) for the test sediment samples did not exceed 0.10. The mass from the sediment feed rate measurement samples was subtracted from the total mass introduced to the system when removal efficiency was calculated.

Effluent sampling was performed by the grab sampling method during each run, according to the schedule in **Table 1**. When the test sediment feed was interrupted for test sediment measurements, the next effluent samples were collected after at least three detention times had elapsed. During the drawdown period, two evenly volume-spaced samples were collected after flow and sediment feed had stopped. All sediment concentration samples were analyzed by Fredericktowne Labs (FTL) using ASTM D3977-97 (2019) "Standard Test Methods for Determining Sediment Concentrations in Water Samples."

2.4 Sediment Mass Loading Capacity

The sediment mass loading capacity testing occurred as a continuation of removal efficiency testing, with the target for influent concentration remaining at 200 mg/L, and all aspects of testing procedures kept the same to ensure consistency throughout. The sediment mass loading capacity of the Isolator Row PLUS is defined per the protocol as the point at which the cumulative mass removal drops below 80.0%. For this testing program, the sediment mass loading testing was stopped prior to that point (after Run 16), because it was incorrectly assumed this criterion was reached. Thus, the mass loading is defined as mass loaded into the unit through the end of Run 16.

3. Supporting Documentation

The Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from NJCAT states that copies of the laboratory test reports, all data from performance evaluation test runs, original data, pertinent calculations, and documentation of any maintenance activities that occur during the testing process are to be included in this section. All of this information has been provided to NJCAT and is available upon request. It is not practical to include it in this report.

4. Testing Results

A total of 16 removal efficiency testing runs were completed in accordance with the NJDEP filter protocol. The target flow and influent sediment concentration were 225 gpm and 200 mg/L, respectively. The results from all 16 runs were used to calculate the overall cumulative removal efficiency of the Isolator Row PLUS.

4.1 Flow Rate

Flow was monitored by an inline flow meter (FloCat MFE electromagnetic flow meter) and recorded by a SeaMetrics DL76 data logger every minute during each run. For each run, the flow was maintained within 10% of the target (202.5 - 247.5 gpm). The average flow for all 16 runs was 226.1 gpm. The flow data with coefficient of variance (COV) values for all 16 runs are summarized in **Table 3**.

4.2 Water Temperature

Temperatures were recorded every minute by a HOBO water level logger (U20L-04). On average for all runs, the water temperature during testing was 45.7 degrees Fahrenheit, with a maximum of 52.2 degrees Fahrenheit, meeting the NJDEP Filter Protocol requirement to be below 80 degrees Fahrenheit. Data are summarized in **Table 3**.

Run	Max Flow (gpm)	Min Flow (gpm)	Average Flow (gpm)	Flow COV	Flow Compliance (COV< 0.1)	Maximum Temperature (Fahrenheit)	NJDEP Temperature Compliance (< 80 F)
1	232.8	223.9	226.3	0.0078	Y	48.2	Y
2	228.9	218.6	220.8	0.0104	Y	51.5	Y
3	229.4	220.0	227.2	0.0094	Y	44.7	Y
4	230.2	218.7	223.2	0.0138	Y	40.5	Y
5	228.7	216.9	222.2	0.0103	Y	44.7	Y
6	227.6	217.0	224.2	0.0115	Y	46.7	Y
7	229.7	221.9	226.4	0.0092	Y	44.6	Y
8	230.3	222.2	226.8	0.0089	Y	43.5	Y
9	233.2	218.4	225.6	0.0136	Y	45.5	Y
10	232.2	219.7	228.4	0.0126	Y	44.7	Y
11	226.9	219.2	224.1	0.0088	Y	52.4	Y
12	232.2	222.1	226.9	0.0107	Y	48.5	Y
13	234.7	221.2	226.1	0.0109	Y	48.5	Y
14	231.9	223.4	228.7	0.0103	Y	45.6	Y
15	236.8	224.1	231.4	0.0131	Y	52.2	Y
16	232.5	221.3	229.0	0.0137	Y	47.8	Y
Average			226.1			45.7	
Max						52.2	

Table 3 Flow Rate and Temperature	e Summary for All Runs
--	------------------------

4.3 Head

The head level in the Isolator Row PLUS was recorded to the nearest 1/8 inch every five minutes, through visual observation of a yard stick mounted through the observation port of the first chamber. With each run, after the first several measurements, the head during the run remained the same or increased slightly over that of the previous run. The maximum head reached during all 16 runs was 18.75 inches. Maximum head for each run is summarized in **Table 4**.

Run	Maximum Head (inches)	Run	Maximum Head (inches)
1	9.00	9	17.50
2	12.00	10	18.00
3	14.00	11	17.25
4	15.25	12	18.00
5	15.75	13	18.25
6	16.25	14	18.50
7	17.50	15	18.75
8	17.25	16	18.75

Table 4 Maximum Head (inches) for All Runs

4.4 Sediment Concentration and Removal Efficiency

Background TSS

Municipal tap water was used as the water source during testing. The background TSS concentration for all runs was well below the 20 mg/L NJDEP Protocol limit. Background TSS concentrations for each run are provided in **Table 5**. The average background TSS concentration for each run was subtracted from the effluent and drawdown concentrations to provide adjusted figures, per the protocol.

Sediment Dosing Rate and Influent TSS

Influent TSS concentration was calculated by dividing the total mass of sediment added during a given run by the total volume of water flowing through the MTD during the addition of test sediment during that run. The volume of water flowing through the device during the run was calculated by multiplying the average measured flow by the time of sediment addition only. The average influent TSS was 204.2 mg/L, with individual run averages ranging from 195.9 to 216.7 mg/L. All values are within the target range of 200 ± 20 mg/L. **Tables 6 and 7** provide the measured sediment rates for each run, and the resulting calculated influent TSS concentration. In these tables, NJDEP Protocol compliance is defined as a TSS concentration in the range 180 - 220 mg/L and sediment feed rate COV < 0.1.

Run	BG TSS 9 min	BG TSS 20 min	BG TSS 31 min	Average	MDL
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	0.5	4	2	2.2	1.0
2	1	1	0.5	0.8	1.0
3	1	0.5	0.5	0.7	1.0
4	0.5	0.5	0.5	0.5	1.0
5	0.5	0.5	0.5	0.5	1.0
6	0.5	0.5	0.5	0.5	1.0
7	0.5	0.5	0.5	0.5	1.0
8	0.5	0.5	0.5	0.5	1.0
9	0.5	0.5	0.5	0.5	1.0
10	0.5	0.5	0.5	0.5	1.0
11	0.5	0.5	0.5	0.5	1.0
12	0.5	0.5	0.5	0.5	1.0
13	0.5	0.5	0.5	0.5	1.0
14	0.5	0.5	0.5	0.5	1.0
15	0.5	0.5	0.5	0.5	1.0
16	0.5	0.5	0.5	0.5	1.0

Table 5 Background TSS Concentrations

Note: In cases where the measured background TSS concentration was below the Minimum Detection Level (MDL) of 1.0 mg/L, half the MDL was reported for the background concentration.

Run	Run Time (min)	Sediment Weight (g)	Duration (s)	Sediment Feed Rate (g/min)	Influent Water Flow Rate (gpm)	Influent TSS Conc. (mg/L)	NJDEP Compliance	
	0	117.767	39.78	177.6				
1	11	110.674	40.16	165.4	226.2	202.9	Y	
	22	118.819	40.00	178.2	226.3	202.9	ř	
	cov			0.0418				
	0	114.921	39.91	172.8				
	11	106.158	39.96	159.4	220.0	100 5		
2	22	110.429	40.10	165.2	220.8	198.5	Y	
	cov			0.0404				
	0	117.364	39.85	176.7				
	11	116.700	39.90	175.5	1			
3	22	120.156	39.72	181.5	227.2	206.8	Y	
	cov			0.0179	1			
	0	121.043	39.79	182.5				
	11	125.058	39.88	188.2	223.2	223.2 216.7		
4	22	118.657	39.85	178.7			Y	
	cov			0.0261				
	0	111.624	40.03	167.3		215.0		
	11	117.883	40.00	176.8				
5	22	132.393	39.88	199.2	222.2		Y	
	cov	101.000	00100	0.0904				
	0	114.723	39.94	172.3				
	11	119.043	40.03	172.5				
6	22	117.644	40.28	175.2	224.2	206.6	Y	
	cov	117.011	10.20	0.0174				
	0	115.351	40.00	173.0				
	11	110.196	40.25	164.3				
7	22	114.603	40.00	171.9	226.4	198.1	Y	
	cov	111.005	10.00	0.0281				
	0	115.664	39.72	174.7				
	11	115.004	39.93	174.7	1			
8	22	110.840	39.82	167.0	226.8	201.5	Y	
	COV	110.040	55.02	0.0307	1			
	0	116.845	39.87	175.8				
	11	110.845	39.87	173.8	1			
9	22	114.133	39.81	172.0	225.6	205.2	Y	
		117.034	55.75		1			
	cov	111 206	20.57	0.0172				
	0	111.306	39.57	168.8	1			
10	11	119.680	39.81	180.4	228.4	203.0	Y	
	22	118.275	39.90	177.9				
	COV			0.0347				

Table 6 Sediment Rate Measurements for Runs 1-10

Run #	Run Time (min)	Sediment Weight (g)	Duration (s)	Sediment Feed Rate (g/min)	Influent Water Flow Rate (gpm)	Influent TSS Conc. (mg/L)	NJDEP Compliance
	0	114.505	39.90	172.2		207.8	Y
11	11	119.160	39.94	179.0	224.1		
	22	118.629	40.03	177.8	224.1	207.8	
	cov			0.0207			
	0	115.516	39.78	174.2			
12	11	118.805	39.87	178.8	226.9	208.8	Y
12	22	124.236	40.22	185.3	220.9	208.8	T
	cov			0.0311			
	0	114.776	39.78	173.1	226.1	198.0	
13	11	106.924	39.85	161.0			Y
15	22	115.083	39.69	174.0	220.1		'
	cov			0.0429			
	0	112.871	39.72	170.5		199.9	Y
14	11	116.869	39.84	176.0	228.7		
14	22	114.529	39.81	172.6	228.7		
	cov			0.0161			
	0	112.091	39.72	169.3		195.9	
15	11	112.200	39.81	169.1	231.4		Y
15	22	117.588	39.94	176.6	231.4		Т
	cov			0.0250			
	0	118.503	39.59	179.6			
16	11	116.834	39.78	176.2	229.0	202.3	Y
10	22	112.971	39.84	170.1	229.0		ř
	cov			0.0273			

 Table 7 Sediment Rate Measurements for Runs 11-16

Effluent TSS

During each run, grab samples were taken of the effluent according to the schedule in **Table 1**, and all TSS analyses were conducted by Fredericktowne Labs. For each run, the average effluent concentration was adjusted by subtracting the average background TSS concentration. The average adjusted effluent TSS concentration during testing was 39 mg/L, with individual run averages ranging from 32.0 to 45.5 mg/L. Effluent and adjusted effluent TSS concentrations for each run are given in **Table 8**.

Run	EFF TSS 9 min	EFF TSS 10 min	EFF TSS 20 min	EFF TSS 21 min	EFF TSS 31 min	EFF TSS 32 min	Mean	MDL	Adjusted Effluent TSS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	48	48	47	47	48	48	47.7	1.0	45.5
2	32	32	33	32	35	33	32.8	1.0	32.0
3	33	37	37	40	38	38	37.2	1.0	36.5
4	28	31	34	38	32	38	33.5	1.0	33.0
5	40	41	39	33	42	42	39.5	1.0	39.0
6	38	41	39	37	41	44	40.0	1.0	39.5
7	37	40	37	36	37	38	37.5	1.0	37.0
8	38	41	38	40	32	38	37.8	1.0	37.3
9	35	41	36	36	42	41	38.5	1.0	38.0
10	39	44	34	38	37	41	38.8	1.0	38.3
11	35	41	38	38	38	43	38.8	1.0	38.3
12	36	43	36	41	46	47	41.5	1.0	41.0
13	41	46	37	37	42	45	41.3	1.0	40.8
14	44	49	39	42	42	45	43.5	1.0	43.0
15	40	43	41	39	40	45	41.3	1.0	40.8
16	43	45	41	44	45	46	44.0	1.0	43.5

Table 8 Effluent Sample TSS Concentrations

Note: Adjusted effluent TSS concentration is the average effluent TSS concentration minus the average background TSS concentration (Table 5).

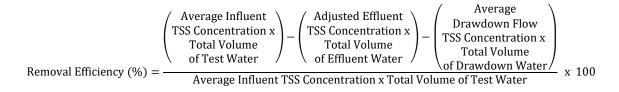
Drawdown TSS

According to the NJDEP Filter Protocol, the amount of sediment that leaves the filter during the drawdown period must be accounted for and documented. During each run, two evenly volume-spaced grab samples were taken of the drawdown, and all TSS analyses were conducted by Fredericktowne Labs. For each run, the average drawdown concentration was adjusted by subtracting the average background TSS concentration (**Table 9**).

Run	DDA	DDB	Average	MDL	Adjusted Drawdown TSS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	62	11	36.5	1.0	34.3
2	39	16	27.5	1.0	26.7
3	42	14	28.0	1.0	27.3
4	41	18	29.5	1.0	29.0
5	42	16	29.0	1.0	28.5
6	45	17	31.0	1.0	30.5
7	44	16	30.0	1.0	29.5
8	48	17	32.5	1.0	32.0
9	42	18	30.0	1.0	29.5
10	45	17	31.0	1.0	30.5
11	43	17	30.0	1.0	29.5
12	44	16	30.0	1.0	29.5
13	46	18	32.0	1.0	31.5
14	50	18	34.0	1.0	33.5
15	47	17	32.0	1.0	31.5
16	48	15	31.5	1.0	31.0

Table 9 Drawdown Sample TSS Concentrations

Note: Adjusted drawdown TSS concentration is the average drawdown TSS concentration minus the average background TSS concentration (Table 5).


In order to estimate the volume of water during drawdown, under observation by BEC, the unit was filled prior to all testing with clean water and the drawdown volume as a function of time was calculated from the height of the flow stream in the effluent pipe as a function of time. Total drawdown volume was estimated at 268.6 gal at an operating head of 2.5 inches. This volume was used to determine the volume of the void space of the gravel bed, which was then used, along with the dimensions of the Isolator Row PLUS chambers, to calculate the drawdown volume for incremental head levels above 2.5 inches. Adjusted average drawdown TSS concentrations and drawdown losses are given in **Table 10**.

Run	Head Level at End of Run (in)	Drawdown Volume (gal)	Average Adjusted Drawdown TSS Conc. (mg/L)	Total Sediment Lost During Drawdown (g)
1	9.00	285.2	34.3	37.1
2	12.00	354.2	26.7	35.7
3	14.00	403.3	27.3	41.7
4	15.25	432.8	29.0	47.5
5	15.75	443.9	28.5	47.9
6	16.25	454.2	30.5	52.4
7	17.50	476.0	29.5	53.2
8	17.00	468.2	32.0	56.7
9	17.25	472.3	29.5	52.7
10	17.75	476.0	30.5	55.0
11	17.25	472.3	29.5	52.7
12	17.5	476.0	29.5	53.2
13	18.00	482.4	31.5	57.5
14	18.25	484.9	33.5	61.5
15	18.50	486.8	31.5	58.1
16	18.25	484.9	31.0	56.9

Table 10 Drawdown Losses

Removal Efficiency Calculation

Removal efficiency was calculated using the following equation from the NJDEP Filter Protocol:

For each run, sediment concentrations of background, influent, effluent, and drawdown, as well as the calculated removal efficiency, are summarized in **Table 11**. As shown in this summary table, the Isolator Row PLUS demonstrated a cumulative sediment removal efficiency of 81.2% over the course of 16 test runs.

Run	Average Influent TSS (mg/L)	Influent Water Volume (gal)	Adjusted Average Effluent TSS (mg/L)	Effluent Water Volume (gal)	Adjusted Average Drain Down TSS (mg/L)	Drain Down Water Volume (gal)	Single Run Removal Efficiency (%)	Mass of Captured Sediment (g)	Cumulative Removal Efficiency (%)	
1	203	7166	46	6881	34	285	77.8	4282	77.8	
2	199	6993	32	6639	27	354	84.0	4415	80.8	
3	207	7197	37	6793	27	403	82.6	4654	81.4	
4	217	7068	33	6635	29	433	84.9	4923	82.3	
5	215	7037	39	6593	29	444	82.2	4705	82.3	
6	207	7097	40	6643	31	454	81.2	4504	82.1	
7	198	7169	37	6693	30	476	81.6	4386	82.0	
8	201	7184	37	6716	32	468	81.6	4473	82.0	
9	205	7147	38	6675	30	472	81.8	4539	82.0	
10	203	7235	38	6759	31	476	81.4	4523	81.9	
11	208	7096	38	6624	30	472	81.8	4567	81.9	
12	209	7185	41	6709	30	476	80.7	4584	81.8	
13	198	7162	41	6680	32	482	79.7	4277	81.6	
14	200	7242	43	6757	34	485	78.8	4318	81.4	
15	196	7329	41	6842	32	487	79.5	4320	81.3	
16	202	7254	44	6769	31	485	78.9	4384	81.2	
Ave.	204.2	7160	39	6713	31	447	81.2	4491	N/A	
Cumulative Mass Removed (g)							71854			
Cumu	Cumulative Mass Removed (lb)							158.4		
Total	Total Mass Loaded (Ib)							195.2		
Cumu	lative Rem	oval Efficie	ency (%)					81.2		

Table 11 Removal Efficiency Results

4.5 Sediment Mass Loading

Sediment mass loading for each run was approximately 12.2 lbs on average. These data are summarized in **Table 12**.

Sediment mass loading was calculated from the summation of the total sediment mass added during dosing in each run.

Run	Sediment Loading (lbs)	Cumulative Sediment Loading (lbs)	Run	Sediment Loading (lbs)	Cumulative Sediment Loading (lbs)
1	12.1	12.1	9	12.2	110.0
2	11.6	23.7	10	12.3	122.2
3	12.4	36.1	11	12.3	134.5
4	12.8	48.9	12	12.5	147.0
5	12.6	61.5	13	11.8	158.9
6	12.2	73.8	14	12.1	170.9
7	11.9	85.6	15	12.0	182.9
8	12.1	97.7	16	12.2	195.2

Table 12 Sediment Mass Loading Summary

Overall, a total of 195.2 lbs of sediment was loaded into the Isolator Row PLUS over the course of the 16 runs. Total captured mass over the 16 runs was 158.4 lbs (**Table 11**).

The relationship between removal efficiency and sediment mass loading is shown in **Figure 10**. The relationship between driving head and sediment mass loading is shown in **Figure 11**.

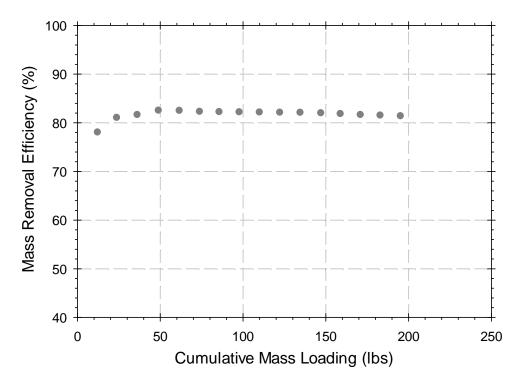


Figure 10 Removal Efficiency vs. Sediment Mass Loading

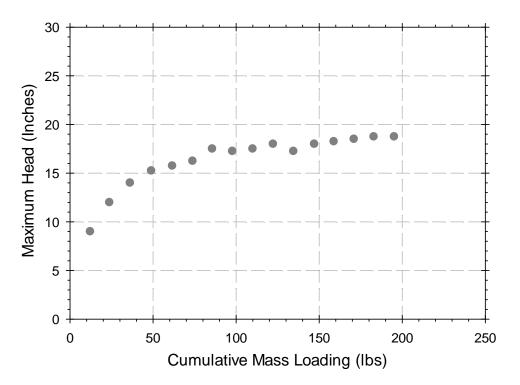


Figure 11 Driving Head vs. Sediment Mass Loading

5. Performance Verification

The Isolator Row PLUS used in this test, constructed from two (2) overlapping StormTech SC-740 chambers and one layer of ADS PLUS fabric, demonstrated a cumulative mass TSS removal efficiency of 81.2% and a sediment mass loading capacity of 3.58 lb./ft^2 (mass capture capacity of 2.91 lb./ft²) of geotextile fabric filtration area when operated with a driving head < 20 inches at a hydraulic loading rate of 4.13 gpm/ft² of geotextile fabric filtration area. The MTFR's and maximum allowable drainage area for other StormTech Isolator Row PLUS models are shown in **Table 13**.

Table 13 Isolator Row PLUS System Model Sizes and New Jersey Treatment Capacities

	Surface Loading Rate (gpm/ft ²) Single	Effective Filtration Treatment Area (ft ²) Single	MTFR (cfs) ¹ Single	Mass Loading Capacity (lbs) Single	Mass Capture Capacity (lbs) Single	Drainage Area (acres) Single		
Model	Chamber	Chamber	Chamber	Chamber	Chamber	Chamber		
StormTech SC-160	4.13	11.45	0.105	41.0	33.4	0.06		
StormTech		11110	0.100	11.0	3311	0.00		
SC-310	4.13	17.7	0.163	63.4	51.6	0.09		
StormTech SC-740	4.13	27.8	0.256	99.6	81.0	0.14		
StormTech DC-780	4.13	27.8	0.256	99.6	81.0	0.14		
StormTech MC-3500	4.13	42.9	0.395	153.7	125.0	0.21		
StormTech MC-4500	4.13	30.1	0.277	107.8	87.7	0.15		
 Based on 4.13 gpm/ft² of effective filtration treatment area. Drainage Area is based on the equation in the NJDEP Filter Protocol wherein drainage area is 								

calculated by dividing the pounds of mass captured by 600 lb/acre.

6. Design Limitations

Maximum Flow Rate

The StormTech Isolator Row PLUS unit has an MTFR of 0.501 cfs (225 gpm) and an effective filtration treatment area (EFTA) of 54.5 ft^2 (loading rate 4.13 gpm/ft²).

Slope

The StormTech Isolator Row PLUS is recommended for installation with little to no slope to ensure proper, consistent operation. Steep slopes should be reviewed by ADS/StormTech Engineering support.

Allowable Head Loss

There is an operational head loss associated with the StormTech Isolator Row PLUS. The head loss will increase over time due to the sediment loading to the system. Site-specific treatment flow rates, peak flow rates, pipe diameter, and pipe slopes should be evaluated to ensure there is appropriate head for the system to function properly.

Sediment Load Capacity

Based on laboratory testing results, the StormTech Isolator Row PLUS unit has a mass loading capacity of 195.2 lbs. while operating at a sediment removal efficiency of 81.2%; the total sediment load captured by the tested Isolator Row PLUS is 158.4 lbs.

Pre-treatment Requirements

The StormTech Isolator Row PLUS unit does not require additional pre-treatment.

Configurations

The StormTech Isolator Row PLUS is available in multiple configurations. The length and size can be adjusted to meet project specific design volumes or flow rates.

Structure Load Limitations

The StormTech Isolator Row PLUS, as part of the overall chamber system, is designed to meet the full scope of design requirements of the American Society of Testing Materials (ASTM) International specification F2787 "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers" and produced to the requirements of the ASTM F2418 "Standard Specification for Polypropylene (PP) Corrugated Stormwater Collection Chambers". The StormTech chambers provide the full AASHTO safety factors for live loads and permanent earth loads. The ASTM F 2787 standard provides specific guidance on how to design thermoplastic chambers in accordance with AASHTO Section 12.12. of the AASHTO LRFD Bridge Design Specifications. ASTM F 2787 requires that the safety factors included in the AASHTO guidance are achieved as a prerequisite to meeting ASTM F 2418. The three standards provide both the assurance of product quality and safe structural design.

7. Maintenance Plan

The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location, based upon site-specific variables. The type of land use (i.e. industrial, commercial, public, residential), anticipated pollutant load, percent imperviousness, climate, rainfall data, etc., all play a critical role in determining the actual frequency of inspection and maintenance practices.

The Isolator Row PLUS may also be part of a treatment train. By treating stormwater prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row PLUS chamber should be inspected every 6 months for the first year of operation. For subsequent years, the inspection schedule should be adjusted based upon previous observation of sediment deposition.

The Isolator Row PLUS incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the Isolator Row PLUS from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If, upon visual inspection, it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row PLUS, clean-out should be performed.

The Isolator Row PLUS was designed to reduce the cost of periodic maintenance. By "isolating" sediment to just one row of the StormTech system, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high-pressure water nozzle to propel itself down the Isolator Row PLUS while scouring and suspending sediment. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency.

Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear-facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose, allowing maintenance of an Isolator Row PLUS up to 50 chambers long. The JetVac process should only be performed on StormTech Isolator Rows PLUS that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

Complete details of the design, operation, and maintenance of the Isolator Row PLUS can be found in the StormTech O&M Manual, available online at: https://www.stormtech.com/download_files/pdf/11081-stormtech-isolator-row-plus-manual-07-20.pdf

8. Statements

The attached pages include signed statements from the manufacturer (Advanced Drainage Systems, Inc.), the third-party environmental consulting firm (Boggs Environmental Consultants, Inc.), and NJCAT. These statements are included as a requirement for the verification process.

June 26th, 2020

Dr. Richard S. Magee, Sc.D., P.E., BCEE NJCAT Center for Environmental Systems Steven Institute of Technology Castle Point on Hudson Hoboken, NJ 07030-0000

Dr. Magee,

Advanced Drainage Systems is pleased to provide this letter as our statement certifying that the protocol, "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a filtration Manufactured Treatment Device" (NJDEP Filter Protocol, January 25, 2013), was strictly followed while testing our StormTech Isolator® Row PLUS. The testing was performed at BaySaver Laboratories, located in Mount Airy, MD. All data pertaining to the StormTech Isolator Row PLUS NJDEP Protocol test is included in the Verification Report.

Respectfully,

Greg Spires, PE General Manager - StormTech Advanced Drainage Systems 614.325.0032 greg.spires@ads-pipe.com

www.stormtech.com | Advanced Drainage Systems, Inc. | 4840 Trueman Blvd | Hilliard | Ohio | 800.821.6710

Middletown, MD & Morgantown, WV

Administrative Office: 200 W Main Street Office (301) 694-5687 Middletown, Maryland 21769 Fax (301) 694-9799

June 25, 2020

StormTech Advanced Drainage Systems, Inc. 520 Cromwell Avenue Rocky Hill, CT 06067 gregory.spires@ads-pipe.com

ATTENTION Greg Spires, PE General Manager, StormTech Advanced Drainage Systems, Inc.

Third Party Review of Testing Procedures of the Isolator® Row PLUS at the REFERENCE: BaySaver Laboratory 1207 Park Ridge Drive Mount Airy, MD 21771

BOGGS ENVIRONMENTAL CONSULTANTS, INC. (BEC) provided Third Party Review services for the testing of the Isolator® Row PLUS to evaluate if the required testing meets certification standards established by the New Jersey Department of Environmental Protection (NJDEP).

LABORATORY TESTING PROCEDURES & METHODOLOGIES

The following two procedures and testing requirements were followed during the testing process of the Isolator® Row PLUS:

- New Jersev Department of Environmental Protection, Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device, dated January 25, 2013.
- QAPP for Isolator® Row PLUS, New Jersey Department of Environmental Protection Testing, prepared by StormTech (a subsidiary of Advanced Drainage Systems, Inc.), Revision dated January 9, 2020.

ONSITE THIRD-PARTY OBSERVATION OF TESTING PROCEDURES

BEC was present at the BaySaver Laboratory, at 1207 Park Ridge Drive, in Mount Airy, MD 21771, to observe the following testing of the Isolator® Row PLUS:

- The mixing and establishment of a sediment blend that included manufactured sands that when delivered to the feed water would result in influent Total Suspended Solids (TSS) concentrations within the established range of approximately 200 mg/L and a particle size distribution specified and approved by NJDEP;
- BEC assisted in the establishment of a Procedure Checklist to be used on each run to verify and document the following: Verify that pumps and measurement devices are turned on and functioning; Verification that the correct measurements of dry sediments are added to the doser and feed stream; Document that, background effluent, and duplicate samples are collected at established intervals during the run; and, Recording of periodic flow rates and head measurements during each run;
- Observation of Runs 1 through 16 from January 14, 2020 to February 12, 2020 and verified that that sediment, background, effluent samples were collected during each 33-minute run, and that drawdown samples were collected after the end of each run.
- After sampling was completed for each run, BEC was present for the downloading of flow data as well as sediment feed rates to verify that calculated sediment feed rates met NJDEP protocols for testing. BEC also verified that that sample containers were properly labeled and chain of custodies were filled and were boxed and sealed for delivery to Fredericktowne Labs for analysis of Total Suspended Solids (TSS).

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES

THIRD-PARTY VERIFICATION & OPINIONS

Based on observations during the runs and the reported TSS analytical results, BEC verified the following:

- That the testing of the Isolator[®] Row PLUS at the BaySaver Laboratory was conducted in accordance with the New Jersey Department of Environmental Protection, Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device, dated January 25, 2013 and procedures established in Advanced Drainage Systems, Inc.'s QAPP for Isolator[®] Row PLUS, New Jersey Department of Environmental Protection Testing, prepared by StormTech (a subsidiary of Advanced Drainage Systems), Revision dated January 9, 2020.
- The report titled NJCAT Technology Verification, of Isolator[®] Row PLUS, prepared by StormTech, dated June 2020, used applicable NJCAT protocol and accurately reflects the testing observed by BEC.

BEC has no financial conflict of interest, as defined in the Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation of Advanced Technology (NJEP 2013).

Should you have any questions, contact our office at your earliest convenience.

Sincerely, BOGGS ENVIRONMENTAL CONSULTANTS, INC.

RWa

William R. Warfel Principal Environmental Scientist

Center for Environmental Systems Stevens Institute of Technology One Castle Point Hoboken, NJ 07030-0000

May 1, 2020

George F. Ives III, P.E. StormTech, LLC 520 Cromwell Ave Rocky Hill, CT 06067

Dear Mr. Ives,

Based on my review, evaluation and assessment of the testing conducted on the StormTech, LLC Isolator Row PLUS at the BaySaver Laboratory (Storm Tech, LLC and BaySaver Technologies, LLC are subsidiaries of Advanced Drainage Systems, Inc.), under the independent third-party oversight of Boggs Environmental Consultants (BEC), Inc., the test protocol requirements contained in the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" (NJDEP Filter Protocol, January 2013) were met or exceeded. Specifically:

Test Sediment Feed

The test blend was custom-blended using various commercially available silica sands under the oversight of BEC. The particle size distribution was independently analyzed by Environmental Consulting Services (ECS), using the methodology of ASTM method D422-63. The blended silica met the specification within tolerance as described in Section 5B of the NJDEP filter protocol and was acceptable for use.

Removal Efficiency Testing

Sixteen (16) removal efficiency testing runs were completed in accordance with the NJDEP filter protocol. The target flow rate was 225 gpm and the influent sediment concentration was 200 mg/L. The average flow rate for all 16 runs was 226.1, with a coefficient of variation (COV) below the flow compliance (COV) < 0.1 for all the runs. Likewise, for all runs the sediment feed rate COV was below the < 0.03 protocol limit. The Isolator Row PLUS demonstrated a cumulative sediment removal efficiency of 81.2% over the course of the 16 test runs.

Sediment Mass Loading Capacity

Mass loading capacity testing was conducted concurrently with removal efficiency testing. The Isolator Row PLUS has a mass loading capture capacity of 158.4 lbs (2.91 lbs/ft² of filtration area).

No maintenance was performed on the test system during the entire testing program.

Scour Testing

No scour testing was performed. Hence the Isolator Row PLUS is verified for off-line installation only.

Sincerely,

Behard & Magee

Richard S. Magee, Sc.D., P.E., BCEE

Specifications

Introduction

- Manufacturer StormTech, LLC, 520 Cromwell Ave, Rocky Hill, CT 06067
- Website: http://www.StormTech.com. Phone: 888-892-2694
- MTD StormTech Isolator Row PLUS verified models are shown in Table 13
- TSS Removal Rate 81.2%
- Off-line installation

Detailed Specification

• NJDEP sizing tables and physical dimensions of StormTech Isolator Row PLUS verified models are shown in **Table 13**. These sizing tables are valid for NJ following NJDEP Water Quality Design Storm Event of 1.25" in 2 hours (NJAC 7:8-5.5(a)).

• Maximum inflow drainage area

[°] The maximum inflow drainage area is governed by the maximum treatment flow rate of each model as presented in **Table 13**.

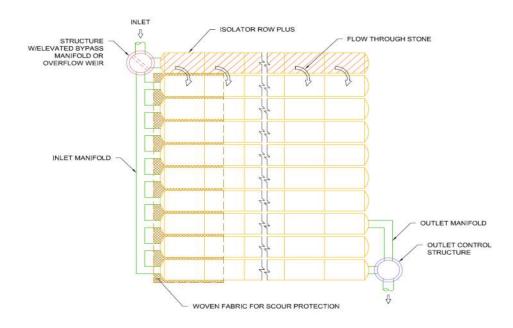
• Driving head will vary for a given Isolator Row PLUS model based on the site-specific configuration. The maximum head without bypass is 36", but the minimum head varies depending on the flow rate through the unit. Design support is given by StormTech for each project, and site-specific drawings (cut sheets) will be provided that show pipe inverts, finish surface elevation, and peak treatment and maximum flow rates through the unit.

• The drawdown flow exits via the underdrain. A clean filter draws down in approximately 20 minutes.

Division of

STORMTECH ISOLATOR ROW SIZING CHART							
	SC-310	SC-740	DC-780	MC-3500	MC-4500		
Chamber Area (Sq.Ft.)	20	27.8	27.8	43.2	30.1		
Treated Flow Rate per chamber (CFS)	0.11	0.15	0.15	0.24	0.17		
NOTE: Testing of the Isolator Row com	pleted by Te	ennesse Te	ch has beer	n verified by	NJCAT		

NOTE: Testing of the Isolator Row completed by Tennesse Tech has been verified by NJC and it has shown to have a TSS removal efficiency of 84% for SIL-CO-SIL 250 NJCAT verified Treated Flow Rate (GPM / Sq.Ft.) 2.5

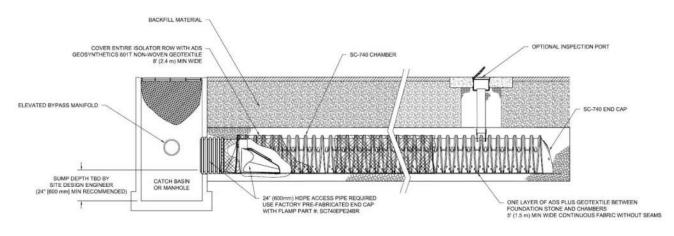

StormTech Isolator Row PLUS – Pollutant Removal

The following information is intended to provide a general overview of the pollutant removal capability of the StormTech Isolator[™] Row PLUS, which is a patented filtration type BMP manufactured by StormTech, LLC. The StormTech Isolator Row PLUS is covered under several US and International patents.

I. Description:

The StormTech Isolator Row PLUS is a row or rows of thermoplastic chambers that sit on a layer of ADS PLUS fabric and are connected to a closely located structure for easy access. The chambers provide for settling and filtration of sediment and other contaminants as stormwater rises in the Isolator Row PLUS and ultimately passes through the fabric. The open-bottom chambers allow stormwater to flow out of the chambers. Sediment is captured in the Isolator Row PLUS, protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

The StormTech Isolator Row PLUS is designed to capture the "first flush" and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole not only provides access to the Isolator Row but includes a high low/concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row bypass through a manifold to the other chambers. This is achieved with either a high-flow weir or an elevated manifold. This creates a differential between the Isolator Row PLUS and the manifold, thus allowing for settlement time in the Isolator Row PLUS.


Schematic of the StormTech Isolator Row PLUS System

www.stormtech.com | 520 Cromwell Ave | Rocky Hill | Connecticut | 06067 | 888.892.2694 | fax 866.328.8401

Some of the unique features of the Isolator Row that contribute to its effectiveness and practicality include:

- Vast filtration surface area
- Large sediment storage volume
- Easily maintainable by most pipe and sewer maintenance companies
- Large network of ADS personnel that can help with designs and provide onsite guidance
- A state-of-the-art structural design that meets ASTM standards and incorporates AASHTO safety factors for both live loads and permanent dead loads

II. Applicable Sites:

The Isolator Row PLUS can be effectively used for essentially all developed sites. The most common applications are highly impervious sites such as paved parking areas, roads as well as developed sites that include grassy or other landscaped areas. It is not intended to be used for construction sediments.

III. StormTech System & Isolator Row Testing:

October 2006 – Tennessee Tech University's Civil and Environmental Department prepared the "Performance Evaluation of Sediment Removal Efficiency – StormTech Isolator Row". Testing on a full-scale Isolator Row in a laboratory was done to determine the sediment removal efficiency with two different silica-water slurries in accordance with NJCAT protocols. In August of 2007, the technology was verified by NJCAT. Results are shown in Table 1.

September 2010 – The University of New Hampshire Stormwater Center released the "Final Report on Field Verification Testing of the StormTech Isolator Row Treatment Unit". Testing consisted of determining the water quality performance for multiple stormwater pollutants in accordance with TARP Tier II protocol. Testing was done for a system only consisting of the StormTech Isolator Row. Data was recorded for 23 storm events. Results are shown in Table 1.

January 2020 – BaySaver Technologies prepared the "NJCAT Technology Verification of Isolator Row PLUS". Testing on a full-scale Isolator Row PLUS in a laboratory was done to determine the sediment removal efficiency with a silica-water slurry in accordance with the updated NJCAT protocols. In July of 2020, the technology was verified by NJCAT. Results are shown in Table 1.

June 2020 – North Carolina State University Department of Biological and Agricultural Engineering prepared the technical report "An Evaluation of the StormTech Isolator Row and Subsurface Stormwater Management System at Capital Oaks Retirement Resort, Raleigh, North Carolina". 14 months of monitoring and over 73 precipitation events were completed to study the hydrologic and water quality performance of a StormTech MC-4500 system in Raleigh, NC. Results are shown in Table 1.

Table 1: StormTech Isolator Row 3rd Party Pollutant Removal Efficiency Data

Pollutant	University of New Hampshire (Isolator Row Only) Median	Raleigh, North Carolina (StormTech system with Isolator Row)	Tennessee Tech University (Isolator Row Only)	NJCAT Verification (Isolator Row PLUS only)
Total Suspended Solids	83%*	91%*	84%*	81%**
Total Phosphorus	33%	68%	Not Tested	Not Tested
Total Nitrogen	Not Tested	35%	Not Tested	Not Tested
Total Zinc	81%	Not Tested	Not Tested	Not Tested
Total Petroleum Hydrocarbons	91%	Not Tested	Not Tested	Not Tested

*Based on a flow rate of 2.5 gpm/sf (Isolator Row)

** Based on a flow rate of 4.1 gpm/sf (Isolator Row PLUS)

IV. Product Performance and Design

Minimum 80% TSS removal is achieved by sizing the Isolator Row PLUS to treat the water quality at a specific flow rate per chamber floor area using a single layer of ADS PLUS fabric. The design flow rates for each chamber size are listed below.

Model	Specific Flow Rate	Bottom Area	Flow Per Model
StormTech SC-160LP	4.1 gpm/sf	11.45 sf	0.11 cfs
StormTech SC-310	4.1 gpm/sf	17.7 sf	0.16 cfs
StormTech SC-740	4.1 gpm/sf	27.8 sf	0.26 cfs
StormTech DC-780	4.1 gpm/sf	27.8 sf	0.26 cfs
StormTech MC-3500	4.1 gpm/sf	42.9 sf	0.40 cfs
StormTech MC-4500	4.1 gpm/sf	30.1 sf	0.28 cfs

V. StormTech Isolator Row Approvals:

The StormTech Isolator Row and Isolator Row PLUS have been approved on a project by project basis for tens of thousands of projects around the world. Following are some examples:

- The Isolator Row PLUS is a verified filtration manufactured treatment device by the New Jersey Corporation for Advanced Testing (NJCAT) in accordance with NJDEP Filter Protocols.
- In Ohio, the Isolator Row is approved per the Ohio EPA as a pretreatment to underground storage and can be used for both storage volume and pretreatment as the water quality volume all passes through the Isolator Row.
- The Metropolitan St. Louis Sewer District (MSD) has approved the StormTech Isolator Row as a standalone post-construction stormwater Best Management Practice.
- In Massachusetts, approvals for the State DEP requirement of 80% TSS removal on an annual load basis are issued at the Conservation Commission level, and the Isolator Row is commonly used to meet these criteria.
- In Oregon, the Rogue Valley Storm Water Advisory Team (SWAT) has incorporated the StormTech Isolator Row into their Stormwater Design Manual as a pre-approved proprietary device for stormwater quality treatment.
- The Kansas City Metro Chapter of the American Public Works have included the StormTech Isolator Row wit a value rating of 3.0 in their Manual of Best Management Practices for Stormwater Quality.
- Maine DEP has approved the Isolator Row pollutant removal efficiency based on laboratory testing of 110 micron (US Silica OK-110) particle size
- In Texas, the City of Houston PWE as well as Harris county, has recognized the Isolator Row as an official water quality device.
- Under the New Environmental Technology Evaluation program, the Ontario (Canada) Ministry of the Environment has evaluated the Isolator row and issued a Certificate of Technology Assessment
- The Isolator Row PLUS is currently being evaluated for Canadian Environment Technology Verification (ETV) by VerifiGlobal.

V. Isolator Row Maintenance:

The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location, based upon site-specific variables. The type of land use (i.e. industrial, commercial, public, residential), anticipated pollutant load, percent imperviousness, climate, rainfall data, etc., all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection schedule should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If, upon visual inspection, it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediment to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout.

Maintenance is accomplished with the jetvac process. The jetvac process utilizes a high-pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediment. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/jetvac combination vehicles. Selection of an appropriate jetvac nozzle will improve maintenance efficiency.

Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear-facing jets with an effective spread of at least 45" are best. Most jetvac reels have 200 feet of hose, allowing maintenance of an Isolator Row up to 50 chambers long. The jetvac process shall only be performed on StormTech Isolator Rows that have fabric specified by StormTech over their angular base stone.

Complete details of the design, operation, and maintenance of the Isolator Row PLUS can be found in the StormTech Isolator Row and Isolator Row PLUS O&M Manuals.

4.4 RIP RAP SPLASH PAD

Rip rap splash pads are designed to dissipate energy, prevent scour at the stormwater outlet, and minimize the potential for downstream erosion. A LEVEL SPREADER / PLUNGE POOLE was sized for each of the outlets of the drainage system. The calculations below are in accordance with the methodology of the "2002 Connecticut Guidelines for Soil Erosion and Sediment Control" produced by The Connecticut Council on Soil and Water Conservation.

		Pret	formed	Scour Hole	e Calc	ulation	s			
	Q (25Y)	Do	TW	Depression	С	3Sp	В	2Sp	d50	
	(cfs)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(in.)
HEADWALL H4	1.8	1.0	0.30	0.50	6.00	3.00	5.00	2.00	0.09	1.10
HEADWALL H5	2.7	1.0	0.30	0.50	6.00	3.00	5.00	2.00	0.15	1.86
HEADWALL H6	2.5	1.0	0.30	0.50	6.00	3.00	5.00	2.00	0.14	1.66
FES F6	2.1	1.0	0.30	0.50	6.00	3.00	5.00	2.00	0.11	1.34

Conclusion:

As identified above, the discharge points have been designed to accommodate and exceed the required minimum Preformed scour hole sizing.

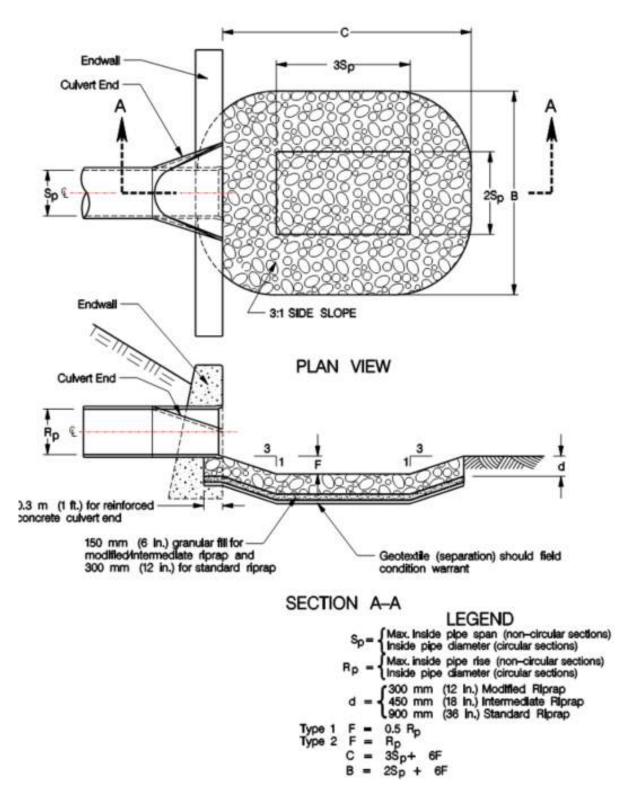


Figure 11-15 Preformed Scour Hole Type 1 and Type 2

4.5 TSS REMOVAL

The project has been designed to comply with the required 80% TSS (minimum) removal per the Massachusetts Stormwater Regulations. Various combinations of stormwater BMPs including deep sump hooded catch basins, proprietary water quality units and subsurface infiltration basins are utilized.

Please refer to the attached TSS calculation sheets that follow:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND DETENT	ON BASIN UG-1 (via CB,		
	А	В	С	D	Е
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	DET. BASIN UG-1 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
TSS Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Remo		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	rss Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:			*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND DETENTI ADS Isolator Row)	ON BASIN UG-2 (via CB,		
	А	В	С	D	Е
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	DET. BASIN UG-2 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Kem		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	rss Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:			*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND DETENTI ADS Isolator Row)	ON BASIN UG-3 (via CB,		
	А	В	С	D	Е
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	DET. BASIN UG-3 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Remo		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	rss Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:	MJL		*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND DETENTI ADS Isolator Row)	ON BASIN UG-4 (via CB,		
	А	В	С	D	Е
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	DET. BASIN UG-4 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
TSS Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Remo		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	SS Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:			*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND INFILTRA CB, ADS Isolator Row)	ATION BASIN UG-5 (via		
	А	В	С	D	Е
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	INF. BASIN UG-5 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
TSS Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Rem		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	rss Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:	MJL		*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND DETENTI ADS Isolator Row)	ON BASIN UG-6 (via CB,		
	А	В	С	D	Е
	4	TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	DET. BASIN UG-6 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
TSS Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Remo		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	rss Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:			*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

	Location:	UNDERGROUND DETENT	ON BASIN UG-7 (via CB,		
	А	В	С	D	Е
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
ation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
alcula	DET. BASIN UG-7 (ADS Isolator Row Chamber System)	0.80	0.75	0.60	0.15
Removal Calculation Worksheet		0.00	0.00	0.00	0.00
Remo		0.00	0.04	0.00	0.00
TSS		0.00	0.40	0.00	0.00
		Total	rss Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	Hanover Weymouth Apts.			
	Prepared By:			*Equals remaining load from	n previous BMP (E)
	Date:	4.8.2021		which enters the BMP	

SECTION 5 – LONG TERM OPERATION & MAINTENANCE

LONG-TERM STORMWATER OPERATION & MAINTENANCE PLAN

HANOVER WEYMOUTH RESIDENTIAL DEVELOPMENT 1325 WASHINGTON STREET WEYMOUTH, MA 02189

PROJECT OVERVIEW:

The proposed project consists of two (2) mixed use buildings (net 81,130 SF ground floor area) consisting of 270 residential units and 4,200 SF of commercial/retail space. The project also includes approximately 9,000 SF of amenity and support space with associated parking and site infrastructure on 9.8+/-acres of land on the subject property with frontage at 1325 Washington Street in Weymouth, Massachusetts. The project has been designed to comply with the Massachusetts Stormwater Management Regulations.

Appended to this document is a sample maintenance form and a chart describing the anticipated frequency of tasks.

OWNER AND RESPONSIBLE PARTY:

Current Land Owners:

1317 Washington RE Holdings, LLC.*190 Old Derby Street, Suite 311Hingham, MA 02043

-and-

1317 Bristol Holdings, LLC.*190 Old Derby Street, Suite 311Hingham, MA 02043

*In the process of selling parcels, and Hanover Companies will eventually be the sole and primary owner.

Proposed Site Contractor:

To Be Determined

Future Owner:

Hanover R.S. Limited Partnership One Marina Park Drive, Suite 701 Boston, MA 02210

CONSTRUCTION MANAGEMENT:

A construction manager with adequate knowledge and experience on projects of similar size and scope shall be employed to oversee all site work related construction. The contractor shall incorporate the appropriate techniques to control sediment and erosion pollution during construction in accordance with the *Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas* and any conditions of approval from the local conservation commission.

Care should be taken when constructing stormwater control structures. Light earth-moving equipment shall be used to excavate in the vicinity of the infiltration areas. Use of heavy-equipment causes excessive compaction of the soils beneath the basin resulting in reduced infiltration capacity. At no time shall temporary infiltration areas or settling basins be constructed in the vicinity of the proposed infiltration basins in order to prevent the soils from becoming clogged with sediment.

ON-GOING MAINTENANCE CONTRACT

The non-structural and structural approaches recommended below, as well as the required BMP maintenance, will be completed by the selected contractor. Adequate personnel with appropriate training and access to proper equipment will be available to complete the tasks. Future responsible parties must be notified of their responsibility to operate and maintain the system in perpetuity.

MAINTENANCE LOG

The Responsible Party shall develop and maintain a log of inspections, maintenance, repairs, and disposal (including location of disposal) during the life of the project. Records will be maintained for at least 3 years and be made available to the Massachusetts Department of Environmental Protection or the Town of Weymouth in accordance with the provisions of the Massachusetts Stormwater Handbook. A sample of such a maintenance log is provided.

STORMWATER BMP MAINTENANCE

The proposed stormwater management system has been designed with appropriate BMPs aimed at reducing the pollutants discharge based upon the intended use of the property. All BMPs require regular maintenance to function as intended. Some management measures have simple maintenance requirements; others are more involved. The Responsible Party must have all BMPs regularly inspected to ensure they are operating properly on an as needed basis, including during runoff events exceeding 0.5 inches of rainfall.

A description of the non-structural and structural approaches to be incorporated is indicated below. The following best management practices are proposed to be incorporated into the stormwater management design to reduce source runoff and improve stormwater runoff

discharge quality. The Responsible Party will regularly inspect all BMPs to ensure they are operating properly. If any deficiencies are identified during these inspections, action to resolve it will be initiated and documented on the maintenance log.

STRUCTURAL BMPs

Deep Sump Hooded Catch Basins and Area/Yard Drains

On a regular basis the inlet pipe and outlet pipe shall be checked for debris and removed as necessary to ensure unobstructed flow of water. Inspections shall occur at least four times per year, and at the end of the foliage and snow removal seasons. Inspections shall verify the tees are secure and free flowing. Sediments must also be removed four times per year or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin. Basins shall be cleaned using a vacuum pump. All liquid shall be pumped from the sump of each basin at least once per year. All sediments and hydrocarbons should be properly handled and disposed of in accordance with local, state and federal guidelines and regulations.

Subsurface Infiltration System

The subsurface system (Stormtech ADS Isolator Row Plus) has been designed with drain manholes at grade to aid in the removal of sediment and debris accumulating in the structure and inspection ports to monitor the accumulation of sediment. Preventative maintenance shall be performed in accordance with manufacturer's instructions, which is enclosed in this section. Inspection should occur monthly during the first year following installation, and then twice annually, once in the fall and then in the spring after the snow melts. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections. Refer to the enclosed "StormTech Isolator Row O&M Manual."

Subsurface Detention System

The subsurface systems (Stormtech ADS Isolator Row Plus) have been designed with a combination of standard manholes and inspection ports to aid in the removal of sediment and debris. Preventative maintenance shall be performed in accordance with manufacturer's instructions, which is enclosed in this section. Stormtech suggests a minimum of annual inspections and initially the isolator row should be inspected every 6 months for the first year of operation. Cleaning will take place at the completion of construction and as deemed necessary based on the annual inspections. Stormtech recommends using a JetVac to clean and maintain the isolator row. Refer to the enclosed "Stormtech Isolator Row O&M Manual."

Proprietary Separator Water Quality Units

Water quality units shall be maintained in accordance with the manufacturers recommendations. Refer to the enclosed "SciClone Operation and Maintenance" guide. Typically a vacuum truck removes accumulated sediment and oil most efficiently. See maintenance documentation from the manufacturer. Inspection should occur at least twice annually, once in the fall and then in the spring after the snow melts. Ideally the unit should be checked frequently throughout the first year, and that will dictate the schedule going forward. All sediment and hydrocarbons should be properly handled and disposed of in accordance with local, state and federal guidelines and regulations. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections and manufacturer's requirements.

NON-STRUCTURAL BMPs

Pavement Sweeping

As street sweeping is a BMP under DEP guidelines, this non-structural BMP is an effective removal of Total Suspended Solids (TSS) in a comprehensive stormwater management program. Litter and debris is to be regularly picked up and removed from the pavement. Paved areas are to be swept a minimum of quarterly per year.

Pervious Areas and Slopes

Runoff from pervious areas and slopes shall be directed over vegetated areas to promote settlement of suspended solids before entering a wetland or resource area. Steep pervious slopes will be permanently vegetated to dissipate energy and reduce potential erosion. No constructed vegetated slopes should exceed 2H:1V. Slopes exceeding 2:1 shall be stabilized with rip-rap, jute netting or other similar measures to minimize the potential for future erosion.

Drainage Control Structures, Flared End Sections, Trash Racks, Riprap Pads, Swales, and Level Spreader Splash Pads

Basin control structures, flared end sections, trash racks, riprap pads and level spreader splash pads shall be inspected and any debris or growth surrounding or within these structures shall be removed. Any/all debris or vegetation encroaching on the control structures or outfall components shall be removed or appropriately trimmed back to maintain the designed control elevation and flow patterns/cross section without impediment. Inspection should occur twice annually, once in the fall and then in the spring after the snow melts. Cleaning will take place at the completion of construction and as deemed necessary based on the inspections and manufacturer's requirements.

Pest and Insect Control

- As a first-line defense against pests/insects and weeds (the "First-Line Defense"), the party responsible for maintenance shall avoid the use of nonorganic pesticides, herbicides, fungicides and insecticides unless spot treatment is required for a specific control application. The owner shall not be required to undertake extraordinary measures or incur unreasonable cost to locate, purchase or apply non-organic products.
- If the First-Line Defense fails, as determined by the owner or party responsible for maintenance, in its sole but reasonable discretion, nonorganic approaches to pest/insect control may be used, the same to be applied by a professional licensed in the Commonwealth of Massachusetts, where required. But in no event shall such non-organic approaches be used within the 50ft. buffer zone to the wetlands.

Waste Management

Solid waste and recycling will be contained in dumpsters for routine and regular trash pickup.

Snow Removal

There shall be no plowing or stockpiling of snow within any resource areas. Deicing compounds must be stored or sheltered on impervious pads (i.e. in residential garages and the maintenance facility). No de-icing compounds shall be stored or utilized in wetland resource areas nor the 50-foot buffer. Owner plans to handle snow removal by hauling snow off-site to a to-be-determined location.

Hazardous Waste and Spill Control Containment

In the event of a discharge or spill of oil or another hazardous material, outlets to stormwater management facilities immediately downstream of the spill shall be plugged so that hazardous materials do not enter the system. In the event of a discharge of oil or other hazardous material, responsible facility personnel shall notify the appropriate state agencies, the Town of Weymouth DPW and the EPA National Response Center 1-800-424-8802 shall be notified. All hazardous waste materials will be disposed of in a manner specified by local, state and/or federal regulations and by the manufacturer of such products.

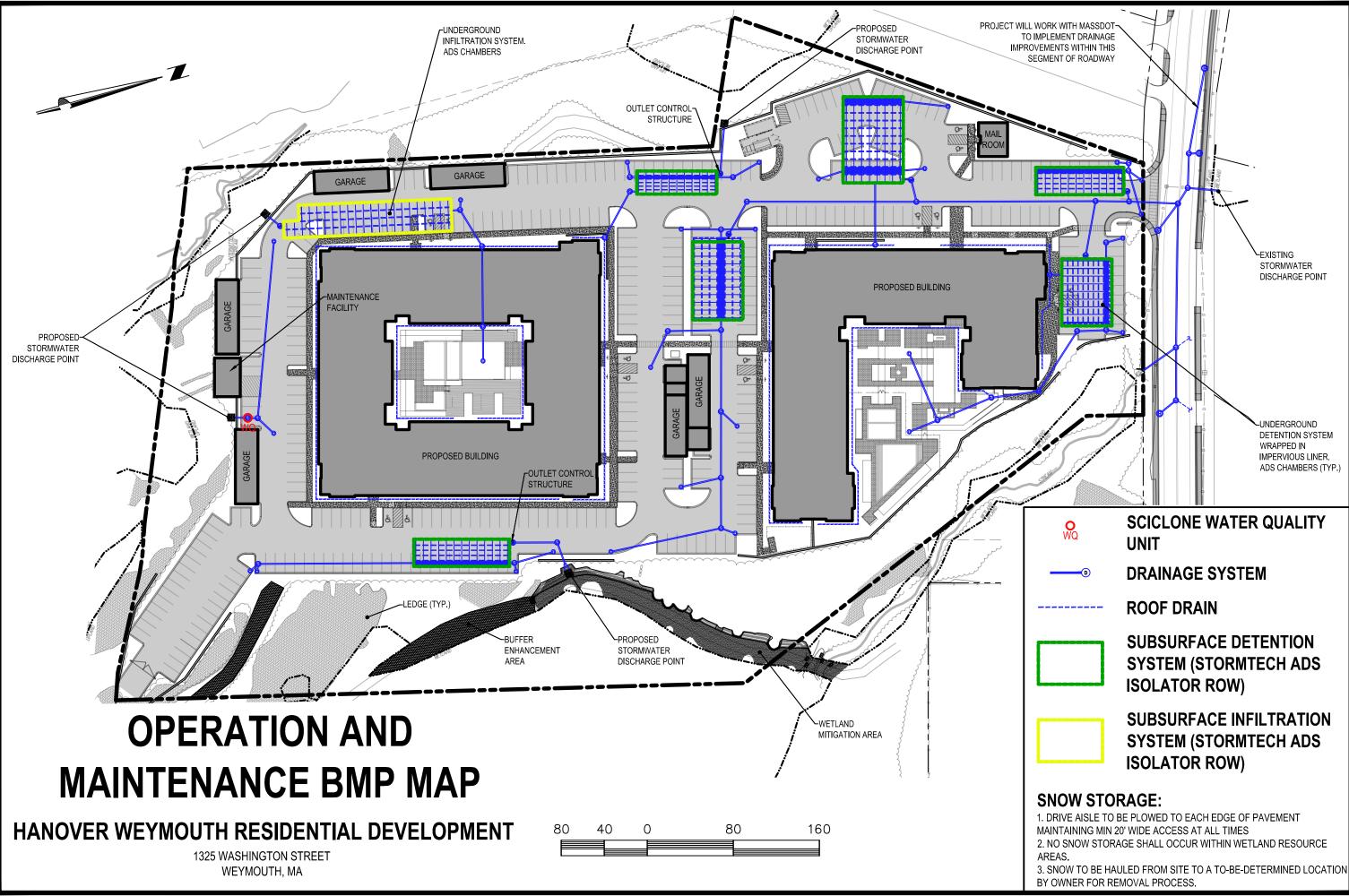
Stormwater BMP Inspection and Maintenance Log

Facility Name	
Address	
Begin Date	End Date

Date	Date BMP BMP Description ID#		Inspected Cause for by: Inspection		Exceptions Noted	Comments and Actions Taken	

Instructions: Record all inspections and maintenance for all treatment BMPs on this form. Use additional log sheets and/or attach extended comments or documentation as necessary. Submit a copy of the completed log with the annual independent inspectors' report to the municipality and start a new log at that time.

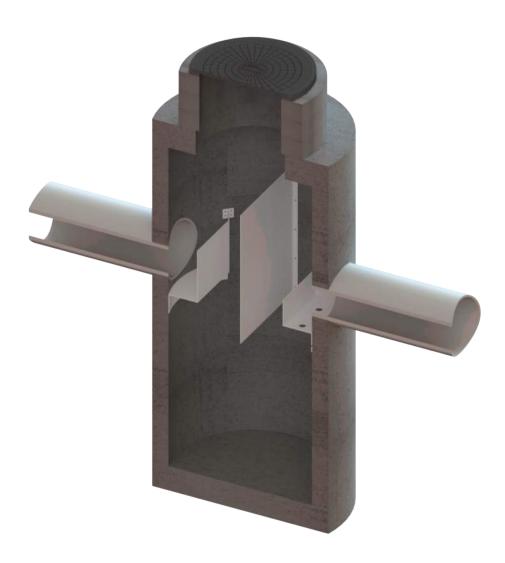
BMP ID# — Always use ID# from the Operation and Maintenance Manual.


Inspected by — Note all inspections and maintenance on this form, including the required independent annual inspection.

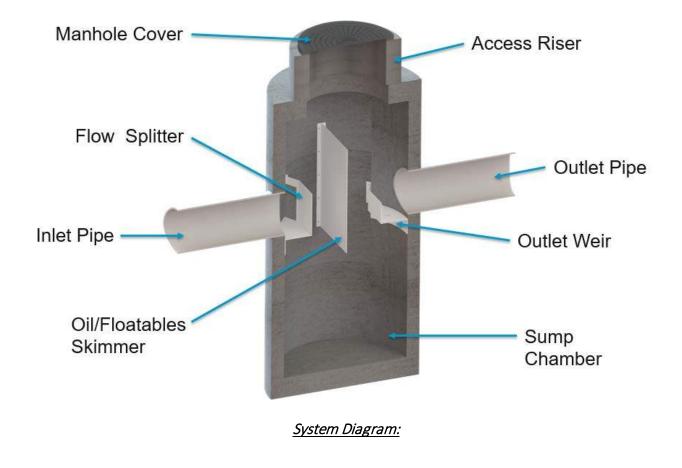
Cause for inspection — Note if the inspection is routine, pre-rainy-season, post-storm, annual, or in response to a noted problem or complaint.

Exceptions noted — Note any condition that requires correction or indicates a need for maintenance. Comments and actions taken — Describe any maintenance done and need for follow-up.

Stormwater BMP Inspection Matrix


Conventional & LID Best Management Practices	Inspection & Maint. Frequency	Erosion& Scour	Obstructions	Trash & Debris	Sediment Build- Up Removal	Vegetation Cover	Remove/Reset Filter Fabric & Stone As Required	Vac Truck Sediment & Contaminants	Remove/Reset Riprap as Required
Catch	Four times								
Basins/Area & Yard Drains	per year								
Pavement	Four times								
Sweeping	per year								
Subsurface	Twice-								
Infiltration	Annually								
Structure	(Spring								
	and Fall)								
Subsurface	Annually								
Detention									
Structure									
Outlets (FES,	Twice-								
Rip Rap Pad,	Annually								
Level	(Spring								
Spreaders)	and Fall)								
Proprietary	Twice								
Separator	Annually								
Water Quality	(Spring								
Units	and Fall)								

OPERATION & MAINTENANCE


Bio Clean Environmental Services, Inc. 398 Via El Centro Oceanside, CA 92058 www.BioCleanEnvironmental.com p: 760.433.7640 f: 760.433.3176

OPERATION & MAINTENANCE

The SciCLONE[™] Hydrodynamic Separator is designed to remove high levels of trash, debris, sediments and hydrocarbons. Its efficient design and construction maximize longevity and minimize maintenance requirements. The simple design of the system allows for unimpeded access for quick and easy maintenance. The SciCLONE[™] is able to effectively capture and store sediment with no maintenance or loss of treatment capacity for a several years based on annual average loading in most regions.

Yet, as with all stormwater BMPs inspection and maintenance on the SciCLONE[™] Hydrodynamic Separator is necessary. Stormwater regulations require that all BMPs be inspected and maintained to ensure they are operating as designed to allow for effective pollutant removal and provide protection to receiving water bodies. It is recommended that inspections be performed multiple times during the first year to assess site-specific loading conditions. This is recommended because pollutant loading can vary greatly from site to site. Variables such as nearby soil erosion or construction sites, winter sanding of roads, amount of daily traffic and land use can increase pollutant loading on the system. The first year of inspections can be used to set inspection and maintenance intervals for subsequent years. Without appropriate maintenance a BMP can exceed its storage capacity which can negatively affect its continued performance in removing and retaining captured pollutants.

Inspection Equipment

Following is a list of equipment to allow for simple and effective inspection of the SciCLONE™ Separator:

- Bio Clean Environmental Inspection Form (contained within this manual).
- Flashlight.
- Manhole hook or appropriate tools to remove access hatches and covers.
- Appropriate traffic control signage and procedures.
- Measuring pole and/or tape measure.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections or maintenance of the system.

Inspection Steps

The core to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the SciCLONE[™] Separator are quick and easy. As mentioned above the first year should be seen as the maintenance interval establishment phase. During the first year more frequent inspections should occur in order to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long-term inspection and maintenance interval requirements.

The SciCLONE[™] Separator can be inspected though visual observation without entry into the system. All necessary pre-inspection steps must be carried out before inspection occurs, especially traffic control and other safety measures to protect the inspector and near-by pedestrians from any dangers associated with an open access hatch or manhole. Once these access covers have been safely opened the inspection process can proceed:

- Prepare the inspection form by writing in the necessary information including project name, location, date & time, unit number and other info (see inspection form).
- Observe the inside of the system through the access hatches. If minimal light is available and vision into the unit is impaired utilize a flashlight to see inside the system.
- Look for any out of the ordinary obstructions in the inflow pipe, sump chamber, or outflow pipe. Write down any observations on the inspection form.
- Through observation and/or digital photographs estimate the amount of floatable debris accumulated on the influent side of the oil/floatables skimmer. Record this information on the inspection form. Next utilizing a tape measure or measuring stick estimate the amount of sediment accumulated in the sump. Record this depth on the inspection form.

• Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Maintenance Indicators

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

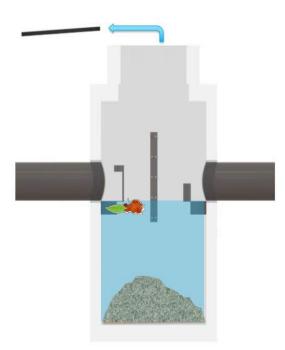
- Missing or damaged internal components.
- Obstructions in the system or its inlet or outlet.
- Excessive accumulation of floatable in the sump chambers in which the length and width of the chambers behind oil/floatables skimmer is fully impacted extending down more than 9".
- Excessive accumulation of sediment in the sump chamber of more than 18" in depth.

Maintenance Equipment

It is recommended that a vacuum truck be utilized to minimize the time required to maintain the SciCLONE[™] Separator:

- Bio Clean Environmental Maintenance Form (contained in O&M Manual).
- Flashlight.
- Manhole hook or appropriate tools to access hatches and covers.
- Appropriate traffic control signage and procedures.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine maintenance of the system.
- Vacuum truck (with pressure washer attachment preferred).

Maintenance Procedures

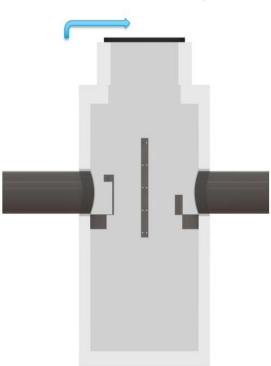

It is recommended that maintenance occurs at least three days after the most recent rain event to allow for drain down of any associated upstream detention systems. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Cleaning of the sump chamber can be performed from finish surface without entry into the vault utilizing a vacuum truck. Once all safety measures have been set up cleaning of the sump chamber can proceed as followed:

- Remove all access hatches (requires traffic control and safety measures to be completed prior).
- Using an extension on a vacuum truck position the hose over the opened access hatch and lower into the center of the sump chamber on the inlet side of the oil/floatables skimmer.

Remove all floating debris, standing water and sediment from the sump chamber. Access to the bottom of the sump chamber is unimpeded. The vac hose can be moved from side-toside to fully remove sediments at the corners. A power washer can be used to assist if sediments have become hardened and stuck to the walls or the floor of the chamber. Repeat the same procedure on the effluent side of the oil/floatables skimmer to remove any remaining sediment. This completes the maintenance procedure required on the sump chamber and the SciCLONE[™] Separator.

- The last step is to close up and replace all access hatches and remove all traffic control.
- All removed debris and pollutants shall be disposed of following local and state requirements.
- Disposal requirements for recovered pollutants may vary depending on local guidelines. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste.
- In the case of damaged components, replacement parts can be ordered by the manufacture.

Maintenance Sequence



Remove Access Hatches Set Up Vacuum Truck to Clean the Sump Chamber.

Insert Vacuum Hose On the Inlet Side of the Oil/Floatables Skimmer and Vacuum Out All Trash, Sediment and Standing Water.

Insert Vacuum Hose On the Outlet Side of the Oil/Floatables Skimmer and Vacuum Out Any Remaining Sediment.

Replace Access Hatches and Remove Traffic Control and Safety Equipment.

For Maintenance Services or Information Please Contact Us At: 760-433-7640 Or Email: info@biocleanenvironmental.com

SciCLONE[™]

Project N	ame				For	Office Use Only
Project A	ddress			(city) (Zip Code)	(Bey	viewed By)
Owner / I	Management Company				().(Dat	
Contact			Phone () –		ice personnel to complete section to the left.
Inspector	Name		Date	//	Time	AM / PM
Type of I	nspection	e 🗌 Follow Up 🗌	Complaint 🗌 Stor	Storm Event in	Last 72-hours?	🗌 No 📋 Yes
Weather	Condition		Additional Notes	3		
Site Map #	GPS Coordinates of Vault	Model #	Oils and Floatables Accumilation on Inlet Side of Oil/Floatables Skimmers (lbs)	Sediment Accumulation In Sump Chamber (lbs) & Depth (inches)	Structural Note	Operational Per Manufactures' Specifications (If not, why?)
	Lat:					
	Long:					
	Lat:					
	Long:					
	Lat:					
	Long:					
Commen	ts:					

Isolator[®] Row 0&M Manual

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS[™]

THE ISOLATOR® ROW

INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

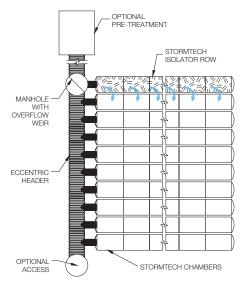
THE ISOLATOR ROW

The Isolator Row is a row of StormTech chambers, either SC-160LP, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-4500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC- 310-3 and SC-740 models) allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The non-woven fabric is not required over the SC-160LP, DC-780, MC-3500 or MC-4500 models as these chambers do not have perforated side walls.

The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.


Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

StormTech Isolator Row with Overflow Spillway (not to scale)

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS™

ISOLATOR ROW INSPECTION/MAINTENANCE

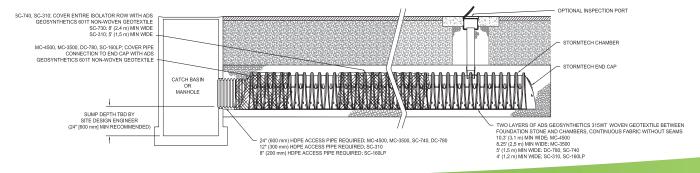
INSPECTION

The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.


MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-4500 chamber models and is not required over the entire Isolator Row.

ISOLATOR ROW STEP BY STEP MAINTENANCE PROCEDURES

STEP 1

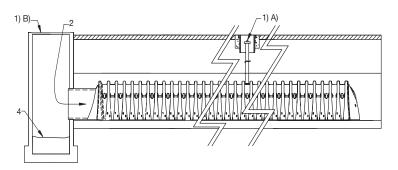
Inspect Isolator Row for sediment.

A) Inspection ports (if present)

- i. Remove lid from floor box frame
- ii. Remove cap from inspection riser
- iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
- iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.
- **B) All Isolator Rows**
 - i. Remove cover from manhole at upstream end of Isolator Row
 - ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
 - iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2. If not, proceed to Step 3.

STEP 2

Clean out Isolator Row using the JetVac process.


- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

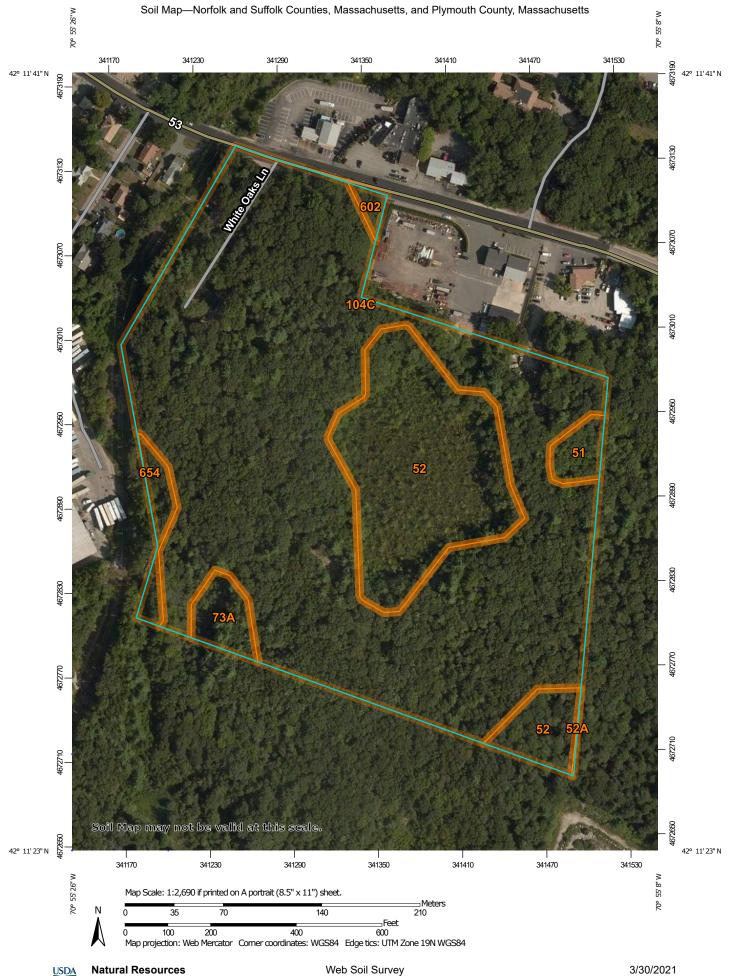
STEP 3

Replace all caps, lids and covers, record observations and actions.

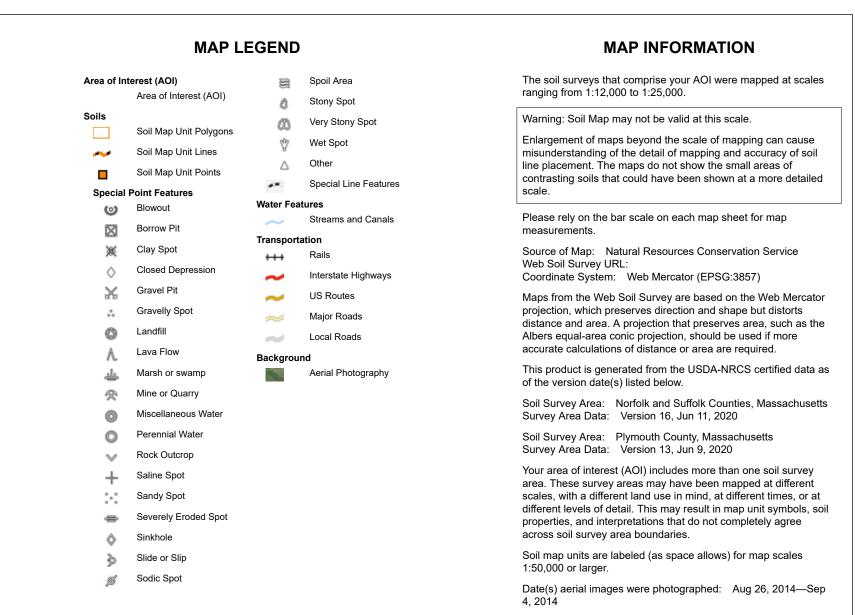
STEP 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

SAMPLE MAINTENANCE LOG


	Stadia Roo	d Readings	Sediment Depth		
Date	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)	(1)–(2)	Observations/Actions	Inspector
3/15/11	6.3 ft	none		New installation. Fixed point is CI frame at grade	DJM
9/24/11		6.2	0,1 ft	some grit felt	SM
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row, maintenance due	NV
7/7/13	6.3 ft		0	System jetted and vacuumed	DJM

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. Stormtech[®] and the Isolator[®] Row are registered trademarks of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #11011 03/17 CS



Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com SECTION 6 – SOILS TESTING DATA

National Cooperative Soil Survey

Conservation Service

Soil Map-Norfolk and Suffolk Counties, Massachusetts, and Plymouth County, Massachusetts

MAP LEGEND

MAP INFORMATION

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
51	Swansea muck, 0 to 1 percent slopes	0.4	1.4%
52	Freetown muck, 0 to 1 percent slopes	4.8	19.2%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	0.5	2.0%
104C	Hollis-Rock outcrop-Charlton complex, 0 to 15 percent slopes	18.7	75.2%
602	Urban land, 0 to 15 percent slopes	0.1	0.5%
654	Udorthents, loamy	0.4	1.6%
Subtotals for Soil Survey	Area	24.8	100.0%
Totals for Area of Interest		24.8	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
52A	Freetown muck, 0 to 1 percent slopes	0.0	0.0%
Subtotals for Soil Survey Area	l	0.0	0.0%
Totals for Area of Interest		24.8	100.0%

Г

Norfolk and Suffolk Counties, Massachusetts

602—Urban land, 0 to 15 percent slopes

Map Unit Setting

National map unit symbol: vkyj Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 99 percent Minor components: 1 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

Parent material: Excavated and filled land

Minor Components

Rock outcrops Percent of map unit: 1 percent Hydric soil rating: Unranked

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 13, Jun 9, 2020

Norfolk and Suffolk Counties, Massachusetts

104C—Hollis-Rock outcrop-Charlton complex, 0 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2w69p Elevation: 0 to 1,270 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis, extremely stony, and similar soils: 35 percent
Charlton, extremely stony, and similar soils: 25 percent
Rock outcrop: 25 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hollis, Extremely Stony

Setting

Landform: Hills, ridges Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope, nose slope Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 7 inches:* gravelly fine sandy loam *Bw - 7 to 16 inches:* gravelly fine sandy loam *2R - 16 to 26 inches:* bedrock

Properties and qualities

Slope: 0 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 8 to 23 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Very low (about 2.7 inches)

JSDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Charlton, Extremely Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 4 inches:* fine sandy loam *Bw - 4 to 27 inches:* gravelly fine sandy loam *C - 27 to 65 inches:* gravelly fine sandy loam

Properties and gualities

Slope: 0 to 15 percent Surface area covered with cobbles, stones or boulders: 9.0 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of flooding: None Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water capacity: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Hills, ridges *Parent material:* Igneous and metamorphic rock

Typical profile

R - 0 to 79 inches: bedrock

JSDA

Properties and qualities

Slope: 0 to 15 percent Depth to restrictive feature: 0 inches to lithic bedrock Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr) Available water capacity: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Canton, extremely stony

Percent of map unit: 7 percent Landform: Ridges, hills, moraines Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Chatfield, extremely stony

Percent of map unit: 6 percent Landform: Hills, ridges Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope, nose slope Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Montauk, extremely stony

Percent of map unit: 1 percent Landform: Drumlins, ground moraines, recessionial moraines, hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Scituate, extremely stony

Percent of map unit: 1 percent Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Footslope, backslope, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear, convex Across-slope shape: Convex

JSDA

Hydric soil rating: No

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 13, Jun 9, 2020

Norfolk and Suffolk Counties, Massachusetts

51—Swansea muck, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2trl2 Elevation: 0 to 1,140 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Swansea and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swansea

Setting

Landform: Bogs, swamps Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly decomposed organic material over loose sandy and gravelly glaciofluvial deposits

Typical profile

Oa1 - 0 to 24 inches: muck Oa2 - 24 to 34 inches: muck Cg - 34 to 79 inches: coarse sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: Very high (about 16.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

USDA

Minor Components

Freetown

Percent of map unit: 10 percent Landform: Swamps, bogs Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 13, Jun 9, 2020

Norfolk and Suffolk Counties, Massachusetts

52—Freetown muck, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2t2q9 Elevation: 0 to 1,110 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Freetown and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Freetown

Setting

Landform: Marshes, kettles, swamps, depressions, depressions, bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly decomposed organic material

Typical profile

Oe - 0 to 2 inches: mucky peat Oa - 2 to 79 inches: muck

Properties and qualities

Slope: 0 to 1 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: Very high (about 19.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

USDA

Minor Components

Swansea

Percent of map unit: 5 percent Landform: Marshes, swamps, bogs, kettles, depressions, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman

Percent of map unit: 5 percent Landform: Drainageways, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 13, Jun 9, 2020

Norfolk and Suffolk Counties, Massachusetts

73A—Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w695 Elevation: 0 to 1,580 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Whitman, extremely stony, and similar soils: 81 percent *Minor components:* 19 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Whitman, Extremely Stony

Setting

Landform: Drainageways, hills, ground moraines, drumlins, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 1 inches: peat *A - 1 to 10 inches:* fine sandy loam *Bg - 10 to 17 inches:* gravelly fine sandy loam *Cdg - 17 to 61 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 7 to 38 inches to densic material
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 3.0 inches)

USDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F144AY041MA - Very Wet Till Depressions Hydric soil rating: Yes

Minor Components

Ridgebury, extremely stony

Percent of map unit: 10 percent Landform: Drumlins, drainageways, hills, ground moraines, depressions Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Depressions, drainageways, outwash deltas, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Swansea

Percent of map unit: 3 percent Landform: Marshes, swamps, bogs Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Woodbridge, extremely stony

Percent of map unit: 1 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Backslope, footslope, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 13, Jun 9, 2020

Norfolk and Suffolk Counties, Massachusetts

654—Udorthents, loamy

Map Unit Setting

National map unit symbol: vkyb Elevation: 0 to 3,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Setting

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Excavated and filled coarse-loamy human transported material

Typical profile

H1 - 0 to 6 inches: variable H2 - 6 to 60 inches: variable

Properties and qualities

Slope: 0 to 25 percent
Depth to restrictive feature: More than 80 inches
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.06 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: Unranked

Minor Components

Udorthents, sandy

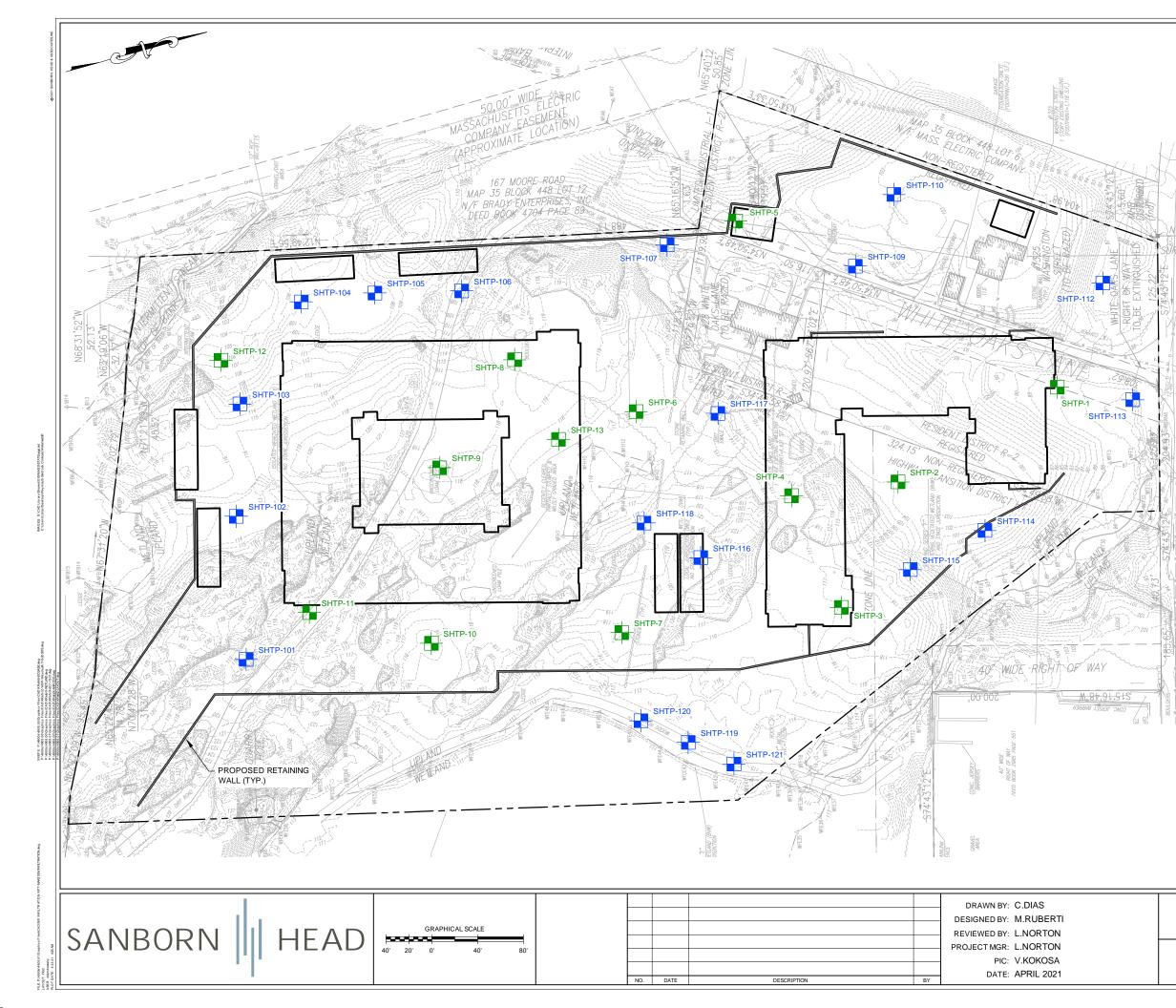
Percent of map unit: 8 percent Hydric soil rating: Unranked

USDA

Udorthents,wet substr.

Percent of map unit: 8 percent Hydric soil rating: Unranked

Urban land


Percent of map unit: 4 percent Hydric soil rating: Unranked

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 13, Jun 9, 2020

- 1. THE BASE TOPOGRAPHIC MAP WAS DRAWN FROM AN ELECTRONIC FILE ENTITLED, "EC 1-12-21.DWG", BY CROCKER DESIGN GROUP (CDG) OF HINGHAM, MA, PROVIDED ON FEBRUARY 10, 2021.
- THE PROPOSED SITE FEATURES WERE DRAWN FROM A PLAN TITLED, "GRADING CONCEPT PLAN", SHEET GP-4, DATED JANUARY 12, 2021 AND RECEIVED FROM CDG ON FEBRUARY 10, 2021 WITH AN ORIGINAL SCALE OF 1" = 50'
- TEST PITS DESIGNATED SHTP-1 THROUGH SHTP-13 WERE EXCAVATED BY J.F. PRICE CO., INC. (J.F. PRICE) OF HINGHAM, MA AND OBSERVED BY SANBORN HEAD ON NOVEMBER 12, 2020.
- 4. TEST PITS DESIGNATED SHTP-101 THROUGH SHTP-121 WERE EXCAVATED BY J.F. PRICE AND OBSERVED BY SANBORN HEAD BETWEEN FEBRUARY 24 AND 26, 2021. SHTP-108 AND SHTP-111 WERE NOT EXCAVATED DUE TO NEARBY ACTIVE UTILITIES.
- 5. APPROXIMATE LOCATIONS OF THE SHTP-1 SERIES EXPLORATIONS ARE BASED ON TAPED MEASUREMENTS MADE IN THE FIELD RELATIVE TO PROMINENT SITE FEATURES. TEST PITS DESIGNATED THE SHTP-100 SERIES EXPLORATIONS WERE SURVEYED IN THE FIELD BY CDG. THIS DATA SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.

LEGEND:

1290

--- APPROXIMATE SITE BOUNDARY

- APPROXIMATE LOCATION AND DESIGNATION OF TEST PIT OBSERVED BY SANBORN HEAD (FEBRUARY 2021)
- APPROXIMATE LOCATION AND DESIGNATION OF TEST PIT OBSERVED BY SANBORN HEAD (NOVEMBER 2020)

4905.01

EXPLORATION LOCATION PLAN

SANBORN	HEAD
SANDORN	

Date: 11/12/20 Time Started: 14:00 Time Finished: 14:20

Project No.: 4905.00

Project: White Oaks Lane

Location: Weymouth, MA

Logged By: C. Disenhof Checked By: V. Kokosa

Excavation Equipment

Make: CAT Model: 315L Bucket Capacity: 0.5 CY

Test Pit No. SHTP-1

Ground Elevation: 88 ± feet Revised in March 2021 Datum: Project Datum

Weather: Overcast, 50°F

 Groundwater Readings

 Date
 Time
 Depth to Water
 Ref. Pt.

 11/12/20
 14:12
 7.8'
 Ground Surface

Depth of Test Pit Stab. Time 8' None

Contractor: J. F. Price, Co. Operator: G. Fennessey Reach: 20 ft

Reach: 20 ft Bucket Capacity: 0.5 CY							
Depth (ft)	Field Testing Data	Strata Depth (ft)	Geologic Description	Strat Dept (ft)	h Excv Effor	Boulder Qty & Class	Remarks
0 —		0	Black, SILT and Sand, common Roots, common Leaves, few Organic particle	es. 0			
		0.5	Moist. TOPSOIL with Leaf Mat. Gray/brown, fine to coarse SAND, little Gravel, little Silt, common Roots, few	0.5			
			Cobbles. Moist. SUBSOIL.				
2—							
_		3		3			
			Gray, fine to coarse SAND, numerous Cobbles, some Gravel, trace Silt. Mois	st.			
4 —		4.5			E		
_		4.5	Gray, fine to coarse SAND, trace Gravel, trace Silt. Moist to wet.	4.5			
6—							
-							
8—		8	Test pit terminated at 8 feet due to repeated collapse due to groundwater.	8			
_							
10							
10							
-							
12							
-							
14—							
-							
16—							
_							
18—							
20-	cavation Eff		Soil Description Test Pi Boulder Size Classification Minor Component Proportions	t Plan	_		North Arrov
E M	Easy Modera	_ _	12" - 24" A trace 0 - 10% 24" - 36" B little 10 - 20%			▲'	N.
D	Difficul		36" and larger C some 20 - 35% and 35 - 50%		10'—	♥	Ĭ.

SANBORN	h	HEAD
SANBORN	Щ	HEAD

Project: White Oaks Lane Location: Weymouth, MA Project No.: 4905.00

Logged By: C. Disenhof

Sanborn, Head & Associates, Inc.

Date: 11/12/20 Time Started: 12:50 Time Finished: 13:15

Contractor: J. F. Price, Co. Operator: G. Fennessey Reach: 20 ft

Checked By: V. Kokosa **Excavation Equipment**

Make: CAT Model: 315L Bucket Capacity: 0.5 CY

Test Pit No. SHTP-2

Ground Elevation: 104 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 50°F

epth (ft)	Field Testing Data	Strata Depth (ft)		Geologic Description		Strata Depth (ft)	Excv. Effort	Boulder Qty & Class	Remarks
0		0	Forest Mat.			0	Å		
		0.3	<u></u>	D, some Silt, trace Gravel. Moist. SUB	SOIL.	0.3			
-									
2—		2	Grav fine to coarse SAND	, numerous Cobbles, some Gravel, tra	oo Silt Moist	2			
			Gray, fille to coarse SAND	, numerous Cobbles, some Graver, tra					
_									
4 —									
6							E		
6—									
-									
		7.5	Gray, fine to coarse SAND	, little Gravel, trace Silt, few Cobbles. I	Moist.	7.5			
8—									
-									
10—									
_									
12—		11.7	Test pit terminated at 11.7	feet due to repeated collapse.		11.7		-	
14—									
14									
_									
10									
16									
-									
18—									
-									
20		<u> </u>		Soil Description	Toot Bit Blar				Name Arma
Ex	cavation Eff	ort	Boulder Size Classification	Soll Description Minor Component Proportions	Test Pit Plan				North Arro
E	Easy Modera	to	12" - 24" A 24" - 36" B	trace 0 - 10% little 10 - 20%				▲ 5'	
D	Difficult		36" and larger C	some 20 - 35%				¥	
				and 35 - 50%	-	1	2'—	->	~

SANBORN	h	HEAD
---------	---	------

Date: 11/12/20 Time Started: 13:35 Time Finished: 13:45

Project No.: 4905.00

Project: White Oaks Lane

Location: Weymouth, MA

Logged By: C. Disenhof Checked By: V. Kokosa

Test Pit No. SHTP-3

Ground Elevation: 117 ± feet Revised in March 2021 Datum: Project Datum

Weather: Overcast, 50°F

epth (ft)	Field Testing Data	Strata Depth (ft)	Geologic Description	Strata Depti (ft)	Excv. Effort	Boulder Qty & Class	Remarks
0 —		0 0.4	Black, SILT and Sand, common Roots, common Leaves, few Organic particles. Moist. TOPSOIL with Leaf Mat.	0 / 0.4			
_			Brown, SILT and Sand, little Cobbles, trace Gravel, few Roots. Moist. SUBSOIL.				
2—					 E	 1A	
_		2.3	Gray/brown, fine to coarse SAND, little Silt, little Gravel. Moist. GLACIAL TILL.	2.3		1B	Redoximorphic mottling observed in the till.
4 —							
4		4 4.5	Test pit terminated between 4 to 4.5 feet due to refusal on bedrock.	4 4.5	_	V	
_			rest pit terminated between 4 to 4.5 feet due to refusal on bedrock.				
6—							
_							
8—							
10—							
_							
12—							
_							
14—							
16—							
_							
18—							
_							
20							
	avation Eff Easy	<u>ort</u>	Soil Description Test Pit Pl Boulder Size Classification Minor Component Proportions Test Pit Pl 12" - 24" A trace 0 - 10% 24" - 36" B little 10 - 20%	an '	•	Å	North Arrow

SANBORN	h	HEAD
SANBORN	щ	HEAD

Date: 11/12/20 Time Started: 11:48 Time Finished: 12:00

Contractor: J. F. Price, Co. Operator: G. Fennessey Reach: 20 ft

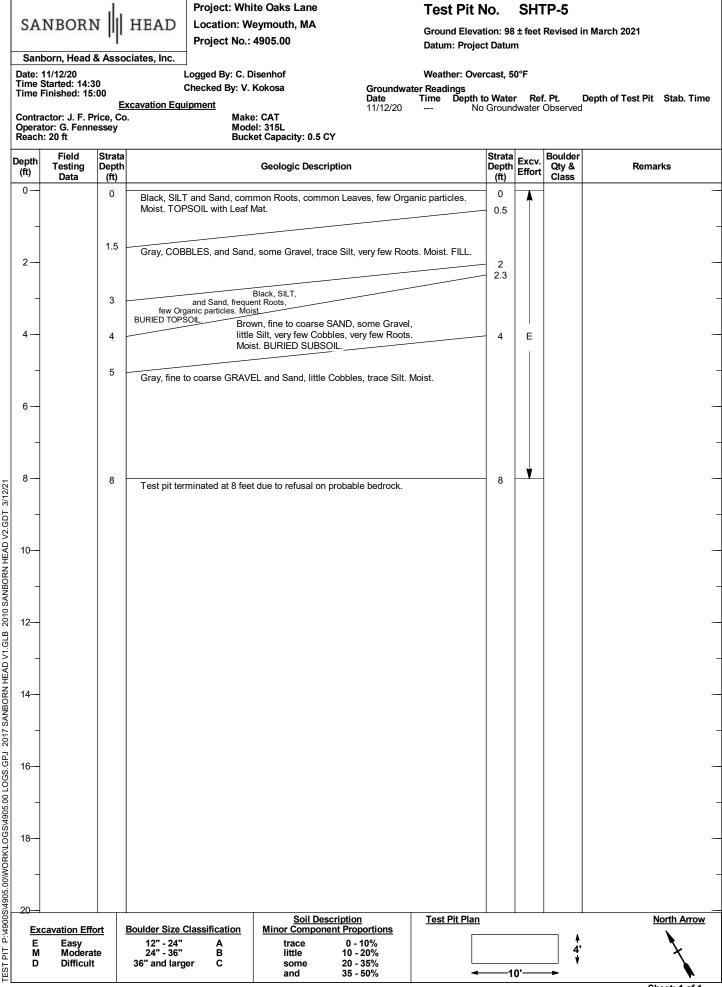
Project No.: 4905.00

Project: White Oaks Lane

Location: Weymouth, MA

Logged By: C. Disenhof Checked By: V. Kokosa

Excavation Equipment


Make: CAT Model: 315L Bucket Capacity: 0.5 CY

Test Pit No. SHTP-4

Ground Elevation: 115 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 60°F

Depth (ft)	Field Testing Data	Strata Depth (ft)		Geologic Description		Strata Depth (ft)	Excv. Effort	Boulder Qty & Class	Remarks
0-		0				0			
		0.3	Forest Mat.			0.3			
			Brown, SILT and Sand, trac	ce Gravel, few Roots. Moist. SUBSOIL					
4									
2—							Е	2A	
-									
-		3		coarse SAND, some Silt, some Grave	l Moist	3			
		3.5	GLACIAL TILL.			3.5		V	
4 —		0.0	Test pit terminated betwee	n 3 to 3.5 feet due to refusal on bedro	ck.	0.0			
4									
-									
6—									
4									
8—									
4									
10									
12—									
14—									
7									
16—									
٦									
18—									
1									
20				• • • •					•• • •
Exc	avation Eff	ort	Boulder Size Classification	Soil Description Minor Component Proportions	Test Pit Plan				North Arrov
E								≜	4
м	Easy Modera		12" - 24" A 24" - 36" B	little 10 - 20%				4'	*
D	Difficul	τ	36" and larger C	some 20 - 35% and 35 - 50%		Q	·	'	
					1		,		7

2010 SANBORN HEAD V2.GDT 3/12/21 P:\4900S\4905.00\WORK\LOGS\4905.00 LOGS.GPJ 2017 SANBORN HEAD V1.GLB

SANBORN	h	HEAD
---------	---	------

Date: 11/12/20 Time Started: 10:35 Time Finished: 10:50

Location: Weymouth, MA Project No.: 4905.00

Project: White Oaks Lane

Logged By: C. Disenhof Checked By: V. Kokosa

Excavation Equipment

Test Pit No. SHTP-6

Ground Elevation: 116 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 60°F

 Groundwater Readings

 Date
 Time
 Depth to Water
 Ref. Pt.

 11/12/20
 10:45
 2'
 Ground Surface

Depth of Test Pit Stab. Time 3' None

2 Brown/gray, fine to coarse SAND, little Gravel, little Silt. Wet. GLACIAL TILL. 0.5 Image: Coarse Sand coars	
- - <td>osoil was observed m approximately 3</td>	osoil was observed m approximately 3
2 Brown/gray, fine to coarse SAND, little Gravel, little Silt. Wet. GLACIAL TILL. 2 3 Redox observed	k, but more typica mately 6-inches th
3 Test pit terminated at 3 feet due to refusal on bedrock. 3 Groum perche 6 - - - 10 - - - 11 - - - 12 - - - 14 - - -	morphic mottling
3 Test pit terminated at 3 feet due to refusal on bedrock. 3 perche 4 - - - 6 - - - - - 8 - - 10 - - - 12 - - - 14 - - -	ed in the till.
	lwater observed to d on top of the till.
18-	

S/46	20-										
00						scription	<u>Test Pit Plan</u>				North Arrow
:\4900;	Exca	avation Effort	Boulder Size Class	sification	Minor Component Proportions						▲
Ч	E	Easy	12" - 24"	A	trace	0 - 10%				4	, ,
ЫТ	м	Moderate	24" - 36"	В	little	10 - 20%				1	×
EST	D	Difficult	36" and larger	C	some and	20 - 35% 35 - 50%	-	1	<u>۵'</u>	`	X
۳L					anu	55 - 50 /6			v	-	•

SANBORN	h	HEAD
---------	---	------

Date: 11/12/20 Time Started: 12:14 Time Finished: 12:30

Contractor: J. F. Price, Co. Operator: G. Fennessey Reach: 20 ft

Checked By: V. Kokosa **Excavation Equipment**

Make: CAT Model: 315L Bucket Capacity: 0.5 CY

Project: White Oaks Lane

Location: Weymouth, MA

Project No.: 4905.00

Logged By: C. Disenhof

Test Pit No. SHTP-7

Ground Elevation: 118 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 50°F

epth (ft)	Field Testing Data	Strata Depth (ft)		Geologic Descript	ion		Strata Depth (ft)	Excv. Effort	Boulder Qty & Class	Remarks
0 —		0	Forest Mat.				0			The forest mat with topsoil
		0.3	Brown, SILT and Sand, trad	ce Gravel, few Roots,	very few Cobbles.	Moist.	0.3			was observed to vary from approximately 3 to 6-inches
4			SUBSOIL.	,	-		1	E	2A	thick.
							1			
2—		2		Crovel little Court t			2	Ľ¥–	∀	The weathered rock is
			Gray/pink, COBBLES, little ROCK.	Gravel, little Sand, tra	ace SIIT. MOIST. WE	ATHERED				observed to fracture into
_		3								approximately 1 to 6-inch angular blocks. It is observe
								D		to be a slightly weathered, moderately fractured GRANITE.
4										GRANITE.
			Test pit terminated betwee	n 3 to 4.3 feet due to	refusal on bedrock		4.3			
6—										
8—										
1							1			
10										
10—										
1							1			
10										
12—										
14—							1			
1							1			
10							1			
16—										
1										
10										
18—										
1							1			
20										
	cavation Eff	iort	Boulder Size Classification	Soil Descri Minor Component	iption Proportions	<u>Test Pit Plan</u>	+			North Arrow
Е	Easy	_	12" - 24" A			Γ				X
M	Modera Difficul		24" - 36" B 36" and larger C	little some	0 - 10% 10 - 20% 20 - 35%				4'	く
U	Dinicul	•		and	35 - 50%	-		3'	>	

	d.	Project: White Oaks Lane
SANBORN	HEAD	Location: Weymouth, MA
	rl.	Project No.: 4905.00

Date: 11/12/20 Time Started: 09:35 Time Finished: 09:45

Contractor: J. F. Price, Co. Operator: G. Fennessey Reach: 20 ft

Logged By: C. Disenhof Checked By: V. Kokosa

Excavation Equipment

Make: CAT Model: 315L Bucket Capacity: 0.5 CY

Test Pit No. SHTP-8

Ground Elevation: 119 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 60°F

Groundwater Readings Time Depth to Water Ref. Pt. Depth of Test Pit Stab. Time No Groundwater Observed

Strata Depth Field Testing Boulder Strata Depth Depth **Geologic Description** Qty & Class Remarks (ft) Data (ft) (ft) 0 A C-Class boulder larger 0 0 0.2 Ground Surface than 6' in size was observed on the surface near the test Forest Mat pit. 1 Due to irregular fill, the Е 1.3 ground sloped approximately 1 foot downwards from NE to SW. In comparison, the Brown/black, WOOD CHIPS, very few Roots, very few Leaves. Moist. FILL 2 2.1 2.2 bedrock surface was Brown, SILT, and Sand, trace Gravel, very few Cobbles, very few Roots. Moist. SUBSOIL. 2.3 Y observed to be relatively 2.6 level with a very slight slope Test pit terminated between 2.3 and 2.6 feet due to refusal on bedrock. to the SW. 4 6 8 2010 SANBORN HEAD V2.GDT 3/12/21 10-12-2017 SANBORN HEAD V1.GLB 14 P:\4900S\4905.00\WORK\LOGS\4905.00 LOGS.GPJ 16-18 Soil Description Minor Component Proportions North Arrow Test Pit Plan Excavation Effort **Boulder Size Classification** ∔ 5' 12" - 24" 24" - 36" Easy Moderate 0 - 10% Е A B trace TEST PIT Μ little 10 - 20% D Difficult 36" and larger С some 20 - 35% and 35 - 50% -9' Sheet: 1 of 1

Sanborn, Head & Associates, Inc.

Date: 11/12/20 Time Started: 09:05 Time Finished: 09:25

Project: White Oaks Lane Location: Weymouth, MA Project No.: 4905.00

Logged By: C. Disenhof

Checked By: V. Kokosa

Test Pit No. SHTP-9

Ground Elevation: 118 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 60°F

ater Readings

Excavation Equipment

Groundwater Readings											
Date	Time	Depth									
11/12/20	09:20	3									

h to Water Ref. Pt. 3.2' Ground Surface

Depth of Test Pit 3.2' Stab. Time None

epth (ft)	Field Testing Data	Strata Depth (ft)	Geologic Description		Strata Depth (ft)	Excv. Effort	Boulder Qty & Class	Remarks
0		0	Black, fine to coarse GRAVEL, some Sand, few Cobbles, trace Roots, very few Organic particles. Moist. FILL.	Silt, very few	0			
-		1.3						
2—			Brown, fine to coarse SAND and Silt, trace Gravel, very few Roc SUBSOIL.	ots. Moist.	1.8 2.4	E 		
-		2.6	Gray, fine to coarse SAND, some Gravel, little Silt. Moist to wet.		2.8	V		Bedrock sloping irregularly downwards from west to
4 —			Test pit terminated between 2.8 to 3.2 feet due to refusal on bed	Irock.				east.
6—								
-								
8								
_								
10								
12								
_								
14—								
-								
16								
18								
10								
-								
20		ort <u>E</u>	Boulder Size Classification Minor Component Proportions	Test Pit Plan				North Arrow

	NBORN	٩Ŀ	HEAD	-	ite Oaks Lane eymouth, MA 4905.00		Grou	nd Elevat n: Projec	ion: 11	6 ± fee	FP-10 It Revised	l in March 2021
Date:	born, Head 8 11/12/20		L	₋ogged By: C. D			Weat	her: Drizz	zle, 60°	F		
	Started: 10:10 Finished: 10:2	25	(xcavation Equi	Checked By: V. ipment	Kokosa	Groundv Date 11/12/20	vater Read Time 10:20	lings Depth to 2.5	o Wate	r Re f Ground	f. Pt. Surface	Depth of Test Pit Stab. Time
		ssey	1	Mode	e: CAT el: 315L xet Capacity: 0.5 C							
Depth (ft)		Strata Depth (ft)			Geologic Descr	iption			Strata Depth (ft)	Excv. Effort	Boulder Qty & Class	Remarks
0		0 0.5		์ and Sand, frequ loist. TOPSOIL ง	uent Roots, commo with Leaf Mat.	on Leaves, trace G	ravel, few	[0 0.5			Topsoil varies from approximately 0.3" to 1' thick.
-			Brown, SIL SUBSOIL.	T and Sand, con	nmon Roots, trace	Gravel, few Cobbl	es. Moist.					The subsoil layer was observed to vary from approximately 2' thick to
2—		2	Gray, fine t	o coarse SAND,	some Gravel, little	e Silt. Wet. GLACI	AL TILL.		2	E	7A 1B	nonexistent
-								_				-
4		4	Test pit terr	minated betweer	n 3 to 4 feet due to	refusal on bedroc	κ.		4	V	¥	
-												-
6—												_
-												-
8—												-
-												-
10—												
												-
12												
												-
14												_
												-
16—												-
												-
18—												_
Exc	cavation Effo	_	Boulder Size C		Soil Des Minor Compone	ent Proportions	Test	Pit Plan	•	•	•	North Arrow
E M D	Easy Moderate Difficult		12" - 24" 24" - 36" 36" and large	A B er C	trace little some and	0 - 10% 10 - 20% 20 - 35% 35 - 50%				3'	5 •	La L

SANBORN	h	HEAD
---------	---	------

Sanborn, Head & Associates, Inc.

Project: White Oaks Lane Location: Weymouth, MA Project No.: 4905.00

Logged By: C. Disenhof

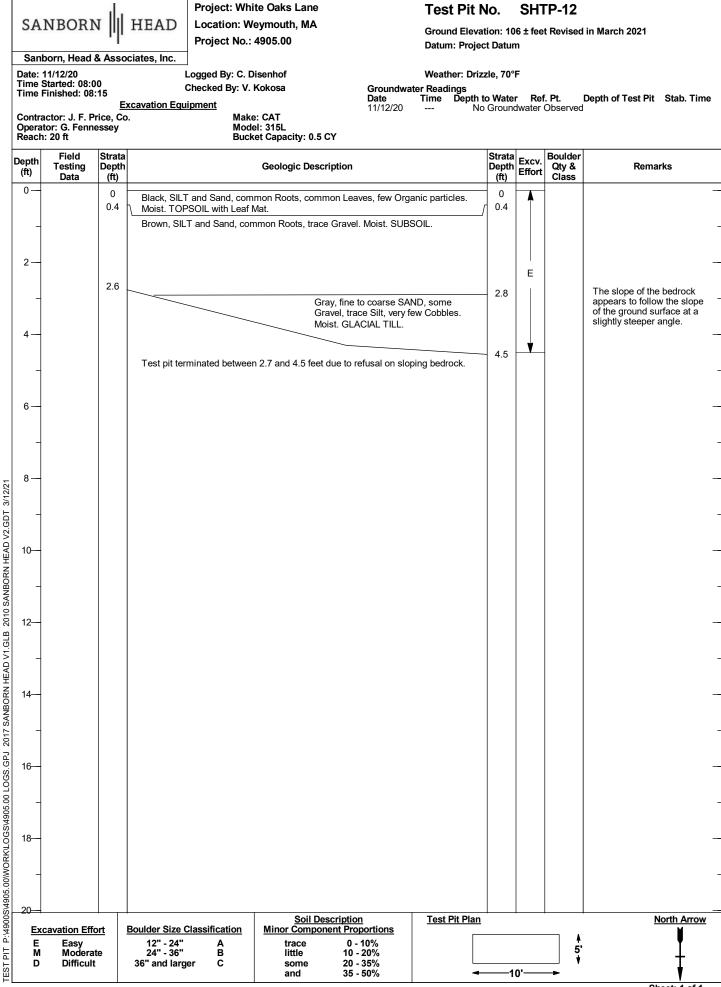
Checked By: V. Kokosa

Test Pit No. SHTP-11

Ground Elevation: 116 ± feet Revised in March 2021 Datum: Project Datum

Weather: Drizzle, 70°F

 Groundwater Readings


 Date
 Time
 Depth to Water
 Ref. Pt.

 11/12/20
 08:30
 3'
 Ground Surface

e 9.8' Stab. Time

Date: 11/12/20 Time Started: 08:25 Time Finished: 08:55 Excavation Equipment

Depth (ft) Field Testing Data Strata Depth (ft) S Decologic Description S D 0									Boulder Qty & Class	Remarks
0 —		0 0.3	Forest Mat. Gray/orange, fine to coarse	e SAND, little Silt, tra	ace Gravel. Moist. Fl		0 0.3		A	The fill is observed to be reworked glacial till.
2		2.6 - 3 -	Black, SILT and Sand, freq Gray/brown, fine to coarse GLACIAL TILL.			es. Moist.	2.6	E -	2A	Redoximorphic mottling observed at the top of the till Groundwater is interpreted to be perched on top of the till.
6 -										
8										
0		9.8	Test pit terminated at 9.8' o	due to refusal on be	drock or boulders.		9.8		v	
2										
4										
6										
- 8										
0 Exc	avation Eff		Boulder Size Classification	Soil Dese Minor Compone		Test Pit Plan				North Arrow

Sheet: 1 of 1

	NBORN	1 1	HEAD	Project: White Oaks Lane Location: Weymouth, MA Project No.: 4905.00	Test Pit N Ground Eleva Datum: Projec	tion: 11	17 ± fee		March 2021	
Sanb	orn, Head &	& Assoc	iates, Inc.							
Time S Time Fi	1/12/20 tarted: 09:55 inished: 10: ctor: J. F. Pr or: G. Fenne 20 ft	05 <u>Ex</u> rice, Co.	cavation Equ	Logged By: C. Disenhof Checked By: V. Kokosa <u>iipment</u> Make: CAT Model: 315L Bucket Capacity: 0.5 CY	Weather: Driz Groundwater Readings Date Time Depth t 11/12/20 10:00 3'	to Wate	r Ref	f. Pt. Der Surface	oth of Test Pit Stab. T 3' Nond	
epth (ft)	Field Testing Data	Strata Depth (ft)		Geologic Description		Strata Depth (ft)	Excv. Effort	Boulder Qty & Class	Remarks	
0		0 0.5		to coarse GRAVEL and Sand, trace Silt, particles, very few Roots, very few Organ		0		A		
2—			Brown, SIL	T and Sand, little Cobbles, trace Gravel,	few Roots. Moist. SUBSOIL.	- 1.5	E	2A		
-		2.5 3		to coarse SAND, some Gravel, little Silt. minated between 1.5 and 3 feet due to re	/		D			
4 —										
6-										
-										
8—										
_										
10										
-										
12—										

Soil Description Minor Component Proportions

trace little some and 0 - 10% 10 - 20% 20 - 35% 35 - 50%

Boulder Size Classification12" - 24"A24" - 36"B36" and largerC

Test Pit Plan

4

14-

16-

18–

20

E M D

Excavation Effort

Easy Moderate Difficult ∔ 5'

*

-6'-

North Arrow

					Te	st Pit Log					
Site Name:	Weymouth, M	ИA								Date:	2/25/2021
Site Address:	White Oaks L	ane					1			Time:	7:30
Project No.:	4905.01				SAN	IBORN		AD			
					-	1					
Ground Surface	elev. (ft.):	117±								Clear, 40's	
Test Pit Numbe	er:	SHTP-101						So	Logged by: bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color (Moist)	Redoxi	morphic Fe	eatures	Soil Texture (NRCS)		ragments /olume)	Soil Structure	Soil Consistence	Other
	-	(Moist)	Depth	Color	Percent		Gravel	Cobbles		(Moist)	
0 - 2	0	-	-	-	-	-	-	-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Bouldery Loamy Sand	10	15	Granular	Very Friable	Note 2
4 - 48	C _D	2.5Y 5/4	-	-	-	Bouldery Loamy Sand	20	10	Single Grain	Very Friable	
48 -	R	-	-	-	-	-	-	-	-	-	Note 3
-											
-											
-											
Fest Pit Term	ination Depth	(in.):	48		Reas	son for Termination:	Bedrock re	efusal		1	1
Groundwater	Observations:						In-Situ Te	-			
	weeping from		24				Percolatio		No	Depth (in.):	
	ing water in hol		44	Stabiliza	ation Time:		Permeame		No	Depth (in.):	
Depth to estim groundwater []	ated seasonal h ESHGWl (in.):	ligh	24	Basis f	or ESHGW:	Groundwater observed	Falling Head		No No	Depth (in.): Depth (in.):	
Additional No							e mer rest	-			

1. Numerous Boulders ranging from 24-48" in diameter encountered within C layer.

2. Organic horizon consists of woodland leaf litter.

3. Bedrock encountered at refusal depth of 48".

					Tes	st Pit Log					
Site Name:	Weymouth, M	мA								Date:	2/25/2021
Site Address:	White Oaks L	Jane			CAN	TRODAT	IL TTT			Time:	8:15
Project No.:	4905.01				SAN	JBORN		EAD			
Ground Surfac	e Elev. (ft.):	113±			1				Weather :	Clear, 40's	
					<u> </u>						
Logged by:M. RubertiTest Pit Number:SHTP-102Soil Evaluator #: SE 14152											
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	imorphic Fe	eatures	Soil Texture (NRCS)		'ragments Volume)	Soil Structure	Soil Consistence	Other
		(Moist)	Depth	Color	Percent	<u> </u> !	Gravel	Cobbles		(Moist)	
0 - 2	0	_	-	-	-	!	-	-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Loamy Sand	10	5	Granular	Very Friable	
4 - 36	C _D	2.5Y 6/2	-	-	-	Very Gravelly Sand	30	0	Single Grain	Very Friable	
-											
-											
-											
-											
Test Pit Term	ination Depth	(in.):	36	<u></u>	Reas	son for Termination:	Repeated (collapse	·	·	
	Observations:						In-Situ Te	U			
	r weeping from		6				Percolation		No	Depth (in.):	
	ling water in hol		27	Stabiliza	ation Time:		Permeame		No	Depth (in.):	
-	ated seasonal h	ligh	6	Basis f	for ESHGW:		Falling Hea		No	Depth (in.):	
groundwater [observed	Other Test	<u>: </u>	No	Depth (in.):	<u>, </u>
Additional No	ites:										

					Tes	st Pit Log					
Site Name:	Weymouth, M	ſΑ								Date:	2/25/2021
Site Address:	White Oaks L	ane				IDODNI	1			Time:	8:30
Project No.:	4905.01				SAN	IBORN		AD			
Ground Surfac		112±							Weather ·	Sunny, 40's	
										-	
Test Pit Numb	er:	SHTP-103						So	bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	morphic Fe	eatures	Soil Texture (NRCS)		ragments /olume)	Soil Structure	Soil Consistence	Other
()		(Moist)	Depth	Color	Percent		Gravel	Cobbles		(Moist)	
0 - 2	0	-	-	-	-	-	-	-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Loamy Sand	10	5	Granular	Very Friable	
4 - 24	B _W	2.5 YR 6/6	-	-	-	Gravelly Loamy Sand	15	5	Single Grain	Very Friable	
24 - 60	C _D	2.5 Y 5/3	-	-	-	Extremely Gravelly Loamy Sand	69	10	Single Grain	Very Friable	
-											
-											
-											
Гest Pit Term	ination Depth	(in.):	60		Reas	on for Termination:	Target der	th achieved	1	1	1
	Observations:	<u>``</u>	-				In-Situ Te				
	weeping from		60				Percolatio		No	Depth (in.):	
	ing water in hol		60	Stabiliza	zation Time: <30 Minutes Permeameter Test:		No	Depth (in.):			
-	ated seasonal h ESHGW] (in.):	igh	60	Basis f	or ESHGW:	Groundwater observed	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
dditional No	tes:										

					Te	st Pit Log					
Site Name:	Weymouth, M	ſΑ								Date:	2/25/2021
Site Address:	White Oaks L	ane			CAN	IDODN	I			Time:	9:00
Project No.:	4905.01				SAN	IBORN		EAD			
Ground Surfac	e Elev. (ft.):	107±			-				Weather :	Sunny, 40's	
Test Pit Numb	er:	SHTP-104			1			So	Logged by: bil Evaluator #:		
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	morphic F	eatures	Soil Texture (NRCS)		ragments /olume)	Soil Structure	Soil Consistence	Other
	-	(Moist)	Depth	Color	Percent		Gravel	Cobbles		(Moist)	
0 - 2	0	-	-	-	-	-	-	-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Loamy Sand	10	5	Granular	Very Friable	
4 - 30	B _W	2.5YR 6/6	-	-	-	Gravelly Loamy Sand	15	5	Single Grain	Very Friable	
30 - 36	C _D	2.5Y 5/3	-	-	-	Very Gravelly Loamy Sand	25	5	Single Grain	Very Friable	
36 -	R	-	-	-	-	-	-	-	-	-	Note 2
-											
-											
Test Pit Term	ination Depth	(in.):	36		Reas	son for Termination:	Bedrock re	efusal			1
Groundwater	Observations :						In-Situ Te	sting:			
	weeping from		N/A				Percolatio		No	Depth (in.):	
	ing water in ho		N/A	Stabiliza	ation Time:	<30 Minutes	Permeame		No	Depth (in.):	
-	ated seasonal h ESHGW] (in.):	igh	N/A	Basis f	or ESHGW:	N/A	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional No 1. Organic hori 2. Bedrock enc		usal depth of 36							110	Deptir (m.).	

					Tes	st Pit Log					
Site Name:	Weymouth, M	ЛА								Date:	2/25/2021
Site Address:	White Oaks L	ane				IDODAL	1			Time:	9:15
Project No.:	4905.01				SAN	IBORN		AD			
Ground Surfac		108±							Weather ·	Sunny, 40's	
										-	
Test Pit Numb	er:	SHTP-105						So	bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redox	imorphic Fe	eatures	Soil Texture (NRCS)		ragments /olume)	Soil Structure	Soil Consistence	Other
(,		(Moist)	Depth	Color	Percent		Gravel	Cobbles		(Moist)	
0 - 2	0	-	-	-	-	-	-	-	-	-	Note 1
2 - 3	А	10YR 4/1	-	-	-	Loamy Sand	10	5	Granular	Very Friable	
3 - 18	B _W	2.5YR 6/6	-	-	-	Gravelly Loamy Sand	15	5	Single Grain	Very Friable	
18 - 54	C _D	2.5Y 5/3	24	2.5 Y 5/8	15	Very Gravelly Loamy Sand	33.1	10	Single Grain	Very Friable	
-											
-											
-											
Fest Pit Term	ination Depth	(in.):	54		Reas	l son for Termination:	Target der	th achieved	1		
	Observations:	<u>``</u>					In-Situ Te				
	weeping from		30				Percolatio		No	Depth (in.):	
	ing water in ho		52	Stabiliza	tion Time:	<30 Minutes	Permeame		No	Depth (in.):	
-	ated seasonal h ESHGW] (in.):	igh	24	Basis f	or ESHGW:	Soil Mottling	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
dditional No	otes:										

					Te	st Pit Log								
Site Name:	Weymouth, N	MA								Date:	2/25/2021			
Site Address:	White Oaks L	Lane			CAN	TRODAL	1			Time:	11:00			
Project No.:	4905.01				SAN	JBORN	H H H	EAD						
Ground Surfac		107±			1				Weather ·	Sunny, 40's				
di ouna ounac	e Liev. (ie.j.									-				
Test Pit Numb	Logged by: M. Ruberti est Pit Number: SHTP-106 Soil Evaluator #: SE 14152													
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color (Moist)	Redox	imorphic Fe	eatures	Soil Texture (NRCS)	Structure (Moist)				Soil Soil Cons Cons		Consistence	Other
	-	(Moist)	Depth	Color	Percent	<u> </u> '	Gravel	Cobbles		(MOISU)				
0 - 24	Fill	10 YR 4/1	-	-	-	Extremely Gravelly Loamy Sand	75	5	Structureless	Very Friable	Note 1			
24 - 42	С	2.5 Y 6/2	-	-	-	Cravelly			Single Grain	Very Friable				
-														
-														
-														
-														
-														
	nination Depth	· · ·	42	•	Reas	son for Termination:	Target der	oth achieve	d					
	Observations:						In-Situ Te	U						
	r weeping from		24				Percolation		No	Depth (in.):				
	ling water in ho		40	Stabiliza	ation Time:		Permeame		No	Depth (in.):				
-	nated seasonal h	ıigh	24	Basis f	for ESHGW:	Groundwater	Falling Hea		No	Depth (in.):				
groundwater [Additional No	[ESHGW] (in.):					observed	Other Test	<u>:</u>	No	Depth (in.):				
Additional NC	stes:													

1. Few Brick fragments observed within the Fill layer.

					Tes	st Pit Log					
Site Name:	Weymouth, M	ΛA								Date:	2/25/2021
Site Address:	White Oaks L	ane			CAN	TRODAT	I			Time:	11:15
Project No.:	4905.01				SAN	IBORN		AD			
Ground Surface	e Elev. (ft.):	100±							Weather :	Sunny, 40's	
Test Pit Numbe	er:	SHTP-107						So	Logged by: bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	morphic F	phic Features Soil Texture (1			ragments Volume)	Soil Structure	Soil Consistence	Other
(menes)	or hayer	(Moist)	Depth	Color	(Moist)						
0 - 2	- 2 0										Note 1
2 - 4	А	10YR 4/1	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
4 - 36	B _W	2.5YR 6/6	-	-	-	Gravelly Loamy Sand	15	5	Single Grain	Very Friable	
36 - 48	С	2.5Y 5/3	-	-	-	Very Gravelly Sandy Loam	38.6	10	Massive	Very Friable	
36 - 48	R	-	-	-	-	-	-	-	-		Notes 2, 3
-											
-											
Test Pit Termi	ination Depth	(in.):	48		Reas	son for Termination:	Bedrock re	efusal			
Groundwater	Observations:						In-Situ Te	sting:			
Depth to water			N/A				Percolatio		No	Depth (in.):	
Depth to standing water in hole (in.):N/AStabilization Time:<30 MinutesPermeameter Test:NoDepth (in.):Depth to estimated seasonal highN/ADepth (in.):Falling Head Test:NoDepth (in.):											
Depth to estima groundwater [I		iign	N/A	Basis f	or ESHGW:	N/A	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional Notes: 1. Organic horizon consists of woodland leaf litter.											
-											
2. Bedrock obs 3. Test pit offse 4. N/A denotes	et approximatel	y 25 feet towar	-	l.							

					Tes	st Pit Log					
Site Name:	Weymouth, N	ЛА								Date:	2/26/2021
Site Address:	White Oaks L	ane				IDODAL	1			Time:	10:30
Project No.:	4905.01				SAN	IBORN		AD			
Ground Surface	e Elev. (ft.):	98±							Weather :	Sunny, 40's	
										M. Ruberti	
Fest Pit Numbe	er:	SHTP-109						Se	bil Evaluator #:		
Depth (inches)	hes) or Layer (Moist)					Features Soil Texture (NRCS)		Coarse Fragments (% by Volume)		Soil Consistence	Other
(menee)	or hay or	(Moist)	Depth	Color	Percent		Cobbles	Structure	(Moist)		
0 - 6	А	10YR 4/1	-	-	-	Loamy Sand	5	0	Granular	Very Friable	
6 - 24	B _W	2.5YR 6/6	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
24 - 114	С	2.5Y 5/3	-	-	-	Gravelly Sand	28.6	5	Single Grain	Very Friable	
-											
-											
-											
-											
Fest Pit Term	ination Depth	(in.):	114		Reas	l son for Termination:	Target der	oth achieved	<u> </u> 1		
	Observations:						In-Situ Te		-		
	weeping from		N/A				Percolatio		No	Depth (in.):	
					ation Time:	<30 Minutes	Permeame		No	Depth (in.):	
Depth to estim groundwater []	ated seasonal h ESHGW] (in.):	igh	N/A	Basis f	or ESHGW:	N/A	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional No	tes:										

1. N/A denotes "not observed".

					Tes	st Pit Log					
Site Name:	Weymouth, N	ЛА								Date:	2/26/2021
Site Address:	White Oaks L	ane				TROPAL	1			Time:	9:30
Project No.:	4905.01				SAN	IBORN		AD			
Ground Surface		103±				1			Weather	Sunny, 40's	
	e hiev. (it.).	105±								-	
Гest Pit Numbe	er:	SHTP-110						So	Logged by: bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	nches) or Layer (Moist)					Soil Texture (NRCS)	Coarse Fragments (% by Volume)		Soil Structure	Soil Consistence	Other
()		(Moist)	Depth	Color	Percent		Cobbles		(Moist)		
0 - 6	А	10 YR 4/1	-	-	-	Loamy Sand	5	0	Granular	Very Friable	
6 - 24	B _w	2.5YR 6/6	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
24 - 156	С	2.5 Y 5/3	-	-	-	Very Gravelly Sand	30	5	Single Grain	Very Friable	
-											
-											
-											
Гest Pit Term	ination Depth	(in.):	156		Reas	l son for Termination:	Target der	th achieved	1		
	Observations:	1 /					In-Situ Te				
	weeping from		N/A				Percolatio		No	Depth (in.):	
					ation Time:	<30 Minutes	Permeame		No	Depth (in.):	
Depth to estim groundwater []	ated seasonal h ESHGW] (in.):	igh	N/A	Basis f	or ESHGW:	N/A	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional No	tes:										

1. N/A denotes "not observed".

					Tes	st Pit Log					
Site Name:	Weymouth, N	ЛА								Date:	2/25/2021
Site Address:	White Oaks I	ane					1			Time:	12:00
Project No.:	4905.01				SAN	IBORN		EAD			
Ground Surfac		86.5±			-				Weather	Sunny, 40's	
Gi ounu Suriac	e Elev. (It.):	00.5±								-	
Test Pit Numb	er:	SHTP-112						So	Logged by: oil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	color Inches) or Layer (Moist)					Features Soil Texture (NRCS)		ragments /olume)	Soil Structure	Soil Consistence	Other
	-	(MOISE)	Depth	Color	Percent		Cobbles		(Moist)		
0 - 2	0	-	-	-				-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
4 - 66						Very Gravelly Sand	38.3	5	Single Grain	Very Friable	
-											
-											
-											
Test Pit Termination Depth (in.): 66					Reas	son for Termination:	Target dep	oth achieved	d		
Groundwater Observations:							In-Situ Te	Ŭ			
Depth to water weeping from pit face (in.): 60							Percolatio		No	Depth (in.):	
				Stabiliza	ation Time:		Permeame		No	Depth (in.):	
	Depth to estimated seasonal high groundwater [ESHGW] (in.): 60 Basis f			sis for ESHGW: Groundwater Falling Head Test: No Depth (in.):							
Additional No						observed	Other Test		No	Depth (in.):	
productional NC											

					Tes	st Pit Log					
Site Name:	Weymouth, M	ſΑ								Date:	2/25/2021
Site Address:	White Oaks L	ane				TROPAL	1			Time:	11:45
Project No.:	4905.01				SAN	IBORN		AD			
•		86±					·			Suppre 40'a	
Ground Surface	elev. (It.):	00±								Sunny, 40's	
Гest Pit Numbe	۲:	SHTP-113						So	Logged by: oil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	hes) or Layer (Moist)				Soli Texture (NRCS) (% by Volume)		-	Soil Structure	Soil Consistence	Other	
	2	(Moist)	Depth	Color	Percent		Gravel	Cobbles		(Moist)	
0 - 12	А	10YR 4/1	-	-	-	Loamy Sand	5	0	Granular	Very Friable	
12 - 24	B _w	2.5YR 6/6	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
24 - 48	С	2.5Y 5/2	-	-	-	Very Gravelly Sand	25	5	Single Grain	Very Friable	
48 -	R										Note 1
-											
-											
Fest Pit Term	ination Depth	(in):	48		Read	on for Termination:	Redrock re	fusal			
	Observations:	<u>``</u>	10		neas	on for rermination.	In-Situ Te				
	weeping from		42				Percolatio		No	Depth (in.):	
Depth to standing water in hole (in.): 46 Stabil					ation Time:	<30 Minutes	Permeame	ter Test:	No	Depth (in.):	
Depth to estimated seasonal high groundwater [ESHGW] (in.): 42 Basis				Basis f	or ESHGW:	Groundwater observed	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional No											

1. Bedrock encountered at refusal depth of 48".

					Te	st Pit Log					
Site Name:	Weymouth, M	MА			<u> </u>					Date:	2/25/2021
Site Address:	White Oaks L	Lane			CAN	TRODAL	IL TTT			Time:	10:30
Project No.:	4905.01				SAr	VBORN	Hr	EAD			
Ground Surfac	e Elev. (ft.):	101±			1		L		Weather :	Sunny, 40's	
									Logged by:	M. Ruberti	
Test Pit Numbe	er:	SHTP-114						So	oil Evaluator #:		
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	imorphic F	Soil Texture (NRCS)		'ragments Volume)	Soil Structure	Soil Consistence	Other	
((Moist)	Depth	Color	Percent	<u> </u> !	(Moist)				
0 - 2	0	-		-	-	-	-	-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
4 - 156	С	2.5Y 5/3	-	-	-	Extremely Gravelly Sand	45.3	10	Single Grain	Very Friable	
-											
-											
-											
-						1					
Test Pit Term	ination Depth	(in.):	156	L	Rea	son for Termination:	Target der	th achieved	d		<u>_</u>
Groundwater	Observations:	:					In-Situ Te	esting:			
•	r weeping from	<u> </u>	N/A				Percolation		No	Depth (in.):	
	ling water in hol		N/A	Stabiliz	ation Time:		Permeame		No	Depth (in.):	
-	ated seasonal h	ligh	N/A	Basis	for ESHGW:		Falling Hea		No	Depth (in.):	
groundwater [i	Other Test	<u>[:</u>	No	Depth (in.):	
Additional No			1								

2. N/A denotes "not observed".

					Tes	st Pit Log					
Site Name:	Weymouth, N	ЛА								Date:	2/25/2021
Site Address:	White Oaks I	ane			SAN	IBORN	I HE	EAD		Time:	10:30
Project No.:	4905.01					1.	1				
Ground Surfac	e Elev. (ft.):	110±							Weather :	Sunny, 40's	
Test Pit Numb	er:	SHTP-115						So	Logged by: oil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	imorphic F	eatures	Soil Texture (NRCS)	Coarse Fragments (% by Volume)		Soil Structure	Soil Consistence	Other
(<u>-</u> ,	(Moist)	Depth	Color	Percent		Gravel	Cobbles		(Moist)	
0 - 4	0	-	-	-	-	-	-	-	-	-	Note 1
4 -	R	-	-	-	-	-	-	-	-	-	Note 2
-											
-											
-											
-											
-											
Test Pit Term	ination Depth	(in.):	4		Reas	son for Termination:	Bedrock r	efusal			
Groundwater			In-Situ Testing:								
	weeping from		N/A				Percolatio		No	Depth (in.):	
					ation Time:	N/A	Permeame		No	Depth (in.):	
-	Depth to estimated seasonal high groundwater [ESHGW] (in.): N/A Basis			Basis f	or ESHGW:	N/A	Falling He Other Test		No No	Depth (in.): Depth (in.):	
Additional No							Jourer rest	La .	INU	Depth (III.)	
		woodland leaf	litter.								

2. Bedrock encountered at refusal depth of 4".

					Te	st Pit Log					
Site Name:	Weymouth, M	ſΑ								Date:	2/25/2021
Site Address:	White Oaks L	ane				TROPAL	1			Time:	9:45
Project No.:	4905.01				SAN	IBORN		AD			
Ground Surface		122±							Weather	Sunny, 40's	
										-	
Test Pit Numbe	er:	SHTP-116						So	Logged by: bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	imorphic Features Soil Texture (NRCS)		Coarse Fragments (% by Volume)		Soil Structure	Soil Consistence	Other	
()		(Moist)	Depth	Color	Percent		(Moist)				
0 - 2	0	-	-	-	-	-	-	-	-	-	Note 1
2 - 4	А	10YR 4/1	-	-	-	Sandy Loam	10	5	Granular	Very Friable	
4 - 24	B _w	2.5YR 6/6	-	-	-	Gravelly Loamy Sand	15	5	Single Grain	Very Friable	Note 2
24 -	R	-	-	-	-	-	-	-	-	-	
-											
-											
-											
Гest Pit Term	ination Depth	(in.):	24		Reas	son for Termination:	Bedrock re	efusal			
	Observations:	<u>``</u>					In-Situ Te				
	weeping from		20				Percolatio		No	Depth (in.):	
					ation Time:		Permeame		No	Depth (in.):	
Depth to estimated seasonal high groundwater [ESHGW] (in.): 20 Bas:					or ESHGW:	Groundwater observed	Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional No											

2. Bedrock encountered at refusal depth of 24".

					Tes	st Pit Log					
Site Name:	Weymouth, M	ЛА								Date:	2/25/2021
Site Address:	White Oaks L	ane				BORN	1			Time:	10:00
Project No.:	4905.01				SAN	IBORN II	HF	EAD			
		113±			1				Meether	Sunny, 40's	
Ground Surface	e Elev. (It.j:	1131			L					-	
Test Pit Numbe	er:	SHTP-117						Sc	Logged by: bil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	- I Olor			imorphic Fe	eatures	Soil Texture (NRCS)	Coarse Fragments (% by Volume)		Soil Structure	Soil Consistence	Other
	-	(MOIST)	Depth	Color	Percent	<u> </u>	Gravel	Cobbles		(Moist)	
0 - 30	А	10YR 4/1	-	-	-	Sandy Loam	10	0	Granular	Very Friable	Note 1
30 -	R	-	-	-				-	-	-	Note 2
-	- A A										
-											
-											
-											
-											
Test Pit Termination Depth (in.): 30					Reas	son for Termination:	-				
Groundwater Observations:							In-Situ Te				
Depth to water weeping from pit face (in.): 12							Percolation		No	Depth (in.):	
				Stabiliza	ation Time:		Permeame		No	Depth (in.):	
	Depth to estimated seasonal high groundwater [ESHGW] (in.): 12 Basis			Basis f			Falling Hea Other Test		No No	Depth (in.): Depth (in.):	
Additional No						observed	other rest	<u> </u>			

1. Common Root pieces observed.

2. Bedrock encountered at refusal depth of 30".

					Te	st Pit Log					
Site Name:	Weymouth, N	MА								Date:	2/25/2021
Site Address:	White Oaks L	ane			CAN	TRODAT	I TTT			Time:	9:35
Project No.:	4905.01				SAN	IBORN 🛛	Пцц	AD			
Ground Surfac	e Elev. (ft.):	120±			1				Weather :	Sunny, 40's	
										M. Ruberti	
Test Pit Numbe	er:	SH-TP118						So	oil Evaluator #:	SE 14152	
Depth	Soil Horizon	Soil Matrix	Redovi	imorphic F	entures		Coarse F	ragments	Soil	Soil	
(inches)	or Layer	Color (Moist)	Redoxi	norpine r	Soli Texture (NRCS) (% by volume)			Structure	Consistence (Moist)	Other	
	ļ	(MOISE)	Depth	Color	Percent		Gravel	Cobbles		(MOISE)	
0 - 2	0	-	-	-	-	-	-	-	-	-	Note 1
2 -	R	-	-	-	· · · ·				-	-	Note 2
-											
-											
-											
-											+
					<u> </u>						
Test Pit Term	ination Depth	(in.):	2	<u> </u>	Rea:	son for Termination:	Bedrock re	efusal			<u> </u>
Groundwater	-	· /					In-Situ Te				
Depth to water			N/A				Percolatio		No	Depth (in.):	
Depth to stand			N/A	Stabiliza	ation Time:	<30 Minutes	Permeame		No	Depth (in.)	
Depth to estim groundwater [ligh	N/A	Basis f	for ESHGW:	N/A	Falling He Other Test		No No	Depth (in.):	
Additional No							other rest		NO	Depth (in.):	
1. Organic hori		woodland leaf	litter.								
2. Bedrock enc											
3. N/A denotes	"not observed	".									

					Te	st Pit Log					
Site Name:	Weymouth, M	MА								Date:	2/24/2021
Site Address:	White Oaks L	Jane			CAN	IBORN	IL TTT			Time:	9:40
Project No.:	4905.01				SAN	IBORN II	H HE	EAD			
Ground Surface		113.5±			1				Weather	Sunny, 40's	ł
Giouna Surraci		115.5±			<u> </u>					-	
Test Pit Numbe	er:	SHTP-119						Sc	Logged by: oil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	nches) or Layer (Moist)				Soil Texture (NRCS) (% by Vol				Soil Structure	Soil Consistence	Other
('	 '	(MOISC)	Depth	Color	Percent	<u> </u>	Gravel	Cobbles	ļ'	(Moist)	!
0 - 2	0	- I	-	-	-				-	-	Note 1
2 - 42	Fill	10YR 4/4	-	-	-	Very Gravelly Sand	30	10	Structureless	Very Friable	
_											
-											
_											
_											
-											
Test Pit Termination Depth (in.):42					Reas	son for Termination:					
Groundwater Observations:							In-Situ Te	Ŭ			
Depth to water weeping from pit face (in.): 36				Ctobiliz	ation Time:		Percolation		No	Depth (in.):	
	Depth to standing water in hole (in.): 36 Stabiliz Depth to estimated seasonal high 26 Paris			Stabiliza	ation mile:		Permeame		No No	Depth (in.): Depth (in.):	
groundwater [ESHGW] (in.):				Basis f	Basis for ESHGW.		Depth (in.):				
Additional No								<u> </u>		2 op in (iii.j.	

					Te	st Pit Log					
Site Name:	Weymouth, M	ЛА								Date:	2/24/2021
Site Address:	White Oaks L	Lane			CAN	TRODAL	1			Time:	10:30
Project No.:	4905.01				SAN	JBORN	HF	EAD			
		113±			4		l' .			C 40'a	
Ground Surface	Elev. (ft.J:	113±			<u> </u>					Sunny, 40's	!
Test Pit Number: SHTP-120 Sc										M. Ruberti SE 14152	
Depth (inches)	(inches) or Layer (Moist)					Soil Texture (NRCS)Coarse Fragments (% by Volume)		Soil Structure	Soil Consistence	Other	
	-	(MOIST)	Depth	Color	Percent	<u> </u>	ļ!	(Moist)			
0 - 2	0	-	_	-	-	-	-	-		-	Note 1
2 - 36	Fill	10YR 4/4	-	-	-	Very Gravelly Sand	30	10	Structureless	Very Friable	Notes 2, 3
-											
-										 	
-											
-	 										
-	 										
Test Pit Termination Depth (in.):36					Reas	son for Termination:					
Groundwater							In-Situ Te	0			
Depth to water weeping from pit face (in.): 30							Percolation		No	Depth (in.):	
					ation Time:		Permeame		No	Depth (in.):	
Depth to estimated seasonal high groundwater [ESHGW] (in.): 30 Basis				Basis f	ISIS FOR ENHLAW'		Falling Hea		No	Depth (in.):	
groundwater [ESHGW] (in.): observed Other Test: No Depth (in.):											

2. Redoximorphic features caused by textural change observed at appriximately 2 feet bgs and not indicative of EHSGW.

3. Pockets of re-worked Glacial Till and Topsoil observed at approximately 2 feet bgs.

					Tes	st Pit Log					
Site Name:	Weymouth, M	ЛА								Date:	2/24/2021
Site Address:	White Oaks Lane							Time:	9:00		
Project No.:						SANBORN HEAD					
Ground Surfac		115±							Weather	Sunny, 40's	
										-	
Test Pit Numb	er:	SHTP-121						Se	Logged by: oil Evaluator #:	M. Ruberti SE 14152	
Depth (inches)	Soil Horizon or Layer	Soil Matrix Color	Redoxi	morphic Fe	eatures	Soil Texture (NRCS)	Coarse Fragments (% by Volume)		Soil Structure	Soil Consistence	Other
()		(Moist)	Depth	Color	Percent	1	Gravel	Cobbles		(Moist)	
0 - 2	0	-	-	-	-	-	1	-	-	-	Note 1
2 - 54	Fill	10YR 4/1	-	-	-	Very Gravelly Sand	30	5	Structureless	Very Friable	
54 - 60	C _D	2.5Y 5/1	-	-	-	Gravelly Loamy Sand	15	10	Massive	Firm in place, Friable in hand	
-											
-											
-											
-											
Гest Pit Term	ination Depth	(in.):	60		Reas	son for Termination:	Target dep	oth achieved	d		
	Observations:						In-Situ Te				
Depth to water weeping from pit face (in.): 54					Percolatio		No	Depth (in.):			
	ing water in hol		58	Stabiliza	ation Time:	<30 Minutes	1		Depth (in.):		
Depth to estimated seasonal high groundwater [ESHGW] (in.): 54 Basis fo			or ESHGW:	Groundwater observed	Falling Hea Other Test		No No	Depth (in.): Depth (in.):			
Additional No	tes:										

SECTION 7 – Wetland Mitigation & Replication Report

Wetland Replication and Buffer Zone Restoration and Enhancement Plan

Hanover Weymouth Residential Development Weymouth, MA

April 5, 2021

Table of Contents

TABLE OF CONTENTS

WETLAND RE	PLICATIC	ON AND BUF	FER ZONE ENHANCEMENT PLAN	1	
1.0	Overvi	Overview			
2.0	Existin	g Condition	S	1	
	2.1	IVW Imp	pact Sites	1	
	2.2	Wetland	Replication Site	2	
3.0	BVW F	Replication P	lan	5	
	3.1	Overview	N	5	
		3.1.1	Hydrology and Topography	5	
		3.1.2	Soils	6	
		3.1.3	Vegetation	6	
		3.1.4	General Wetland Replication Construction Sequence	7	
4.0	Buffer	Zone Resto	ration and Enhancement Plan	11	
	4.1	Overviev	N	11	
5.0	Monit	oring Plan		13	

ATTACHMENT A – FIGURES

ATTACHMENT B - SITE PHOTOGRAPHS

ATTACHMENT C - WETLAND REPLICATION DESIGN DRAWINGS

List of Figures

Figure 1 - USGS Locus Map Figure 2 - DEP Wetlands Map

List of Tables

Table 2-1	Soil Profile Description at Test Pit SH-TP-121 (elev. 115-feet)	3
Table 2-2	Soil Profile Description at Test Pit SH-TP-119 (elev. 113.5-feet)	4
Table 2-3	Soil Profile Description at Test Pit SH-TP-120 (elev. 113-feet)	4
Table 3-1	Wetland Replication Area Plantings	7
Table 4-1	Buffer Zone Restoration and Enhancement Area Plantings	12

1.0 Overview

This Wetland Replication and Buffer Zone Enhancement Plan (the "Plan") has been prepared for the Hanover Company in support of the proposed residential apartment development located off Washington Street at the intersection with White Oaks Lane in Weymouth, Massachusetts ("Project") [MassDEP File No. TBD]. The Project will result in approximately 4,437 s.f. of permanent impacts to two Isolated Vegetated Wetlands ("IVWs") that are regulated under the Weymouth Wetlands Protection Bylaw (the "Bylaw"). The Project does not propose any alterations to Bordering Vegetated Wetlands ("BVW") regulated under the Bylaw and Massachusetts Wetlands Protection Act regulations (310 CMR 10.55). Approximately 5,100 s.f. of new wetlands will be provided as mitigation for unavoidable impacts to the two IVWs (a greater than 1:1 ratio). In addition, the Project proposes to enhance and restore approximately 4,800 s.f. of the adjoining buffer zone, including upland area habitat associated with a vernal pool, with native plantings like those found in the surrounding area.

The wetland replication area described in this report has been designed in accordance with the Bylaw and modeled, in part, after the relevant sections of the Massachusetts Department of Environmental Protection's ("MassDEP") "Massachusetts Inland Wetland Replication Guidelines" (MassDEP, March 2002). Because one of the IVWs to be filled by the Project is generally degraded and most of its functions altered, the goal of this wetland replication plan is not limited to replacing the surface area of the lost IVWs. Rather, the goal of this wetland replication plan is to enhance the functions and values of other higher-quality on-site wetlands through the construction of a new wetland located adjacent to a large and well-established forested wetland in a location that will be protected from future encroachments. The wetland replication area will also replicate some of the functions of the IVW that is not already degraded.

The wetland replication area has also been designed to function in a manner that is like the existing BVW system that will be expanded to accommodate the new wetland regarding groundwater and surface elevations, hydrology, and wetland plant species and soil types. Additional information describing the proposed Plan is provided in the balance of this report. Refer to the Wetland Replication Design Drawings in Attachment C for additional detail.

2.0 Existing Conditions

2.1 IVW Impact Sites

The Project proposes to fill two IVWs on site, depicted as Wetland Series G and H on the separate Notice of Intent permit drawing set. IVW Series G is approximately 1,545 s.f. and is in the southern portion of the Project Site, off an existing quarry access road. The IVW is located next to an access road where an open area degraded by former quarry activity meets the forest edge. This scrub-shrub wetland is dominated by fetterbush (*Eubotrys racemosus*), highbush

blueberry (*Vaccinium corymbosum*), blue huckleberry (*Gaylussacia frondosa*) and some sedges (*Carex* spp). The IVW contained a few small pockets of standing water during a site visit in February 2021 (see Photographs 3 and 4 in Attachment B).

The second IVW impact site, Wetland Series H, is approximately 2,892 s.f. in size and is located just north of Series G. This IVW is in an open area that is heavily degraded by former quarry activity. The IVW appears to have formerly been characterized as a Palustrine Emergent¹ wetland (see Attachment B, Site Photographs). Ground cover primarily consists of gravel / cobble fill, but some remnant herbaceous plants are scattered throughout (see Photos 1 and 2). Plants observed in the impact area included soft rush (*Juncus effusus*), sedges, fetterbush, and sweet fern (*Comptonia peregrina*).

There are no mature or sapling trees present and only a few small shrubs within the two IVW impact areas. The topography is relatively flat. There was no woody debris observed in IVW Series H, and limited woody debris was observed in IVW Series G.

According to the NRCS Soil Survey for Norfolk County, soils in the vicinity of the IVW impact sites are mapped as Hollis-Rock outcrop-Charlton complex, 0 to 15 percent slopes. This is an extremely stony, gravelly fine sandy loam.

Regarding hydrologic conditions, at the time of inspection, soils were saturated at or near the surface. Both IVWs contained small pockets of standing water approximately 3 to 5 inches deep. Both IVWs are subject to seasonal inundations associated with spring flood and rain events.

2.2 Wetland Replication Site

The proposed location of the wetland replication site is depicted on Figures 1 and 2 in Attachment A; photographs are provided in Attachment B. The wetland replication area is proposed along the eastern edge of the Project Site, tying into Wetland Series E, an expansive forested wetland system characterized by a red maple (*Acer rubrum*) and black gum (*Nyssa sylvatica*) overstory. Wetland Series E will serve as the reference wetland, containing dense shrub species along its perimeter, including primarily fetterbush, highbush blueberry, maleberry (*Lyonia ligustrina*), sweet pepperbush (*Clethra alnifolia*), and swamp azalea (*Rhododendron viscosum*). The reference wetland is primarily flat in topography. The reference wetland contained standing water at the time of a site visit in February 2021.

An existing quarry access road, approximately 20 feet wide, borders the reference wetland along its western edge. Approximately 5,100 s.f. of this access road is proposed to be removed and converted to wetland replication area. The access road is relatively open and contains some limited herbaceous vegetation and small saplings and shrubs. Scattered greenbrier (*Smilaz rotundifolia*), white pine (*Pinus strobus*), red oak (*Quercus rubra*), black huckleberry (*Gaylussacia*)

¹ Cowardin, L. et al. (1979). Classification of Wetlands and Deepwater Habitats of the United States, United States Fish and Wildlife Service, Biological Services Program, Washington, D.C., FWS/OBS-79/31.

baccata), and sheep laurel (*Kalmia angustifolia*) are present along the access road. Photos 7 and 8 depict the existing access road where the wetland replication area is proposed to be constructed.

According to NRCS Soil Survey soils, soils within the replication site are characterized as Hollis-Rock outcrop-Charlton complex, 0 to 15 percent slopes.

On February 24, 2021, Epsilon witnessed the excavation of three test pits (119 through 121) at the wetland replication site (within the access road). The purpose of the test pits was to gain an understanding of subsurface hydrologic conditions and redoximorphic features in the soil profile. The data collected from this effort was used to inform and advance the proposed grading scheme of the wetland replication area, as described in further detail in the balance of this report. For perspective, the highest groundwater levels and water table fluctuations are routinely estimated by soil scientists from a soil's morphology, mainly the soil color. The depth and duration of a water table can generally be correlated to the location and abundance of redoximorphic features in the soil profile. Typically, the shallowest appearance of redoximorphic features (especially bright ferrous iron concentrations) are more strongly correlated to capillary fringe or rise of groundwater in the soil rather than water table height; generally, we identify this area as the seasonal high groundwater level. This area may correlate to saturated zones, capillary fringe, or flashy water table saturation. Estimated seasonal high groundwater is correlated with the saturated zone.

The test pits revealed a buried wetland beneath portions of the access road. Tables 2-1 through 2-3 below describe the existing soil profile at the wetland mitigation site. The first test pit, #121, described in Table 2-1 below, was located at the northern part of the proposed replication area. Coarse sand fill material was observed to a depth of approximately 54 inches. The water table was observed at a depth of 54 inches below grade. A native wetland soil was discovered beneath the placed fill, from a depth of 54 inches to the bottom of the test pit. This compact, loamy find sand had a depleted (2.5Y 5/1) matrix. No redoximorphic features were observed.

Depth (inches)	Description	Matrix Color	Soil Texture	Redoximorphic Features/Remarks
0-54″	Unconsolidated	10YR 4/4	Loamy coarse	None
	fill material		sand with	
			cobbles,	
			boulders	
54-60"	Native	2.5Y 5/1	Compact, dry	Believed to be original
	outwash/till		loamy fine sand	wetland, estimated seasonal
				high groundwater at ~110.5-
				feet +

Table 2-1 Soil Profile Description at Test Pit SH-TP-121 (elev. 115-feet)

The second test pit, #119, is described in Table 2-2 below. The same sandy fill material was observed to a depth of 42 inches. Depth to groundwater occurred at ~36 inches below the surface. Due to the presence of the water table at 36 inches, the test pit could not be excavated deeper without the risk of its walls collapsing. Based on the observed fill material, and the fact that this test pit occurred at a slightly lower elevation than SH-TP-121 (described above), it is likely that a buried wetland soil is present beneath the test pit.

Table 2-2 Soil Profile Description at Test Pit SH-TP-119 (elev. 113.5-feet)

Depth (inches)	Description	Matrix Color	Soil Texture	Redoximorphic Features/Remarks
0-42"	Unconsolidated fill material	10YR 4/4	Loamy coarse sand with cobbles, boulders	Estimated seasonal high groundwater at ~111-feet +

Regarding the third test pit, #120, groundwater was encountered at 30 inches below grade. The same fill material was observed to a depth of 24 inches. Prominent, bright redoximorphic concentrations were observed beginning at a depth of 24 inches. The test pit could not be excavated deeper than 36 inches due to the risk of collapse. At the bottom of the test pit, some mixing with a dark (10YR 2/1) mucky mineral soil was observed. This likely represented a buried A horizon from a buried wetland soil beneath the placed fill within the access road.

Table 2-3Soil Profile Description at Test Pit SH-TP-120 (elev. 113-feet)

Depth (inches)	Description	Matrix Color	Soil Texture	Redoximorphic Features/Remarks	
0-24"	Unconsolidated fill material	10YR 4/4	Loamy coarse sand with cobbles, boulders	None	
24-36"		10YR 4/4 with some mixing of 10YR 2/1 mucky mineral soil (buried A horizon)	Loamy coarse sand	5YR 4/4 (prominent concentrations); estimated seasonal high groundwater at ~110.5-feet +	

While the native soil beneath the fill material could not be examined in Test Pits SH-TP-119 and SH-TP-120 due to the shallow water table, it is reasonable to assume that the same native till material observed in Test Pit SH-TP-121 is present beneath the remainder of the access road. This assumption is based on the presence of the water table with respect to the elevation of each test pit, the native till discovered in Test Pit SH-TP-121, and the buried mucky A horizon discovered in Test Pit TP-SH-120.

There is a moderate difference in relief elevation between the replication site and the adjoining wetland. Elevations in the adjoining wetland range from a low point of approximately 111 feet to a high point of approximately 113 feet. Elevations of the replication site presently range from a low point of approximately 111 feet to a high point of approximately 113 feet where it transitions into the uplands; although for surface area calculations it is assumed that the 111foot contour is the limit of the constructed wetland. The depth to seasonal high groundwater within the proposed replication area is estimated to be between 2 feet and 4.5 feet below existing grade. Accordingly, to achieve the desired hydrology, the replication area should be excavated and graded to a maximum depth of approximately 12-inches below the proposed final contours shown on the enclosed site plans (resulting in a cut that ranges from 2 feet to 5 feet). The final elevation of the replication area should generally be approximately 111 feet to 113 feet, with slightly deeper pits and higher mounds located throughout. The final grading would be adjusted, as necessary, in the field by a gualified wetland scientist. Moreover, the transition between the replication area and adjacent wetland shall be natural using gentle slopes and conducted under the supervision of a qualified wetland scientist. Additional detail is provided below.

3.0 BVW Replication Plan

3.1 Overview

As noted above, the proposed BVW replication area has generally been designed in accordance with the relevant sections of MassDEP's "Massachusetts Inland Wetland Replication Guidelines". The wetland replication plan also incorporates important wildlife habitat features into the design including burrowable soils for small mammals, woody debris, and dense herbaceous cover. The wetland mitigation area will be constructed adjacent to and hydrologically connected to the large expanse of forested, scrub-shrub wetland that is present along the eastern side of the Project site. Refer to the replication area design drawings included in Attachment C for detail.

3.1.1 Hydrology and Topography

Converting an upland habitat to a wetland habitat requires a steady and reliable groundwater source, establishment of a hydrological connection to a surface water source of sufficient volume and duration to sustain wetland habitat throughout the year, or both. In this instance, by sharing the local hydrology and by approximating the elevations of the adjacent reference wetland, the replacement area should have sufficient hydrology to support wetland plant communities. The primary hydrologic input in the wetland replication area will be primarily derived from a combination of groundwater and precipitation events.

Additionally, a culvert is located at the northern extent of the proposed wetland replication area, conveying flow beneath the access road (see Photo 9 in Attachment B). This culvert will be removed to construct the replication area and replaced with a concrete weir structure to maintain upgradient and downgradient hydrologic conditions.

3.1.2 Soils

To achieve the desired elevation and "tie into" the reference wetland, the fill will be removed, and the area will be graded to a depth of 12 inches below the final proposed contours. After subgrades have been established and verified by project surveyors and microtopographic grading work is complete, approximately 12 inches of an evenly mixed organic/mineral soil should be placed within the replication area bringing grades to the final desired elevations. Given the degraded nature of the impacted IVW(s), we do not recommend translocating any remnant hydric soils from the IVW impact site(s) to the replication site. Manufactured soil imported from a reputable off-site source is recommended.² See construction sequence notes below for additional requirements. Care should be taken during placement of soils in the replication area to avoid compaction. Should soils be compacted, they should be loosened by a method such as rototilling. Avoidance of compaction will allow the soils to serve as a suitable substrate for burrowing habitat for small mammals. The reference wetland is primarily flat with broad pits and mounds. The replication area will have pit-and-mound topographic grading to mimic the adjacent wetland.

3.1.3 Vegetation

A predominantly scrub-shrub vegetation cover type will be created within the proposed replication area, interspersed with tree plantings. In addition, consideration will be given to leaving existing mature upland trees on hummocks within the replication site, as they can provide shading and reduce heat within the soil strata and resultant evaporation. Trees to remain in place on mounds will be selected and flagged by a qualified wetland scientist prior to initiating clearing activities. The planted shrubs will be planted randomly throughout the replication area to blend with the vegetation composition of the adjacent wetland. The plantings should be located at the direction of the supervising wetland scientist to simulate natural growth patterns. The shrubs should be a minimum of 3 to 4 feet in height; tree plantings should be a minimum of 6 to 8 feet in height. The plant material may be bare-root or container grown. Only plant materials native and indigenous to the region should be used. The entire replication area should be sown with a wetland seed mix³ and covered with a light mulch of weed free straw, particularly if planted during the summer months. The woody plants should be surrounded with an approximately 3-foot diameter ring of woody mulch to a depth of approximately 2-inches or biodegradable plastic or fiber (which should be stapled or staked to

² See <u>https://www.agresourceinc.com/soils</u>, as one potential supplier.

³ Wetland Seed Mix (Typ./or equivalent) – Fringed sedge (*Carex crinita*), American mannagrass (*Glyceria grandis*), blue vervain (*Verbena hastata*), woolgrass (*Scirpus cyperinus*), lurid sedge (*Carex lurida*), soft rush (*Juncus effusus*), spotted joe pye weed (*Eupatorium maculatum*), green bulrush (*Scirpus atrovirens*), boneset (*Eupatorium perfoliatum*), blunt broom sedge (*Carex scoparia*), fox sedge (*Carex vulpinoidea*), sensitive fern (*Onoclea sensibilis*), hop sedge (*Carex lupulina*), nodding bur marigold (*Bidens cer-nua*), bristly sedge (*Carex comosa*), mud plantain (*Alisma subcordatum*), New England aster (*Aster novae-angliae*), rattlesnake grass (*Glyceria canadensis*), soft stem bulrush (*Scirpus validus*), swamp milkweed (Asclepias incarnata), and monkey flower (*Mimulus ringens*) (Application Rate = 1 lb/ 2,500 s.f.). Source: New England Wetland Plants, Inc.

the ground), to reduce the threat of competition from herbaceous species during the first growing season. Please see Table 3-1 and the detailed construction sequence notes below for additional planting requirements.

Plant Name	Plant Height	Plant Quantity ⁴	Wetland Indicator Status	Planting Notes
Red maple (<i>Acer</i> <i>rubrum</i>)	6-8'	15	FAC	Red maples flower early in the spring. The leaves and shoots are browsed by deer. Rodents feed on the fruits.
Black gum (Nyssa sylvatica)	6-8'	15	FAC	Berries are eaten by many songbirds. Spring flowers are a nectar source for pollinators.
Highbush blueberry (Vaccinium corymbosum)	3-4'	10	FACW	Medium-sized shrub with aromatic white flowers in spring. Berries highly valued as wildlife food source. Brilliant red fall color. Prefers acid soil.
Swamp azalea (Rhododendron viscosum)	3-4'	10	FACW	Deciduous medium-sized shrub with attractive form and foliage. Grows in forested wetlands, swamp edges. Attractive and aromatic flowers after leaves emerge. This plant should be installed in the wetter sections of the replication area.
Maleberry (Lyonia ligustrina)	3-4'	10	FACW	Medium-sized berry-producing shrub. Provides cover for wildlife.
	TOTAL	60		
New England Wetmix™	1 lb/ 2,500 s.f.	3 lbs	Varied	The New England Wetmix [™] (or equivalent) contains a variety of native seeds which are suitable for most wetland restoration sites not permanently inundated. Species are well suited to moist disturbed ground as found in most wet meadows, scrub shrub, or forested wetland restoration areas.

Table 3-1 Wetland Replication Area Plantings

3.1.4 General Wetland Replication Construction Sequence

The careful design that will be implemented by the site contractor, adherence to the technical specifications and plan notes provided herein, and the management/oversight measures by qualified personnel that are recommended during construction, should significantly improve the chance of a successful and functioning wetland mitigation area. It is recommended that construction of the replacement area, including fine grading, soils placement, and planting, be done under the supervision of a qualified wetland scientist ("WS"). The WS should be on site to monitor construction of the wetland mitigation area to ensure compliance with the mitigation

⁴ Assumes an average plant spacing of roughly 10-feet on center.

plan and to adjust when needed to meet mitigation goals. Field adjustments may include but are not necessarily limited to modifications to sub-grades, final grades, hydrologic inputs, microtopography, sediment controls, placement of woody debris and other habitat features, and plantings (both species and placement, depending on nursery availability) based on site specific conditions at the time of construction. A general wetland replication construction sequence and monitoring protocol will be implemented as follows (where deviations exist between this mitigation plan and permits, the permits shall control):

- Project Surveyors shall re-establish and re-label wetland flags as per the permit drawings using wooden stakes installed around the perimeter of the wetland replication area. Project Surveyors shall also stake out the limits of the proposed wetland replication area. The stakes shall remain in place until wetland vegetation has become fully established. This work shall occur prior to construction of the replication area.
- 2. Consideration will be given to leaving existing mature upland trees on hummocks within the replication site, as they can provide shading and reduce heat within the soil strata and resultant evaporation. Trees to remain in place on mounds will be selected and flagged by a qualified wetland scientist prior to initiating clearing activities.
- 3. Trenched siltation fence and 12-inch diameter compost filter tubes shall be installed per manufacturer specifications along the existing wetland boundary, just inside (downgradient of) the re-established wetland flags. Installing sediment controls in this manner will allow the site contractor to properly tie-in proposed contours to the adjacent wetland contours without undermining the trenched silt fence and filter tubes and leaving a berm between the constructed wetland and existing wetland. The transition between the replication area and adjacent wetland shall be natural using gentle slopes and conducted under the supervision of a qualified wetland scientist.
- 4. The replication area shall be grubbed and initially excavated to a depth approximately 12inches below the final design grade elevations depicted on the record drawings to allow for placement of wetland topsoil and construction of micro-topography. Rocks and boulders uncovered during the excavation may be left in place upon approval from the WS, if they do not significantly decrease the planting area of the mitigation area. These rocks and boulders shall be placed in such a way as to provide crevices and cavities suitable for use by wildlife.
- 5. The WS shall inspect the sub-grade of the replication area to determine that the proper hydrology has been established. In parallel with this field review, an interim as-built drawing shall be provided to the WS depicting sub-grade contours (1-foot contour intervals with representative spot elevations in plan view and a minimum of two section views) and the overall limits of grading. The interim as built shall include a surface area calculation confirming that sufficient area has been provided (excluding side slopes), as per the permits. Locations of cross-sections should be indicated on the plan view.

- 6. After the proposed subgrades has been verified by project surveyors, approximately 12inches of an evenly mixed organic/mineral soil ("wetland soil") shall be imported to the site from a reputable off-site source / supplier and placed within the replication area bringing grades to the final desired elevations. Soil consistency shall be loose to friable and texture should be loam to sandy loam. The organic material used for mixing should be well or partially decomposed. Clean leaf compost is the preferred soil amendment to achieve these standards. Note that "clean" refers both to a negligible amount (<1%) of physical contaminants such as plastic and to the lack of chemical contaminants that might pose a hazard to plants or animals. Mineral materials shall be predominantly in the loam to loamy sand texture range (as defined by USDA Textural Soil Classification System or Soil Science Society of American Glossary of Soil Science Terms), with minimal quantities of gravel or rock. A minimum organic carbon content of 12% (21 percent organic matter) on a dry weight basis for soils shall be used in the wetland replication area. Prior to placement, the site contractor shall provide the WS with written documentation identifying the supplier and location of the source material. The site contractor shall also provide the lab analysis and/or specifications from the supplier confirming that the soil meets the desired specification.
- 7. The imported wetland soil shall be deposited in the replication area in a manner that minimizes travel and subsequent compaction of the pit and mound subgrade. Should soils be compacted, they shall be loosened by a method such as rototilling.
- 8. The WS shall identify specific locations in the wetland replication area to install the plantings considering hydrology, topography, soil conditions and other relevant features that will contribute to the survival of the plantings. The WS shall oversee the planting work to ensure conformance with this specification. Plantings shall be clustered and spaced randomly at the direction of the supervising WS to simulate natural growth patterns and where appropriate structural context with other plantings can be maintained. The use of mulch around woody plantings is recommended. The woody plants shall be surrounded with an approximately 3-foot diameter ring of woody mulch to a depth of approximately 2-inches or biodegradable plastic or fiber (which should be stapled or staked to the ground) to reduce the threat of competition from herbaceous species during the first growing season.
- 9. Coarse woody debris, consisting of logs and branches, should be placed around the mitigation area. Woody debris should cover at least 4% of the surface of the mitigation area.
- 10. The replication area side slopes shall be stabilized with an erosion control blanket and the slope seed mix specified on the record drawings.
- 11. Following planting of the replication area, the WS shall document that the area has been constructed in substantial compliance with the Order of Conditions and record drawings. Such documentation shall be accompanied by a final, stamped as-built plan provided by Project Surveyors. The as-built plan shall depict the locations of installed plantings, final grade contours (1-foot contour intervals with representative spot elevations in plan view and a minimum of two section views), and the overall limits of grading. The as built shall

include a surface area calculation confirming that sufficient area has been provided (excluding side slopes), as per the Order of Conditions. Locations of cross-sections should be indicated on the plan view. The WS report shall include representative site photographs of the wetland replication area, a discussion of hydrologic conditions, number and types of plants installed in the replication area and receipts from the plant nursery and wetland soil source (provided by the site contractor), and a discussion of any field modifications deemed necessary by the WS to obtain the desired hydrology and scrub-shrub wetland environment.

- 12. At least 75% of the surface area of the replication area shall be established with native wetland plant species within two growing seasons after all the planting is complete.
- 13. The sediment control barriers shall be disassembled and properly disposed of by the site contractor after the replication area is deemed stable by the WS.

Other Miscellaneous Planting Requirements

- 14. The WS may propose substitutions relative to species, size, and quantities if there is limited availability of plant stock at the time of planting. All plant material shall be purchased from a New England nursery and guaranteed by the site contractor to be in vigorous growing condition.
- 15. Insofar as it is practicable, plant material shall be planted on the day of delivery. In the event this is not practicable, the site contractor shall protect, and water stock not planted in consultation with the WS and nursery. Plants shall not remain unplanted for longer than a 3-day period after delivery to the site. Any plants not installed during this 3-day period may be rejected by the WS.
- Quality and size of plants, spread of roots, and size of balls shall be in accordance with ANSI 260 (REV.1980) "American Standard for Nursery Stock" as published by the American Association of Nurserymen, Inc.
- 17. All plants shall be planted in transported topsoil that is thoroughly watered and tamped as back filling progresses. Raise and replant any plant which settles more than 2 inches after planting and watering.
- 18. If necessary, fertilizer for woody plants shall be slow release and suitable for release under saturated soil conditions.
- 19. Plants shall not be bound with wire or rope at any time to damage the bark or break branches. Plants shall be handled from the bottom of the ball or container only.
- 20. Planting operations shall be performed during periods within the planting season when weather and soil conditions are suitable as determined by the supervising WS. This is typically between April 15 and June 15 and September 15 through November 15. Plants shall

not be installed in topsoil that is in a muddy or frozen condition. The site contractor shall be responsible for re-setting any plants that become dislodged or uprooted because of frost heaves or other environmental factors during the first two growing seasons.

- 21. Set all plants plumb and straight. Locate plant in the center of the pit.
- 22. The wetland seed mix shall be sown according to the manufacturer's recommendations and specifications.
- 23. Due to unpredictability of short term local hydrologic conditions and the need for additional care to establish new plantings the site contractor shall irrigate the plantings, as necessary, during the first growing season after planting.

4.0 Buffer Zone Restoration and Enhancement Plan

4.1 Overview

To enhance wildlife habitat value within the 100-foot buffer zone adjacent to the Project, the southern portion of the existing access road adjacent to the constructed wetland replication area will be restored and planted. Construction of the "Buffer Zone Restoration and Enhancement Area" will consist of: (1) removal of fill material and replacement with a suitable planting medium within the gravel road; (2) installation of woody plantings and a conservation seed mix; and placement of coarse woody debris. Supplemental native plantings will also be installed in appropriate locations near the former access road in the adjacent upland areas, as determined by the qualified wetland scientist.

The location of the buffer zone restoration and enhancement areas are depicted on the plan in Attachment C. The restoration areas are proposed in two locations: one will be approximately 3,000 s.f. in size and will extend along the access road from a point adjacent to Wetland Flag E-49 to Wetland Flag E-53, and the second area will be 1,800 s.f. in size and will be located between the proposed development and the quarry hole/ IVW (vernal pool) located upgradient from the access road. The goal of the restoration areas is not to replicate wetlands, but rather to enhance the value of this area to wildlife, particularly those species using this upland forest edge. Further, a vernal pool is located between the two restoration areas. Thus, the goal is to enhance the value of this buffer zone strip, which is currently a relatively sparse access road. Planted shrubs and coarse woody debris will provide food, cover, and perching habitat for a variety of wildlife species.

The fill material from the access road will be removed, supplemented with about 6 inches of loam, rototilled, and planted with native plant species. The native plants will be installed in clusters to mimic a natural environment. The WS will provide direction on where to install the plantings based on field conditions. A planting table for the buffer zone restoration and enhancement area is provided below.

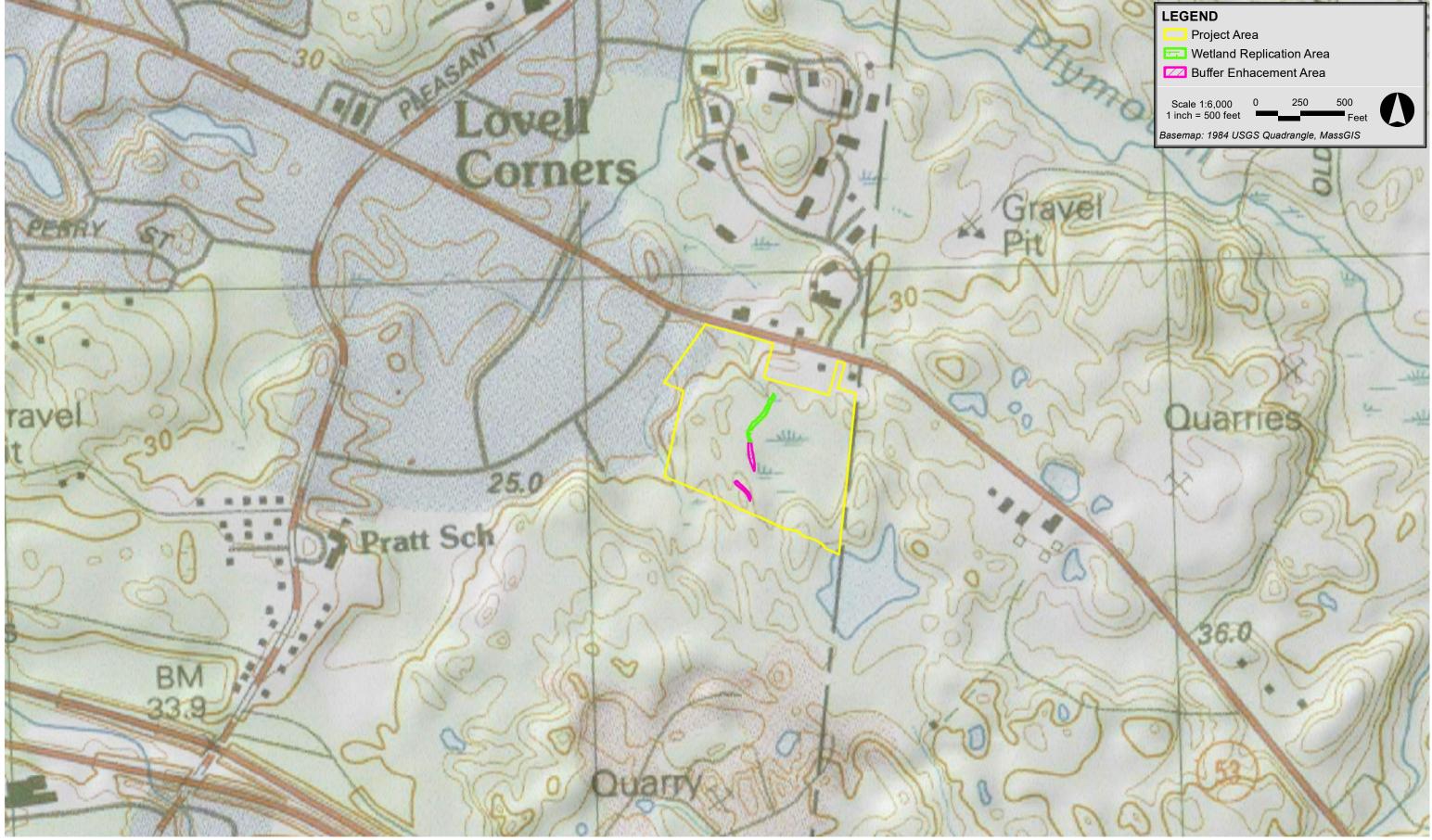
Table 4-1	Buffer Zone Restoration and Enhancement Area Plantings
-----------	--

Plant Name	Plant Height	Plant Quantity ⁵	Wetland Indicator Status	Planting Notes
Red maple (<i>Acer</i> <i>rubrum</i>)	6-8'	10	FAC	Red maples flower early in the spring. The leaves and shoots are browsed by deer. Rodents feed on the fruits. Adds important leaf litter.
Red oak (Quercus rubra)	6-8'	10	FACU	Red oak provides good cover for mammal and bird species and nesting sites for songbirds. Deer browse the leaves, and acorns are eaten by a variety of mammals. Adds important leaf litter.
Black huckleberry (Gaylussacia baccata)	3-4'	10	FACU	Berries provide a food source for wildlife.
Sweet pepperbush (Clethra alnifolia)	3-4'	10	FAC	A medium-sized salt tolerant shrub found in coastal and inland wetlands. Sweet-smelling white flowers in July. Provides food and cover for birds.
	TOTAL	40		
New England Conservation/Wildlife Mix ⁶	1 lb/ 1,750 s.f.	~3 lbs	Varied	The New England Conservation/Wildlife Mix [™] (or equivalent) contains a variety of grasses, wildflowers, and legumes. This seed mix enhances wildlife habitat value.

The woody plants shall be surrounded with an approximately 3-foot diameter ring of woody mulch to a depth of approximately 2-inches or biodegradable plastic or fiber (which should be stapled or staked to the ground) to reduce the threat of competition from herbaceous species during the first growing season.

Approximately 5% of the restoration area shall be covered in coarse woody debris consisting of tree branches or logs that will provide cover for amphibians, snakes, and small mammals. Three to five brush piles shall be placed within the restoration area for the same purpose. Lastly, three (3) nest boxes shall be installed within the restoration area to encourage nesting songbirds such as chickadees, wrens, woodpeckers, and nuthatches.

⁵ Assumes an average plant spacing of roughly 12-feet on center, accounting for existing plants in the buffer zone enhancement area.


⁶ New England Conservation/Wildlife Mix - Virginia Wild Rye (*Elymus virginicus*), Little Bluestem (*Schizachyrium scoparium*), Big Bluestem (*Andropogon gerardii*), Red Fescue (*Festuca rubra*), Switch Grass (*Panicum virgatum*), Partridge Pea (*Chamaecrista fasciculata*), Panicledleaf Tick Trefoil (*Desmodium paniculatum*), Indian Grass (*Sorghastrum nutans*), Blue Vervain (*Verbena hastata*), Butterfly Milkweed (*Asclepias tuberosa*), Black Eyed Susan (*Rudbeckia hirta*), Common Sneezeweed (*Helenium autunale*), Heath Aster (*Asterpilosus/Symphyotrichum pilosum*), Early Goldenrod (*Solidago juncea*), Upland Bentgrass (*Agrostis perennans*). (Application Rate = 1 lb/ 1,750 s.f.). Source: New England Wetland Plants, Inc.

5.0 Monitoring Plan

The wetland replication area and buffer zone restoration and enhancement area will be monitored on an ongoing basis for two growing seasons (or longer if required by permit conditions) by a qualified WS. The plantings in the buffer zone restoration area will be monitored, the germination of the seed mix will be documented, and observed wildlife activity and usage will be documented. Written reports will be submitted to the permit issuing authority no later than December 31 each year and will include results from spring and fall inspections (typically May and October, depending on growing season conditions each year). Vegetation cover percentages for the replication area will be estimated during each monitoring event. These visual estimates will encompass the total percent cover for the mitigation area. Each sampling event will include hydrologic data collected from hand dug observation holes. These observation holes will be approximately twenty inches deep, as measured from the surface of the mineral soil horizon. The WS will record depth to apparent water table and/or depth of surface inundation, both as measured from the soil surface during each observation. During each monitoring effort, the colonization by invasive plant species will also be recorded and invasive plants will be hand pulled from the wetland replication area, bagged, and disposed of, as necessary. Any remedial actions planned or undertaken to remove invasive plant species from the created wetland will be noted in the monitoring reports.

Attachment A

Figures

Washington Street Residential Apartments Weymouth, Massachusetts

Washington Street Residential Apartments Weymouth, Massachusetts

Attachment B

Site Photographs

Photo 1: IVW Series H – Impact Area.

Photo 2: Another view of IVW Series H.

Photo 3: IVW Series G impact area.

Photo 4: Another view of IVW Series G.

Photo 5: View of reference wetland (BVW Series E).

Photo 6: View of vernal pool upgradient of proposed buffer zone restoration area.

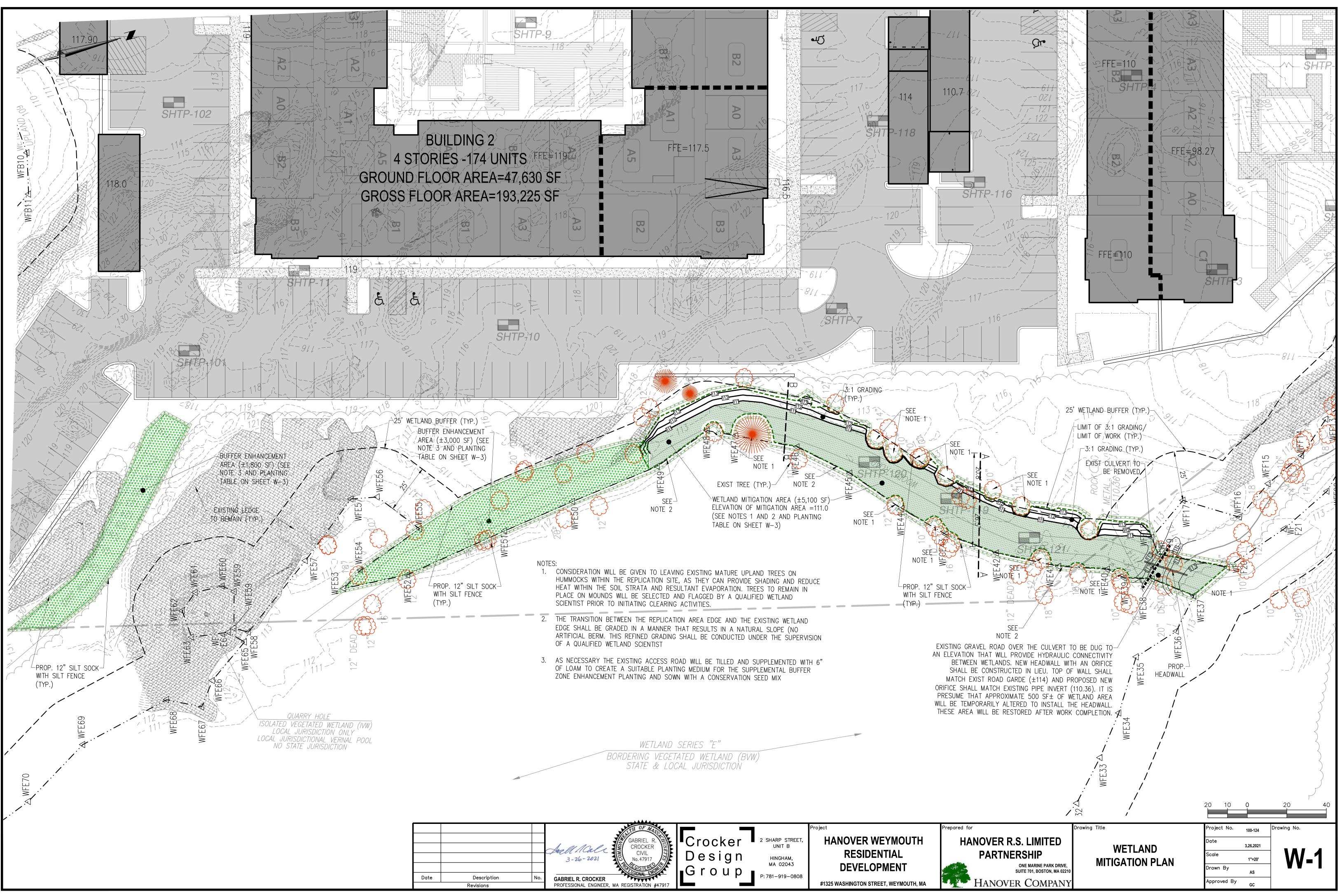
Photo 7: View of proposed wetland mitigation area / existing access road, looking north with BVW Series E to the east.

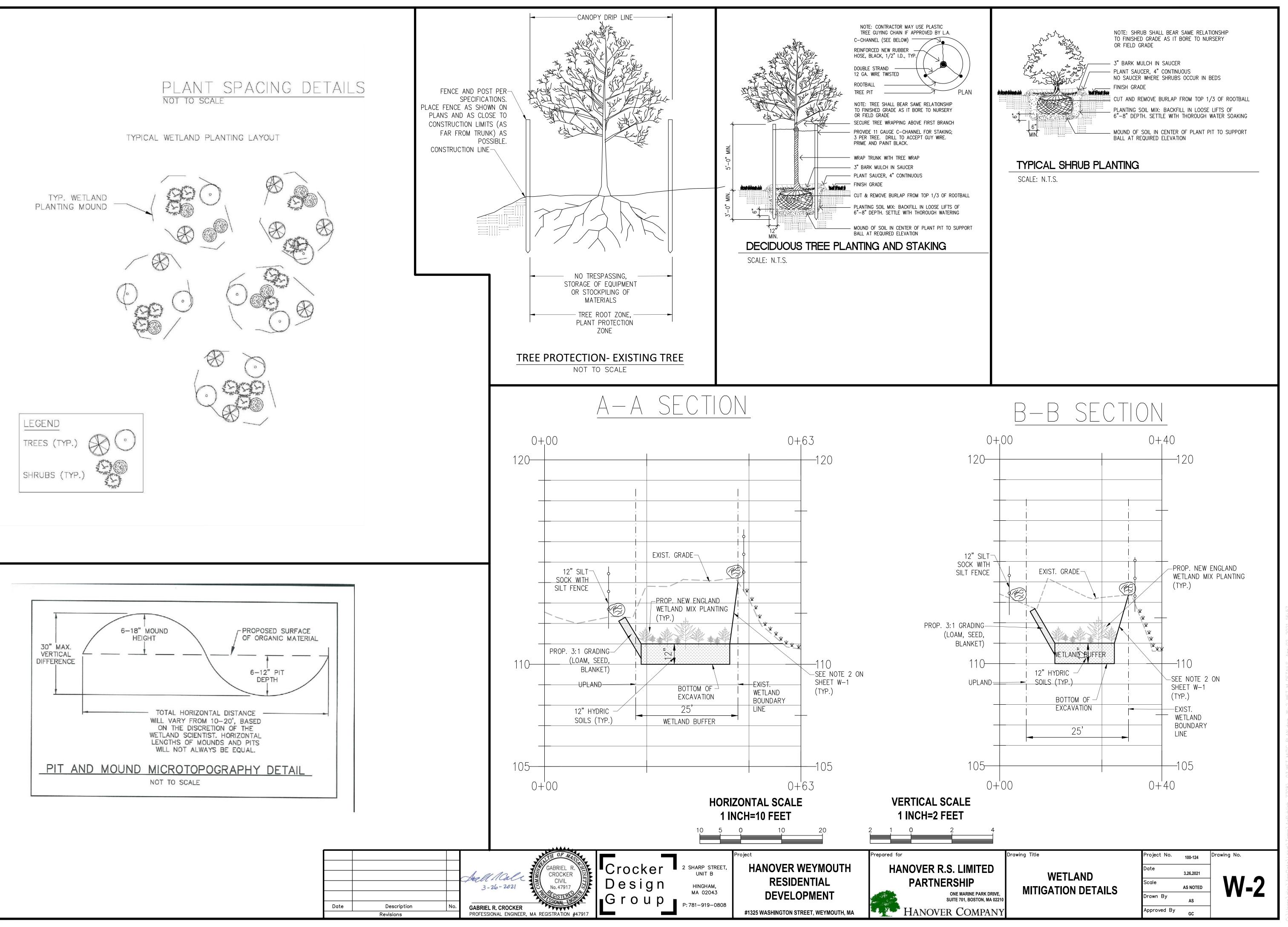
Photo 8: View of the northern extent of the proposed mitigation area.

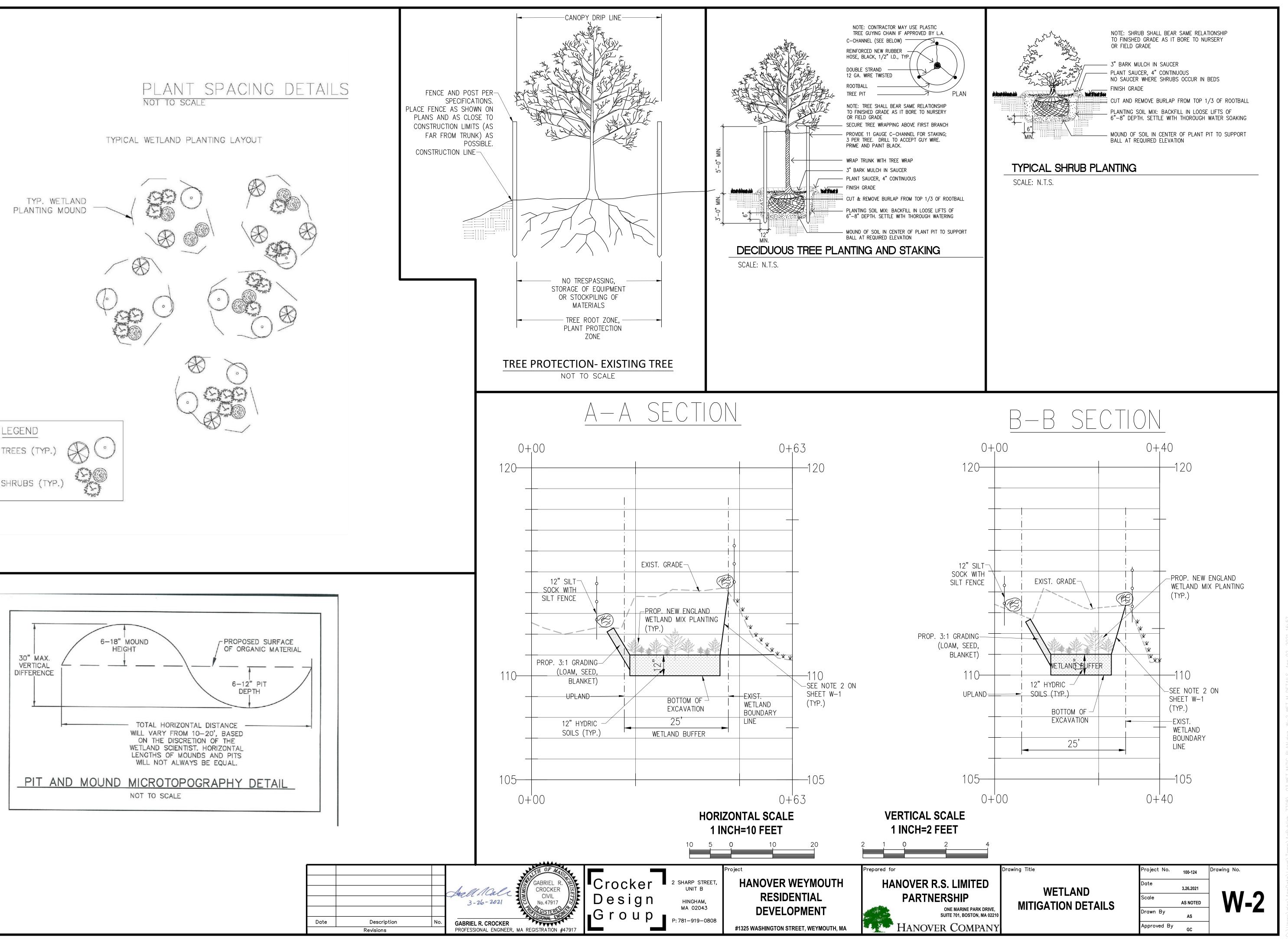
Photo 9: View of culvert to be removed and restored. The culvert is located under the existing access road, at the northern extent of the proposed wetland replication area.

Photo 10: View of Test Pit SH-TP-21, with native wetland soil visible at the bottom of the pit.

Photo 11: View of Test Pit SH-TP-19.




Photo 12: View of Test Pit SH-TP-20, with buried A horizon visible at the bottom of the test pit.



Attachment C

Wetland Replication Design Drawings

Date

Botanical Name	Common Name	Indicator
Carex vulpinoidea	Fox Sedge	OBL
Carex scoparia	Blunt Broom Sedge	FACW
Carex lurida	Lurid Sedge	OBL
Carex lupulina	Hop Sedge	OBL
Poa palustris	Fowl Bluegrass	FACW
Bidens frondosa	Beggar Ticks	FACW
Scirpus atrovirens	Green Bulrush	OBL
Asclepias incarnata	Swamp Milkweed	OBL
Carex crinita	Fringed Sedge	OBL
Vernonia noveboracensis	New York Ironweed	FACW+
Juncus effusus	Soft Rush	FACW+
Aster lateriflorus (Symphyotrichum lateriflorum)	Starved/Calico Aster	FACW
Iris versicolor	Blue Flag	OBL
Glyceria grandis	American Mannagrass	OBL
Mimulus ringens	Square Stemmed Monkey Flower	OBL
Eupatorium maculatum (Eutrochium maculatum)	Spotted Joe Pye Weed	OBL

WETLAND REPLICATION AREA PLANTING TABLE

Plant Name	Plant Height	Plant Quantity ⁽¹⁾	Wetland Indicator Status	Planting Notes	Plant Name	Plant Height	Plant Quantity ⁽¹⁾	Wetland Indicator Status	Planting Notes
Red maple (Acer rubrum)	6-8'	15	FAC	Red maples flower early in the spring. The leaves and shoots are browsed by deer. Rodents feed on the fruits.	Red maple (<i>Acer</i> <i>rubrum</i>)	6-8'	10	FAC	Red maples flower early in the spring. The leaves and shoots are browsed by deer. Rodents feed on the fruits. Adds important
Black gum (Nyssa sylvatica)	6-8′	15	FAC	Berries are eaten by many songbirds. Spring flowers are a nectar source for pollinators.					leaf litter.Red oak provides good cover for mammal
Highbush blueberry (Vaccinium corymbosum)	3-4'	10	FACW	Medium-sized shrub with aromatic white flowers in spring. Berries highly valued as wildlife food source. Brilliant red fall color.	Red oak (Quercus rubra)	6-8′	10	FACU	and bird species and nesting sites for songbirds. Deer browse the leaves, and acorns are eaten by a variety of mammals. Adds important leaf litter.
				Prefers acid soil. Deciduous medium-sized shrub with	Black huckleberry (Gaylussacia baccata)	3-4'	10	FACU	Berries provide a food source for wildlife.
Swamp azalea (Rhododendron viscosum)	3-4'	10	FACW	attractive form and foliage. Grows in forested wetlands, swamp edges. Attractive and aromatic flowers after leaves emerge. This plant should be installed in the wetter	Sweet pepperbush (Clethra alnifolia)	3-4'	10	FAC	A medium-sized salt tolerant shrub found in coastal and inland wetlands. Sweet-smelling white flowers in July. Provides food and cover for birds.
		· · ·		sections of the replication area.		TOTAL	40		
Maleberry (Lyonia ligustrina)	3-4'	10	FACW	Medium-sized berry-producing shrub. Provides cover for wildlife.	New England Conservation/Wildlife	1 lb/	~3 lbs	Varied	The New England Conservation/Wildlife Mix [™] (or equivalent) contains a variety of
	TOTAL	60			Mix	1,750 s.f.			grasses, wildflowers, and legumes. This seed mix enhances wildlife habitat value.
New England	1 lb/ 2,500 s.f.	3 lbs	Varied	The New England Wetmix [™] (or equivalent) contains a variety of native seeds which are suitable for most wetland restoration sites not permanently inundated. Species are well suited to moist disturbed ground as found in most wet meadows, scrub shrub, or forested wetland restoration areas.	(1) Assumes an avera buffer zone enhan			ly 12-feet on	center, accounting for existing plants in the

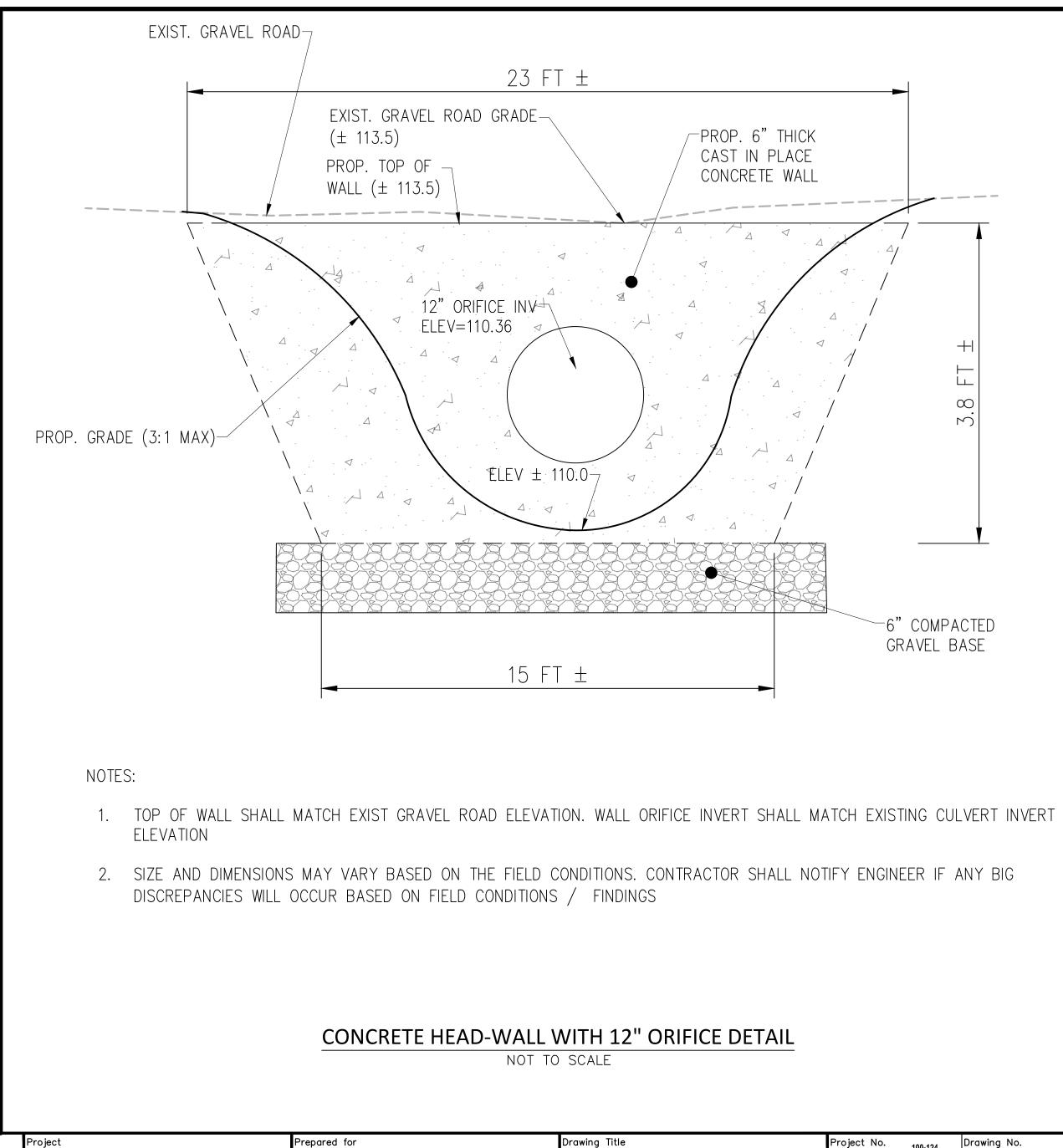
Date

Description

Revisions

(1) Assumes an average plant spacing of roughly 10-feet on center.

CONSERVATION SEED MIX SPECS FOR RESTORATION AND BUFFER ENHANCEMENT AREA


Botanical Name	Common Name	Indicator
Elymus virginicus	Virginia Wild Rye	FACW-
Schizachyrium scoparium	Little Bluestem	FACU
Andropogon gerardii	Big Bluestem	FAC
Festuca rubra	Red Fescue	FACU
Sorghastrum mutans	Indian Grass	UPL
Panicum virgatum	Switch Grass	FAC
Chamaecrista fasciculata	Partridge Pea	FACU
Desmodium canadense	Showy Tick Trefoil	FAC
Asclepias tuberosa	Butterfly Milkweed	NI
Bidens frondosa	Beggar Ticks	FACW
Eupatorium purpureum (Eutrochium maculatum)	Purple Joe Pye Weed	FAC
Rudbeckia hirta	Black Eyed Susan	FACU-
Aster pilosus (Symphyotrichum pilosum)	Heath (or Hairy) Aster	UPL
Solidago juncea	Early Goldenrod	

BUFFER ZONE RESTORATION AND ENHANCEMENT AREA PLANTING TABLE

Acht Cale 3-26-2021

GABRIEL R. CROCKER PROFESSIONAL ENGINEER, MA REGISTRATION #47917

CROCKER CIVIL No. 47917

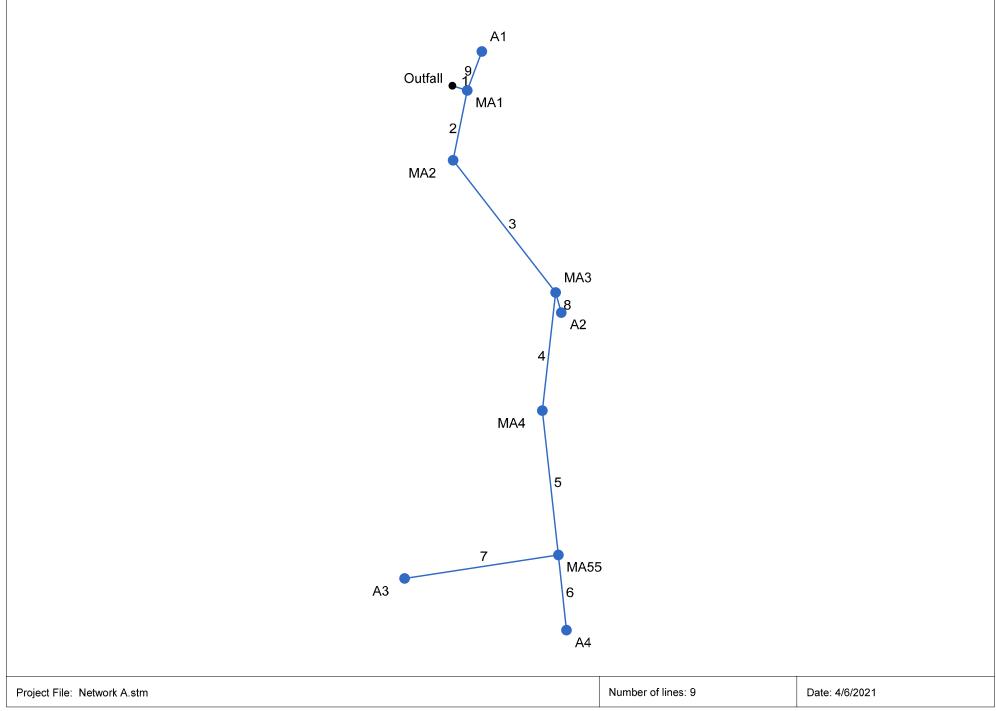
RESIDENTIAL DEVELOPMENT

HANOVER WEYMOUTH

Crocker STREET, UNIT B

Group P:781-919-0808

HINGHAM, MA 02043

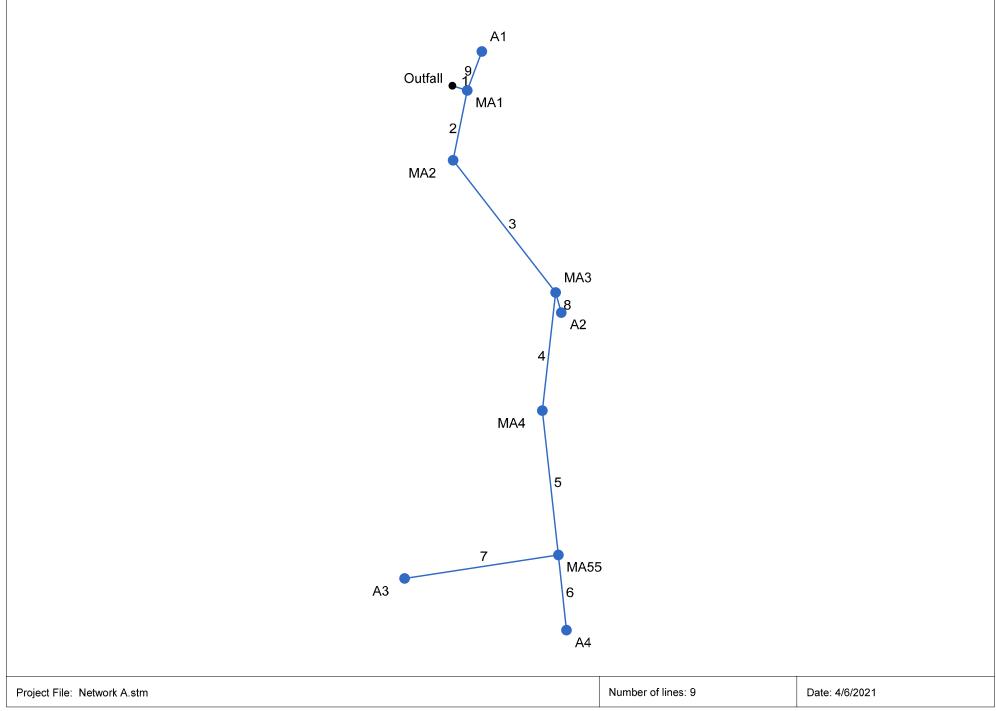

Design

#1325 WASHINGTON STREET, WEYMOUTH, MA

Prepared for	Drawing Title	Project No.	100-124	Drawing No.
HANOVER R.S. LIMITED	WETLAND	Date	3.26.2021	
PARTNERSHIP	MITIGATION DETAILS	Scale	AS NOTED	W_3
ONE MARINE PARK DRIVE, SUITE 701, BOSTON, MA 02210		Drawn By	AS	
HANOVER COMPANY		Approved By	GC	

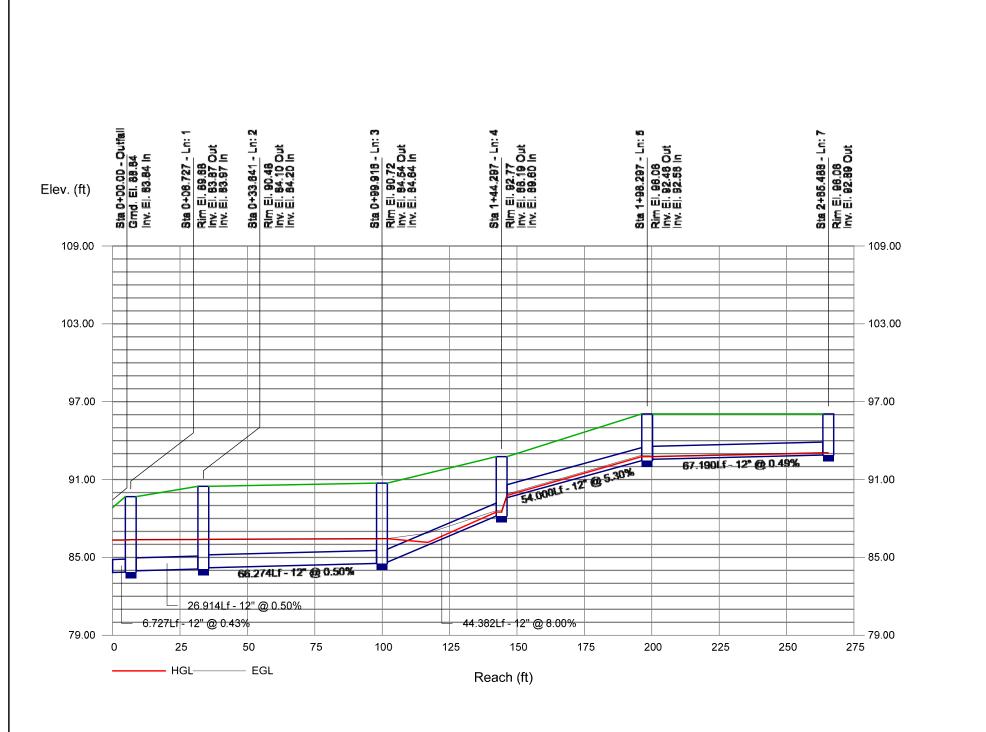
SECTION 8 – HYDRAULIC PIPE SIZING

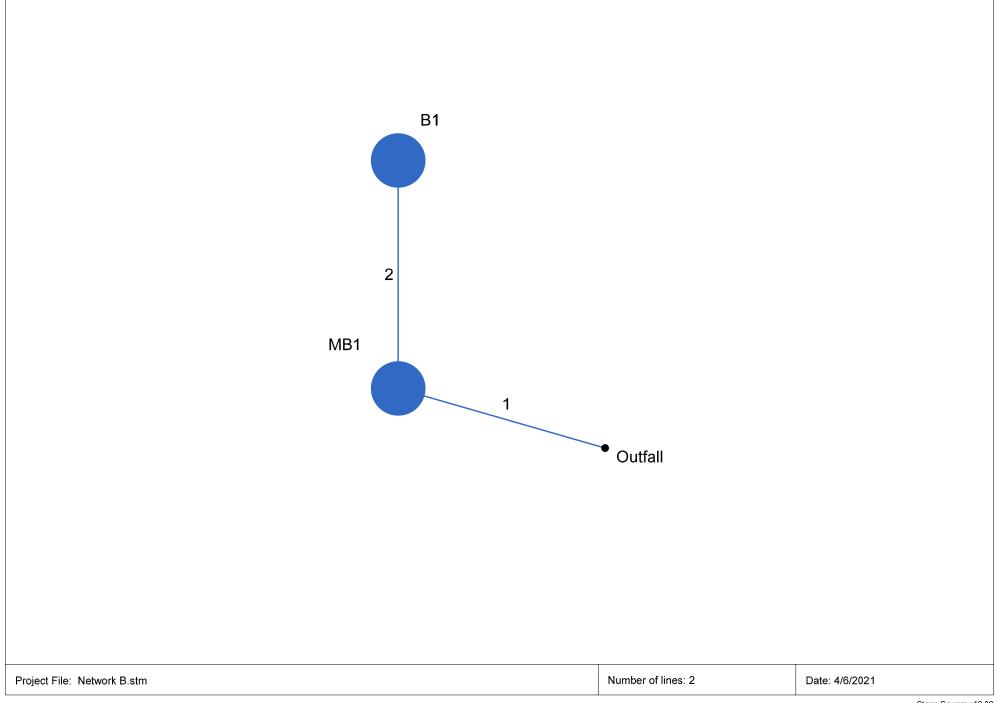
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan


Storm Sewer Tabulation

Statior	า	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End		0.00	0.54	0.00	0.00	0.16	0.0	8.5	5.0	0.78	2.34	1.01	12	0.43	83.84	83.87	84.81	84.81	0.00	89.68	Pipe - (427) (3) (3)
2		26.914		0.49	0.00	0.00	0.12	0.0	8.0	5.1	0.61	2.52	0.92	12	0.50	83.97	84.10	84.83	84.83	89.68	90.48	Pipe - (427) (3) (2)
3	2	66.274	0.00	0.49	0.00	0.00	0.12	0.0	7.4	5.3	0.63	2.52	1.73	12	0.50	84.20	84.54	84.85	84.91	90.48	90.72	Pipe - (427) (3) (1)
4	3	44.382	0.00	0.39	0.00	0.00	0.07	0.0	7.0	5.4	0.40	10.07	2.06	12	8.00	84.64	88.19	84.98	88.45	90.72	92.77	Pipe - (427) (3) (5)
5	4	54.000	0.00	0.39	0.00	0.00	0.07	0.0	6.8	5.4	0.40	8.20	3.93	12	5.30	89.60	92.46	89.75	92.72	92.77	96.06	Pipe - (426) (4) (1)
6	5	28.370	0.21	0.21	0.27	0.06	0.06	6.0	6.0	5.6	0.32	2.50	2.18	12	0.49	92.75	92.89	92.99	93.13	96.06	96.06	Pipe - (426) (4) (4)
7	5	67.190	0.18	0.18	0.10	0.02	0.02	6.0	6.0	5.6	0.10	2.50	1.44	12	0.49	92.56	92.89	92.72	93.02	96.06	96.06	Pipe - (426) (4) (1)
8	3	7.743	0.10	0.10	0.44	0.04	0.04	6.0	6.0	5.6	0.25	2.56	2.06	12	0.52	88.03	88.07	88.24	88.28	90.72	90.73	Pipe - (426) (4) (4)
9	1	15.638	0.05	0.05	0.73	0.04	0.04	6.0	6.0	5.6	0.20	2.55	1.94	12	0.51	85.95	86.03	86.14	86.22	89.68	89.19	Pipe - (426) (4) (1)
Proje	Project File: Network A.stm														Numbe	r of lines: 9	9		Run Da	ite: 4/6/20	21	
NOTE	ES:Inte	ensity = 5	9.21 / (I	nlet time	+ 12.50) ^ 0.81;	Return	period =	Yrs. 10	; c = cir	e = ell	ip b = bo)X									

Storm Sewer Profile


Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan


Storm Sewer Tabulation

Statio	n	Len	Drng A	Area	Rnoff	Area x	C	Тс		Rain	Total		Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
		0 707					0.40				4.07		1.00	40	0.40	00.04	00.07		00.04	0.00		D: (107) (0) (0)
1	End	6.727	0.00	0.54	0.00	0.00	0.16	0.0	8.8	6.9	1.07	2.34	1.36	12	0.43	83.84	83.87	86.33	86.34	0.00	89.68	Pipe - (427) (3) (3)
2		26.914		0.49	0.00	0.00	0.12	0.0	8.4	7.0	0.83	2.52	1.05	12	0.50	83.97	84.10	86.36	86.38	89.68	90.48	Pipe - (427) (3) (2)
3		66.274		0.49	0.00	0.00	0.12	0.0	7.4	7.2	0.85	2.52	1.09	12	0.50	84.20	84.54	86.39	86.43	90.48	90.72	Pipe - (427) (3) (1)
4		44.382		0.39	0.00	0.00	0.07	0.0	7.0	7.3	0.54	10.07	1.68	12	8.00	84.64	88.19	86.45	88.49	90.72	92.77	Pipe - (427) (3) (5)
5		54.000		0.39	0.00	0.00	0.07	0.0	6.8	7.3	0.55	8.20	4.30	12	5.30	89.60	92.46	89.78	92.77	92.77	96.06	Pipe - (426) (4) (1)
6	5	28.370	0.21	0.21	0.27	0.06	0.06	6.0	6.0	7.5	0.43	2.50	2.38	12	0.49	92.75	92.89	93.03	93.17	96.06	96.06	Pipe - (426) (4) (4)
7	5	67.190	0.18	0.18	0.10	0.02	0.02	6.0	6.0	7.5	0.14	2.50	1.49	12	0.49	92.56	92.89	92.77	93.04	96.06	96.06	Pipe - (426) (4) (1)
8	3	7.743	0.10	0.10	0.44	0.04	0.04	6.0	6.0	7.5	0.33	2.56	2.24	12	0.52	88.03	88.07	88.27	88.31	90.72	90.73	Pipe - (426) (4) (4)
9	1	15.638	0.05	0.05	0.73	0.04	0.04	6.0	6.0	7.5	0.27	2.55	1.04	12	0.51	85.95	86.03	86.36	86.37	89.68	89.19	Pipe - (426) (4) (1)
Proje	ect File:	Networ	k A.stm													Numbe	r of lines: 9)		Run Da	te: 4/6/20	21
NOT	ES:Inte	ensity = 1	97.93 /	(Inlet tin	ne + 22.5	50) ^ 0.98	3; Retur	n period	=Yrs. 10	0 ; c =	cire=	ellip b =	box									

Storm Sewer Profile

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

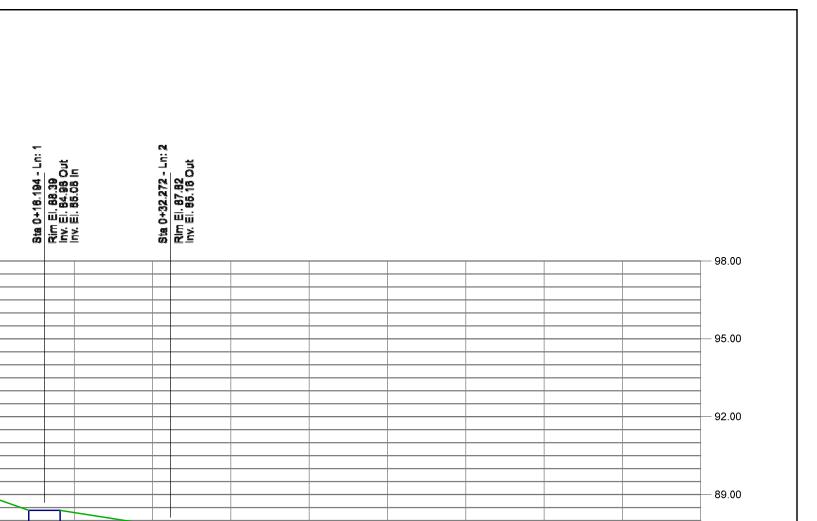
Storm Sewer Tabulation

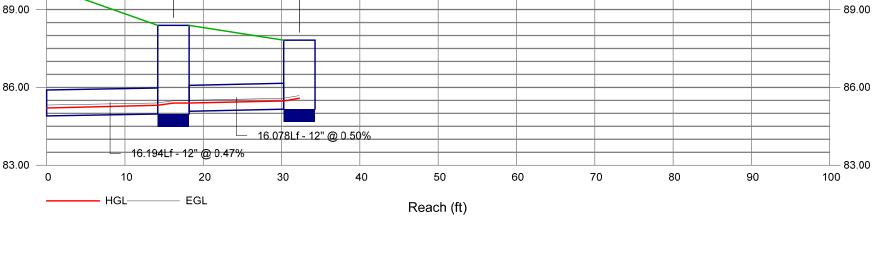
tatio	n	Len	Drng A	rea	Rnoff	Area x	(C	Тс		Rain	Total	Cap	Vel	Pipe)	Invert El	ev	HGL EI	ev	Grnd / F	Rim Elev	Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	fulİ		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	16.194	0.00	0.11	0.00	0.00	0.10	0.0	6.1	5.6	0.55	2.45	2.54	12	0.47	84.90	84.98	85.21	85.31	0.00	88.39	Pipe - (427) (5
2	1	16.078	0.11	0.11	0.90	0.10	0.10	6.0	6.0	5.6	0.55	2.51	2.57	12	0.50	85.08	85.16	85.40	85.48	88.39	87.82	Pipe - (426) (5
Project File: Network B.stm												Number of lines: 2					Run D	ate: 4/6/20				
-0]0			n D.Sull														. 0. 11169. 1				ale10/20	· L 1

Storm Sewer Profile

Sta 0+00.00 - Outfall Grnd. El. 89.90 Inv. El. 84.90 In

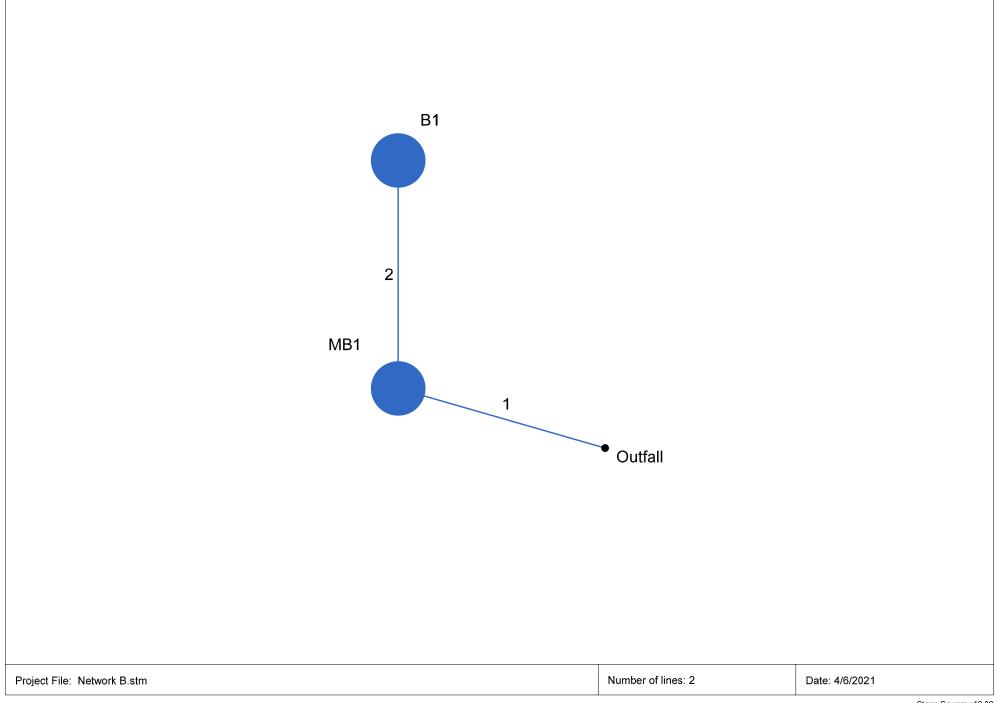
Elev. (ft)


98.00


95.00

92.00

89.00


86.00 -

Proj. file: Network B.stm

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total	Cap full	Vel	Pipe)	Invert El	ev	HGL Ek	ev	Grnd / F	lim Elev	Line ID
ine	To		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	16.194	0.00	0.11	0.00	0.00	0.10	0.0	6.3	7.5	0.74	2.45	0.94	12	0.47	84.90	84.98	86.33	86.34	0.00	88.39	Pipe - (427) (5
2	1	16.078	0.11	0.11	0.90	0.10	0.10	6.0	6.0	7.5	0.75	2.51	0.95	12	0.50	85.08	85.16	86.35	86.36	88.39	87.82	Pipe - (426) (5
Project File: Network B.stm												Number of lines: 2					Run Da	 ate: 4/6/20	21			

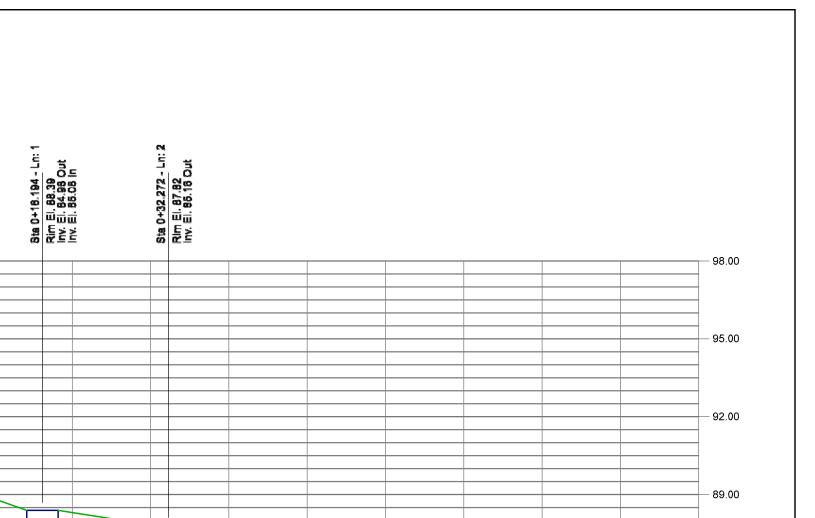
Storm Sewer Profile

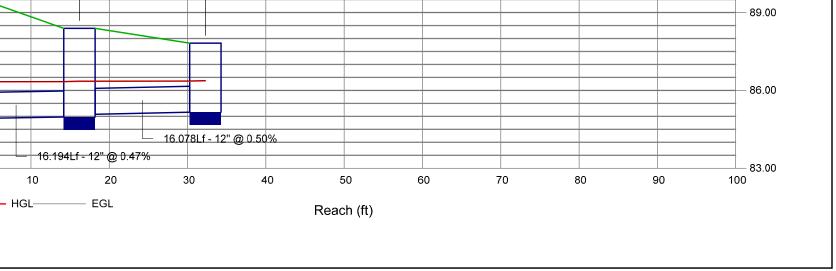
Sta 0+00.00 - Outfall Grnd. El. 89.90 Inv. El. 84.90 In

Elev. (ft)

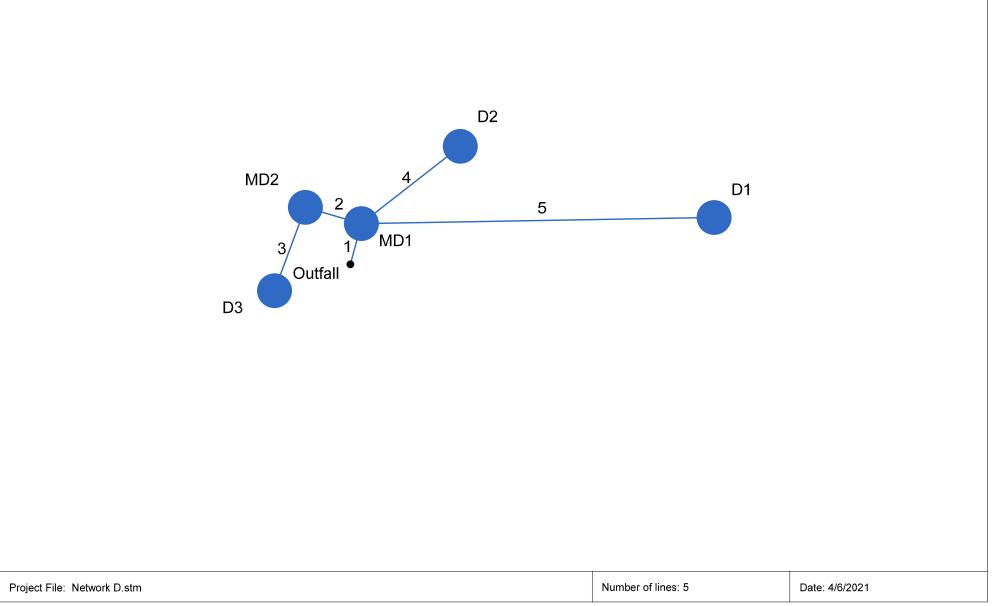
98.00

95.00

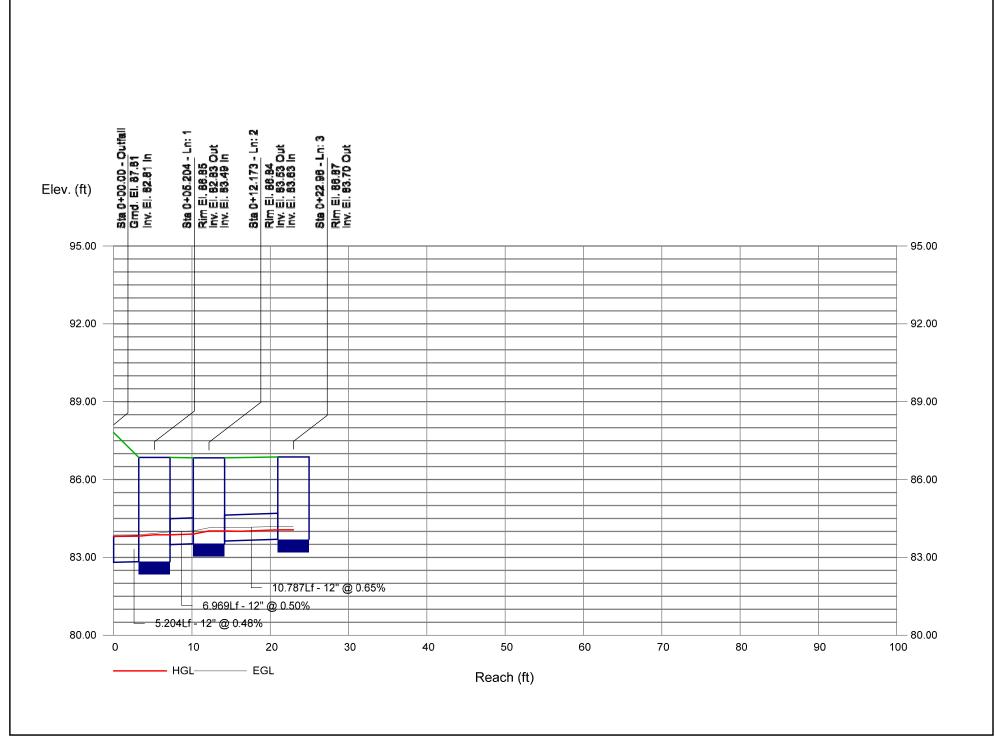

92.00

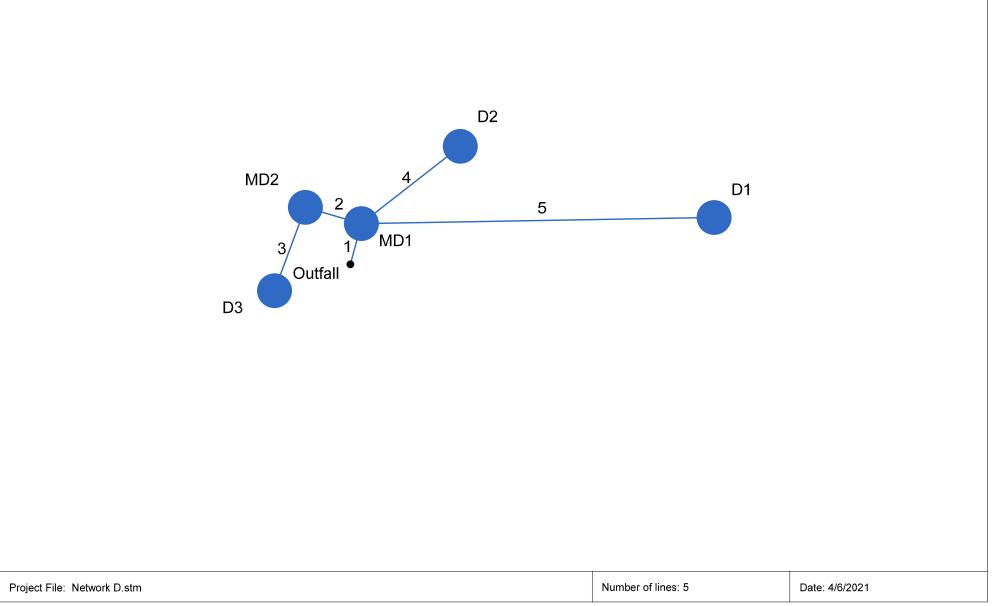

89.00

86.00 -

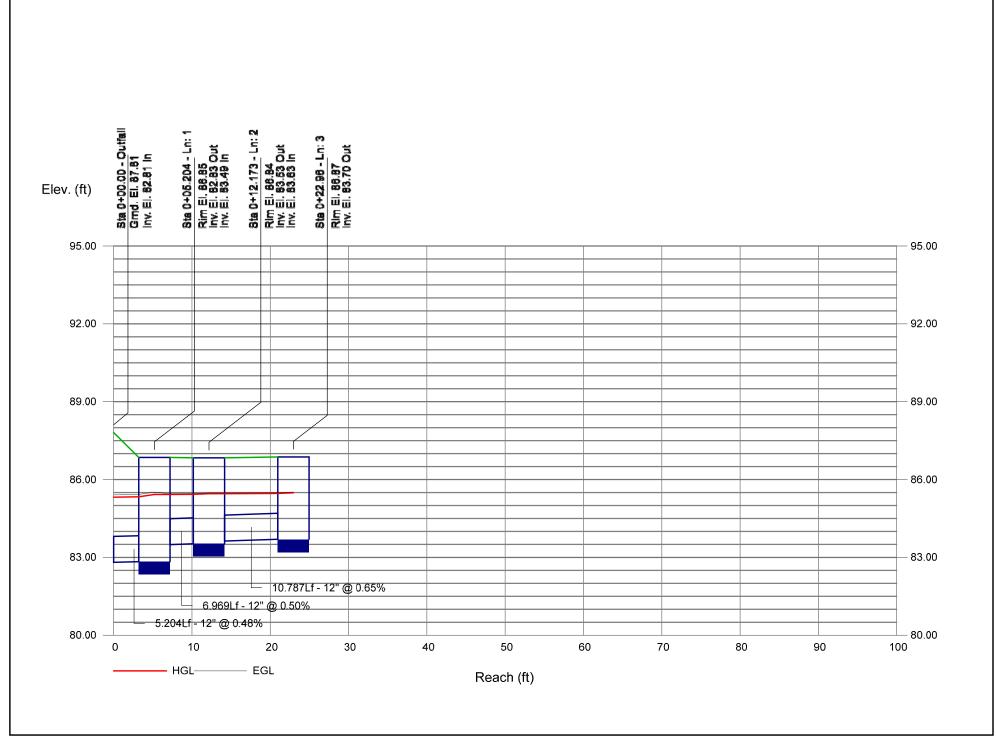

83.00 -

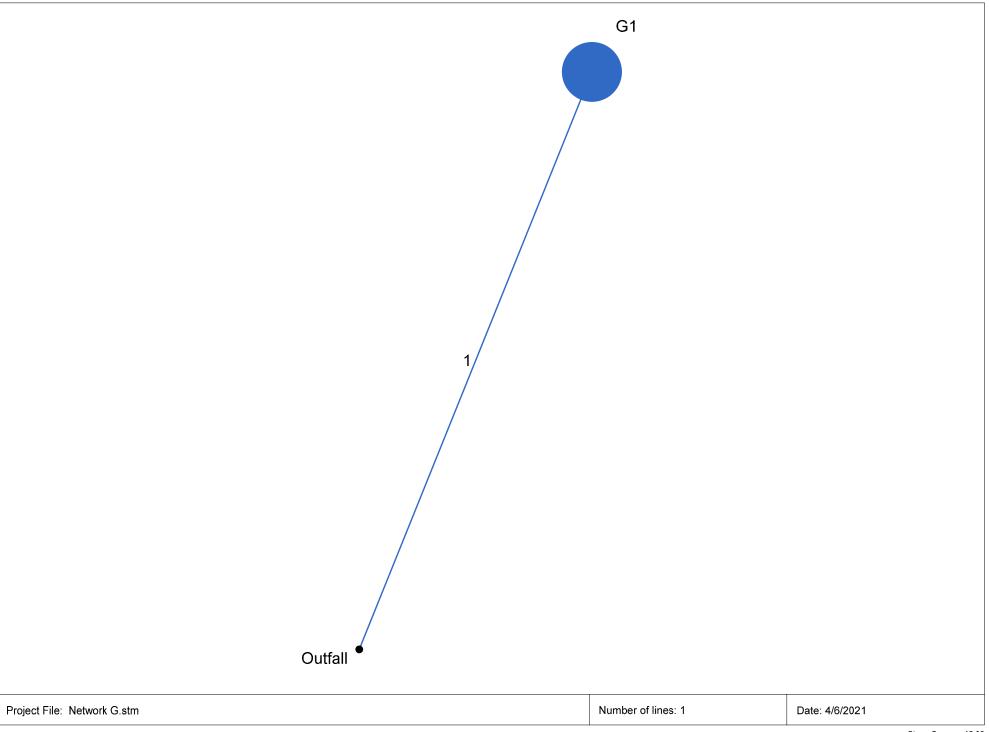
0


Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

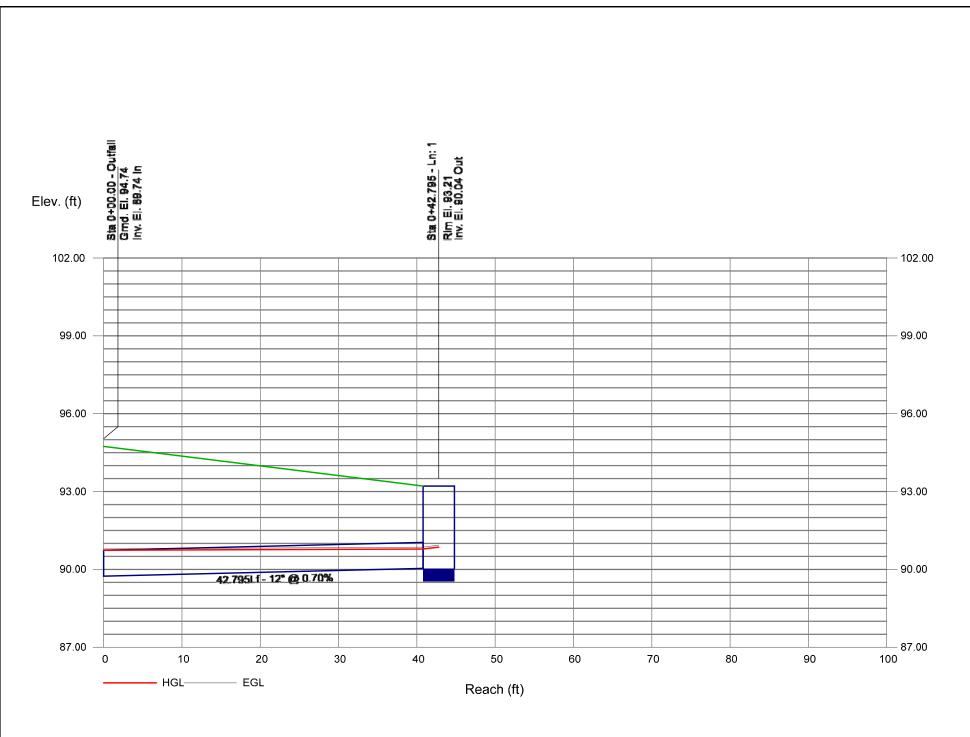

Storm Sewer Tabulation

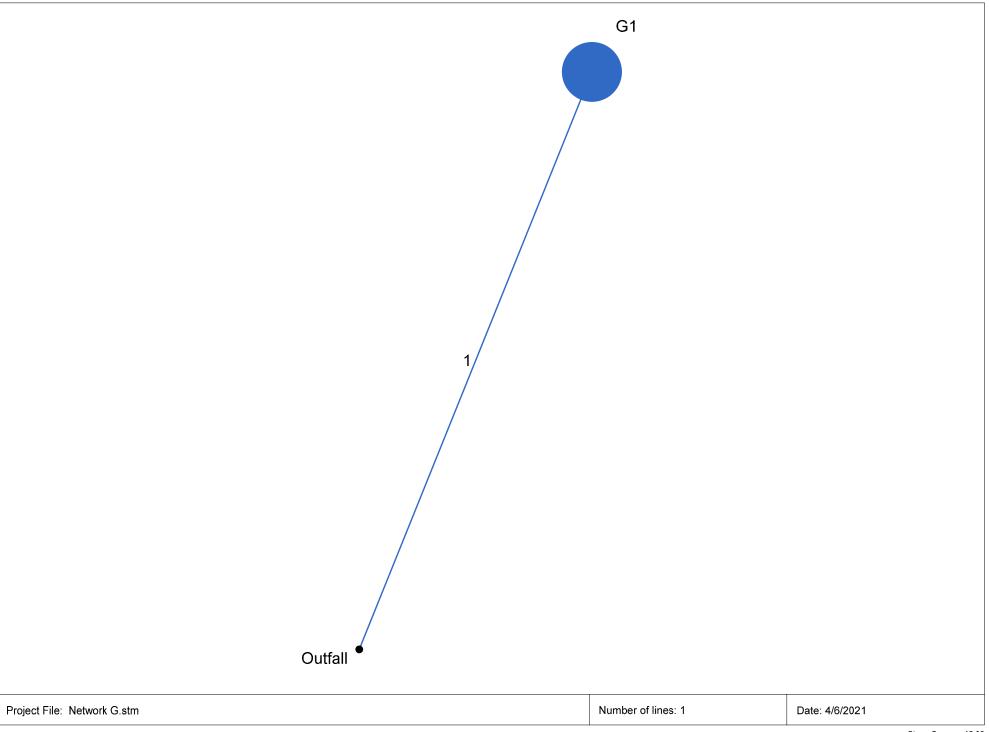
station	Len	Drng A	Area	Rnoff	Area x	C	Тс			Total		Vel	Pipe		Invert El	ev	HGL Ele	ev	Grnd / R	im Elev	Line ID
ine To	-	Incr	Total	_coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1 End	5.204	0.00	0.39	0.00	0.00	0.26	0.0	6.4	5.5	1.44	2.46	1.83	12	0.48	82.81	82.83	83.81	83.82	0.00	86.85	Pipe - (427) (3) (4)
2 1	6.969	0.00	0.22	0.00	0.00	0.13	0.0	6.1	5.6	0.75	2.52	2.77	12	0.50	83.49	83.53	83.87	83.90	86.85	86.84	Pipe - (426) (4) (1)
3 2	10.787	0.22	0.22	0.61	0.13	0.13	6.0	6.0	5.6	0.75	2.87	2.79	12	0.65	83.63	83.70	84.02	84.06	86.84	86.87	Pipe - (426) (4) (1)
	15.223		0.07	0.89	0.06	0.06	6.0	6.0	5.6	0.35	2.58	2.24	12	0.53	83.61	83.69	83.87	83.94	86.85	86.86	Pipe - (426) (4) (1)
	42.106		0.10	0.65	0.07	0.07	6.0	6.0	5.6	0.36	4.75	1.74	12	1.78	83.43	84.18	83.87	84.43	86.85	86.85	Pipe - (426) (4) (3)
Project File:	Networ	k D.stm													Numbe	r of lines:	5		Run Da	te: 4/6/20	21

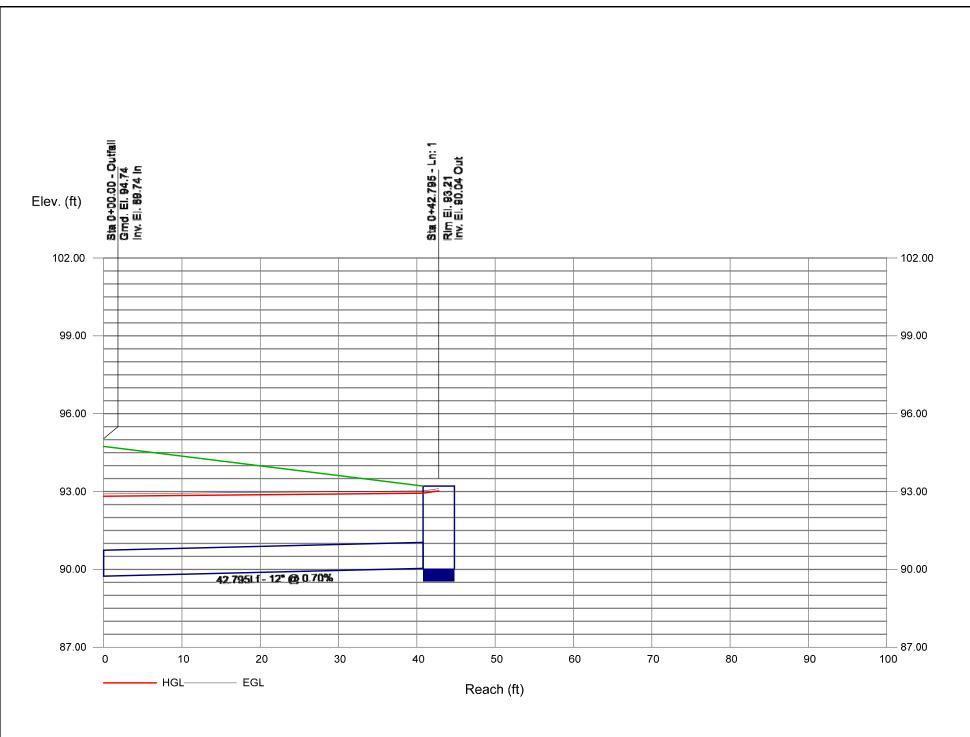

Storm Sewer Profile

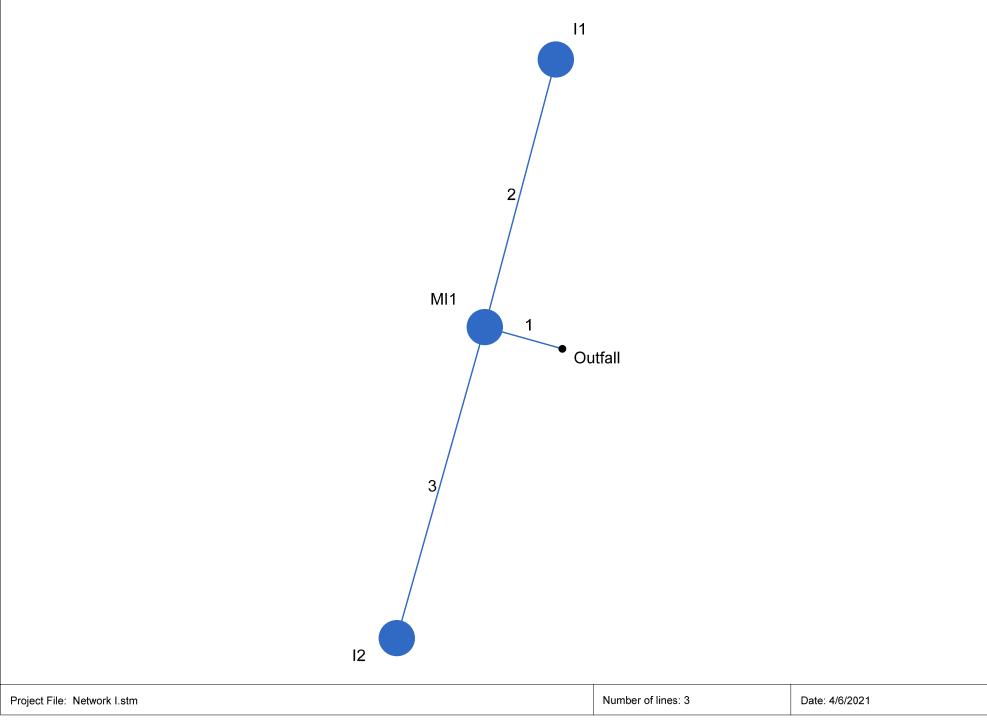


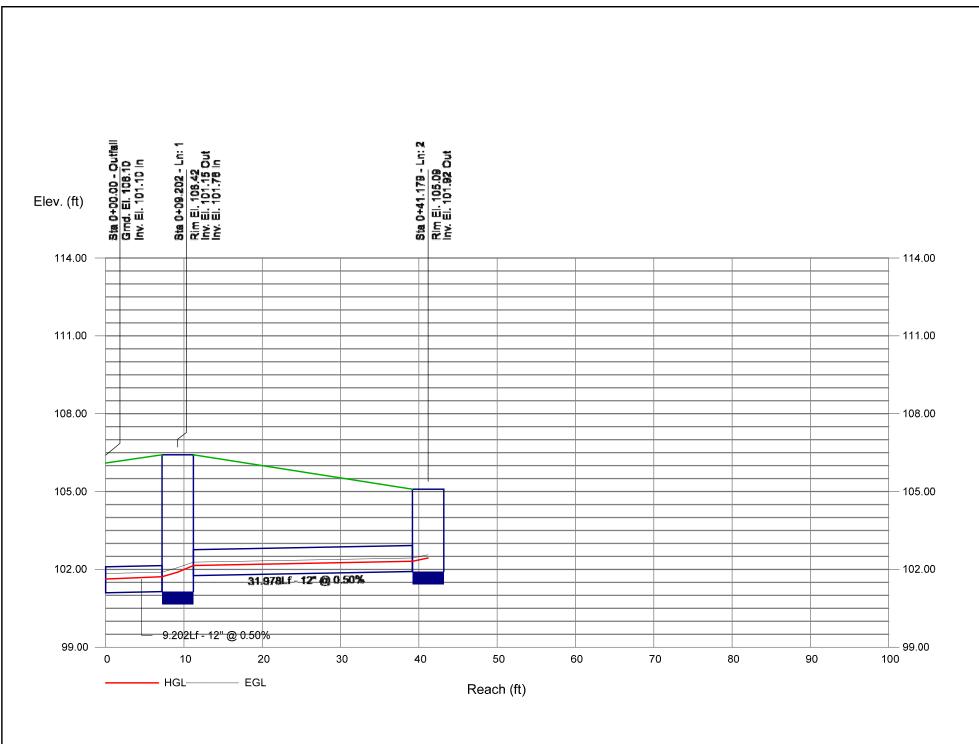
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

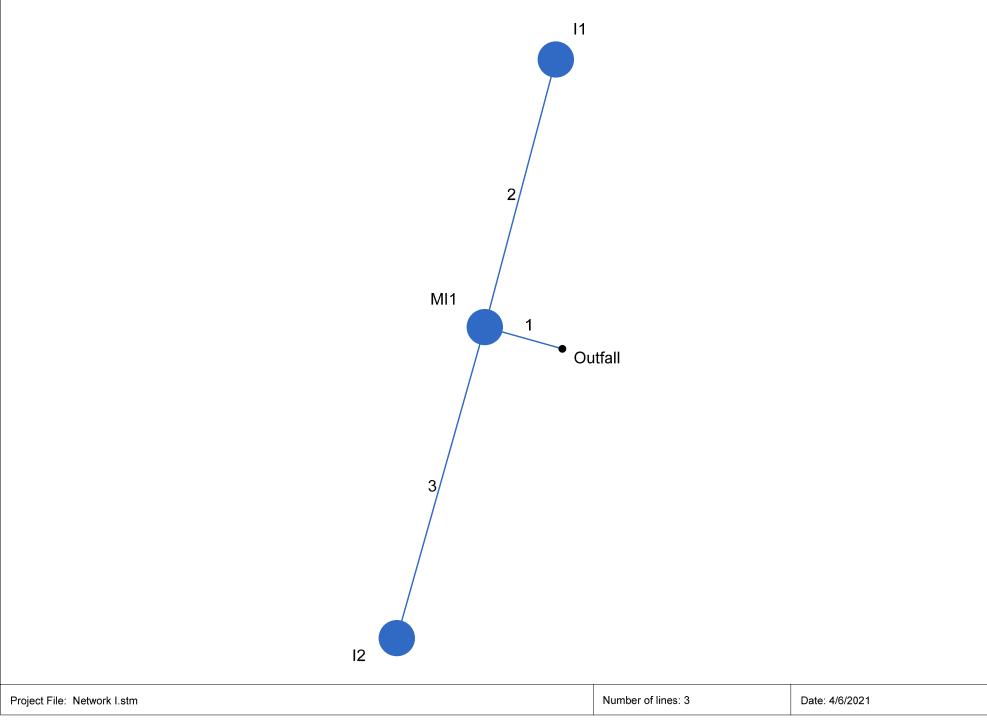


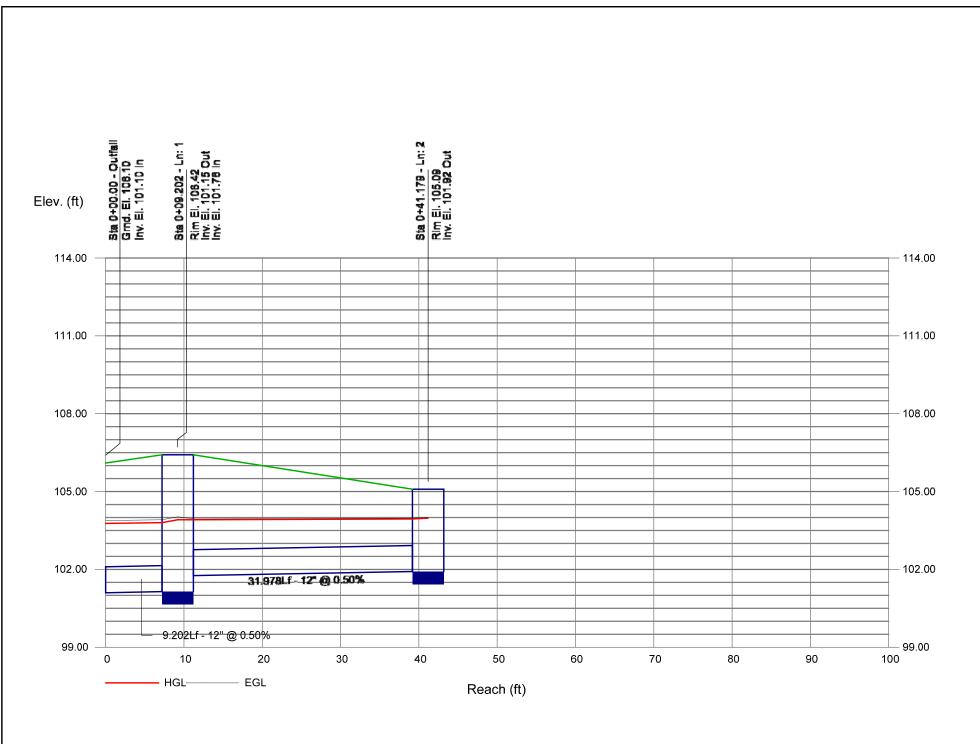

tion Len Drr	ng Area	Rnoff	Area x	С	Тс			Total		Vel	Pipe		Invert El	ev	HGL Ele	ev.	Grnd / R	im Elev	Line ID
le To Inc	r Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
Line (ft) (ac) (ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
End 5.204 0.0	0 0.39	0.00	0.00	0.26	0.0	7.1	7.3	1.90	2.46	2.42	12	0.48	82.81	82.83	85.32	85.33	0.00	86.85	Pipe - (427) (3) (4)
1 6.969 0.0	0 0.22	0.00	0.00	0.13	0.0	6.1	7.5	1.01	2.52	1.28	12	0.50	83.49	83.53	85.43	85.43	86.85	86.84	Pipe - (426) (4) (1)
2 10.787 0.2	22 0.22	0.61	0.13	0.13	6.0	6.0	7.5	1.01	2.87	1.29	12	0.65	83.63	83.70	85.46	85.47	86.84	86.87	Pipe - (426) (4) (1)
1 15.223 0.0	0.07	0.89	0.06	0.06	6.0	6.0	7.5	0.47	2.58	0.60	12	0.53	83.61	83.69	85.43	85.43	86.85	86.86	Pipe - (426) (4) (1)
1 42.106 0.1		0.65	0.07	0.07	6.0	6.0	7.5	0.49	4.75		12	1.78	83.43	84.18	85.43	85.43	86.85	86.85	Pipe - (426) (4) (3)
roject File: Network D.	stm												Numbe	r of lines:	5		Run Da	te: 4/6/20	21




Drng Area Station Rnoff Area x C Тс Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID Len coeff (I) flow full Line To Syst Dn Up Up Incr Total Incr Total Inlet Size Slope Dn Up Dn Line (ft) (C) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) (ac) (ac) (min) 42.795 0.42 0.25 89.74 90.74 1 End 0.42 0.59 0.25 6.0 6.0 5.6 1.38 2.98 1.99 12 0.70 90.04 90.78 0.00 93.21 Pipe - (426) (1) Project File: Network G.stm Number of lines: 1 Run Date: 4/6/2021 NOTES:Intensity = 59.21 / (Inlet time + 12.50) ^ 0.81; Return period =Yrs. 10; c = cir e = ellip b = box

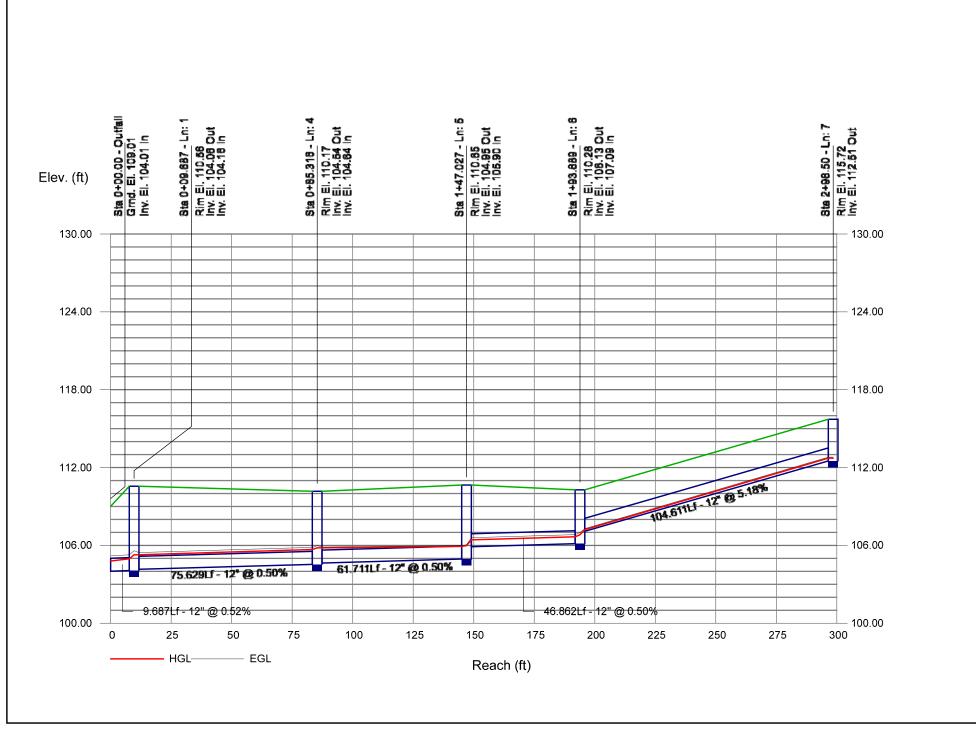



Drng Area Station Rnoff Area x C Тс Rain Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID Len Total coeff (I) flow full Line То Syst Dn Up Up Incr Total Incr Total Inlet Size Slope Dn Up Dn Line (ft) (C) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) (ac) (ac) (min) 42.795 0.42 0.25 89.74 92.82 1 End 0.42 0.59 0.25 6.0 6.0 7.5 1.87 2.98 2.38 12 0.70 90.04 92.94 0.00 93.21 Pipe - (426) (1) Project File: Network G.stm Number of lines: 1 Run Date: 4/6/2021 NOTES:Intensity = 197.93 / (Inlet time + 22.50) ^ 0.98; Return period =Yrs. 100 ; c = cir e = ellip b = box



tatio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total		Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
ine	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	End	9.202	0.00	0.35	0.00	0.00	0.28	0.0	6.3	5.5	1.56	2.52	3.53	12	0.50	101.10	101.15	101.63	101.72	0.00	106.42	Pipe - (427) (3) (4)
2	1	31.978	0.18	0.18	0.81	0.15	0.15	6.0	6.0	5.6	0.81	2.52	2.86	12	0.50	101.76	101.92	102.15	102.31	106.42	105.09	Pipe - (426) (4) (3)
3	1	37.028	0.17	0.17	0.81	0.14	0.14	6.0	6.0	5.6	0.77	10.07	2.20	12	7.99	101.25	104.21	101.89	104.58	106.42	108.38	Pipe - (426) (4) (1)
Proie	ct File:	Networl	k I.stm													Numbe	r of lines: 3	3		Run Da	te: 4/6/20	21

n	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
То		Incr	Total		Incr	Total	Inlet	Syst	-(1)	tiow	tuli		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
End	9.202	0.00	0.35	0.00	0.00	0.28	0.0	6.4	7.4	2.11	2.52	2.68	12	0.50	101.10	101.15	103.77	103.80	0.00	106.42	Pipe - (427) (3) (4)
																					Pipe - (426) (4) (3)
			0.17	0.81	0.14	0.14	6.0	6.0	7.5	1.04			12	7.99	101.25	104.21	103.91	104.64	106.42		Pipe - (426) (4) (1)
ct File:	Networ	k I.stm													Numbe	r of lines: :	3		Run Da	te [:] 4/6/20	
	End 1	Tone (ft) End 9.202 1 31.978 1 37.028	To Line Incr (ft) End 9.202 0.00 1 31.978 0.18	Incr Total (ac) End 9.202 0.00 0.35 1 31.978 0.18 0.18 1 37.028 0.17 0.17	Tonal Incr Total coeff Incr Total (ac) (c) End 9.202 0.00 0.35 0.00 1 31.978 0.18 0.18 0.18 1 37.028 0.17 0.17 0.81	Tone Incr Total coeff incr Total incr incr incr incr incr incr incr incr <td>Tone Incr Total Incr Total (rt) (ac) (a) (c) Incr Total 1 9.202 0.00 0.35 0.00 0.00 0.28 1 31.978 0.18 0.18 0.81 0.15 0.15 1 37.028 0.17 0.17 0.81 0.14 0.14</td> <td>Image: constraint of the state of the st</td> <td>Tone Incr Total Coeff Incr Total Inler System (n) (n) (n) (n) (n) (n) (n) (n) End 9.202 0.00 0.35 0.00 0.00 0.28 0.00 6.4 1 31.978 0.18 0.18 0.81 0.15 0.15 6.0 6.0 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.0</td> <td>Incr Total opperation Total Incr Total Incr Total Incr Total Incr Incr Incr Total Incr Incr</td> <td>Top Total Total Ror Total Incr Syst () How (R) (R</td> <td>Definition Total coeff Incr Total Incr Total Incr Total Inlet Syst (1) flow fuli End 9.202 0.00 0.35 0.00 0.28 0.0 6.4 7.4 2.11 2.52 1 31.978 0.18 0.18 0.15 0.15 6.0 6.0 7.5 1.00 2.52 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.0 7.5 1.04 10.07</td> <td>Line Incr Total cord Incr Total Indr System (i) flow fuit End 9.202 0.00 0.35 0.00 0.00 0.28 0.00 6.4 7.4 2.11 2.52 2.68 1 31.978 0.18 0.18 0.81 0.15 0.15 6.00 7.5 1.00 2.52 1.40 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.00 7.5 1.04 10.07 2.28 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.00 7.5 1.04 10.07 2.28</td> <td>Image: April base base base base base base base base</td> <td>Inc. Total Coeff Inc. Total Inc. System (1)</td> <td>$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td> <td>$\begin{tabular}{ c c c c c c c } \hline Teil & coeff \\ \hline Inc & Teil & Coeff \\ \hline Inc & Coeff & Co$</td> <td>Image: Pressure state sta</td> <td>Image Image <th< td=""><td>Image Image <th< td=""><td>Image: brance of the condent /td></th<></td></th<></td>	Tone Incr Total Incr Total (rt) (ac) (a) (c) Incr Total 1 9.202 0.00 0.35 0.00 0.00 0.28 1 31.978 0.18 0.18 0.81 0.15 0.15 1 37.028 0.17 0.17 0.81 0.14 0.14	Image: constraint of the state of the st	Tone Incr Total Coeff Incr Total Inler System (n) (n) (n) (n) (n) (n) (n) (n) End 9.202 0.00 0.35 0.00 0.00 0.28 0.00 6.4 1 31.978 0.18 0.18 0.81 0.15 0.15 6.0 6.0 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.0	Incr Total opperation Total Incr Total Incr Total Incr Total Incr Incr Incr Total Incr Incr	Top Total Total Ror Total Incr Syst () How (R) (R	Definition Total coeff Incr Total Incr Total Incr Total Inlet Syst (1) flow fuli End 9.202 0.00 0.35 0.00 0.28 0.0 6.4 7.4 2.11 2.52 1 31.978 0.18 0.18 0.15 0.15 6.0 6.0 7.5 1.00 2.52 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.0 7.5 1.04 10.07	Line Incr Total cord Incr Total Indr System (i) flow fuit End 9.202 0.00 0.35 0.00 0.00 0.28 0.00 6.4 7.4 2.11 2.52 2.68 1 31.978 0.18 0.18 0.81 0.15 0.15 6.00 7.5 1.00 2.52 1.40 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.00 7.5 1.04 10.07 2.28 1 37.028 0.17 0.17 0.81 0.14 0.14 6.0 6.00 7.5 1.04 10.07 2.28	Image: April base base base base base base base base	Inc. Total Coeff Inc. Total Inc. System (1)	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{tabular}{ c c c c c c c } \hline Teil & coeff \\ \hline Inc & Teil & Coeff \\ \hline Inc & Coeff & Co$	Image: Pressure state sta	Image Image <th< td=""><td>Image Image <th< td=""><td>Image: brance of the condent /td></th<></td></th<>	Image Image <th< td=""><td>Image: brance of the condent /td></th<>	Image: brance of the condent

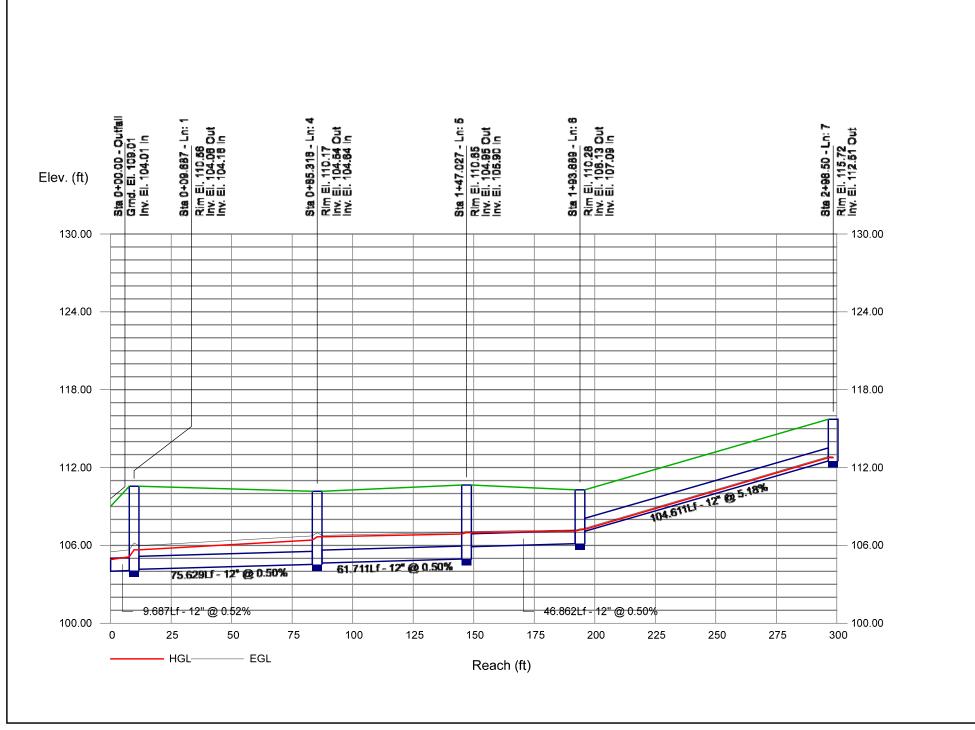


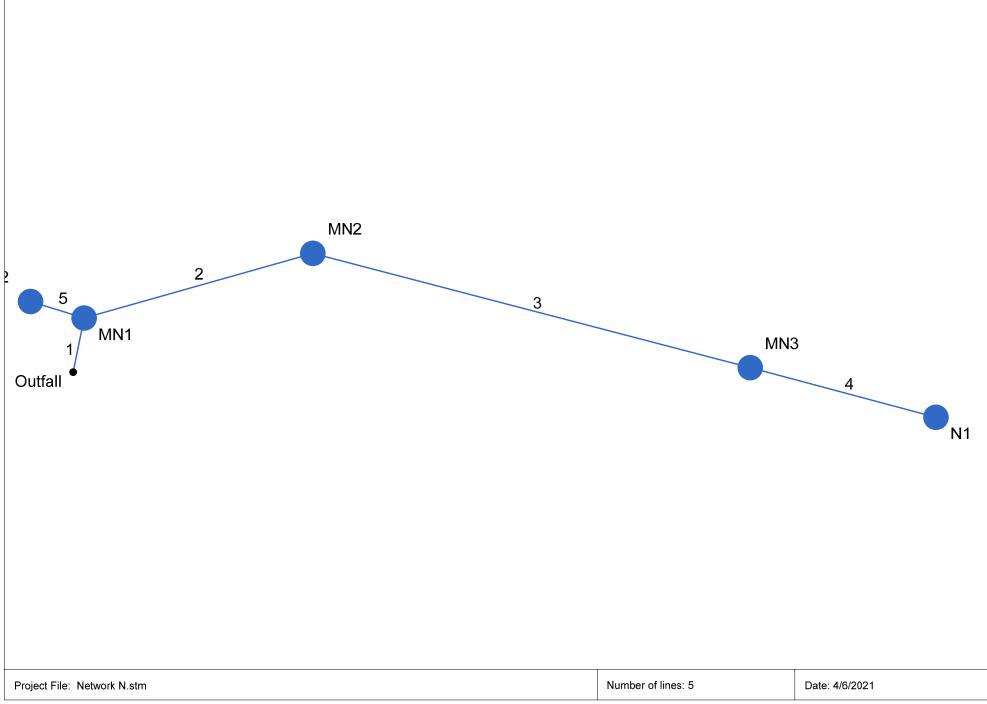
Outfall MJ1 J2 4 q MJ2 2 5 MJ3 J4 6 MJ5 MJ4 10 3 J1 J3 7 J5 Project File: Network J.stm Number of lines: 10 Date: 4/6/2021

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

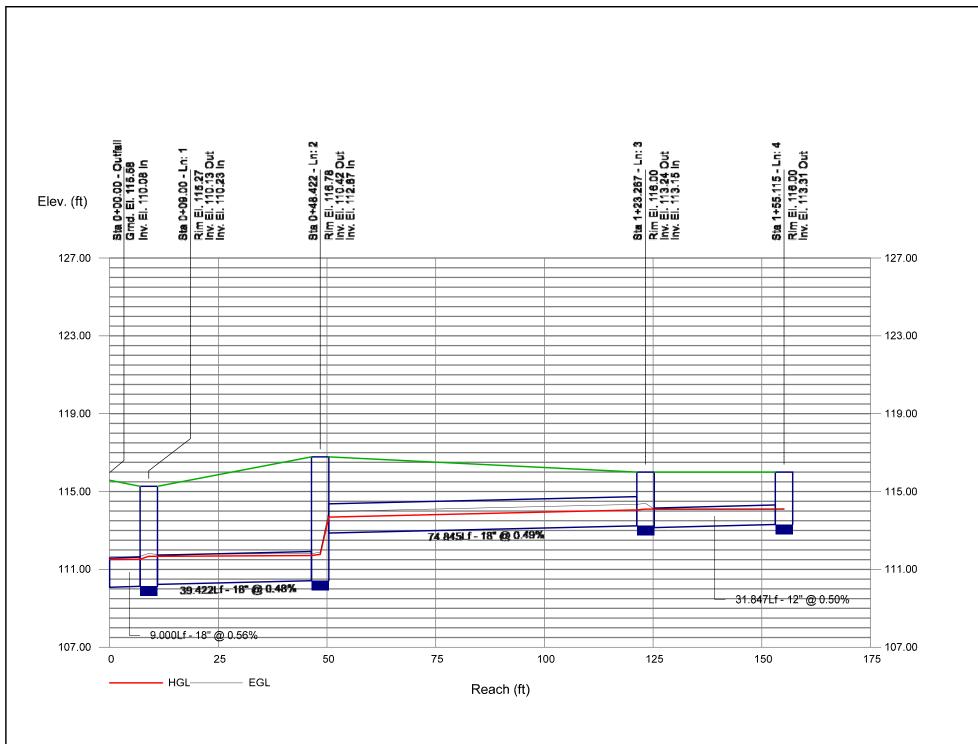
Storm Sewers v12.00

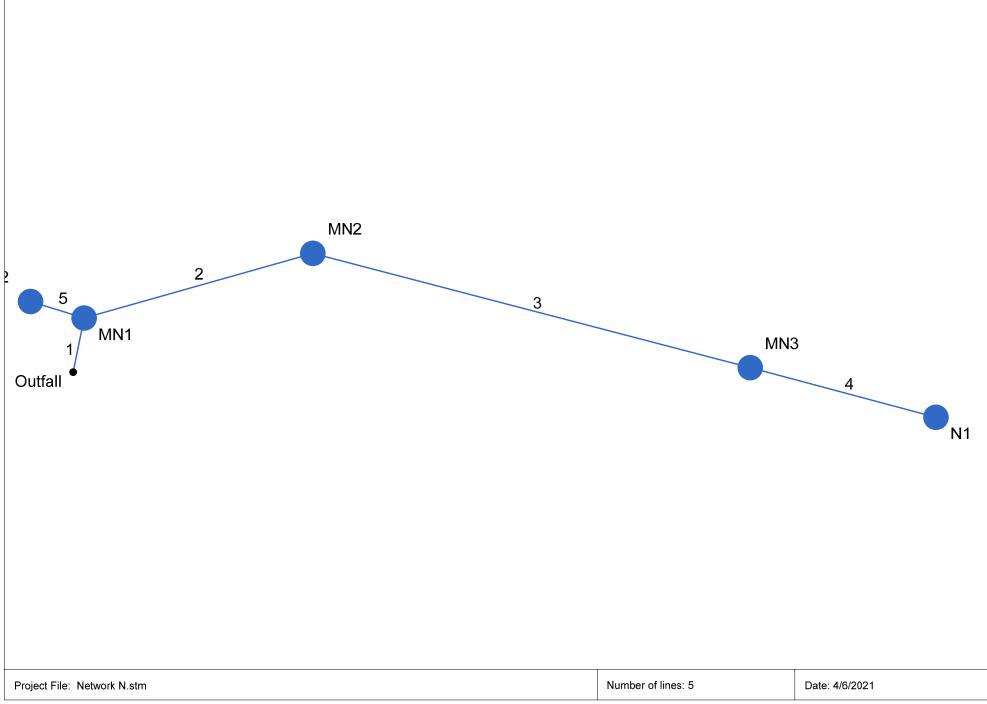
Statio	n	Len	Drng A		Rnoff	Area x	ζ C	Тс		Rain	Total	Cap	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End		0.00	0.83	0.00	0.00	0.64	0.0	7.6	5.2	3.35	2.57	4.78	12	0.52	104.01	104.06	104.79	104.97	0.00	110.56	Pipe - (427) (3) (3)
2	1	49.401	0.00	0.18	0.00	0.00	0.15	0.0	6.2	5.5	0.84	8.47	4.95	12	5.66	106.42	109.21	106.63	109.59	110.56	112.83	Pipe - (427) (4)
3	2	37.341	0.18	0.18	0.84	0.15	0.15	6.0	6.0	5.6	0.84	5.50	4.05	12	2.38	109.66	110.55	109.93	110.93	112.83	113.72	Pipe - (426) (4) (1)
4	1	75.629	0.00	0.65	0.00	0.00	0.49	0.0	7.3	5.3	2.60	2.52	3.31	12	0.50	104.16	104.54	105.28	105.68	110.56	110.17	Pipe - (427) (3) (2)
5	4	61.711	0.00	0.41	0.00	0.00	0.29	0.0	6.7	5.4	1.55	2.52	1.98	12	0.50	104.64	104.95	105.81	105.92	110.17	110.65	Pipe - (427) (3) (1)
6	5	46.862	0.00	0.37	0.00	0.00	0.25	0.0	6.5	5.5	1.37	2.52	3.27	12	0.50	105.90	106.13	106.43	106.66	110.65	110.28	Pipe - (427) (3)
7	6	104.611	0.06	0.06	0.83	0.05	0.05	6.0	6.0	5.6	0.28	8.11	3.51	12	5.18	107.09	112.51	107.22	112.73	110.28	115.72	Pipe - (426) (4) (1)
8	6	14.002	0.31	0.31	0.65	0.20	0.20	6.0	6.0	5.6	1.13	2.52	2.46	12	0.50	106.23	106.30	106.82	106.84	110.28	109.47	Pipe - (426) (4)
9	4	20.304	0.24	0.24	0.85	0.20	0.20	6.0	6.0	5.6	1.14	2.50	3.11	12	0.49	106.19	106.29	106.66	106.76	110.17	109.46	Pipe - (426) (4) (2)
10	5	37.978	0.04	0.04	0.89	0.04	0.04	6.0	6.0	5.6	0.20	10.08	1.16	12	8.00	105.20	108.24	105.98	108.42	110.65	113.32	Pipe - (426) (4) (1)
Proje	ct File:	Networ	k J.stm	1	1	1	1	1	1	I	1			1		Numbe	r of lines: 1	0	1	Run Da	te: 4/6/202	21
NOT	ES:Inte	nsity = 5	9.21 / (I	nlet time	+ 12.50) ^ 0.81;	Return	period =	Yrs. 10	; c = cir	e = el	lip b = bo	рх			1				1		

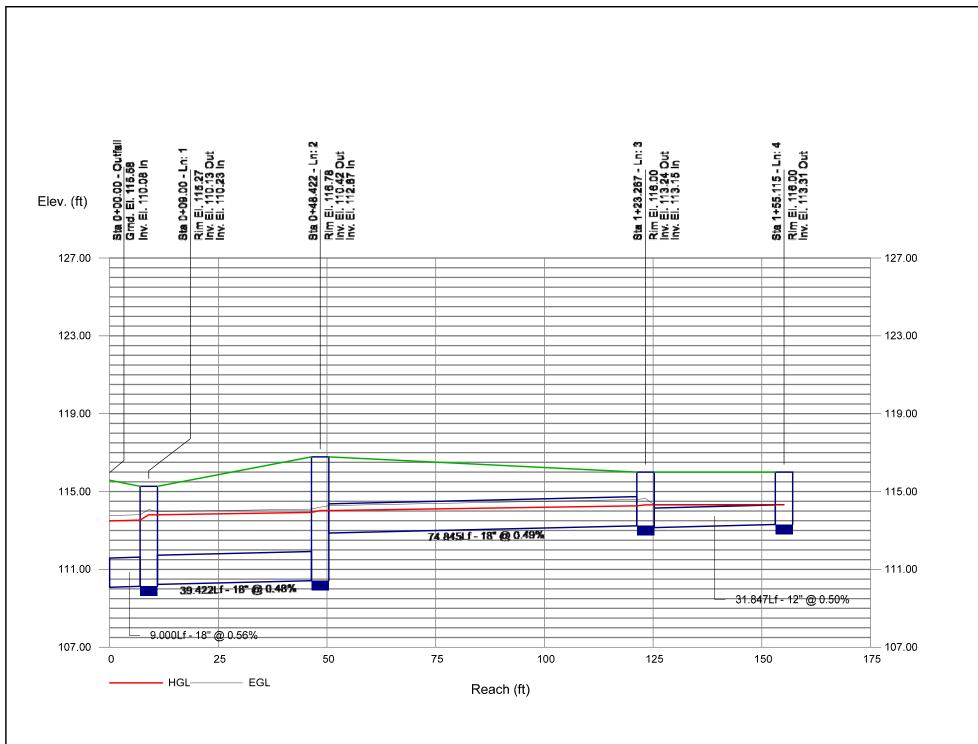


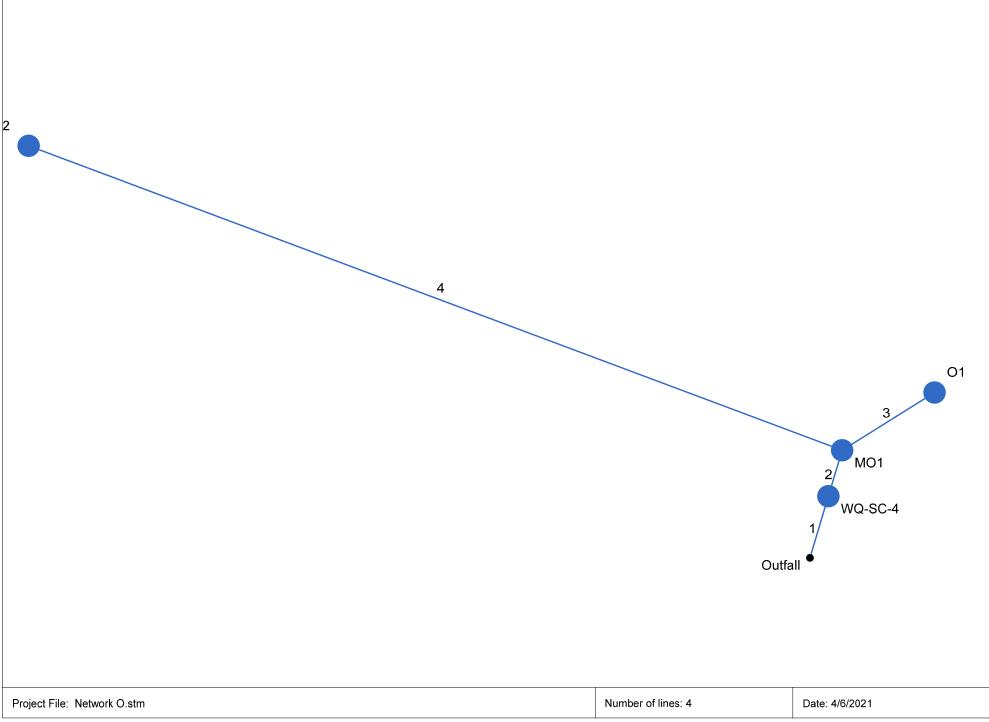

Outfall MJ1 J2 4 q MJ2 2 5 MJ3 J4 6 MJ5 MJ4 10 3 J1 J3 7 J5 Project File: Network J.stm Number of lines: 10 Date: 4/6/2021

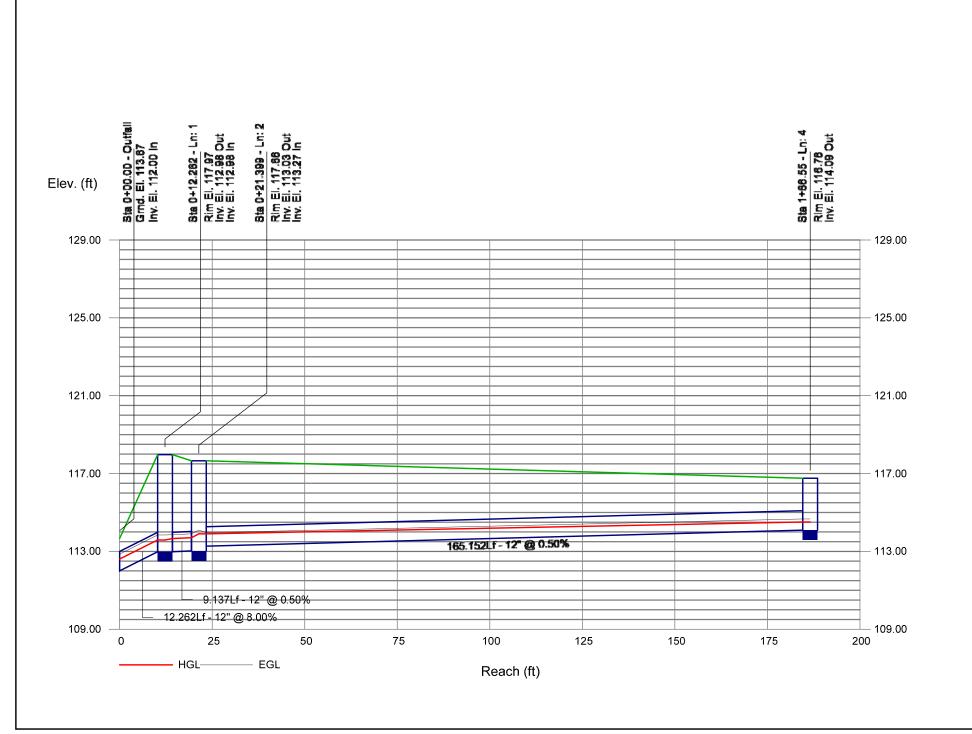
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

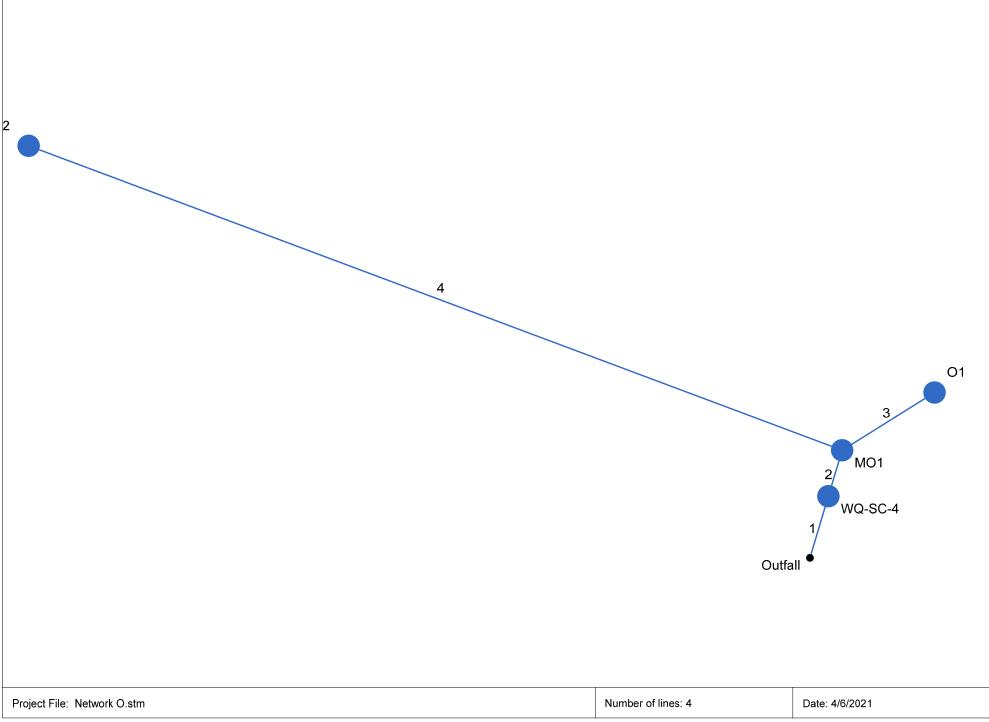

Storm Sewers v12.00

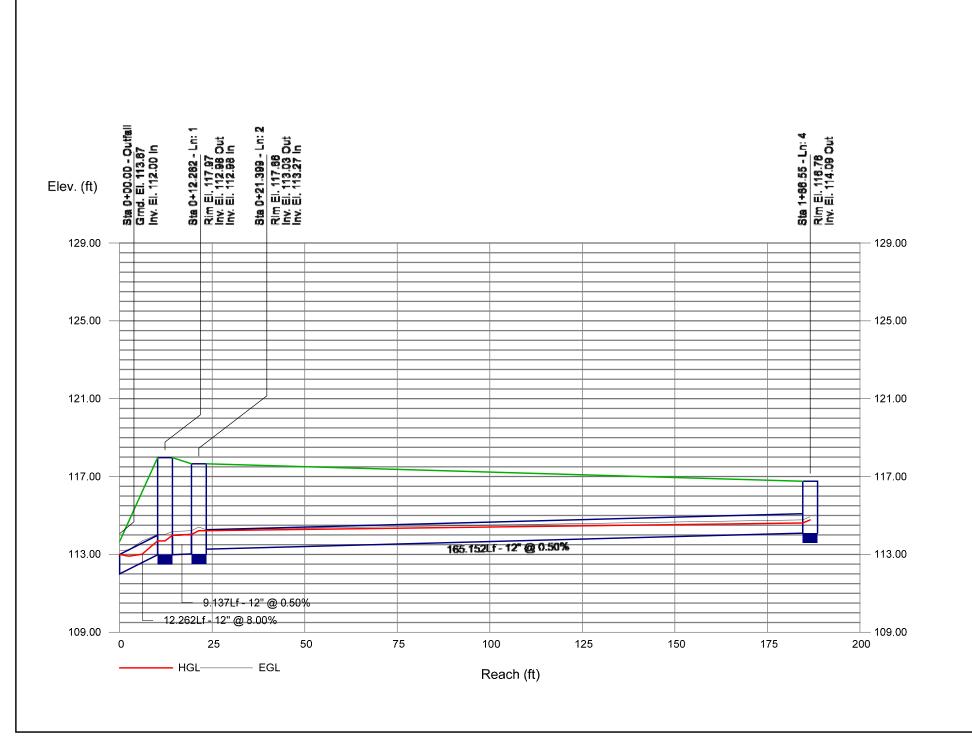

Statio	n	Len	Drng A		Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End		0.00	0.83	0.00	0.00	0.64	0.0	7.4	7.2	4.61	2.57	6.05	12	0.52	104.01	104.06	104.90	105.12	0.00	110.56	Pipe - (427) (3) (3)
2	1	49.401	0.00	0.18	0.00	0.00	0.15	0.0	6.1	7.5	1.13	8.47	5.42	12	5.66	106.42	109.21	106.66	109.66	110.56	112.83	Pipe - (427) (4)
3	2	37.341	0.18	0.18	0.84	0.15	0.15	6.0	6.0	7.5	1.14	5.50	4.42	12	2.38	109.66	110.55	109.97	111.00	112.83	113.72	Pipe - (426) (4) (1)
4	1	75.629	0.00	0.65	0.00	0.00	0.49	0.0	7.2	7.2	3.56	2.52	4.53	12	0.50	104.16	104.54	105.66	106.41	110.56	110.17	Pipe - (427) (3) (2)
5	4	61.711	0.00	0.41	0.00	0.00	0.29	0.0	6.8	7.3	2.10	2.52	2.68	12	0.50	104.64	104.95	106.66	106.88	110.17	110.65	Pipe - (427) (3) (1)
6	5	46.862	0.00	0.37	0.00	0.00	0.25	0.0	6.5	7.4	1.86	2.52	2.38	12	0.50	105.90	106.13	106.99	107.11	110.65	110.28	Pipe - (427) (3)
7	6	104.611	0.06	0.06	0.83	0.05	0.05	6.0	6.0	7.5	0.38	8.11	3.83	12	5.18	107.09	112.51	107.24	112.76	110.28	115.72	Pipe - (426) (4) (1)
8	6	14.002	0.31	0.31	0.65	0.20	0.20	6.0	6.0	7.5	1.52	2.52	1.99	12	0.50	106.23	106.30	107.19	107.21	110.28	109.47	Pipe - (426) (4)
9	4	20.304	0.24	0.24	0.85	0.20	0.20	6.0	6.0	7.5	1.54	2.50	3.34	12	0.49	106.19	106.29	106.76	106.86	110.17	109.46	Pipe - (426) (4) (2)
10	5	37.978	0.04	0.04	0.89	0.04	0.04	6.0	6.0	7.5	0.27	10.08	1.27	12	8.00	105.20	108.24	106.99	108.45	110.65	113.32	Pipe - (426) (4) (1)
Proje	ct File:	Networ	k J.stm										1			Numbe	r of lines: 1	0		Run Da	te: 4/6/202	21
NOT	ES:Inte	ensity = 1	97.93 /	(Inlet tim	e + 22.5	0) ^ 0.98	; Returi	n period	=Yrs. 10	00 ; c =	cir e =	ellip b =	box									

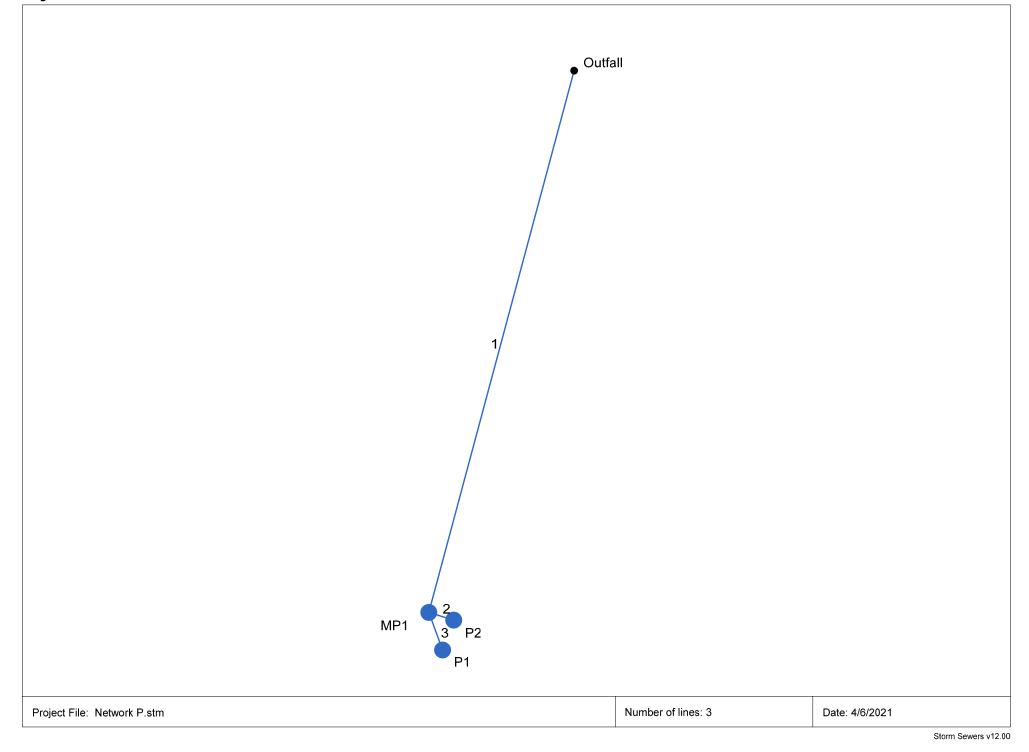



				Rnoff	Area x		Тс			Total		Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	III Elev	Line ID
То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
End	0.000	0.00	1 / 8	0.00	0.00	1.07	0.0	0.0	5.0	5.28	7.83	3.06	18	0.56	110.08	110 13	111 51	111 53	0.00	115 27	Pipe - (450) (1) (1)
																					Pipe - (450) (1) (1) Pipe - (450) (1) (1)
																					Pipe - (450) (1) (1) Pipe - (450) (1) (1)
																					Pipe - (450) (1) (1) Pipe - (450) (1) (1)
																					Pipe - (450) (1) (1) Pipe - (450) (1) (1)
ct File:	Networ	k N.stm													Numbe	r of lines: 5	5		Run Da	te: 4/6/202	21
	End 1 2 3 1	Line (ft) End 9.000 1 39.422 2 74.845 3 31.847 1 9.336	Line (ft) (ac) End 9.000 0.00 1 39.422 0.00 2 74.845 0.90 3 31.847 0.28	Incr Total (ac) End 9.000 0.000 1.48 1 39.422 0.000 1.18 2 74.845 0.900 1.18 3 31.847 0.28 0.28 1 9.336 0.300 0.301	Incr Total Incr Total Incr Total Incr Total Incr Total Incr Incr	Long (fi)Incr (ac)Total (ac)Incr (c)End9.0000.001.480.000.00139.4220.001.180.000.01274.8450.901.180.900.81331.8470.280.280.100.0319.3360.300.300.760.23	Total (nt)Incr (ac)Total (c)Incr (c)Total (c)End9.0000.001.480.000.001.07139.4220.001.180.000.000.84274.8450.901.180.900.810.84331.8470.280.280.100.030.0319.3360.300.300.760.230.23	Tom (ft)Incr (ac)Total (c)Incr (c)Total (c)Indr (c)End 39.4229.001.480.009.001.079.01274.8459.001.189.000.819.849.01274.8459.001.189.009.819.849.01331.8479.280.280.100.039.039.039.0319.3360.300.300.769.239.239.0319.3360.309.309.369.369.369.369.3619.3369.309.309.369.369.369.369.3619.3369.309.369.369.369.369.369.3619.3369.309.369.369.369.369.369.3619.3369.369.369.369.369.369.369.3619.369.369.369.369.369.369.369.3619.369.369.369.369.369.369.369.3619.369.369.369.369.369.369.3619.369.369.369.369.369.369.3619.369.369.369.369.369.369.3619.369.369.369.369.369.369.3619.36 </td <td>To< (ft)Incr (ac)Total (ac)Incr (c)Total (min)Inlet (min)Syst (min)End 304229.0001.480.000.001.070.009.0139.4220.001.180.000.000.840.008.7274.8450.901.180.000.810.846.008.4331.8470.280.280.100.030.036.006.0119.3360.3000.300.760.230.236.006.0119.3360.300.300.769.239.236.006.01</td> <td>To Incr Total Incr Total Incr Total Inlex Syst Indrex (min) (min)</td> <td>Total Incr Total Incr Total Inlet Syst Syst<</td> <td>Incr Total Incr Total Incr Total Inlet Syst Total Incr (min) (min</td> <td>Incr Total Incr Total Index Syst Total Index Index Syst Total Index Syst Total Index Index</td> <td>ro incr Total incr Total inlet Syst incr incr indr Size rine (a) (a) (b) (c) (c)</td> <td>ro incr total incr rotal incr rotal indr state state<</td> <td>Open Incr Total Incr Total Index Syst Total Index Index</td> <td>Open Incr Total Incr Total Inter State St</td> <td>Open ice ice<td>Open Norv Total Norv Index Since Norv Size Size Norv Norv</td><td>ro ro ro<</td><td>no no no<</td></td>	To< (ft)Incr (ac)Total (ac)Incr (c)Total (min)Inlet (min)Syst (min)End 304229.0001.480.000.001.070.009.0139.4220.001.180.000.000.840.008.7274.8450.901.180.000.810.846.008.4331.8470.280.280.100.030.036.006.0119.3360.3000.300.760.230.236.006.0119.3360.300.300.769.239.236.006.01	To Incr Total Incr Total Incr Total Inlex Syst Indrex (min) (min)	Total Incr Total Incr Total Inlet Syst Syst<	Incr Total Incr Total Incr Total Inlet Syst Total Incr (min) (min	Incr Total Incr Total Index Syst Total Index Index Syst Total Index Syst Total Index Index	ro incr Total incr Total inlet Syst incr incr indr Size rine (a) (a) (b) (c) (c)	ro incr total incr rotal incr rotal indr state state<	Open Incr Total Incr Total Index Syst Total Index Index	Open Incr Total Incr Total Inter State St	Open ice ice <td>Open Norv Total Norv Index Since Norv Size Size Norv Norv</td> <td>ro ro ro<</td> <td>no no no<</td>	Open Norv Total Norv Index Since Norv Size Size Norv Norv	ro ro<	no no<

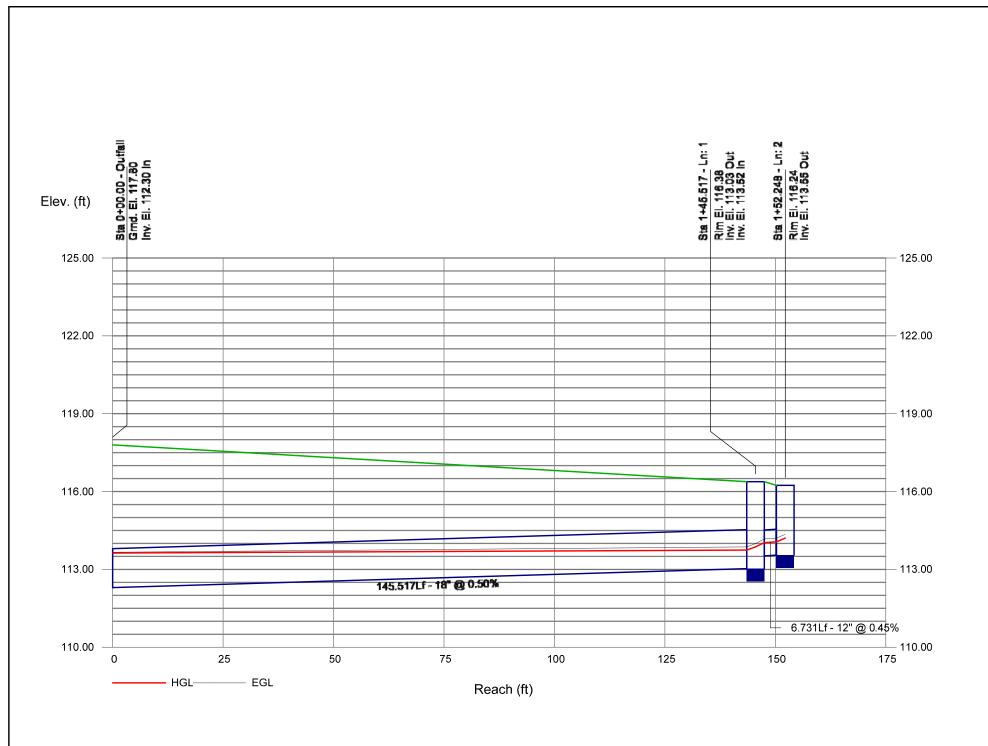


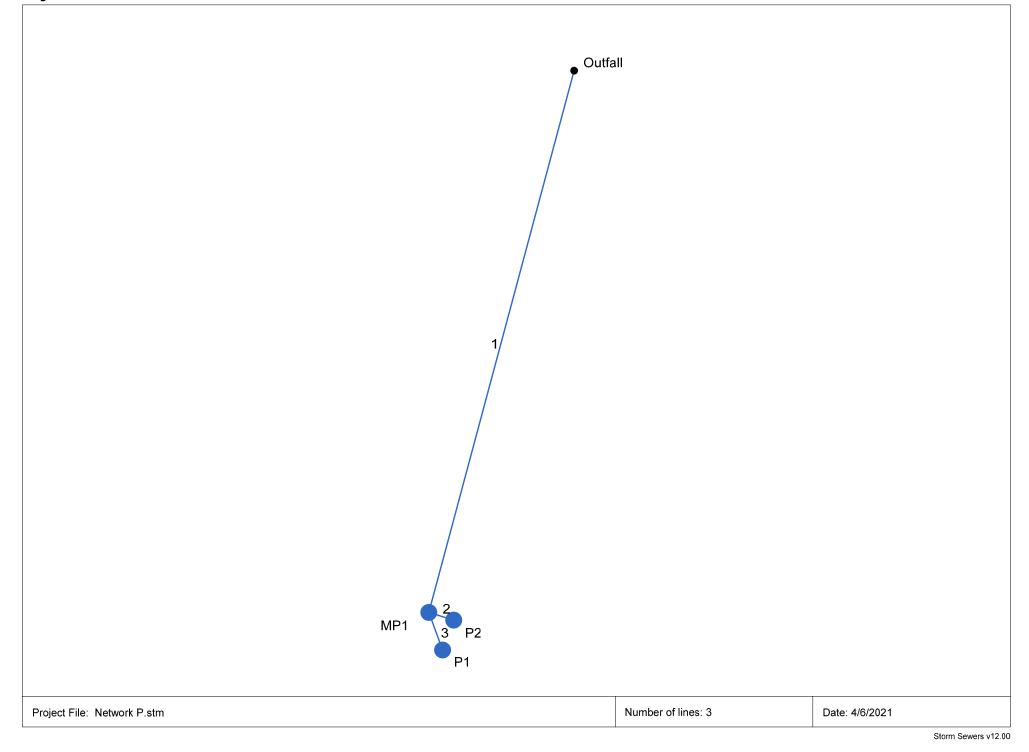

Statio	n	Len	Drng A	Area	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
Line		-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	9.000	0.00	1.48	0.00	0.00	1.07	0.0	8.5	6.9	7.41	7.83	4.19	18	0.56	110.08	110.13	113.49	113.53	0.00	115.27	Pipe - (450) (1) (1)
2	1	39.422	0.00	1.18	0.00	0.00	0.84	0.0	8.3	7.0	5.86	7.29	3.32	18	0.48	110.23	110.42	113.81	113.93	115.27	116.78	Pipe - (450) (1) (1)
3	2	74.845	0.90	1.18	0.90	0.81	0.84	6.0	8.0	7.1	5.91	7.38	4.32	18	0.49	112.87	113.24	114.02	114.27	116.78	116.00	Pipe - (450) (1) (1)
4	3	31.847	0.28	0.28	0.10	0.03	0.03	6.0	6.0	7.5	0.21	2.52	0.27	12	0.50	113.15	113.31	114.32	114.32	116.00	116.00	Pipe - (450) (1) (1)
5	1	9.336	0.30	0.30	0.76	0.23	0.23	6.0	6.0	7.5	1.72	2.61		12	0.54	112.16	112.21	113.81	113.83	115.27	114.88	Pipe - (450) (1) (1)
Proje	ect File:	Networ	k N.stm													Numbe	r of lines:	5		Run Da	te: 4/6/20	21
				(Inlet tim												Numbe	r of lines:	5		Run Da	ite: 4/6/20	21




ation	I	Len	Drng A		Rnoff coeff	Area x	C	Тс			Total flow	Cap full	Vel	Pipe	•	Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
ne	То		Incr	Total		Incr	Total	Inlet	Syst	(1)	now	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	End	12.262	0.00	0.45	0.00	0.00	0.38	0.0	7.1	5.3	2.02	10.07	4.06	12	8.00	112.00	112.98	112.61	113.59	113.67	117.97	Pipe - (450) (1) (
	1	9.137		0.45	0.00	0.00	0.38	0.0	7.1	5.3	2.03	2.52	3.57	12	0.50	112.98	113.03	113.66	113.70	117.97	117.66	Pipe - (450) (1) (
		20.618		0.24	0.84	0.20	0.20	6.0	6.0	5.6	1.13	2.48	3.08	12	0.48		114.61	114.98	115.08	117.66	117.28	Pipe - (450) (1)
		165.152		0.21	0.85	0.18	0.18	6.0	6.0	5.6	1.00	2.51	2.55	12	0.50	113.27	114.09	113.90	114.51	117.66	116.76	Pipe - (450) (1)
nied	t File:	Networ	k O stm													Numbei	r of lines: 4	 		Run Da	te: 4/6/20	21

Statio	ו	Len	Drng A	rea	Rnoff coeff	Area x	C	Тс			Total flow		Vel	Pipe	•	Invert Ele	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
ine	To		Incr	Total		Incr	Total	Inlet	Syst	(1)	now	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	12.262	0.00	0.45	0.00	0.00	0.38	0.0	7.1	7.2	2.75	10.07	4.06	12	8.00	112.00	112.98	113.00	113.69	113.67	117.97	Pipe - (450) (1) (1)
2	1	9.137		0.45	0.00	0.00	0.38	0.0	7.1	7.3	2.76	2.52	3.51	12	0.50	112.98	113.03	113.98	114.03	117.97	117.66	Pipe - (450) (1) (1)
3	2	20.618	0.24	0.24	0.84	0.20	0.20	6.0	6.0	7.5	1.52	2.48	3.32	12	0.48	114.51	114.61	115.08	115.17	117.66	117.28	Pipe - (450) (1) (1)
4	2	165.152	0.21	0.21	0.85	0.18	0.18	6.0	6.0	7.5	1.34	2.51	2.49	12	0.50	113.27	114.09	114.22	114.61	117.66	116.76	Pipe - (450) (1)
Proje	ct File:	Networl	k O.stm													Numbe	r of lines: 4	k		Run Da	te: 4/6/20	21



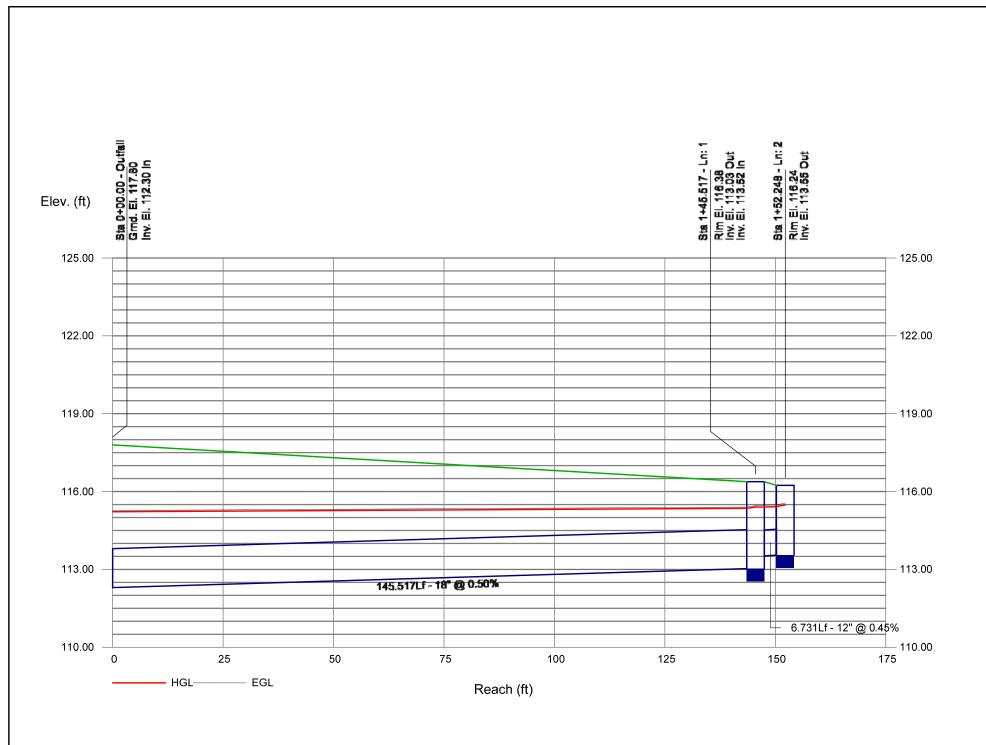


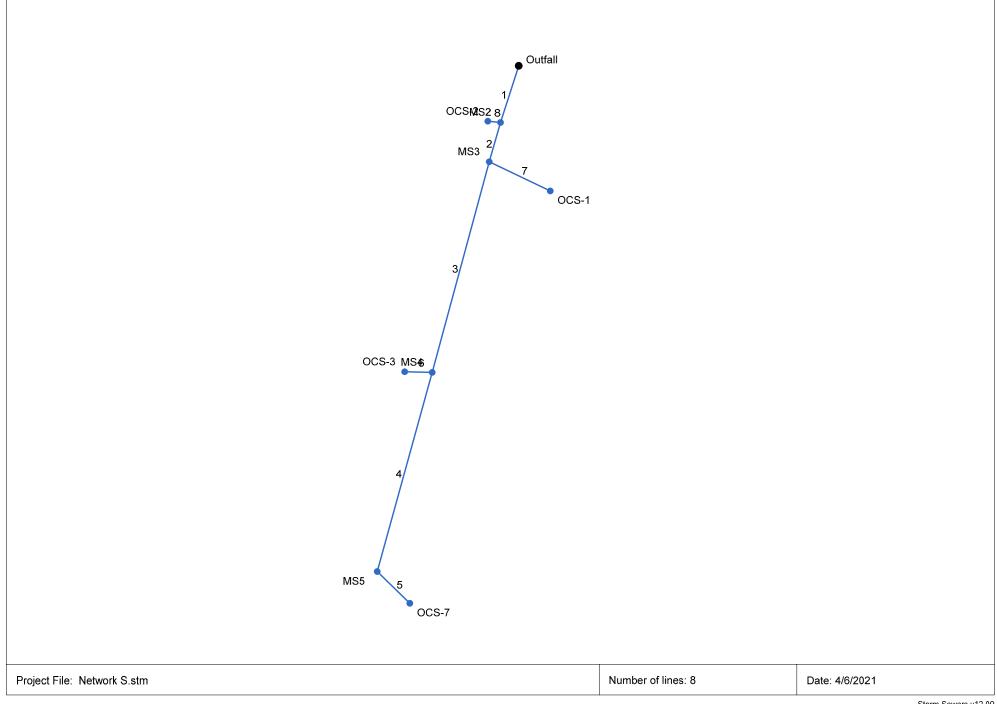
| | | | | 000 | | | Тс | | | Total | Cap
full | Vel
 | Pipe
 | •
 | Invert El |
 | HGL Ele | | Grnd / Ri |
 | Line ID |
|-----------|------------------|---|--|--|---|---|---|---|--|---|---
--
---|--

--
---|--
---|--|---|--|
| То | | Incr | Total | coeff | Incr | Total | Inlet | Syst | -(1) | flow | TUII |
 | Size
 | Slope
 | Dn | Up
 | Dn | Up | Dn | Up
 | |
| Line | (ft) | (ac) | (ac) | (C) | | | (min) | (min) | (in/hr) | (cfs) | (cfs) | (ft/s)
 | (in)
 | (%)
 | (ft) | (ft)
 | (ft) | (ft) | (ft) | (ft)
 | |
| End | 145.517 | 0.00 | 0.79 | 0.00 | 0.00 | 0.42 | 0.0 | 6.1 | 5.6 | 2.35 | 7.44 | 2.13
 | 18
 | 0.50
 | 112.30 | 113.03
 | 113.63 | 113.74 | 0.00 | 116.38
 | Pipe - (427) (3) (4) |
| 1 | | | 0.47 | 0.47 | 0.22 | 0.22 | 6.0 | 6.0 | 5.6 | 1.23 | 2.38 | 3.06
 | 12
 | 0.45
 | |
 | 114.03 | 114.06 | 116.38 | 116.24
 | Pipe - (426) (4) (3) |
| 1 | 10.262 | 0.32 | 0.32 | 0.63 | 0.20 | 0.20 | 6.0 | 6.0 | 5.6 | 1.13 | 6.67 | 2.96
 | 12
 | 3.51
 | 113.33 | 113.69
 | 113.87 | 114.14 | 116.38 | 116.37
 | Pipe - (426) (4) (1) |
| | | | | | | | | | | | |
 |
 |
 | |
 | | | |
 | |
| ect File: | Network | k P.stm | | | | | | | | | |
 |
 |
 | Numbe | r of lines: 3
 | 3 | | Run Da | te: 4/6/20
 | 21 |
| | Line
End
1 | Line (ft)
End 145.517
1 6.731
1 10.262 | Line (ft) (ac) End 145.517 0.00 1 6.731 0.47 | Line (ft) (ac) (ac) End 145.517 0.00 0.79 1 6.731 0.47 0.47 1 10.262 0.32 0.32 | Line (ft) (ac) (ac) (C) End 145.517 0.00 0.79 0.00 1 6.731 0.47 0.47 0.47 1 10.262 0.32 0.32 0.63 | Line (ft) (ac) (ac) (C) End 145.517 0.00 0.79 0.00 0.00 1 6.731 0.47 0.47 0.47 0.22 1 10.262 0.32 0.32 0.633 0.20 | Line (ft) (ac) (ac) (C) (End 145.517 0.00 0.79 0.00 0.00 0.42 1 6.731 0.47 0.47 0.47 0.22 0.22 1 10.262 0.32 0.32 0.63 0.20 0.20 | Line (ft) (ac) (C) ((min) End 145.517 0.00 0.79 0.00 0.00 0.42 0.01 1 6.731 0.47 0.47 0.47 0.22 0.22 6.0 1 10.262 0.32 0.32 0.63 0.20 0.20 6.0 | Line (ft) (ac) (ac) (C) ((min) (min) End 145.517 0.00 0.79 0.00 0.20 0.42 0.00 6.1 1 6.731 0.47 0.47 0.47 0.22 0.22 6.0 6.0 1 10.262 0.32 0.32 0.63 0.20 0.20 6.0 6.0 1 10.262 0.32 0.32 0.63 0.20 0.20 6.0 6.0 1 10.262 0.32 0.32 0.63 0.20 0.20 6.0 6.0 | Line (ft) (ac) (c) (min) (min | Line (ft) (ac) (c) (min) (min | Line (n) (n) <td>Line (n) (n)<td>Line (n) (ac) (c) (c) (min) (min)<!--</td--><td>Line (n) (n)<td>Line (n) (n)<td>Line (n) (n)<!--</td--><td>Imageimage</td><td>Line etc. etc. ic. ic.</td><td>Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin<td>Line (n) (n)</td></td></td></td></td></td></td> | Line (n) (n) <td>Line (n) (ac) (c) (c) (min) (min)<!--</td--><td>Line (n) (n)<td>Line (n) (n)<td>Line (n) (n)<!--</td--><td>Imageimage</td><td>Line etc. etc. ic. ic.</td><td>Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin<td>Line (n) (n)</td></td></td></td></td></td> | Line (n) (ac) (c) (c) (min) (min) </td <td>Line (n) (n)<td>Line (n) (n)<td>Line (n) (n)<!--</td--><td>Imageimage</td><td>Line etc. etc. ic. ic.</td><td>Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin<td>Line (n) (n)</td></td></td></td></td> | Line (n) (n) <td>Line (n) (n)<td>Line (n) (n)<!--</td--><td>Imageimage</td><td>Line etc. etc. ic. ic.</td><td>Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin<td>Line (n) (n)</td></td></td></td> | Line (n) (n) <td>Line (n) (n)<!--</td--><td>Imageimage</td><td>Line etc. etc. ic. ic.</td><td>Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin<td>Line (n) (n)</td></td></td> | Line (n) (n) </td <td>Imageimage</td> <td>Line etc. etc. ic. ic.</td> <td>Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin<td>Line (n) (n)</td></td> | Imageimage | Line etc. etc. ic. ic. | Imeexexexfinmininitinitexinitmininitinitinitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmininitmin <td>Line (n) (n)</td> | Line (n) (n) |

Page 1

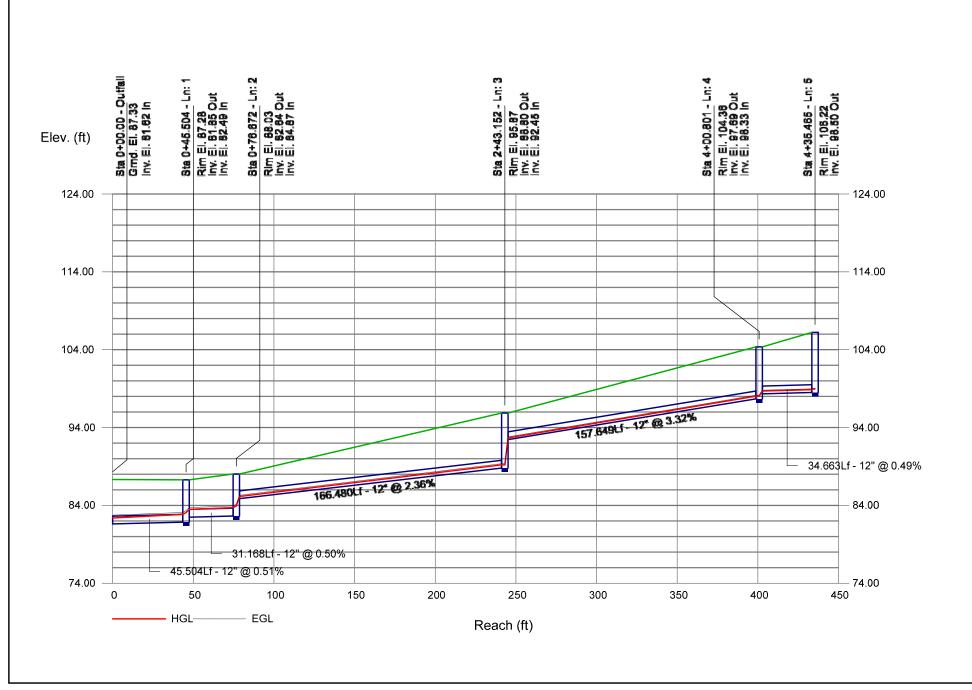
Storm Sewers v12.00



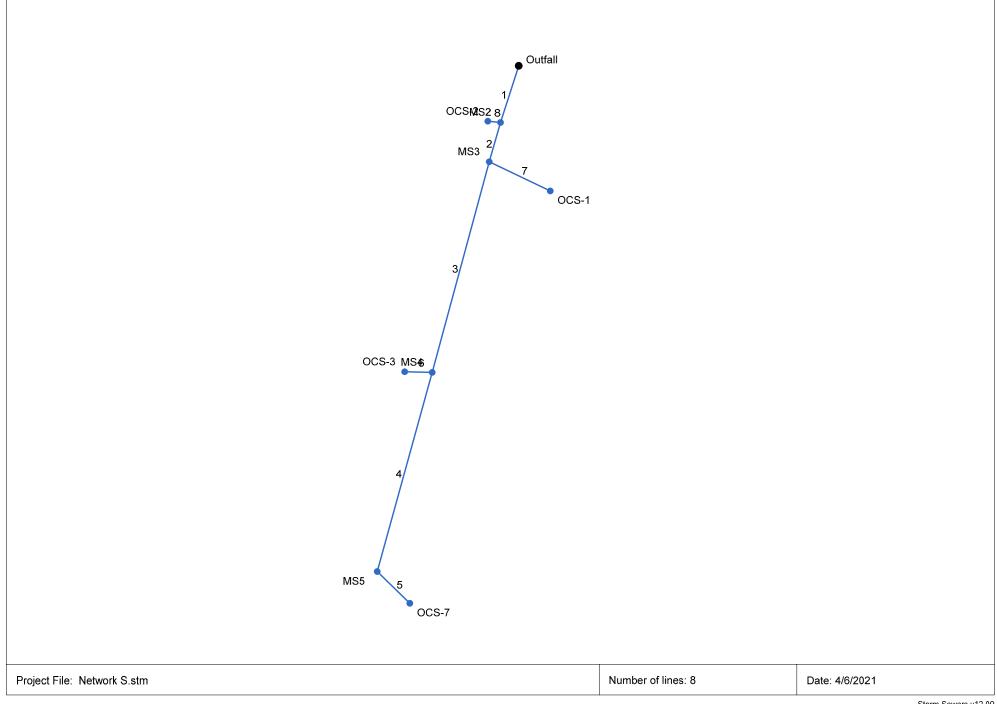

Storm Sewer Tabulation

Station I Line To		Len	Drng A		Rnoff	Area x	C	Тс			Total		Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
.ine	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	145.517	0.00	0.79	0.00	0.00	0.42	0.0	6.1	7.5	3.17	7.44	1.80	18	0.50	112.30	113.03	115.22	115.35	0.00	116.38	Pipe - (427) (3) (4)
2	1	6.731	0.47	0.47	0.47	0.22	0.22	6.0	6.0	7.5	1.66	2.38	2.12	12	0.45	113.52	113.55	115.40	115.42	116.38	116.24	Pipe - (426) (4) (3)
3	1	10.262	0.32	0.32	0.63	0.20	0.20	6.0	6.0	7.5	1.52	6.67	1.93	12	3.51	113.33	113.69	115.40	115.42	116.38	116.37	Pipe - (426) (4) (1)
Proje	ect File [.]	Networ	k P stm													Numbe	r of lines: :	3		Run Da	te: 4/6/20	21

Storm Sewer Profile

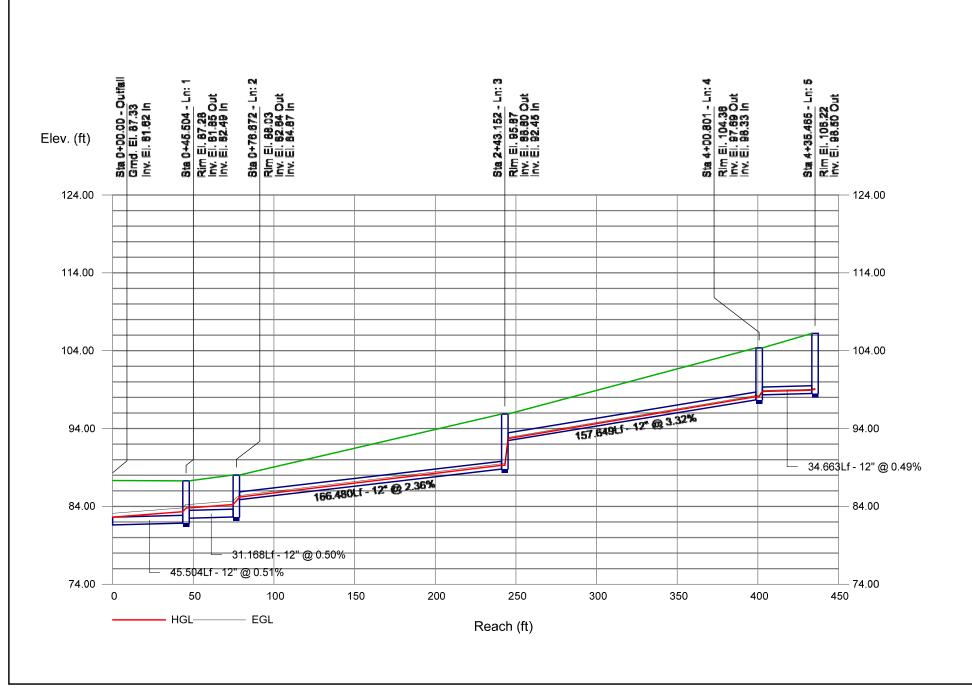


Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

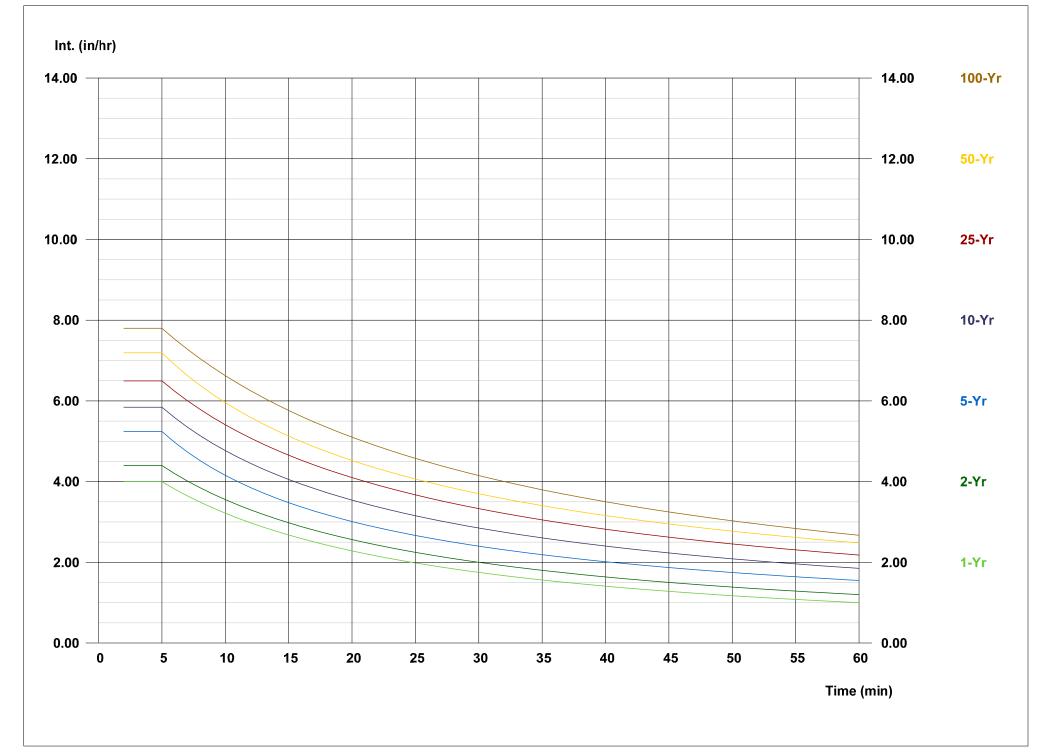


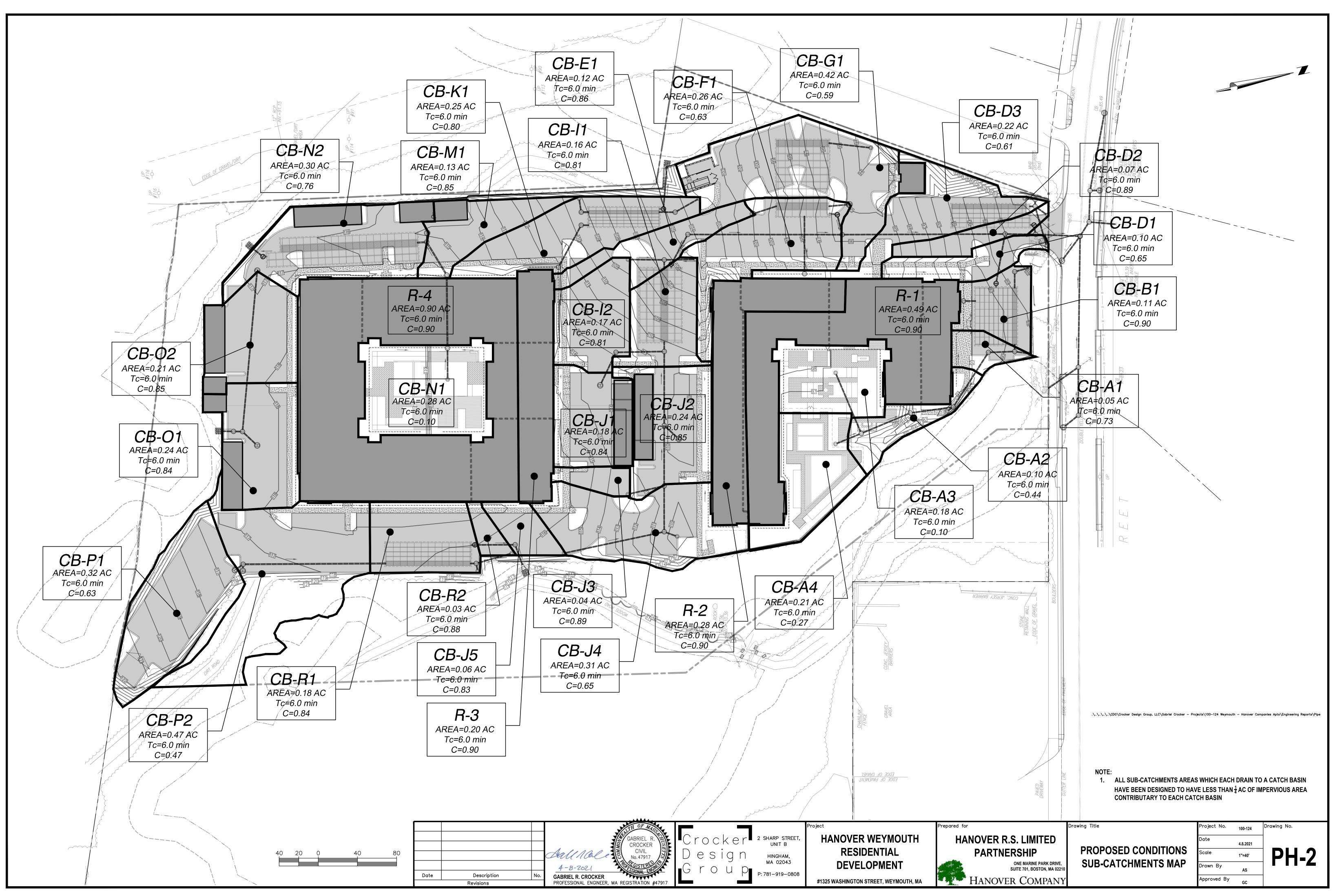
Storm Sewer Tabulation

Statio	n	Len	Drng A	lrea	Rnoff	Area x	c C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	ev	Grnd / R	im Elev	Line ID	
Line			Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up		
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
1	End	45.504	0.00	0.00	0.00	0.00	0.00	0.0	1.6	0.0	3.14	2.54	4.46	12	0.51	81.62	81.85	82.38	82.85	87.33	87.28	Pipe - (427) (1) (2)	
2		31.168		0.00	0.00	0.00	0.00	0.0	1.5	0.0	3.00	2.52		12	0.50	82.49	82.64	83.49	83.71	87.28	88.03	Pipe - (427) (1) (2)	
3		166.480		0.00	0.00	0.00	0.00	0.0	0.9	0.0	0.96	5.47		12	2.36	84.87	88.80	85.15	89.21	88.03	95.87	Pipe - (427) (1) (2)	
4		157.649		0.00	0.00	0.00	0.00	0.0	0.2	0.0	0.69	6.49	4.12	12	3.32	92.45	97.69	92.67	98.03	95.87	104.36	Pipe - (427) (1) (2)	
5		34.663		0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.69	2.49	2.71	12	0.49	98.33	98.50	98.69	98.86	104.36	106.22	Pipe - (427) (1) (2)	
6	3	20.884	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.27	2.46	1.64	12	0.48	88.90	89.00	89.21	89.23	95.87	95.63	Pipe - (427) (1)	
7	2	51.359	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.04	2.53	2.60	12	0.51	82.74	83.00	83.93	84.10	88.03	89.57	Pipe - (427) (1) (1)	
8	1	9.660	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.14	2.56	0.18	12	0.52	81.95	82.00	83.09	83.09	87.28	87.16	Pipe - (427) (1) (1)	
Proje	ct File:	Networ	k S.stm													Numbe	r of lines:	8		Run Da	ite: 4/6/20	21	
NOT	ES:Inte	nsity = 5	9.21 / (I	Inlet time	ə + 12.50) ^ 0.81;	Return	period =	Yrs. 10	; c = cir	e = elli	p b = b	ох										



Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan




Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	(C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	Fred	45 504	0.00	0.00	0.00	0.00	0.00		4.5		4.40	0.54	5.00	40	0.54	04.00	04.05	00.00	00.00	07.00	07.00	
1		45.504		0.00	0.00	0.00	0.00	0.0	1.5	0.0	4.42	2.54	5.63	12	0.51	81.62	81.85	82.62	83.32	87.33	87.28	Pipe - (427) (1) (2)
2	1	31.168		0.00	0.00	0.00	0.00	0.0	1.4	0.0	4.23	2.52	5.39	12	0.50	82.49	82.64	83.80	84.24	87.28	88.03	Pipe - (427) (1) (2)
3		166.480		0.00	0.00	0.00	0.00	0.0	0.8	0.0	1.32	5.47	4.61	12	2.36	84.87	88.80	85.20	89.28	88.03	95.87	Pipe - (427) (1) (2)
4	3	157.649		0.00	0.00	0.00	0.00	0.0	0.2	0.0	0.95	6.49	4.52	12	3.32	92.45	97.69	92.71	98.09	95.87	104.36	Pipe - (427) (1) (2)
5	4	34.663	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.95	2.49	2.96	12	0.49	98.33	98.50	98.76	98.93	104.36	106.22	Pipe - (427) (1) (2)
6	3	20.884	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.37	2.46	1.63	12	0.48	88.90	89.00	89.28	89.30	95.87	95.63	Pipe - (427) (1)
7	2	51.359	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.91	2.53	3.71	12	0.51	82.74	83.00	84.69	85.03	88.03	89.57	Pipe - (427) (1) (1)
8	1	9.660	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.19	2.56	0.24	12	0.52	81.95	82.00	83.80	83.80	87.28	87.16	Pipe - (427) (1) (1)
Proje	ct File:	Networ	k S.stm													Numbe	r of lines: 8	3		Run Da	ite: 4/6/202	21
NOT	ES:Inte	ensity = 1	97.93 / ((Inlet tim	ie + 22.5i	98.0 ^ (0	3; Retur	n period	=Yrs. 10	00 ; c =	cir e =	ellip b =	box									

Storm Sewer IDF Curves

SECTION 9 – ORAD MA DEP #81-1253

Massachusetts Department of Environmental Protection Provided by MassDEP: Bureau of Resource Protection - Wetlands WPA Form 4B – Order of Resource Area

Delineation

81-1253 MassDEP File Number

Weymouth

City/Town

eDEP Transaction Number

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

A. General Information

Important: Whe filling out forms on the computer use only the tab key to move you cursor - do not use the return key.

Note: Before completing this form consult your local Conservation Commission regarding any municipal bylaw or ordinance.

-			
en 👝	rom: Weymouth		
с С	1. Conservation Commission		
, 1 ¹ 2	. This Issuance is for (check one):		
	a. 🛛 Order of Resource Area Delinea	tion	
	b. Amended Order of Resource Are	ea Delineation	
3	. Applicant:		
	James	Bristol, III	
	a. First Name	b. Last Name	
	1317 Washington RE Holdings LLC		
	c. Organization		
	190 Old Derby St, Suite 311		
	d. Mailing Address		
	Hingham	MA	02043
	e. City/Town	f. State	g. Zip Code
4.	Property Owner (if different from applican See Attachment 1 (1 pg) a. First Name	ht): b. Last Name	
	c. Organization		
	d. Mailing Address		
	e. City/Town	f. State	g. Zip Code
5.	Project Location:		
	Washington St & White Oaks Lane (see	Weymouth	02189
	Attachment 2, 1 pg)	b. City/Town	c. Zip Code
	Map 35, Block 448	Lots 7, 8, 9 and 25	
	d. Assessors Map/Plat Number	e. Parcel/Lot Number	
	Latitude and Longitude	d m s	d m s
	(in degrees, minutes, seconds):	f. Latitude	g. Longitude
6	05/04/2020	06/23/2020	07/28/2020
6.	Dates: a. Date ANRAD filed	b. Date Public Hearing Closed	c. Date of Issuance

4

ATTACHMENT 1

Attachment to Order of Resource Area Delineation DEP File #81-1235 Washington St. and White Oaks Lane, Weymouth MA

RECORD OWNER INFORMATION

Assessor's Reference: Map 35 Block 448 Lot 7 Land Court Certificate No. 201840

Owner: 1317 Bristol Holdings, LLC 190 Old Derby Street Suite 311 Hingham, MA 02043

Assessor's Reference: Map 35 Block 448 Lot 8 Land Court Certificate No. 201841

Owner: 1317 Bristol Holdings, LLC 190 Old Derby Street Suite 311 Hingham, MA 02043

Assessor's Reference: Map 35 Block 448 Lot 9 Deed Book 1955 – Page 560 Deed Book 3055 – Page 514

Owner: Bates Bros. Seam-Face Granite Co. 882 Pleasant Street East Weymouth, MA 02189

Assessor's Reference: Map 35 Block 448 Lot 25 Land Court Certificate No. 182152

Owner: White Oaks Trust 190 Old Derby Street Suite 311 Hingham, MA 02043

ATTACHMENT 2

Order of Resource Area Delineation DEP File #81-1235 Washington St. and White Oaks Lane, Weymouth MA

PROPERTY LOCATION

A	ssessors Referen	nce	Property Address
Мар	Block	Lot	
35	448	7	1325 Washington St.
35	448	8	"O" Washington St. (undeveloped land)
35	448	9	"0" Washington St. (undeveloped land)
35	448	25	28 White Oaks Lane

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 4B – Order of Resource Area

rovided by MassDEP:	
81-1253	
MassDEP File Number	
eDEP Transaction Number	

P

Weymouth City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 **A. General Information** (cont.)

7. Title and Date (or Revised Date if applicable) of Final Plans and Other Documents:

Delineation

Wetland Location Plan, Assessors Map 35 Block 448, Lots 7, 8, 9, 25,	Rev. 6/18/2020
Washington Street, Weymouth MA. Prepared by Crocker Design Group.	b. Date
c. Title	d. Date

B. Order of Delineation

- 1. The Conservation Commission has determined the following (check whichever is applicable):
 - a. Accurate: The boundaries described on the referenced plan(s) above and in the Abbreviated Notice of Resource Area Delineation are accurately drawn for the following resource area(s):
 - 1. Bordering Vegetated Wetlands
 - 2. X Other resource area(s), specifically:
 - a. See ATTACHMENT 3 (1 pg) for list of all resource areas covered under this ORAD.
 - b. Modified: The boundaries described on the plan(s) referenced above, as modified by the Conservation Commission from the plans contained in the Abbreviated Notice of Resource Area Delineation, are accurately drawn from the following resource area(s):
 - 1. Derived Bordering Vegetated Wetlands
 - 2. Other resource area(s), specifically:

a. Wetland series "D" is labeled on the ANRAD plan as "Isolated Vegetated Wetland (IVW), Local Jurisdiction Only." The Conservation Commission has not made a determination as to state jurisdiction. This ORAD rules only on the local jurisdiction of series "D."

- c. Inaccurate: The boundaries described on the referenced plan(s) and in the Abbreviated Notice of Resource Area Delineation were found to be inaccurate and cannot be confirmed for the following resource area(s):
 - 1. Derived Bordering Vegetated Wetlands
 - 2. Other resource area(s), specifically:

ATTACHMENT 3

Order of Resource Area Delineation DEP File #81-1235 Washington St. and White Oaks Lane, Weymouth MA

WETLAND RESOURCE AREA DESCRIPTIONS

For areas jurisdictional under the Mass Wetlands Protection Act (MGL c. 131, sec. 40) and/or the Weymouth Wetlands Protection Ordinance (Weymouth Code of Ordinances, Chapter 7, sec. 301)

BORDERING VEGETATED WETLAND – STATE AND LOCAL JURISDICTION Wetland Series "A" Wetlands Series "B" Wetland Series "E" Wetland Series "F"

<u>ISOLATED VEGETATED WETLAND – LOCAL JURISDICTION ONLY</u> Wetland Series "C" Wetland Series "G", flags WFG1 – WFG11 (Note: this is one of two series labeled "WFG") Wetland Series "H"

ISOLATED VEGETATED WETLAND and VERNAL POOL – LOCAL JURISDICTION ONLY Quarry Hole "E" series Quarry Hole "G" series, WFG1 – WFG8 (Note: this is one of two series labeled "WFG")

WETLAND SERIES LOCAL JURISDICTION, STATE JURISDICTION NOT DETERMINED Wetland series "D" (wetland flags WFD 1 – 9).

NOTE: On the ANRAD plan, the WFD series is labeled as "Isolated Vegetated Wetland, Local Jurisdiction Only." The Weymouth Conservation Commission has not made a determination as to whether or not this wetland series is subject to state jurisdiction.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 4B – Order of Resource Area Delineation

Provided by MassDEP: 81-1253 MassDEP File Number

> eDEP Transaction Number Weymouth City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Order of Delineation (cont.)

3. The boundaries were determined to be inaccurate because:

C. Findings

This Order of Resource Area Delineation determines that the boundaries of those resource areas noted above, have been delineated and approved by the Commission and are binding as to all decisions rendered pursuant to the Massachusetts Wetlands Protection Act (M.G.L. c.131, § 40) and its regulations (310 CMR 10.00). This Order does not, however, determine the boundaries of any resource area or Buffer Zone to any resource area <u>not</u> specifically noted above, regardless of whether such boundaries are contained on the plans attached to this Order or to the Abbreviated Notice of Resource Area Delineation.

This Order must be signed by a majority of the Conservation Commission. The Order must be sent by certified mail (return receipt requested) or hand delivered to the applicant. A copy also must be mailed or hand delivered at the same time to the appropriate DEP Regional Office (see https://www.mass.gov/service-details/massdep-regional-offices-by-community).

D. Appeals

The applicant, the owner, any person aggrieved by this Order, any owner of land abutting the land subject to this Order, or any ten residents of the city or town in which such land is located, are hereby notified of their right to request the appropriate DEP Regional Office to issue a Superseding Order of Resource Area Delineation. When requested to issue a Superseding Order of Resource Area Delineation, the Department's review is limited to the objections to the resource area delineation(s) stated in the appeal request. The request must be made by certified mail or hand delivery to the Department, with the appropriate filing fee and a completed Request for Departmental Action Fee Transmittal Form, as provided in 310 CMR 10.03(7) within ten business days from the date of issuance of this Order. A copy of the request shall at the same time be sent by certified mail or hand delivery to the Conservation Commission and to the applicant, if he/she is not the appellant.

Any appellants seeking to appeal the Department's Superseding Order of Resource Area Delineation will be required to demonstrate prior participation in the review of this project. Previous participation in the permit proceeding means the submission of written information to the Conservation Commission prior to the close of the public hearing, requesting a Superseding Order or Determination, or providing written information to the Department prior to issuance of a Superseding Order or Determination.

The request shall state clearly and concisely the objections to the Order which is being appealed and how the Order does not contribute to the protection of the interests identified in the Massachusetts Wetlands Protection Act, (M.G.L. c. 131, § 40) and is inconsistent with the wetlands regulations (310 CMR 10.00). To the extent that the Order is based on a municipal bylaw or ordinance, and not on the Massachusetts Wetlands Protection Act or regulations, the Department of Environmental Protection has no appellate jurisdiction.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 4B – Order of Resource Area Delineation

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP: 81-1253 MassDEP File Number

> eDEP Transaction Number Weymouth City/Town

E. Signatures

Please indicate the number of members who will sign this form.

07/28/2020 Date of Issuance 3 1. Number of Signers

Signatures	
Signature of Conservation Commission Member	Thomas Tanner, Chairman Printed Name
Signature of Conservation Commission Weinber	
ATTACK	George Loring, Member
Signature of Conservation Commission-Member	Printed Name
from pts	Frank Singleton, Member
Signature of Conservation Commission Member	Printed Name
Signature of Conservation Commission Member	Printed Name
Signature of Conservation Commission Member	Printed Name
Signature of Conservation Commission Member	Printed Name
Signature of Conservation Commission Member	Printed Name
Signature of Conservation Commission Member	Printed Name

This Order is valid for three years from the date of issuance.

If this Order constitutes an Amended Order of Resource Area Delineation, this Order does not extend the issuance date of the original Final Order, which expires on unless extended in writing by the issuing authority.

This Order is issued to the applicant and the property owner (if different) as follows:

3. 💓 By certified mail, return receipt requested on
07/28/2020
a. Date

a. Date

2. By hand delivery on

4

Î	X		2	
ľ		M	1	
		K	1	1

Important:

When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Request for Departmental Action Fee

DEP File Number:

81-1235 Provided by DEP

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

A. Request Information

Transmittal Form

1. Location of Project

a. Street Address	b. City/Town, Zip	
c. Check number	d. Fee amount	
Person or party making request (if app	propriate, name the citizen group's represe	entative):
Name		
Mailing Address		
	State	Zip Code
City/Town		•
Phone Number Applicant (as shown on Determination	Fax Number (if ap of Applicability (Form 2), Order of Resour	ce Area Delineatio
Phone Number Applicant (as shown on Determination	Fax Number (if ap	ce Area Delineatio
Phone Number Applicant (as shown on Determination (Form 4B), Order of Conditions (Form Non-Significance (Form 6)):	Fax Number (if ap of Applicability (Form 2), Order of Resour	ce Area Delineatio
Phone Number Applicant (as shown on Determination (Form 4B), Order of Conditions (Form Non-Significance (Form 6)): Name	Fax Number (if ap of Applicability (Form 2), Order of Resour	ce Area Delineatio
Phone Number Applicant (as shown on Determination (Form 4B), Order of Conditions (Form Non-Significance (Form 6)): Name Mailing Address	Fax Number (if ap of Applicability (Form 2), Order of Resour 5), Restoration Order of Conditions (Form	ce Area Delineation 5A), or Notice of Zip Code

B. Instructions

- 1. When the Departmental action request is for (check one):
 - Superseding Order of Conditions Fee: \$120.00 (single family house projects) or \$245 (all other projects)
 - Superseding Determination of Applicability Fee: \$120
 - Superseding Order of Resource Area Delineation Fee: \$120

Send this form and check or money order, payable to the Commonwealth of Massachusetts, to:

Department of Environmental Protection Box 4062 Boston, MA 02211

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Request for Departmental Action Fee

DEP File Number:

Provided by DEP

Transmittal Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Instructions (cont.)

- 2. On a separate sheet attached to this form, state clearly and concisely the objections to the Determination or Order which is being appealed. To the extent that the Determination or Order is based on a municipal bylaw, and not on the Massachusetts Wetlands Protection Act or regulations, the Department has no appellate jurisdiction.
- Send a copy of this form and a copy of the check or money order with the Request for a Superseding Determination or Order by certified mail or hand delivery to the appropriate DEP Regional Office (see https://www.mass.gov/service-details/massdep-regional-offices-by-community).
- 4. A copy of the request shall at the same time be sent by certified mail or hand delivery to the Conservation Commission and to the applicant, if he/she is not the appellant.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 4B – Order of Resource Area Delineation

Provided by MassDEP:

MassDEP File Number

eDEP Transaction Number

City/Town

Page

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Recording Information

Prior to commencement of work, this Order of Resource Area Delineation must be recorded in the Registry of Deeds or the Land Court for the district in which the land is located, within the chain of title of the affected property. In the case of recorded land, the Final Order shall also be noted in the Registry's Grantor Index under the name of the owner of the land subject to the Order. In the case of registered land, this Order shall also be noted on the Land Court Certificate of Title of the owner of the land subject to the Order of Resource Area Delineation. The recording information on this page shall be submitted to the Conservation Commission listed below.

Cons	ervation Commission
-	ach on dotted line, have stamped by the Registry of Deeds and submit to the Conservation mission.

To:

Conservation Commission

Please be advised that the Order of Resource Area Delineation for the Project at:

Project Location

MassDEP File Number

Has been recorded at the Registry of Deeds of:

County

For: Property Owner

and has been noted in the chain of title of the affected property in:

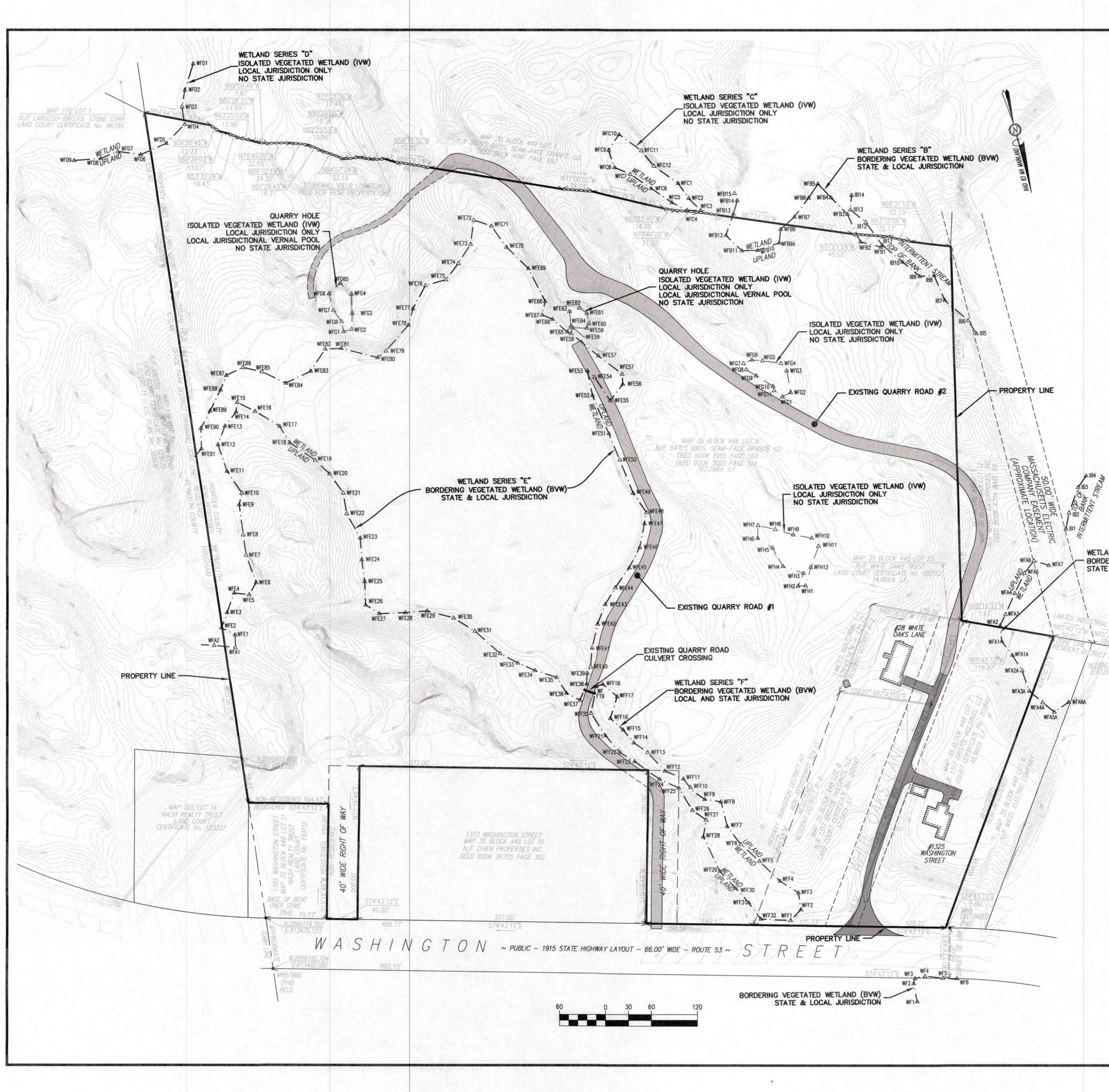
Book

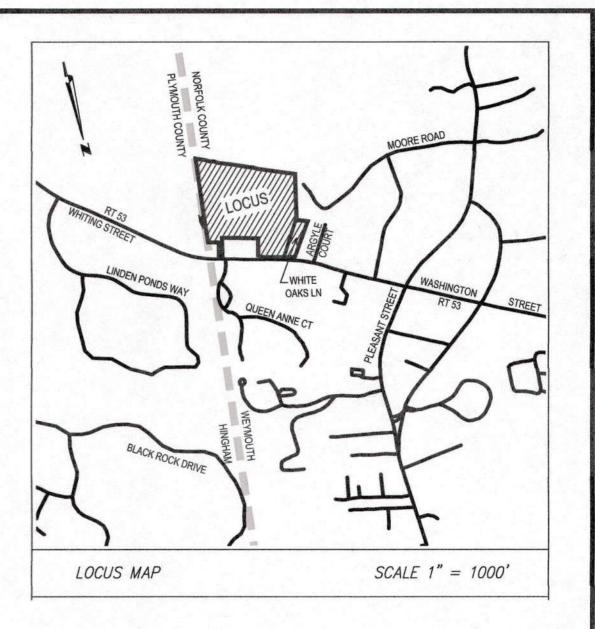
Page

Book

In accordance with the Order of Resource Area Delineation issued on:

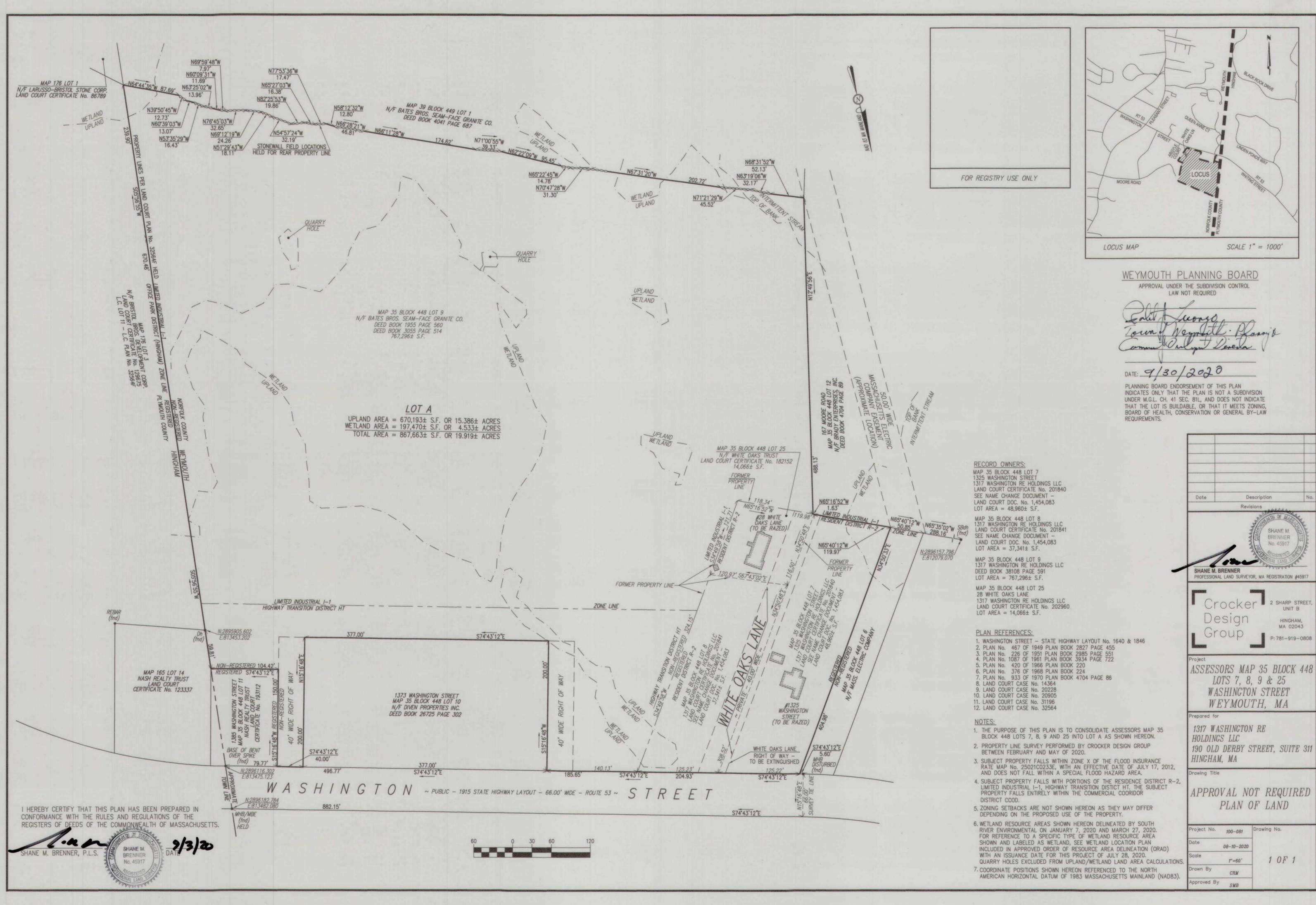
Date


If recorded land, the instrument number identifying this transaction is:


Instrument Number

If registered land, the document number identifying this transaction is:

Document Number


Signature of Applicant

SREAM				
etland series ' Ordering veget Tate and local	ATED WETLAND (BVW)	6/18/20 5/20/20	ADD NEW WETLAND FLAGS ADD NEW WETLAND FLAGS	2
		Date	Description	No.
TRIAL 1-1 N65'35'02"W SBdh 288.16' (fnd) RICT R-2 2896157.796 312079.070	RECORD OWNERS: MAP 35 BLOCK 448 LOT 7 1317 BRISTOL HOLDINGS, LLC LAND COURT CERTIFICATE No. 201840 LOT AREA = 48,960± S.F.		M. BRENNER MARCHINER MARCH	5917
	MAP 35 BLOCK 448 LOT 8 1317 BRISTOL HOLDINGS, LLC LAND COURT CERTIFICATE No. 201841 LOT AREA = $37,341\pm$ S.F.	Crocker ² Sharp Street, UNIT B Design Group P: 781-919-0808		
	MAP 35 BLOCK 448 LOT 9 BATES BROS. SEAM-FACE GRANITE CO. DEED BOOK 1955 PAGE 560 DEED BOOK 3055 PAGE 514 LOT AREA = $767,296\pm$ S.F.			
	MAP 35 BLOCK 448 LOT 25 WHITE OAKS TRUST LAND COURT CERTIFICATE No. 182152 LOT AREA = 14,066 \pm S.F.	Project	P: 781-919-1	0808
	PLAN REFERENCES: 1. WASHINGTON STREET – STATE HIGHWAY LAYOUT No. 1640 & 1846 2. PLAN No. 467 OF 1949 PLAN BOOK 2827 PAGE 455 3. PLAN No. 226 OF 1951 PLAN BOOK 2985 PAGE 551 4. PLAN No. 1087 OF 1961 PLAN BOOK 3934 PAGE 722 5. PLAN No. 420 OF 1966 PLAN BOOK 220 6. PLAN No. 376 OF 1968 PLAN BOOK 224 7. PLAN No. 933 OF 1970 PLAN BOOK 4704 PAGE 86 8. LAND COURT CASE No. 14364 9. LAND COURT CASE No. 20228 10. LAND COURT CASE No. 31196 12. LAND COURT CASE No. 32564	ASSESSORS MAP 35 BLOCK 448 LOTS 7, 8, 9 & 25 WASHINGTON STREET WEYMOUTH, MA Prepared for 1317 WASHINGTON RE HOLDINGS LLC 190 OLD DERBY STREET, SUITE 311		
	NOTES: 1. WETLAND RESOURCE AREAS SHOWN HEREON DELINEATED BY SOUTH	HINGHA Drawing Titl		
	 RIVER ENVIRONMENTAL ON JANUARY 7, 2020, MARCH 27, 2020 AND MAY 14, 2020. 2. SUBJECT PROPERTY FALLS WITHIN ZONE X OF THE FLOOD INSURANCE RATE MAP No. 25021C0233E, WITH AN EFFECTIVE DATE OF JULY 17, 2012, AND DOES NOT FALL WITHIN A SPECIAL FLOOD HAZARD AREA. 3. SUBJECT PROPERTY FALLS WITH PORTIONS OF THE RESIDENCE DISTICT R-2, HIMTED INDUSTRIAL FOR UNIVERSITICAL DISTICT R-2, 	WETLAND LOCATION PLAN		
	LIMITED INDUSTRIAL I-1, HIGHWAY TRANSITION DISTICT HT AND THE COMMERCIAL COORIDOR OVERLAY DISTRICT CCOD. 4. COORDINATE POSITIONS SHOWN HEREON REFERENCED TO THE NORTH AMERICAN HORIZONTAL DATUM OF 1983 MASSACHUSETTS MAINLAND (NAD83). 5. RESOURCE AREA TYPES IDENTIFIED ON THE PLANS WERE DETERMINED BY SOUTH RIVER ENVIRONMENTAL.	Project No. Date Scale	5-21-2020	
	6. TOPOGRAPHY SHOWN WAS GENERATED FROM AERIAL PHOTOGRAMMETRY PERFORMED CHA CONSULTING INC. (CHA). CONTOURS SHOWN ARE 1-FOOT CONTOUR INTERVALS.	1 0F 1 Drawn By AS Approved By SMB		

SECTION 10 – ENDORSED ANR PLAN

SECTION 11 – PROJECT PLANS (Under Separate Cover)